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The problems of outliers detection and robust regression in a
high-dimensional setting are fundamental in statistics, and have nu-
merous applications. Following a recent set of works providing meth-
ods for simultaneous robust regression and outliers detection, we con-
sider in this paper a model of linear regression with individual inter-
cepts, in a high-dimensional setting. We introduce a new procedure
for simultaneous estimation of the linear regression coefficients and
intercepts, using two dedicated sorted-`1 penalizations, also called
SLOPE [5]. We develop a complete theory for this problem: first, we
provide sharp upper bounds on the statistical estimation error of both
the vector of individual intercepts and regression coefficients. Second,
we give an asymptotic control on the False Discovery Rate (FDR) and
statistical power for support selection of the individual intercepts. As
a consequence, this paper is the first to introduce a procedure with
guaranteed FDR and statistical power control for outliers detection
under the mean-shift model. Numerical illustrations, with a compari-
son to recent alternative approaches, are provided on both simulated
and several real-world datasets. Experiments are conducted using an
open-source software written in Python and C++.

1. Introduction. Outliers are a fundamental problem in statistical data
analysis. Roughly speaking, an outlier is an observation point that differs
from the data’s “global picture” [27]. A rule of thumb is that a typical dataset
may contain between 1% and 10% of outliers [26], or much more than that in
specific applications such as web data, because of the inherent complex na-
ture and highly uncertain pattern of users’ web browsing [22]. This outliers
problem was already considered in the early 50’s [15, 21] and it motivated
in the 70’s the development of a new field called robust statistics [28, 29].

In this paper, we consider the problem of linear regression in the presence
of outliers. In this setting, classical estimators, such as the least-squares, are
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known to fail [28]. In order to conduct regression analysis in the presence of
outliers, roughly two approaches are well-known. The first is based on de-
tection and removal of the outliers to fit least-squares on “clean” data [49].
Popular methods rely on leave-one-out methods (sometimes called case-
deletion), first described in [14] with the use of residuals in linear regression.
The main issue about these methods is that they are theoretically well-
designed for the situations where only one given observation is an outlier.
Repeating the process across all locations can lead to well-known mask-
ing and swamping effects [25]. An interesting recent method that does not
rely on a leave-one-out technique is the so-called IPOD [39], a penalized
least squares method with the choice of tuning parameter relying on a BIC
criterion. A second approach is based on robust regression, that consid-
ers loss functions that are less sensitive to outliers [29]. This relies on the
M -estimation framework, that leads to good estimators of regression coeffi-
cients in the presence of outliers, thanks to the introduction of robust losses
replacing the least-squares. However, the computation ofM -estimates is sub-
stantially more involved than that of the least-squares estimates, which to
some extend counter-balance the apparent computational gain over previous
methods. Moreover, robust regression focuses only on the estimation of the
regression coefficients, and does not allow directly to localize the outliers,
see also for instance [50] for a recent review.

Alternative approaches have been proposed to perform simultaneously
outliers detection and robust regression. Such methods involve median of
squares [40], S-estimation [38] and more recently robust weighted least-
squares [19], among many others, see also [24] for a recent review on such
methods. The development of robust methods intersected with the develop-
ment of sparse inference techniques recently. Such inference techniques, in
particular applied to high-dimensional linear regression, are of importance
in statistics, and have been an area of major developments over the past two
decades, with deep results in the field of compressed sensing, and more gen-
erally convex relaxation techniques [45, 9, 10, 12, 11]. These led to powerful
inference algorithms working under a sparsity assumption, thanks to fast
and scalable convex optimization algorithms [2]. The most popular method
allowing to deal with sparsity and variable selection is the LASSO [46],
which is `1-penalized least-squares, with improvements such as the Adaptive
LASSO [52], among a large set of other sparsity-inducing penalizations [7, 3].

Within the past few years, a large amount of theoretical results have
been established to understand regularization methods for the sparse linear
regression model, using so-called oracle inequalities for the prediction and
estimation errors [30, 31, 33], see also [7, 20] for nice surveys on this topic.
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Another line of works focuses on variable selection, trying to recover the
support of the regression coefficients with a high probability [32, 31, 13].
Other types of loss functions [47] or penalizations [17, 5] have also been
considered. Very recently, the sorted-`1 norm penalization has been intro-
duced [5, 6, 42] and very strong statistical properties have been shown. In
particular, when covariates are orthogonal, SLOPE allows to recover the
support of the regression coefficients with a control on the False Discovery
Rate [5]. For i.i.d covariates with a multivariate Gaussian distribution, ora-
cle inequalities with optimal minimax rates have been shown, together with
a control on a quantity which is very close to the FDR [42]. For more general
covariate distributions, oracle inequalities with an optimal convergence rate
are obtained in [8].

However, many high-dimensional datasets, with hundreds or thousands
of covariates, do suffer from the presence of outliers. Robust regression and
detection of outliers in a high-dimensional setting is therefore important. In-
creased dimensionality and complexity of the data may amplify the chances
of an observation being an outlier, and this can have a strong negative im-
pact on the statistical analysis. In such settings, many of the aforementioned
outlier detection methods do not work well. A new technique for outliers de-
tection in a high-dimensional setting is proposed in [1], which tries to find
the outliers by studying the behavior of projections from the data set. A
small set of other attempts to deal with this problem have been proposed in
literature [48, 37, 23, 39, 18], and are described below with more details.

2. Contributions of the paper. Our focus is on possibly high dimen-
sional linear regression where observations can be contaminated by gross
errors. This so-called mean-shifted outliers model can be described as fol-
lows:

(2.1) yi = x>i β
? + µ?i + εi

for i = 1, . . . , n, where n is the sample size. A non-zero µ?i means that
observation i is an outlier, and β? ∈ Rp, xi ∈ Rp, yi ∈ R and εi ∈ R
respectively stand for the linear regression coefficients, vector of covariates,
label and noise of sample i. For the sake of simplicity we assume throughout
the paper that the noise is i.i.d centered Gaussian with known variance σ2.

2.1. Related works. We already said much about the low-dimensional
problem so we focus in this part on the high-dimensional one. The leave-
one-out technique has been extended in [48] to high-dimension and general
regression cases, but the masking and swamping problems remains. In other
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models, outliers detection in high-dimension also includes distance-based ap-
proaches [37] where the idea is to find the center of the data and then apply
some thresholding rule. The model (2.1) considered here has been recently
studied with LASSO penalizations [23] and hard-thresholding [39]. LASSO
was used also in [18], but here outliers are modeled in the variance of the
noise. In [23, 39], that are closer to our approach, the penalization is applied
differently: in [23], the procedure named Extended-LASSO uses two different
`1 penalties for β and µ, with tuning parameters that are fixed according
to theoretical results, while the IPOD procedure from [39] applies the same
penalization to both vectors, with a regularization parameter tuned with a
modified BIC criterion. In [23], error bounds and a signed support recov-
ery result are obtained for both the regression and intercepts coefficients.
However, these results require that the magnitude of the coefficients is very
large, which is one of the issues that we want to overcome with this paper.

It is worth mentioning that model (2.1) can be written in a concatenated
form y = Zγ?+ε, with Z being the concatenation of the covariates matrix X
(with lines given by the xi’s) and the identity matrix In in Rn, and γ? being
the concatenation of β? and µ?. This leads to a regression problem with a
very high dimension n+ p for the vector γ?. Working with this formulation,
and trying to estimate γ? directly is actually a bad idea. This point is illus-
trated experimentally in [23], where it is shown that applying two different
LASSO penalizations on β and µ leads to a procedure that outperforms the
LASSO on the concatenated vector. The separate penalization is even more
important in case of SLOPE, whose aim is FDR control for the support re-
covery of µ?. Using SLOPE directly on γ? would mix the entries of µ and β
together, which would make FDR control practically impossible due to the
correlations between covariates in the X matrix.

