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ON THE NON-DETECTABILITY OF SPIKED LARGE RANDOM TENSORS

A. Chevreuil and P. Loubaton

Laboratoire d’Informatique Gaspard Monge (CNRS, Université Paris-Est/MLV)
5 Bd. Descartes 77454 Marne-la-Vallée (France)

ABSTRACT
This paper addresses the detection of a low rank high-dimensional
tensor corrupted by an additive complex Gaussian noise. In the
asymptotic regime where all the dimensions of the tensor converge
towards +1 at the same rate, existing results devoted to rank 1 ten-
sors are extended. It is proved that if a certain parameter depend-
ing explicitly on the low rank tensor is below a threshold, then the
null hypothesis and the presence of the low rank tensor are undistin-
guishable hypotheses in the sense that no test performs better than a
random choice.

1. INTRODUCTION

The problem of testing whether an observed n

1

⇥ n

2

matrix Y is
either a zero-mean independent identically distributed Gaussian ran-
dom matrix Z with variance 1

n

2

, or X
0

+Z (where X
0

is a low rank
matrix: a useful signal, called also spike) is a fundamental problem
arising in numerous applications such as the detection of low-rank
multivariate signals or the Gaussian hidden clique problem. When
the two dimensions n

1

, n

2

converge towards 1 at the same rate,
the rank of X

0

remaining fixed, the context is this of the so-called
additive spiked large random matrix models. Various results on the
singular values of X

0

+ Z have been established; in particular it is
possible to show that the Generalized Likelihood Ratio Test (GLRT)
is consistent (i.e. the probability of false alarm and the probability
of missed detection both converge towards 0 when n

1

, n

2

converge
towards +1 in such a way that n

1

/n

2

! c > 0) if and only the
largest singular value of X

0

is above the threshold c

1/4 (see e.g.

[12], [3], [2]).
In a number of real life problems, the observation is not a ma-

trix, but a tensor Y of order d � 3, i.e. a d–dimensional array
Y = Y

i

1

,i

2

,...,i

d

where for each k = 1, . . . , d, i
k

2 [1, . . . , n

k

]. In
this context, the generalization of the above matrix hypothesis test-
ing problem becomes: test that the observed order d � 3 tensor is
either a zero-mean independent identically distributed Gaussian ran-
dom tensor Z, or the sum of Z and a low rank deterministic tensor

X

0

=

rX

i=1

�

i

x

(1,i)

0

⌦ x

(2,i)

0

⌦ . . .x

(d,i)

0

(1)

where r is called the rank of X
0

. Here (�

i

)

i=1,...,r

are strictly posi-
tive real numbers, and for each i = 1, . . . , r and k = 1, ..., d, x(k,i)

0

is a n

i

⇥ 1 unit norm vector. Recent works (see e.g. [8, 11, 10, 14]
) addressed the detection/estimation of X

0

when r is reduced to 1
and when the dimensions n

1

, . . . , n

d

converge towards 1 at the
same rate. We also mention that [8] and [14] only considered the
case where the rank 1 tensor X

0

is symmetric, that is: n
1

= n

2

=
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. . . = n

d

and the d vectors (x(k,i)

0

)

i=1,...,d

are equal. Since the con-
cept of singular value decomposition cannot be extended to tensors,
ad’hoc statistical strategies have been considered to prove the (non)-
existence of consistent tests: [11] and [14] (r = 1) established that if
�

1

is larger than a certain upper bound, then consistent detection of
X

0

is possible. In the other direction, [10][14] (again, r = 1) proved
that if �

1

is less than a certain lower bound (which is stricly less than
the above upper bound), then X

0

is non-detectable in the sense that
any test behaves as a random choice between the two hypotheses.
This is a remarkable phenomenon because such a behaviour is not
observed in the matrix case (d = 2): indeed, in this context, if the
largest eigenvalue of X

0

is below c

1/4, it is proved in [13] (r = 1)
that there exist statistical tests having a better performance than a
random choice - a result that [10][14] obtained a different way.

The replica method has been successfully considered [4][9]. In
these contributions, the model does not match exactly ours since 1)

the spike is assumed symmetric, i.e. X
0

=

P
r

i=1

�

i

⇣
x

(i)

0

⌘⌦d

and

2) the rows of the matrix
⇣
x

(1)

0

, ...,x

(r)

0

⌘
are random i.i.d. with a

known distribution (the prior). When r = 1, and the prior is of
the Rademacher type, the observed tensor follows the pure p-spin
model [15]: in an illuminating contribution [4], a tight threshold
when d � 3 is provided (above which consistent detection is possi-
ble and under which any detector performs as a random guess). The
case r � 1 with a general prior is addressed in [9]: there, the estima-
tion of the spike is considered rather than the detection; specifically,
the asymptotic performance of the MMSE is computed and an esti-
mation threshold is deduced. This latter is rigorously proved when
r = 1. The threshold is not explicit and intrinsically depends on the
prior.

In the present contribution, we follow the methodolodgy of [11]
[10][14] and extend it to the general case r � 1: though subopti-
mal (the thresholds provided are not tight in general), the machinery
is much lighter than this of the replica method, it provides explicit
bounds for the non-detectability and lastly allows one to deal with
deterministic spikes. Precisely, we find out a simple sufficient con-
dition on the spike X

0

under which X

0

is non-detectable. The prob-
lem of finding conditions under which the existence of a consistent
detection is guaranteed is not addressed here.

2. MODEL, NOTATION, AND BACKGROUND

The order-d tensors are complex-valued, and it is assumed that n
1

=

n

2

= ... = n in order to simplify the notations. The set ✏dCn is a
complex vector-space endowed with the standard scalar product

8 X,Y 2 ✏dCn hX,Yi =
X

i

1

,...,i

d

X

i

1

,...,i

d

Y

i

1

,...,i

d

and the Frobenius norm kXk
F

=

phX,Xi.



The spike (“the signal”) is assumed to be a tensor of fixed rank
r following (1). Along this contribution, n is large or, mathemat-
ically, n ! 1. We hence have for each n a set of n ⇥ 1 vec-
tors

⇣
x

(k,i)

0

⌘

k=1...d,i=1,...,r

. For each k = 1, . . . , d, we denote

by �(k)

0

the n ⇥ r matrix �(k)

0

= (x

(k,1)

0

, . . . ,x

(k,r)

0

). We im-
pose a non-erratic asymptotic behavior of the spike, and specifi-
cally, as all the vectors x

(k,i)

0

2 Cn⇥1 have unit norm, we sup-
pose that for all i, j,

D
x

(k,i)

0

,x

(k,j)

0

E
= (�(k)⇤

0

�(k)

0

)

i,j

converges
as n ! 1. The rate of convergence is a technical aspect that is
out of the scope of this contribution: we will simply assume that the
matrices (�(k)⇤

0

�(k)

0

)

k=1,...,d

do not depend on n. We define the

SVD of �(k)

0

as U
k

✓
⌃

k

0

◆
V

⇤
k

for U
k

and V

k

unitary matrices

respectively of size n⇥ n and r ⇥ r and⌃
k

a diagonal matrix with
non-negative entries on the diagonal. V

k

and ⌃
k

do no depend on
n because �(k)⇤

0

�(k)

0

= V

k

⌃

2

k

V

⇤
k

.
We denote by Z the noise tensor, and assume that its entries

are NC(0, 1/n) independent identically distributed complex circular
Gaussian random variables.

In the following, we consider the alternative H
0

: Y = Z

versus H
1

: Y = X

0

+ Z. We denote by p

1,n

(y) the probability
probability density of Y under H

1

and p

0,n

(y) the density of Y

under H
0

. ⇤(Y) =

p

1

(Y)

p

0

(Y)

is the likelihood ratio and we denote
by E

0

the expectation under H
0

. We now recall the fundamental
information geometry results used in [10] in order to address the
detection problem.The following properties are well known (see also
[1] section 3):

• (i) If E
0

⇥
⇤(Y)

2

⇤
is bounded, then no consistent detection

test exists.
• (ii) If moreover E

0

⇥
⇤(Y)

2

⇤
= 1+o(1), then the total varia-

tion distance between p

0,n

and p

1,n

converges towards 0, and
no test performs better than a decision at random.

Therefore, the computation of the second order moment of ⇤(Y)

under p
0,n

may provide insights on the detection. We however no-
tice that conditions (i) and (ii) are only sufficient. In particular, if
lim sup

n

E
0

⇥
⇤(Y)

2

⇤
= +1, nothing can be inferred on the be-

haviour of the detection problem when n ! +1.