2.2. Main contributions. Given a vector λ = [λ1 · · ·λm] ∈ Rm+ with non-
negative and non-increasing entries, we define the sorted-`1 norm of a vector
x ∈ Rm as

(2.2) ∀x ∈ Rm, Jλ(x) =
m∑
j=1

λj |x|(j) ,

where |x|(1) ≥ |x|(2) ≥ · · · ≥ |x|(m). In [5] and [6] the sorted-`1 norm
was used as a penalty in the Sorted L-One Penalized Estimator (SLOPE)
of coefficients in the multiple regression. Degenerate cases of SLOPE are
`1-penalization whenever λj are all equal to a positive constant, and null-
penalization if this constant is zero. We apply two different SLOPE penal-
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izations on β and µ, by considering the following optimization problem:

(2.3) min
β∈Rp,µ∈Rn

{
‖y −Xβ − µ‖22 + 2ρ1Jλ̃(β) + 2ρ2Jλ(µ)

}
where ρ1 and ρ2 are positive parameters, X is the n × p covariates matrix
with rows x1, . . . , xn, y = [y1 · · · yn]T , µ = [µ1 · · ·µn]T , ‖u‖2 is the Euclidean
norm of a vector u and λ = [λ1 · · ·λp] and λ̃ = [λ̃1 · · · λ̃n] are two vectors
with non-increasing and non-negative entries.

In this artice we provide the set of sequences λ and λ̃ which allow to
obtain better error bounds for estimation of µ? and β? than previously
known ones [23], see Section 3 below. Moreover, in Section 4 we provide
specific sequences which, under some asymptotic regime, lead to a control
of the FDR for the support selection of µ?, and such that the power of the
procedure (2.3) converges to one. Procedure (2.3) is therefore, to the best
of our knowledge, the first proposed in literature to robustly estimate β?,
estimate and detect outliers at the same time, with a control on the FDR for
the multi-test problem of support selection of µ?, and power consistency.

We compare in Section 5 our procedure to the recent alternatives for
this problem, that is the IPOD procedure [39] and the Extended-Lasso [23].
The numerical experiments given in Section 5 confirm the theoretical find-
ings from Sections 3 and 4. As shown in our numerical experiments, the
other procedures fail to guarantee FDR control or exhibit a lack of power
when outliers are difficult to detect, namely when their magnitude is not far
enough from the noise-level. It is particularly noticeable that our procedure
overcomes this issue.

The theoretical results proposed in this paper are based on two popular
assumptions in compressed sensing or other sparsity problems, similar to
the ones from [23]: first, a Restricted Eigenvalues (RE) condition [30] on
X, then a mutual incoherence assumption [34] between X and In, which is
natural since is excludes settings where the column spaces of X and In are
impossible to distinguish. Proofs of results stated in Sections 3 and 4 are
given in Section C and D, while preliminary results are given in Sections A
and B. Section E provides contains supplementary extra numerical results.

3. Upper bounds for the estimation of β? and µ?. Throughout
the paper, n is the sample size whereas p is the number of covariables, so
that X ∈ Rn×p. For any vector u, |u|0, ‖u‖1 and ‖u‖2 denote respectively
the number of non-zero coordinates of u (also called sparsity), the `1-norm
and the Euclidean norm. We denote respectively by λmin(A) and λmax(A)
the smallest and largest eigenvalue of a symmetric matrix A. We work under
the following assumption
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Assumption 3.1. We assume the following sparsity assumption:

(3.1) |β?|0 ≤ k and |µ?|0 ≤ s

for some positive integers k and s, and we assume that the columns of X
are normalized, namely ‖Xei‖2 = 1 for i = 1, . . . , n, where ei stands for the
i-th element of the canonical basis.

For the results of this Section, we consider procedure (2.3) with the fol-
lowing choice of λ:

(3.2) λi = σ

√
log
(2n

i

)
,

for i = 1, . . . , n, and we consider three possibilities for λ̃, corresponding to
no penalization, `1 penalization and SLOPE penalization on β.

Table 1 below gives a quick view of the convergence rates of the squared
`2 estimation errors of β? and µ? obtained in Theorems 3.4, 3.5 and 3.6. We
give also the convergence rate obtained in [23] for `1 penalization applied to
β and µ. In particular, we see that using two SLOPE penalizations leads to a
better convergence rate than the use of `1 penalizations. Condition 3.2 below

Table 1
Convergence rates, up to constants, associated to several penalization techniques. NO

means no-penalization, L1 stands for `1 penalization, while SL1 stands for SLOPE. We
observe that SL1 + SL1 leads to a better convergence rate than L1 + L1.

Penalization
(β / µ)

Convergence rates Reference

NO/SL1 p ∨ s log(n/s) Theorem 3.4

L1/L1 k log p ∨ s logn [23]

L1/SL1 k log p ∨ s log(n/s) Theorem 3.5

SL1/SL1 k log(p/k) ∨ s log(n/s) Theorem 3.6

is a Restricted Eigenvalue (RE) type of condition which is adapted to our
problem. Such an assumption is known to be mandatory in order to derive
fast rates of convergence for penalizations based on the convex-relaxation
principle [51].

Condition 3.2. Consider two vectors λ = (λi)i=1,...,n and λ̃ = (λ̃i)i=1,...,p

with non-increasing and positive entries, and consider positive integers k, s
and c0 > 0. We define the cone C(k, s, c0) of all vectors [β>, µ>]> ∈ Rp+n
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satisfying

(3.3)

p∑
j=1

λ̃j

λ̃p
|β|(j) +

n∑
j=1

λj
λn
|µ|(j) ≤ (1 + c0)

(√
k ‖β‖2 +

√
s ‖µ‖2

)
.

We also define the cone Cp(s, c0) of all vectors [β>, µ>]> ∈ Rp+n satisfying

(3.4)
n∑
j=1

λj
λn
|µ|(j) ≤ (1 + c0)

(√
p ‖β‖2 +

√
s ‖µ‖2

)
.

We assume that there are constants κ1, κ2 > 0 with κ1 > 2κ2 such that
X satisfies the following, either for all [β>, µ>]> ∈ C(k, s, c0) or for all
[β>, µ>]> ∈ Cp(s, c0):

‖Xβ‖22 + ‖µ‖22 ≥ κ1

(
‖β‖22 + ‖µ‖22

)
(3.5)

|〈Xβ, µ〉| ≤ κ2

(
‖β‖22 + ‖µ‖22

)
.(3.6)

Equation (3.4) corresponds to the particular case where we do not pe-
nalize the regression coefficient β, namely λ̃i = 0 for all i. Note also that
Condition 3.2 entails

‖Xβ + µ‖2 ≥
√
κ1 − 2κ2

√
‖β‖22 + ‖µ‖22,

which actually corresponds to a RE condition on [X>In]> and that Equa-
tion (3.5) is satisfied if X satisfies a RE condition with constant κ < 1.
Finally, note that Equation (3.6), called mutual incoherence in the liter-
ature of compressed sensing, requires in this context that for all β and µ
from the respective cones the potential regression predictor Xβ is sufficiently
not-aligned with potential outliers µ. An extreme case of violation of this
assumption occurs when X = In, where we cannot separate the regression
coefficients from the outliers.

The Condition 3.2 is rather mild and e.g. for a wide range of random de-
signs. Specifically, Theorem 3.3 below, shows that it holds with large proba-
bility whenever X has i.i.d N (0,Σ) rows, with λmin(Σ) > 0, and the vectors
β and µ are sufficiently sparse.

Theorem 3.3. Let X ′ ∈ Rn×p be a random matrix with i.i.d N (0,Σ)
rows and λmin(Σ) > 0. Let X be the corresponding matrix with normalized
columns. Given positive integers k, s and c0 > 0, define r = s ∨ k(1 + c0)2.
If √

n ≥ C
√
r and

√
n ≥ C ′

√
r log(p ∨ n)
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with

C ≥ 30

√
λmax(Σ)

minj Σjj

(256× 5 maxj Σjj

λmin(Σ)
∨16

)
and C ′ ≥ 72

√
10

(maxj Σjj)
3/2

minj Σjj

√
λmin(Σ)

,

then there are c, c′ > 0 such that for any [β>, µ>]> ∈ C(k, s, c0), we have

‖Xβ‖22 + ‖µ‖22 ≥ min
{ λmin(Σ)

128(maxj Σjj)2
,
1

8

}(
‖β‖22 + ‖µ‖22

)
2|〈Xβ, µ〉| ≤ min

{ λmin(Σ)

256× 5(maxj Σjj)2
,

1

16

}(
‖β‖22 + ‖µ‖22

)
with a probability greater than 1− cn exp(−c′n). These inequalities also hold
for any [β>, µ>]> ∈ Cp(s, c0) when k is replaced by p in the above conditions.