3. EXPRESSION OF THE SECOND-ORDER MOMENT.

The density of Z, seen as a collection of n

d complex-valued ran-
dom variables, is obviously p

0,n

(z) = 

n

exp

��n kzk2
F

�
where



n

=

�
n

⇡

�
n

d

. On the one hand, we notice that the second-order
moment approach is not suited to the deterministic model of the
spike as presented previously. Indeed, in this case E

0

⇥
⇤(Y)

2

⇤
has

the simple expression exp

�
2n kX

0

k2
F

�
and always diverges. On

the other hand, the noise tensor shows an invariance property: if
⇥

1

, ...,⇥

d

are unitary n⇥ n matrices, then the density of the mode
products (⇥

1

⌦⇥
2

...⌦⇥
d

)Z equals this of Z. For d = 2, the
notation (⇥

1

⌦⇥
2

)Z simply means ⇥
1

Z⇥

2

and for a general d,
((⇥

1

⌦⇥
2

...⌦⇥
d

)Z)

i

1

,...,i

d

is
X

`

1

,...,`

d

(⇥

1

)

i

1

,`

1

(⇥

2

)

i

2

,`

2

... (⇥

d

)

i

d

,`

d

Z

`

1

,...,`

d

.

We hence modify the data according to the procedure: we pick i.i.d.
complex Haar samples⇥

1

, ...,⇥

d

and consider the ”new” data ten-
sor defined as (⇥

1

⌦⇥
2

...⌦⇥
d

)Y. This does not affect the dis-
tribution of the noise, but this amounts to assume an artificial prior

on the spike. Indeed, the vectors x

(k,i)

0

are replaced by ⇥
k

x

(k,i)

0

.
They are all uniformly distributed on the unit sphere of Cn and for
k 6= l, vectors⇥

k

x

(k,i)

0

and⇥
l

x

(l,j)

0

are independent for each i, j.
However, vectors (⇥

k

x

(k,i)

0

)

i=1,...,r

are not independent. In the fol-
lowing, the data and the noise tensors after this procedure are still
denoted respectively by Y and Z. This transformation of the spike
is an extension of a trick used in Section III.C of [10].

We are now in position to give a closed-form expression
of the second-order moment of ⇤(Y) . We have p

1,n

(Y) =

E
X

[p

0,n

(Y �X)] where E
X

is the mathematical expectation over
the distribution of the spike, or equivalently over the Haar matrices
(⇥

k

)

k=1,...,d

. It holds that

E
0

⇥
⇤(Y)

2

⇤
= E

X,X

0
⇥
exp

�
2nR

⌦
X,X

0↵�⇤
=

E
X,X

0

"
exp

 
2nR

rX

i,j=1

�

i

�

j

dY

k=1

D�
⇥

0
k

�⇤
⇥

k

x

(k,i)

0

,x

(k,j)

0

E!#

where E
X,X

0 is over independent copies X,X

0 of the spike as-
sociated respectively with (⇥

k

)

k=1,...,d

and (⇥

0
k

)

k=1,...,d

. R
stands for the real part. As ⇥

k

and ⇥0
k

are Haar and indepen-
dent, then (⇥

0
k

)

⇤
⇥

k

is also Haar distributed and E
0

⇥
⇤(Y)

2

⇤
=

E [exp (2n⌘)], where the expectation is over the i.i.d. Haar matrices
⇥

1

,⇥

2

, ...,⇥

d

and

⌘ = R
rX

i,j=1

�

i

�

j

dY

k=1

D
⇥

k

x

(k,i)

0

,x

(k,j)

0

E

| {z }
⇠

(i,j)

k

. (2)

⌘ may be factored as ⌘ = R
h
�T

⇣
✓d

k=1

⇣
�(k)⇤

0

⇥

k

�(k)

0

⌘⌘
�
i
. In

the latter equation, ✓ stands for the Hadamard product of matrices.
The ultimate simplification comes from the SVD of �(k)

0

:

�(k)⇤
0

⇥

k

�(k)

0

= V

k

�
⌃

k

0

�
U

⇤
k

⇥

k

U

k

✓
⌃

k

0

◆
⌃

k

V

⇤
k

.

Firstly, U⇤
k

⇥

k

U

k

has the same distribution as ⇥
k

; secondly, we
may associate with any⇥

k

its upper r⇥r block, that we will denote
 

k

. As a conclusion, we may express ⌘ as

⌘ = R
h
�T

⇣
✓d

k=1

(V

k

⌃

k

 

k

⌃V

⇤
k

)

⌘
�
i
. (3)

4. EXTENDING KNOWN RESULTS

When r = 1, Montanari et al. [10] found a bound on the parameter
�

1

ensuring that E
0

⇥
⇤(Y)

2

⇤
is bounded. In this case, ⌘ has a simple

expression since ⌘ = �

2R
Q

d

k=1

⇠

k

where the (⇠
k

)

k=1,...,d

are i.i.d.
distributed as the first component of a uniform vector of the unit
sphere of Cn. As in [10], we introduce

�

2nd
d

=

s

min

u2[0,1]

� 1

u

d

log(1� u

2

). (4)

Adapting the result of the aforementioned article to the complex-
circular context is straight-forward:

Theorem 1 (case r=1 (Montanari et al.)). Let ⇠

1

, ..., ⇠

d

be i.i.d. dis-

tributed as the first component of a vector uniformly distributed on

the unit sphere of Cn

.

If �

1

<

q
d

2

�

2nd

d

then E
0

h
exp

⇣
2n�

2

1

R
Q

d

k=1

⇠

k

⌘i
is bounded;

moreover, if d > 2, the above expectation is 1+o(1).



This non-obvious result may be used in order to derive a condi-
tion ensuring that hypotheses H

0

and H
1

are indistinguishable when
r > 1. In this respect, recall the expansion (2). Thanks to the Hölder
inequality, E

0

⇥
⇤(Y)

2

⇤
is upper bounded by (see (2) for the defini-

tion of ⇠(i,j)
k

)

rY

i,j=1

E1/p

i,j

"
exp

 
2np

i,j

�

i

�

j

R
dY

k=1

⇠

(i,j)

k

!#
(5)

for any non-negative numbers p

i,j

such that
P

i,j

1

p

i,j

= 1. For

fixed i, j, we notice that the random variables (⇠(i,j)
k

)

k=1,...,d

verify
the condition of Theorem 1. Any of the expectations in (5) are hence
upper-bounded when n ! 1 provided that, for all i, j: p

i,j

�

i

�

j

<

d

2

�
�

2nd
d

�
2. Choosing eventually p

i,j

=

(

P
p

�

p

)

2

�

i

�

j

, we deduce

Theorem 2 (case r � 1 - extension of Theorem 1 ). If

P
r

i=1

�

i

<q
d

2

�

2nd

d

then E
0

⇥
⇤(Y)

2

⇤
is bounded. If moreover d > 2, we have

E
0

⇥
⇤(Y)

2

⇤
= 1 + o(1) and the hypotheses H

0

and H
1

are indis-

tinguishable.

Remark 3. Due to the use of the Hölder inequality, Theorem 2 is
suboptimum in general. The inequality is patently an equality when
8k, i, j, x(k,i)

0

= x

(k,j)

0

, i.e. the spike has rank r = 1 and amplitudeP
r

i=1

�

i

.

5. A TIGHTER BOUND

The main result of our contribution is the following

Theorem 4 (case r � 1). We define ⌘

max

as

⌘

max

= �
⇣
✓d

k=1

�(k)⇤
0

�(k)

0

⌘
�. (6)

If

p
⌘

max

<

q
d

2

�

2nd

d

then, for d > 2, E
0

⇥
⇤(Y)

2

⇤
= 1 + o(1).

Before providing elements of the proof of the above result, we
may briefly justify why the bound in Theorem 4 is tighter than this
of Theorem 2, whatever the choice of �. On the one hand, indeed,�P

i

�

i

�
2

= �T

J� where J is the r ⇥ r matrix having all its en-
tries equal to 1. On the other hand, all the vectors x

(k,i)

0

are nor-
malized and consequently, any of the diagonal entries of �(k)⇤

0

�(k)

0

equals 1 and for any i 6= j,
���(�(k)⇤

0

�(k)

0

)

i,j

���  1. This proves that
�P

i

�

i

�
2 � ⌘

max

= �T

⇣
J� ✓d

k=1

�(k)⇤
0

�(k)

0

⌘
� � 0.

We provide the key elements of the proof of Theorem 4. Re-
mind that we are looking for a condition on the spike under which
E [exp (2n⌘)] is bounded. Evidently, the divergence may occur
only when ⌘ > 0. We hence consider E

1

= E [exp (2n⌘)1

⌘>✏

]

and E

2

= E [exp (2n⌘)1

⌘✏

], and prove that under the condition
p
⌘

max

<

q
d

2

�

2nd
d

, for a certain small enough ✏, E
1

= o(1) (for
d � 2) and that E

2

= 1 + o(1) (for d > 2).