The proof of Theorem 3.3 is given in Appendix C.1. It is based on recent
bounds results for Gaussian random matrices [36]. The numerical constants
in Theorem 3.3 are far from optimal and chosen for simplicity so that κ1 >
2κ2 as required in Assumption 3.2. A typical example for Σ is the Toeplitz
matrix [a|i−j|]i,j with a ∈ [0, 1), for which λmin(Σ) is equal to 1−a [36]. The
required lower bound on n is non-restrictive, since k and s correspond to
the sparsity of β? and µ?, that are typically much smaller than n. Note also
that Cp(s, c0) will only be used in low dimension, and in this case p is again
much smaller than n.

Let us define κ =
√
κ1 − 2κ2 for the whole Section, with κ1 and κ2 de-

fined in Assumption 3.2. The three theorem below and their proof are very
similar in nature, but differ in some details, therefore are stated and proved
separately. We emphasize that the proof give slightly more general versions
of the theorems, allowing the same result with µ̂ having any given support
containing Supp(µ?). This is of great theoretical interest and is a key point
for the support detection of µ? investigated in 4. The proof use a very recent
bound on the inner product between a white Gaussian noise and any vector,
involving the sorted `1 norm [8]. Our first result deals with linear regression
with outliers and no sparsity assumption on β?. We consider procedure (2.3)
with no penalization on β, namely

(3.7) (β̂, µ̂) ∈ argmin
β∈Rp,µ∈Rn

{
‖y −Xβ − µ‖22 + 2ρJλ(µ)

}
,

with Jλ given by (2.2) and weights λ given by (3.2), and with ρ ≥ 2(4+
√

2).
Theorem 3.4, below, shows that a convergence rate for procedure (3.7) is
indeed p ∨ s log(n/s), as reported in Table 1 above.
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Theorem 3.4. Suppose that Assumption 3.1 is met with k = p, and that
X satisfies Assumption 3.2 on the cone C(k1, s1, 4) with k1 = p/ log 2 and
s1 = s log (2en/s) / log 2. Then, the estimators (β̂, µ̂) given by (3.7) satisfy

‖β̂ − β?‖22 + ‖µ̂− µ?‖22 ≤
4ρ2

κ4

s∑
j=1

λ2
j +

5σ2

κ4
p ≤ σ2

κ4

(
4ρ2s log

(
2en

s

)
+ 5p

)
,

with a probability larger than 1− (s/2n)s /2− e−p.

The proof of Theorem 3.4 is given in Appendix C.2. The second result
involves a sparsity assumption on β? and considers `1 penalization for β. We
consider this time

(3.8) (β̂, µ̂) ∈ argmin
β,µ

{
‖y −Xβ − µ‖22 + 2ν ‖β‖1 + 2ρJλ(µ)

}
,

where ν = 4σ
√

log p is the regularization level for `1 penalization, ρ ≥ 2(4 +√
2) and Jλ is given by (2.2). Theorem 3.5, below, shows that a convergence

rate for procedure (3.8) is indeed k log p∨ s log(n/s), as reported in Table 1
above.

Theorem 3.5. Suppose that Assumption 3.1 is met and that X satis-
fies Assumption 3.2 on the cone C(k1, s1, 4) with k1 = 16k log p/ log 2 and
s1 = s log(2en/s)/ log 2. Suppose also that

√
log p ≥ ρ log 2/4. Then, the

estimators (β̂, µ̂) given by (3.8) satisfy

‖β̂−β?‖22+‖µ̂− µ?‖22 ≤
36

κ4
σ2k log p+

4ρ2

κ4

s∑
j=1

λ2
j ≤

4σ2

κ4

(
9k log p+ ρ2s log

(
2en

s

))
,

with a probability larger than 1− (s/2n)s /2− 1/p.

The proof of Theorem 3.5 is given in Appendix C.4. The third result is
obtained using SLOPE both on β and µ, namely

(3.9) (β̂, µ̂) ∈ argmin
β,µ

{
‖y −Xβ − µ‖22 + 2ρJλ̃(β) + 2ρJλ(µ)

}
where ρ ≥ 2(4 +

√
2), Jλ is given by (2.2), and where

λ̃j = σ

√
log
(2p

j

)
for j = 1, . . . , p. Theorem 3.6, below, shows that the rate of convergence of
estimators provided by (3.9) is indeed k log(p/k) ∨ s log(n/s), as presented
in Table 1.
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Theorem 3.6. Suppose that Assumption 3.1 is met and that X satisfies
Assumption 3.2 on the cone C(k1, s1, 4) with k1 = k log(2ep/k)/ log 2 and
s1 = s log(2en/s)/ log 2. Then, the estimators (β̂, µ̂) given by (3.9) satisfy

‖β̂ − β?‖22 + ‖µ̂− µ?‖22 ≤ C ′

κ4

( k∑
j=1

λ̃2
j +

s∑
j=1

λ2
j

)
≤ C ′σ2

κ4

(
k log

(
2ep

k

)
+ s log

(
2en

s

))
,(3.10)

with a probability greater than 1− (s/2n)s/2− (k/2p)k/2, where C ′ = 4ρ2 ∨
(3 + C)2/2.

The proof of Theorem 3.6 is given in Appendix C.4. Note that according
to Theorem 3.3, the assumptions of Theorem 3.6 are satisfied with proba-
bility converging to one when the rows of X are i.i.d from the multivariate
Gaussian distribution with the positive definite covariance matrix, and when
the signal is sparse such that (k ∨ s) log(n ∨ p) = o(n).

4. Asymptotic FDR control and power for the selection of the
support of µ?. We consider the multi-test problem with null-hypotheses

Hi : µ?i = 0

for i = 1, . . . , n, and we consider the multi-test that rejects Hi whenever
µ̂i 6= 0, where µ̂ (and β̂) are given either by (3.7), (3.8) or (3.9). When Hi

is rejected, or “discovered”, we consider that sample i is an outlier. Note
however that in this case, the value of µ̂i gives extra information on how
much sample i is oulying.

We use the FDR as a standard Type I error for this multi-test problem [4].
The FDR is the expectation of the proportion of falses discoveries among
all discoveries. Letting V (resp. R) be the number of false rejections (resp.
the number of rejections), the FDR is defined as

(4.1) FDR(µ̂) = E

[
V

R ∨ 1

]
= E

[
#{i : µ?i = 0, µ̂i 6= 0}

#{i : µ̂i 6= 0}

]
.

We use the Power to measure the Type II error for this multi-test problem.
The Power is the expectation of the proportion of true discoveries. It is
defined as

(4.2) Π(µ̂) = E

[
#{i : µ?i 6= 0, µ̂i 6= 0}

#{i : µ?i 6= 0}

]
,
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the Type II error is then given by 1−Π(µ̂).
For the linear regression model without outliers, a multi-test for the sup-

port selection of β? with controlled FDR based on SLOPE is given in [5]
and [6]. Specifically, it is shown that SLOPE with weights

(4.3) λBH
i = σΦ−1

(
1− iq

2n

)
for i = 1, . . . , n, where Φ is the cumulative distribution function of N (0, 1)
and q ∈ (0, 1), controls FDR at the level q in the multiple regression problem
with orthogonal design matrix XTX = I. It is also observed that when
the columns of X are not orthogonal but independent the weights have
to be substantially increased to guarantee FDR control. This effect results
from the random correlations between columns of X and the shrinkage of
true nonzero coefficients, and in context of LASSO have been thoroughly
discussed in [41].

In this paper we substantially extend current results on FDR controlling
properties of SLOPE. Specifically, Theorem 4.1 below gives asymptotic con-
trols of FDR(µ̂) and Π(µ̂) for the procedures (3.7), (3.8) and (3.9), namely
different penalizations on β and SLOPE applied on µ, with slightly increased
weights

(4.4) λ = (1 + ε)λBH,

where ε > 0, see also [42]. This choice of λ also yields optimal convergence
rates, however considering it in Section 3 would lead to some extra technical
difficulties. Under appropriate assumptions on p, n, the signal sparsity and
the magnitude of outliers, Theorem 4.1 not only gives FDR control, but also
proves that the Power is actually going to 1.

Note that all asymptotics considered here are with respect to the sample
size n, namely the statement d → +∞ means that d = dn → +∞ with
n→ +∞.