The E

1

term. It is clear that the boundedness of the integral E
1

is achieved when ⌘ rarely deviates from 0. As remarked in [10],
the natural machinery to consider to understand E

1

is this of the
Large Deviation Principle (LDP). In essence, if ⌘ follows the LDP
with rate n, there can be found a certain non-negative function called
Good Rate Function (GRF) I

⌘

such that for any Borel set A of R,

1

n

log P (⌘ 2 A) converges towards sup
x2A

�I

⌘

(x). The existence
of a GRF allows one to analyze the asymptotic behaviour of integral
E

1

. Indeed, the Varadhan lemma (see Theorem 4.3.1 in [6]) states
that 1

n

logE [exp (2n⌘)1

⌘>✏

] ! sup

x>✏

(2x� I

⌘

(x)) and hence
the E

1

term converges towards 0 when sup

x>✏

(2x� I

⌘

(x)) < 0.
We thus justify that ⌘ follows a Large Deviation Principle with

rate n, and we compute a lower bound of its GRF. For this, we use
that for each k, the random matrix 

k

defined in (3) follows a LDP
with rate n and that its GRF at the parameter  2 Cr⇥r (we may
evidently take k k

2

 1) is log det (I
r

� ⇤ ) (see Theorem 3-6
in [7]). ⌘ is a function of the i.i.d. matrices ( 

k

)

k=1,...,d

. Therefore,
the contraction principle (see Theorem 4.2.1 in [6]) ensures that ⌘
follows a LDP with rate n and GRF I

⌘

given, for each real x in the
range of ⌘, as the solution of the optimization problem:

max

8k 0↵

k

1

max

8k k 
k

k = ↵

k

⌘( 
1

, ..., 
d

) = x

dX

k=1

log det (I

r

� ⇤
k

 
k

) . (7)

When d � 3, the solution of this optimization problem cannot
apparently be expressed in closed form. We thus just provide a lower
bound of I

⌘

(x). When d = 2, it is possible to evaluate I

⌘

(x): see
[5].

Proposition 5. For each x 2 R, it holds that

I

⌘

(x) � �d log

 
1�

✓ |x|
⌘

max

◆
2/d

!
. (8)

where the right-hand side should be understood as +1 if |x| �
⌘

max

.

In order to establish Proposition 5, we use the following alge-
braic result whose proof is omitted.

Lemma 6. For any matrices (A

k

)

k=1,...,d

2 Cr⇥r

and vector � 2
Rr

, the supremum of

���T ✓d

k=1

(A

k

 
k

A

⇤
k

)�
��

over r⇥ r matrices

 
k

such that for all k: || 
k

||
2

= ↵

k

is

 
dY

k=1

↵

k

!
�T

⇣
✓d

k=1

(A

k

A

⇤
k

)

⌘
�.

The immediate consequence of this lemma is that the random
variable ⌘ is bounded and |⌘|  ⌘

max

where ⌘

max

is given by (6).
Moreover, take a set of matrices 

k

such that k 
k

k
2

= ↵

k

2 [0, 1];

then by Lemma 6, |⌘ ( 
1

, ..., 
d

)|  �Q
k

↵

k

�
⌘

max

hence the op-
timization (7) is to be carried out only on the set of matrice  

k

such
that

Q
k

↵

k

� |x|
⌘

max

. On the other hand, one may use the generous
bound log det (I

r

� ⇤
k

 
k

)  log

�
1� k 

k

k2
2

�
and finally prove

that

�I

⌘

(x)  maxQ
k

↵

k

� |x|
⌘

max

dX

k=1

log

�
1� ↵

2

k

�
.

The supremum of the r.h.s. of this equation is achieved for balanced
↵

k

and we immediately obtain (8). This completes the proof of
Proposition 5.

Using Proposition 5 and setting u =

⇣
|x|

⌘

max

⌘
1/d

, we obtain
immediately that for each � > 0:

1

n

logE

1

< sup
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
2u

d

✓
⌘
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d

log(1� u
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+ �

for n large enough, where ✏̃ = (✏/⌘

max

)

1/d. Recalling (4) and
choosing � small enough, we deduce that the condition ⌘

max

<

d

2

�
�

2nd
d

�
2 implies that E

1

! 0. This holds for any order d � 2.