Theorem 4.1. Suppose that there is a constant M such that the entries
of X satisfy |xi,j |

√
n ≤M for all i, j ∈ {1, . . . n}, and suppose that

|µ?i | ≥ (1 + ρ(1 + 2ε))2σ
√

log n

for any i = 1, . . . , n such that µ?i 6= 0. Suppose also that s → +∞. Then,
consider (β̂, µ̂) given either by (3.7), (3.8) and (3.9), with λ given by (4.4).
For Procedure (3.7), assume the same as in Theorem 3.4, and that

p(s log(n/s) ∨ p)
n

→ 0.
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For Procedure (3.8), assume the same as in Theorem 3.5, and that

(s log(n/s) ∨ k log p)2

n
→ 0.

For Procedure (3.9), assume the same as in Theorem 3.6, and that

(s log(n/s) ∨ k log(p/k))2

n
→ 0.

Then, the following properties hold:

(4.5) Π(µ̂)→ 1, lim sup FDR(µ̂) ≤ q.

The proof of Theorem 4.1 is given in Appendix D. It relies on a careful
look at the KKT conditions, also known as the dual-certificate method [32]
or resolvent solution [42]. The assumptions of Theorem 4.1 are natural. The
boundedness assumption on the entries of X are typically satisfied with a
large probability when X is Gaussian for instance. When n→ +∞, it is also
natural to assume that s→ +∞ (let us recall that s stands for the sparsity
of the sample outliers µ ∈ Rn). The asymptotic assumptions roughly ask
for the rates in Table 1 to converge to zero. Finally, the assumption on the
magnitude of the non-zero entries of µ? is somehow unavoidable, since it
allows to distinguish outliers from the Gaussian noise. We emphasize that
good numerical performances are actually obtained with lower magnitudes,
as illustrated in Section 5.2.

5. Numerical experiments. In this section, we illustrate the perfor-
mance of procedure (3.7) and procedure (3.9) both on simulated and real-
word datasets, and compare them to several state-of-the art baselines de-
scribed below. Experiments are done using the open-source tick library,
available at https://x-datainitiative.github.io/tick/, notebooks al-
lowing to reproduce our experiments are available on demand to the authors.

5.1. Considered procedures. We consider the following baselines, featur-
ing the best methods available in literature for the joint problem of outlier
detection and estimation of the regression coefficients, together with the
methods introduced in this paper.

E-SLOPE. It is procedure (3.9). The weights used in both SLOPE pe-
nalizations are given by (4.3), with q = 5% (target FDR), except in low-
dimensional setting where we do not apply any penalization on β. Similar
results for q = 10% and q = 20% are provided in Appendix E.

https://x-datainitiative.github.io/tick/
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E-LASSO. This is Extended LASSO from [23], that uses two dedicated `1-
penalizations for β and µ with respective tuning parameters λβ = 2σ

√
log p

and λµ = 2σ
√

log n.

IPOD. This is (soft-)IPOD from [39]. It relies on a nice trick, based on a
QR decomposition of X. Indeed, write X = QR and let P be formed by
n− p column vectors completing the column vectors of Q into an orthonor-
mal basis, and introduce ỹ = P>y ∈ Rn−p. Model (2.1) can be rewritten
as ỹ = P>µ? + ε, a new high-dimensional linear model, where only µ? is to
be estimated. The IPOD then considers the Lasso procedure applied to this
linear model, and a BIC criterion is used to choose the tuning parameter of
`1-penalization. Note that this procedure, which involves a QR decomposi-
tion of X, makes sense only for p significantly smaller than n, so that we do
not report the performances of IPOD on simulations with a large p.

LassoCV. Same as IPOD but with tuning parameter for the penalization of
individual intercepts chosen by cross-validation. As explained above, cross-
validation is doomed to fail in the considered model, but results are shown
for the sake of completeness.

SLOPE. It is SLOPE applied to the concatenated problem, namely y =
Zγ? + ε, where Z is the concatenation of X and In and γ? is the con-
catenation of β? and µ?. We use a single SLOPE penalization on γ, with
weights equal to (4.3). We report the performances of this procedure only in
high-dimensional experiments, since it always penalizes β. This is considered
mostly to illustrate the fact that working on the concatenated problem is
indeed a bad idea, and that two distinct penalizations must be used on β
and µ.

Note that the difference between IPOD and E-LASSO is that, as ex-
plained in [23], the weights used for E-LASSO to penalize µ (and β in
high-dimension) are fixed, while the weights in IPOD are data-dependent.
Another difference is that IPOD do not extend well to a high-dimensional
setting, since its natural extension (considered in [39]) is a thresholding rule
on the the concatenated problem, which is, as explained before, and as illus-
trated in our numerical experiments, poorly performing. Another problem
is that there is no clear extension of the modified BIC criterion proposed
in [39] for high-dimensional problems.

The tuning of the SLOPE or `1 penalizations in the procedure described
above require the knowledge of the noise level. We overcome this simply
by plugging in (4.3) or wherever it is necessary a robust estimation of the
variance: we first fit a Huber regression model, and apply a robust estimation
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of the variance of its residuals. All procedures considered in our experiments
use this same variance estimate.

Remark 5.1. The noise level can be estimated directly by the Huber
regression since in our simulations p < n. When p is comparable or larger
than n and the signal (both β? and µ?) is sufficiently sparse one can jointly
estimate the noise level and other model parameters in the spirit of scaled
LASSO [43]. The corresponding iterative procedure for SLOPE was proposed
and investigated in [5] in the context of high-dimensional regression with
independent regressors. However, we feel that the problem of selection of
the optimal estimator of σ in ultra-high dimensional settings still requires a
separate investigation and we postpone it for a further research.

5.2. Simulation settings. The matrix X is simulated as a matrix with
i.i.d row distributed as N (0,Σ), with Toeplitz covariance Σi,j = ρ|i−j| for
1 ≤ i, j ≤ p, with moderate correlation ρ = 0.4. Some results with higher
correlation ρ = 0.8 are given in Appendix E. The columns of X are normal-
ized to 1. We simulate n = 5000 observations according to model (2.1) with
σ = 1 and β?i =

√
2 log p. Two levels of magnitude are considered for µ?: low-

magnitude, where µ?i =
√

2 log n and large-magnitude, where µ?i = 5
√

2 log n.
In all reported results based on simulated datasets, the sparsity of µ? varies
between 1% to 50%, and we display the averages of FDR, MSE and power
over 100 replications.

Setting 1 (low-dimension). This is the setting described above with p = 20.
Here β?1 = . . . = β?20 =

√
2 log 20.

Setting 2 (high-dimension). This is the setting described above with p =
1000 and a sparse β? with sparsity k = 50, with non-zero entries chosen
uniformly at random.

5.3. Metrics. In our experiments, we report the “MSE coefficients”, namely
‖β̂ − β?‖22 and the “MSE intercepts”, namely ‖µ̂− µ?‖22. We report also the
FDR (4.1) and the Power (4.2) to assess the procedures for the problem
of outliers detection, where the expectations are approximated by averages
over 100 simulations.

5.4. Results and conclusions on simulated datasets. We comment the
displays provided in Figures 1, 2 and 3 below. On Simulation Setting 2
we only display results for the low magnitude case, since it is the most
challenging one.
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• In Figures 1 and 2, LassoCV is very unstable, which is expected since
cross-validation cannot work in the considered setting: data splits are
highly non-stationary, because of the significant amount of outliers.
• In the low dimensional setting, our procedure E − SLOPE allows

for almost perfect FDR control and its MSE is the smallest among
all considered methods. Note that in this setting the MSE is plotted
after debiasing the estimators, performing ordinary least squares on
the selected support.
• In the sparse (on β) high dimensional setting with correlated regres-

sors, E-SLOPE allows to keep FDR below the nominal level even when
the outliers consist 50% of the total data points. It also allows to main-
tain a small MSE and high power. The only procedure that improves
E-SLOPE in terms of MSE for µ is SLOPE in Figure 3, at the cost of
a worse FDR control.
• E-SLOPE provides a massive gain of power compared to previous

state-of-the-art procedures (power is increased by more than 30%) in
settings where outliers are difficult to detect.

5.5. PGA/LPGA dataset. This dataset contains Distance and Accuracy
of shots, for PGA and LPGA players in 2008. This will allow us to visu-
ally compare the performance of IPOD, E-LASSO and E-SLOPE. Our data
contain 197 points corresponding to PGA (men) players, to which we add 8
points corresponding to LPGA (women) players, injecting outliers. We ap-
ply SLOPE and LASSO on µ with several levels of penalization. This leads
to the “regularization paths” given in the top plots of Figure 4, that shows
the value of the 205 sample intercepts µ̂ as a function of the penalization
level used in SLOPE and LASSO. Vertical lines indicate the choice of the pa-
rameter according the corresponding method (E-SLOPE, E-LASSO, IPOD).
We observe that E-SLOPE correctly discover the confirmed outliers (women
data), together with two men observations that can be considered as outliers
in view of the scatter plot. IPOD procedure does quite good, with no false
discovery, but misses some real outliers (women data) and the suspicious
point detected by E-SLOPE. E-LASSO does not make any false discovery
but clearly reveals a lack of power, with only one discovery.
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Fig 1: Results for Simulation Setting 1 with high-magnitude outliers. First
row gives the FDR (left) and power (right) of each considered procedure
for outliers discoveries. Second row gives the MSE for regressors (left) and
intercepts (right). E-SLOPE gives perfect power, is the only one to respect
the required FDR, and provides the best MSEs.
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Fig 2: Results for Simulation Setting 1 with low-magnitude outliers. First
row gives the FDR (left) and power (right) of each considered procedure
for outliers discoveries. Second row gives the MSE for regressors (left) and
intercepts (right). Once again E-SLOPE nearly gives the best power, but is
the only one to respect the required FDR, and provides the best MSEs.
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Fig 3: Results for Simulation Setting 2 with low-magnitude outliers. First
row gives the FDR (left) and power (right) of each considered procedure
for outliers discoveries. Second row gives the MSE for regressors (left) and
intercepts (right). Once again E-SLOPE nearly gives the best power, but is
the only one to respect the required FDR. It gives the best MSE for out-
liers estimation, and is competitive for regressors estimation. All procedures
have a poor MSE when the number of outliers is large, since the simulation
setting considered in this experiment is hard: low-magnitude outliers and
high-dimension.
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Fig 4: PGA/LPGA dataset: top plots show the regularization paths for
both types of penalization, bottom-left plot is a scatter plot of the data,
with colored points corresponding to the discoveries made by E-SLOPE,
bottom-right plot show the original data and the true outliers.

5.6. Retail Sales Data. This dataset is from the U.S. census Bureau, for
year 1992. The informations contained in it are the per capita retail sales of
845 US counties (in $1000s). It also contains five covariates: the per capita
retail establishments, the per capita income (in $1000s), per capita federal
expenditures (in $1000s), and the number of males per 100 females. No out-
liers are known, so we artificially create outliers by adding a small amount
(magnitude 8, random sign) to the retail sales of counties chosen uniformly
at random. We consider various scenarii (from 1% to 20% of outliers) and
compute the false discovery proportion and the power. Figure 5 below sum-
marizes the results for the three procedures.

The results are in line with the fact that E-SLOPE is able to discover
more outliers than its competitors. E-SLOPE has the highest power, and
the FDP remains under the target level.
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Fig 5: Left : False Discovery proportion, E-SLOPE remains under the target
level; Right : power, E-SLOPE performs better than the competitors.

5.7. Colorectal Cancer Data. We consider whole exome sequencing data
for 47 primary colorectal cancer tumors, characterized by a global genomic
instability affecting repetitive DNA sequences (also known as microsatellite
instable tumors, see [16]). In what follows, we restrict ourselves to repeti-
tive sequences whose base motif is the single nucleotide A, and which are
in regulatory regions (following the coding regions) that influence gene ex-
pression (UTR3). Same analysis could be run with different base motifs and
different regions (exonic, intronic). It has been shown in recent publications
(see [44]), that the probability of mutation of a sequence is dependent of
the length of the repeat. So we fit, after a rescaled probit transformation,
our mean-shift model with an intercept and the length of the repeat as
covariates. The aim of the analysis is to find two categories of sequences:
survivors (multi-satellites that mutated less than expected) and transforma-
tors (multi-satellites that mutated more than expected), with the idea that
those sequences must play a key role in the cancer development.

We fix the FDR level α = 5%, results are shown in Figure 6: blue dots
are the observed mutation frequencies of each gene among the 47 tumors,
plotted as a function of the repeat length of the corresponding gene, our
discoveries are hightlighted in red.

We made 37 discoveries, and it is of particular interest to see that our
procedure select both ”obvious” outliers and more ”challenging” observa-
tions that are discutable with the unaided eye. We also emphasize that with
the IPOD procedure and the LASSO procedure described in the previous
paragraph, respectively 32 and 22 discoveries were made, meaning that even
with this stringent FDR level, our procedure allow us to make about 16%
more discoveries than IPOD.
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Fig 6: Colorectal Cancer data: 37 discoveries made by E-SLOPE, namely se-
quence considered by our procedure as transformators or mutators (see main
text for details). The procedure selects both “obvious” and more “challeng-
ing” observations for the eye. IPOD and Lasso procedures led only to 32 and
22 discoveries, despite the fact that we restricted E-SLOPE to the stringent
FDR level of 5%

6. Conclusion. This paper introduces a novel approach for simultane-
ous robust estimation and outliers detection in the linear regression model.
Three main results are provided: optimal bounds for the estimation prob-
lem in Section 3, that improve in particular previous results obtained with
LASSO penalization [23], and asymptotic FDR control and power consis-
tency for the outlier detection problem in Section 4. To the best of our
knowledge, this is the first result involving FDR control in this context.

Our theoretical foundings are confirmed on intensive experiments both on
real and synthetic datasets, showing that our procedure outperforms existing
procedure in terms of power, while maintaining a control on the FDR, even
in challenging situations such as low-magnitude outliers, a high-dimensional
setting and highly correlated features.

Finally, this work extends the understanding of the deep connection be-
tween the SLOPE penalty and FDR control, previously studied in linear
regression with orthogonal [5] or i.i.d gaussian [42] features, which distin-
guishes SLOPE from other popular convex penalization methods.
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APPENDIX A: TECHNICAL INEQUALITIES

The following technical inequalities are borrowed from [8], where proofs
can be found. Let m,n, p be positive integers. In the following lemma, an
inequality for the sorted `1-norm Jλ (defined in equation 2.2) is stated.

Lemma A.1. For any two x, y ∈ Rm, and any s ∈ 1, . . . ,m such that
|x|0 ≤ s we have

Jλ(x)− Jλ(y) ≤ Λ(s) ‖x− y‖2 −
m∑

j=s+1

λj |x− y|(j) ,

where

Λ(s) =

√√√√ s∑
j=1

λ2
j .

The following lemma gives a preliminary bound for the prediction error
in our context, that are the starting point of our proof.

Lemma A.2. Let h : Rp → R be a convex function. Consider a n × p
design matrix X, a vector ε ∈ Rn and define y = Xβ?+ ε where β? ∈ Rp. If
β̂ is a solution of the minimization problem minβ∈Rp(‖y −Xβ‖22 + 2h(β)),

then β̂ satisfies:∥∥∥Xβ̂ −Xβ?∥∥∥2

2
≤ ε>X(β̂ − β?) + h(β?)− h(β̂).

Proof. Because the proof in [8] is more general, we give a proof adapted
to our context. Optimality of β̂ allows to choose v in the subdifferential of
h sucht that

0 = X>(Xβ̂ − y) + v = X>(Xβ̂ −Xβ? − ε) + v.

Therefore, ∥∥∥Xβ̂ −Xβ?∥∥∥2

2
= (β̂ − β?)>X>X(β̂ − β?)

= (β̂ − β?)>(X>ε− v)

= ε>X(β̂ − β?) + 〈v, β? − β̂〉.

Now, by definition of subdifferential, h(β?) ≥ h(β̂) + 〈v, β?− β̂〉. Combining
this inequality with the previous equality leads to the conclusion.
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The following lemma allows to bound the inner product between a white
Gaussian noise and any vector. The resulting bound involved the sorted `1
norm.

Lemma A.3. Let δ0 ∈ (0, 1) and let X ∈ Rn×p with columns normed
to 1. If ε is N (0, In) distributed, then the event{

∀u ∈ Rp, ε>Xu ≤ max (H(u), G(u))
}

is of probability at least 1− δ0/2, where

H(u) = (4 +
√

2)

p∑
j=1

|u|(j) σ
√

log(2p/j)

and
G(u) = (4 +

√
2)σ
√

log(1/δ0) ‖u‖2 .