The E

2

term. The Varadhan lemma may be invoked: but its con-
clusion, namely 1

n

logE

2

! 0, says nothing on the boundedness of
E

2

. We have, however

E

2

=

Z 1

0

P (exp(2n⌘) � t and ⌘  ✏) dt

=

Z
0

�1
P (⌘ � u and ⌘  ✏) 2n exp(2nu)du+

Z
✏

0

P (⌘ � u and ⌘  ✏) 2n exp(2nu)du

 P (⌘  ✏) +

Z
✏

0

P (⌘ � u) 2n exp(2nu)du.

A weak consequence of the LDP on ⌘ is the concentration of ⌘

around 0, namely P(⌘  ✏) = 1 � P(⌘ > ✏) = 1 � o(1).

We recall the expanded expression for ⌘: see (2). Notice that
⌘ � u implies that at least one of the r

2 terms of this expan-
sion is at least equal to u

r

2

. By the union bound, and the fact

that R
Q

d

k=1

⇠

(i,j)

k

 Q
d

k=1

���⇠(i,j)
k

��� we deduce that P (⌘ � u) 
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r
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P
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⌘
. Invoking again the union

bound and noticing that for fixed i, j,
⇣
⇠

(i,j)

k

⌘

k=1,...,d

have the

same distribution, we deduce that
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Now, the density of ⇠(i,j)
k

is in polar coordinates n�1

⇡

�
1� r

2

�
n�2

hence, choosing ✏ such that ✏  r

2
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For any 0  x < 1, log(1� x)  �x, hence
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When d > 2, it is always possible to determine ✏ sufficiently small

such that �(n � 1)

⇣
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This implies that, for such an ✏, we have
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The r.h.s. is of course o(1) since d > 2.

Remark 7. The bound p
⌘

max

<

q
d

2

�

2nd
d

guarantees the non-
detectability but it is not tight in general because, in order to study
the asymptotics of E

1

, we replaced the true GRF I

⌘

by the lower
bound (8). Based on the loose inequality log det (I

r

� ⇤
k

 
k

) 
log det

�
1� k 

k

k2
2

�
, (8) may not be very accurate. It is easy

to check that the equality is reached in (8) when all the matrices
(�(k)

0

)

k=1,...,d

are rank 1, i.e. if the rank of X

0

is equal to 1.
Therefore, the lower bound (8) of I

⌘

is all the better as all the
matrices �(k)

0

are close to being rank 1 matrices. This suggests
that, conversely, the bound (8) is likely to be loose when matrices
(�(k)

0

)

k=1,...,d

are close to be orthogonal. As an illustration, we
would like to consider experimental results. For a given config-
uration of the spike, we have chosen at random the matrices  

k

with k 
k

k  1. For each trial, we plot the points of coordinates
x = ⌘( 

1

, ..., 
d

) and y =

P
d

k=1

log det (I

r

� ⇤
k

 
k

) and we
obtain a cloud the upper envelope of which is a representation of
the true GRF of ⌘; for comparison, we have plotted the graph of the
function defined by the lower bound (8). We have chosen r = 2,
d = 3, and two configurations of the spike: in the first one, all the
matrices�

k

have orthogonal columns (top graph of 1), in the second
one, the eigenvalues of �⇤

k

�
k

are the same for k = 1, 2 equal to 1.8

and 0.2 (bottom graph of 1).
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Fig. 1. �I

⌘

(seen as the upper envelope of the point constellation)
and our upper bound

Remark 8. In the specific case d = 2, it is possible to compute in
closed-form the exact GRF I

⌘

of ⌘, and to establish the following
result: if µ

max

(X

0

X

⇤
0

) < �

2nd
2

= 1 (here, µ
max

denotes the largest
eigenvalue), then E

1

converges towards 0 and E

2

is bounded: see
[5].

6. CONCLUSION

In this paper, we have addressed the detection problem of a rank r

high-dimensional tensor X
0

. We have generalized the results of [10]
to the case where r > 1, and established that if the parameter ⌘

max

defined by (6) is less that parameter �2nd
2

introduced in [10], the low
rank tensor is undetectable. This condition is based on the lower
bound (8) of the GRF I

⌘

which is however not tight in general. It is
thus relevant to try to improve this bound in a future work.
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