APPENDIX B: RESULTS RELATED TO GAUSSIAN MATRICES

Inequalities for Gaussian random matrices are needed in what follows.
They are stated here for the sake of clarity and we refer the reader to [20]
for proof (except bounds B.4 and B.5 that are taken from Lemma 1 in [35]).
Again, n and p denote positive integers.

Lemma B.1. Let X ∈ Rn×p with i.i.d N (0, Ip) rows. Denote by σmax
the largest singular value of X. Then, for all τ ≥ 0,

(B.1) P

(
σmax√
n
≥ 1 +

√
p

n
+ τ

)
≤ exp

(
−nτ

2

2

)
.

Lemma B.2. Concentration inequalities:

• Let Z be N (0, 1) distributed. Then for all q ≥ 0:

(B.2) P (|Z| ≥ q) ≤ exp

(
−q

2

2

)
.

• Let Z1, Z2, . . . , Zp be independent and N (0, σ2) distributed. Then for
all L > 0:

(B.3) P

(
max
i=1,...,p

|Zi| > σ
√

2 log p+ 2L

)
≤ e−L.
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• Let X be χ2(n) distributed. Then, for all x > 0:

(B.4) P
(
X − n ≥ 2

√
nx+ 2x

)
≤ exp(−x).

(B.5) P
(
n−X ≥ 2

√
nx
)
≤ exp(−x).

The following recent result ([36], Theorem 1) will also be useful.

Lemma B.3. Let X ∈ Rn×p with i.i.d N (0,Σ) rows. There exists positive
constants c and c′ such that with probability greater than 1−c′ exp(−cn), we
have for all z ∈ Rp:

(B.6)
‖Xz‖2√

n
≥ 1

4

√
λmin(Σ) ‖z‖2 − 9

√
max
j

Σjj
log p

n
‖z‖1 ,

where λmin(Σ) is the lowest eigenvalue of Σ.

APPENDIX C: PROOF OF SECTION 3

This section is devoted to the proof of our main results, stated in Section 3.

C.1. Proof of Theorem 3.3. Define D the diagonal matrix such that
X = X ′D (D is the diagonal matrix formed by the inverse of the norm of
each column of X ′). Applying now Lemma B.3 for X ′ and Dz we obtain for
all z ∈ Rp

‖Xz‖2 ≥
1

4

√
λmin(Σ)

∥∥√nDz∥∥
2
− 9

√
max
j

Σjj
log p

n

∥∥√nDz∥∥
1

≥
√
n
√
λmin(Σ)

4M
‖z‖2 − 9

√
maxj Σjj log p

m
‖z‖1 ,

with probability greater than 1−c′ exp(−cn), where M and m denote respec-
tively the maximum and minimum of the norms of the columns of X ′. Note
that for all 1 ≤ i ≤ p, the squared norm of the ith column of X ′ is σ2

i χ2(n)
distributed, so using the bounds B.4 and B.5 of Lemma B.2 (respectively
with x = n and x = n/16), together with a union bound we obtain that
with probability greater than 1− ne−n − ne−n/16

M ≤ (max
j

Σjj)
√

5n, m ≥ (min
j

Σjj)

√
n

2
,
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and we eventually obtain

(C.1) ‖Xz‖2 ≥
√
λmin(Σ)

4
√

5 maxj Σjj

‖z‖2 −
9

minj Σjj

√
2 log pmaxj Σjj

n
‖z‖1 .

Let define v = [β>, µ>]> ∈ Rp+n ∈ C(k, s, c0) (see Definition 3.3). Then,

(C.2) ‖β‖1 ≤
p∑
j=1

λ̃j

λ̃p
|β|(j) ≤ (1 + c0)

(√
k ‖β‖2 +

√
s ‖µ‖2

)
.

Thus we obtain

(C.3) ‖β‖1 ≤ (1 + c0)
(√

k ‖β‖2 +
√
s ‖µ‖2

)
.

Injecting (C.3) in (C.1) applied to the vector β now leads to

(C.4)

‖Xβ‖2+‖µ‖2 ≥ ‖β‖2
( √

λmin(Σ)

4
√

5 maxj Σjj

− 9

minj Σjj
(1+c0)

√
2k(log p) maxj Σjj

n

)
+ ‖µ‖2

(
1− 9

minj Σjj
(1 + c0)

√
2s(log p) maxj Σjj

n

)
.

For n large enough as explicited in the assumption of Theorem 3.3, Equa-
tion (C.4) turns to

‖Xβ‖2 + ‖µ‖2 ≥
√
λmin(Σ)

8
√

5 maxj Σjj

‖β‖2 +
1

2
‖µ‖2 ,

and thus, using the fact that 2(a2 + b2) ≥ (a+ b)2,

(C.5) ‖Xβ‖22 + ‖µ‖22 ≥ min

{
λmin(Σ)

128× 5(maxj Σjj)2
,
1

8

}
‖v‖22 .

Now if v = [β>, µ>]> ∈ Rp+n ∈ Cp(s, c0), Equation (C.1) together with the
inequality ‖β‖1 ≤

√
p ‖β‖2 lead to

‖Xβ‖2+‖µ‖2 ≥ ‖β‖2
( √

λmin(Σ)

4
√

5 maxj Σjj

− 9

minj Σjj

√
2p log pmaxj Σjj

n

)
+‖µ‖2 ,

and we conclude as above. Thus the first part of the theorem is satisfied.
Now, we must lower bound the scalar product 〈Xβ, µ〉.

Divide {1, . . . , p} = T1∪T2∪ · · · ∪Tt with Ti (1 ≤ i ≤ t− 1) of cardinality k′
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containing the support of the k′ largest absolute values of b(
⋃i−1

j=1 Tj)
c and Tt

of cardinality k′′ ≤ k′ the support of the remaining values. Divide in the
same way {1, . . . , n} = S1 ∪ S2 ∪ · · · ∪ Sq (of cardinalitys s′, . . . , s′, s′′ ≤ s′)
with respect to the largest absolute values of µ (k′ and s′ to be chosen later).
We use this to lower bound the scalar product:

|〈Xβ, µ〉| = |〈X ′Dβ, µ〉| ≤
q∑
i=1

t∑
j=1

|〈X ′Si,Tj (Dβ)Tj , µSi〉|,

so

(C.6) |〈Xβ, µ〉| ≤ max
i,j
‖X ′Si,Tj‖2

1

m

t∑
j=1

‖βTj‖2
q∑
i=1

‖µSi‖2,

where we recall that m is the minimal value of the column norms of X ′. Ac-
cording to Lemma B.1, conditionnally on Si and Tj , we have with probability
greater than 1− exp(−nτ2/2),

‖X ′Si,Tj‖2 ≤ ‖Σ
1/2
Tj ,Tj
‖
(√
k′ +

√
s′ +
√
s′τ
)
≤
√
λmax(Σ)

(√
k′ +

√
s′ +
√
s′τ
)
.

Considering all possibilities for Si and Tj , we have with probability greater

than 1−
(
p

k′

)(
n

s′

)
e−nτ

2/2,

(C.7) max
i,j
‖X ′Si,Tj‖2 ≤

√
λmax(Σ)

(√
k′ + (1 + τ)

√
s′
)
.

Moreover, thanks to the decreasing value along the subset Tj we can use the
trick of [31], writing for all j ∈ {1, . . . , t− 1} and all x ∈ {1, . . . , |Tj+1|}:

∣∣(βTj+1

)
x

∣∣ ≤ ‖βTj‖1
|Tj |

.

Squaring this inequality and summing over x gives:

∥∥βTj+1

∥∥2

2
≤
∥∥bTj∥∥2

1

|Tj |
|Tj+1|
|Tj |

≤
∥∥bTj∥∥2

1

|Tj |
=

∥∥βTj∥∥2

1

k′
.

Then,

t∑
j=1

∥∥βTj∥∥2
≤ ‖β‖2+

t∑
j=2

∥∥βTj∥∥2
≤ ‖β‖2+

1√
k′

t−1∑
j=1

∥∥βTj∥∥1
≤ ‖β‖2+

1√
k′
‖β‖1 ,
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and so

(C.8)

t∑
j=1

∥∥βTj∥∥2
≤ ‖β‖2 +

1√
k′

p∑
j=1

λ̃j

λ̃p
|β|(j) .

In the same way we obtain:

(C.9)

q∑
i=1

‖µSi‖2 ≤ ‖µ‖2 +
1√
s′

n∑
j=1

λj
λn
|µ|(j) .

Now if v = [β>, µ>]> ∈ Rp+n ∈ C(k, s, c0),

t∑
j=1

∥∥βTj∥∥2

q∑
i=1

‖µSi‖2 ≤
(
‖β‖2 +

1√
k′

(1 + c0)(
√
k ‖β‖2 +

√
s ‖µ‖2)

)
×
(
‖µ‖2 +

1√
s′

(1 + c0)(
√
k ‖β‖2 +

√
s ‖µ‖2)

)
≤ (2 ‖β‖2 + ‖µ‖2) (2 ‖µ‖2 + ‖β‖2)

≤ 2 ‖v‖22 + 5 ‖µ‖2 ‖β‖2
≤ 5 ‖v‖22 ,

where we chose k′ = s′ = (1 + c0)2(k ∨ s). Combining this last inequality
with Equations (C.6) and (C.7), and using again that m ≥ minj Σjj

√
n/2

with probability greater than 1− ne−n/16, lead to

(C.10) |〈Xβ, µ〉| ≤
√
λmax(Σ)

minj Σjj
(2 + τ)

√
2s′

n
5 ‖v‖22 .

Note that with this choice of s′ and k′, the assumptions on n and the con-

stant C ′ defined in the theorem lead to

(
p

k′

)
≤ (ep/k′)k

′ ≤ exp(n/C ′),

and

(
n

s′

)
≤ (en/s′)s

′ ≤ exp(n/C ′) , so we have Equation (C.7) with proba-

bility greater than 1− exp
(
−n
(
τ2/2− 2C ′−1

))
. With the specific assump-

tion on n in the statement of the theorem, the term in the right part of
Equation (C.10) is small enough to obtain:

(C.11) 2 |〈Xb, u〉| ≤ min

{
λmin(Σ)

256× 5 maxj Σjj
,

1

16

}
‖v‖22

Eventually, if v = [β>, µ>]> ∈ Rp+n ∈ Cp(s, c0), Equation (C.9) still holds,
and combining it with Equation (C.7) and Equation (C.6) with t = 1 leads



28 A. VIROULEAU, A. GUILLOUX, S. GAÏFFAS AND M. BOGDAN

to:

(C.12) |〈Xβ, µ〉| ≤
√
λmax(Σ)

minj Σjj
(
√
p+ (1 + τ)

√
s′)

√
2

n
‖β‖2

×
(
‖µ‖2 +

1√
s′

(1 + c0)
(√
p ‖β‖2 +

√
s ‖µ‖2

) )
.

Choosing s′ = (1 + c0)2(p ∨ s),

|〈Xβ, µ〉| ≤
√
λmax(Σ)

minj Σjj
(2 + τ)

√
2s′

n
‖β‖2 (2 ‖µ‖2 + ‖β‖2)

≤
√
λmax(Σ)

minj Σjj
(2 + τ)

√
2s′

n
2 ‖v‖22 .

We conclude as above, thus leading to the second part of the theorem.

C.2. Proof of Theorem 3.4. We will actually show a slightly more
general result. Let R be any subset of cardinality r containing the support of
the true parameter µ? and IR be the matrix obtained by extracting columns
with indices in R from the identity matrix. We consider the following mini-
mization:

β̂, µ̂ = argmin
β,µ

‖y −Xβ − IRµ‖22 + 2ρJλ[r](µ),

where λ[r] contains the first r terms of the sequence of weights defined in
Section 3. Obviously, the theorem will result from the case P = {1, . . . , n}.
Note that µ̂ belongs to Rr.

Defining b = β̂ − β? and u = IR(µ̂ − µ?R) where µ?R denotes the vector
extracted from µ? selecting coordinates corresponding to indices in R (note
that the eliminated coordinates are zeros), we can apply Lemma A.2 to
obtain:

‖Xb+ u‖22 ≤ ε
>(Xb+ u) + ρJλ[r](µ

?)− ρJλ[r](µ̂)

= ε>(Xb+ u) + ρJλ(IRµ
?
R)− ρJλ(IRµ̂).

Note that it is crucial to have supp(µ?) ⊂ R in order to write µ? = IRµ
?
R.

Applying now Lemma A.1 we obtain:

(C.13) ‖Xb+ u‖2n ≤ ε
>(Xb+ u) + ρ

(
Λ(s) ‖u‖2 −

n∑
j=s+1

λj |u|(j)
)
,
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where Λ(s) is defined as
√∑s

j=1 λ
2
j . Hence, using Cauchy-Scwarz inequality

we get:

‖Xb+ u‖22 ≤ ‖X
>ε‖2 ‖b‖2 + ε>u+ ρ

(
Λ(s) ‖u‖2 −

n∑
j=s+1

λj |u|(j)
)
.

Then, by Lemma A.3, with probability greater than 1 − δ0/2 we have (the
last inequality is used for the sake of simplicity):

ε>u ≤ max(H(u), G(u)) ≤ H(u) +G(u),

with H(u) and G(u) defined in Lemma A.3. Additionnally, 1
σ2

∥∥X>ε∥∥2

2
fol-

lows a χ2 law with p degrees of freedom, so by the third point in Lemma B.2
with x = Lp this provides, chosing δ0 = (s/2n)s, that with probability
greater than 1− 1

2(s/2n)s − exp(−Lp):

‖Xb+ u‖22 ≤ cLσ
√
p ‖b‖2 +H(u) +G(u) + ρ

(
Λ(s) ‖u‖2 −

n∑
j=s+1

λj |u|(j)
)

≤ cLσ
√
p ‖b‖2 +

ρ

2

n∑
j=1

λj |u|(j)

+
ρ

2

√
s log(2n/s) ‖u‖2 + ρ

(
Λ(s) ‖u‖2 −

n∑
j=s+1

λj |u|(j)
)

≤ cLσ
√
p ‖b‖2 +

(
2ρΛ(s) ‖u‖2 −

ρ

2

n∑
j=s+1

λj |u|(j)
)
,

where cL =
√

1 + 2L+ 2
√
L and where we used Equation (C.15) to obtain

the last inequality. The fact that the left part of the last inequality is positive
gives:

n∑
j=1

λj |u|(j) ≤
n∑

j=s+1

λj |u|(j) + Λ(s) ‖u‖2 ≤
2

ρ
cLσ
√
p ‖b‖2 + 5Λ(s) ‖u‖2 ,

where the left part of the inequality is obtained using Cauchy-Schwarz in-
equality. Hence,

(C.14)

n∑
j=1

λj
λn
|u|(j) ≤

2cL
ρ

√
p

log 2
‖b‖2 + 5

√
s log (2en/s)

log 2
‖u‖2 ,
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where we used the right part of the inequality (C.15). Choosing L = 1
lead to cL =

√
5, and reminding that ρ ≥ 2(4 +

√
2) we conclude that

[b>, u>]> ∈ Cp(s1, 4) (see Definition 3.3) with s1 = s log(2en/s)
log 2 . Therefore, by

Condition 3.2 and the definition of κ therein :

2 ‖Xb+ u‖22 ≤ 2
√

5σ
√
p ‖b‖2 + 4ρΛ(s) ‖u‖2

≤ 5σ2

κ2
p+ κ2 ‖b‖22 +

4ρ2Λ(s)2

κ2
+ κ2 ‖u‖22

≤ 4ρ2

κ2
Λ(s)2 +

5σ2

κ2
p+ κ2 ‖v‖22

≤ 4ρ2

κ2
Λ(s)2 +

5σ2

κ2
p+ ‖Xb+ u‖22 .

Thus,

‖Xb+ u‖22 ≤
4ρ2

κ2
Λ(s)2 +

5σ2

κ2
p,

and

‖b‖22 + ‖u‖22 ≤
4ρ2

κ4
Λ(s)2 +

5σ2

κ4
p.

The proof of Theorem 3.4 concludes by the classical inequalities [8]

(C.15) s log
(2n

s

)
≤

s∑
j=1

log
(2n

j

)
= s log(2n)− log(s!) ≤ s log

(2en

s

)
.

C.3. Proof of Theorem 3.5. As in the previous proof, the more gen-
eral version still holds and in the same way we obtained (C.13), with the
same definition of b and u, we now have:

‖Xb+ u‖22 ≤ ε
>(Xb+ u) + ν(‖β?‖1 − ‖β̂‖1) + ρ(Λ(s) ‖u‖2 −

n∑
j=s+1

λj |u|(j)).

With T being the support of the true regression vector β? we have, using
the triangle inequality:

‖β?‖1−‖β̂‖1 = ‖β?T ‖1−‖b+β
?‖1 = ‖β?T ‖1−‖bT + β?T ‖1−‖bT c‖1 ≤ ‖bT ‖1−‖bT c‖1 .
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Hence we can write:

‖Xb+ u‖22 ≤ ‖X
>ε‖∞ ‖b‖1 + ν (‖bT ‖1 − ‖bT c‖1) + ε>u

+ ρΛ(s) ‖u‖2 − ρ
n∑

j=s+1

λj |u|(j)

≤ ‖bT ‖1 (ν + ‖X>ε‖∞)− ‖bT c‖1 (ν − ‖X>ε‖∞) + ε>u

+ ρΛ(s) ‖u‖2 − ρ
n∑

j=s+1

λj |u|(j) .

With the choice ν = 4σ
√

log p we have ‖X>ε‖∞ ≤ ν/2 according to Lemma B.2,
with probability greater than 1− 1

p . Using again Lemma A.3 to bound ε>u,

we obtain that with probability greater than 1− 1
2

(
s

2n

)s − 1
p :

(C.16)

‖Xb+ u‖22 ≤ ‖bT ‖1 (6σ
√

log p)−‖bT c‖1 (2σ
√

log p)+2ρΛ(s) ‖u‖2−
ρ

2

n∑
j=s+1

λj |u|(j) .

The fact that the left part of the inequality is positive gives:

4

ρ
σ
√

log p ‖bT c‖1 +
n∑

j=s+1

λj |u|(j) ≤
12

ρ
σ
√

log p ‖bT ‖1 + 4Λ(s) ‖u‖2 ,

and using Cauchy-Schwarz inequality, this leads to:

4

ρ
σ
√

log p ‖b‖1 +
n∑
j=1

λj |u|(j) ≤
16

ρ
σ
√
k log p ‖b‖2 + 5Λ(s) ‖u‖2

Eventually we obtain, because λn = σ
√

log 2 and
√

log p ≥ ρ log 2
4 :

(C.17)

‖b‖1+

n∑
j=1

λj
λn
|u|(j) ≤

4σ
√

log p

ρλn
‖b‖1+

n∑
j=1

λj
λn
|u|(j) ≤

16σ
√
k log p

ρλn
‖b‖2+

5Λ(s)

λn
‖u‖2

and the concatenated vector of b and u is therefore in the cone C(k1, s1, 4)
with k1 = 16k log p/ log 2 and s1 = s log(2en/s)/ log 2. Starting from (C.16),
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we obtain, using again κ as the capacity constant in Assumption 3.2:

2 ‖Xb+ u‖22 ≤ ‖bT ‖1 12σ
√

log p+ 4ρΛ(s) ‖u‖2
≤ 12σ

√
k log p ‖b‖2 + 4ρΛ(s) ‖u‖2

≤ 36

κ2
σ2k log p+ κ2 ‖b‖22 +

4ρ2

κ2
Λ(s)2 + κ2 ‖u‖22

≤ 36

κ2
σ2k log p+

4ρ2

κ2
Λ(s)2 + κ2 ‖v‖22

≤ 36

κ2
σ2k log p+

4ρ2

κ2
Λ(s)2 + ‖Xb+ u‖22 .

Thus,

‖Xb+ u‖22 ≤
36

κ2
σ2k log p+

4ρ2

κ2
Λ(s)2

and using again Assumption 3.2 and the remark after:

‖b‖22 + ‖u‖22 ≤
36

κ4
σ2k log p+

4

κ4
Λ(s)2

C.4. Proof of Theorem 3.6. In the same way we obtained (C.13), we
now have:

‖Xb+ u‖22 ≤ ε
>(Xb+u)+ρ

(
Λ̃(k) ‖b‖2−

p∑
j=k+1

λ̃j |b|(j)
)
+ρ
(
Λ(s) ‖u‖2−

n∑
j=s+1

λj |u|(j)
)

We use twice Lemma A.3 to bound ε>Xb and ε>u with (k/2p)k and (s/2n)s

as respective choices of δ0, so that with probability 1− 1
2

(
s

2n

)s − 1
2

(
k
2p

)k
:

‖Xb+ u‖22 ≤ H(b) +G(b) +H(u) +G(u)

+ ρ
(
Λ̃(k) ‖b‖2 −

p∑
j=k+1

λ̃j |b|(j)
)

+ ρ
(
Λ(s) ‖u‖2 −

n∑
j=s+1

λj |u|(j)
)

≤ ρ

2

p∑
j=1

λ̃j |b|(j) +
ρ

2

√
k log(2p/k) ‖b‖2 + ρ

(
Λ̃(k) ‖b‖2 −

p∑
j=k+1

λ̃j |b|(j)
)

+ 2ρΛ(s) ‖u‖2 −
ρ

2

n∑
j=s+1

λj |u|(j)

≤ ρ

2
4Λ̃(k) ‖b‖2 −

ρ

2

p∑
j=k+1

λ̃j |b|(j) + 2ρΛ(s) ‖u‖2 −
ρ

2

n∑
j=s+1

λj |u|(j) ,
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where we use Equation (C.15) to obtain the last inequality. The left part of
the inequality is positive so

(C.18)

p∑
j=k+1

λ̃j |b|(j) +
n∑

j=s+1

λj |u|(j) ≤ 4Λ̃(k) ‖b‖2 + 4Λ(s) ‖u‖2 ,

and

(C.19) 2 ‖Xb+ u‖22 ≤ 4ρΛ̃(k) ‖b‖2 + 4ρΛ(s) ‖u‖2 .

Equation (C.18) together with the Cauchy-Schwarz inequality lead to

(C.20)

p∑
j=1

λ̃j |b|(j) +

n∑
j=1

λj |u|(j) ≤ 5Λ̃(k) ‖b‖2 + 5Λ(s) ‖u‖2 .

Combining the equation above with Equation (C.15) show that the concate-
nated estimator is in C(k1, s1, 4) with s1 and k1 as in the statement of the
theorem (note that λ̃n = λn = σ

√
log 2) and so, noting κ the capacity

constant of Assumption 3.2, Equation (C.19) leads to:

2 ‖Xb+ u‖22 ≤ (3 + C)2 Λ̃(k)2

2κ2
+ κ2 ‖b‖22 + 4ρ2 Λ(s)2

κ2
+ κ2 ‖u‖22

≤ C ′

κ2

(
Λ̃(k)2 + Λ(s)2

)
+ ‖Xb+ u‖22 ,

where C ′ = 4ρ2 ∨ (3 + C)2/2. Finally:

‖Xb+ u‖22 ≤
C ′

κ2

(
Λ̃(k)2 + Λ(s)2

)
,

and

‖b‖22 + ‖u‖22 ≤
C ′

κ4

(
Λ̃(k)2 + Λ(s)2

)
.

APPENDIX D: PROOF OF THEOREM 4.1

In this section, we give the proof of the asymptotic FDR control presented
in Theorem 4.1. In the following, for a given matrix A and a given subset T ,
AT denotes the extracted matrix formed by the columns of A with indices in
T , whereas AT,· denotes the extracted matrix formed by the rows of A with
indices in T . For vectors, there is no ambiguity. Moreover, S (of cardinal s)
denotes the support of the true parameter µ?.

We first recall some properties on the dual of the sorted `1 norm, and also
a lemma taken from [42] and stated here without proof:
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Definition D.1 ([42]). A vector a ∈ Rn is said to majorize b ∈ Rn
(denoted b 4 a) if they satisfy for all i ∈ {1, . . . , n}:

|a|(1) + · · ·+ |a|(i) ≥ |b|(1) + · · ·+ |b|(i) .

Proposition D.2 ([5]). Let Jλ be the sorted `1 norm for a certain non-
increasing sequence λ of length n. The unit ball of the dual norm is:

Cλ = {v ∈ Rn : v 4 λ}.

Lemma D.3 ([42], Lemma A.9). Given any constant α > 1/(1 − q),
suppose max{αs, s + d} ≤ s? < n for any (deterministic) sequence d that
diverges to ∞. Let ζ1, . . . , ζn−s be i.i.d N (0, 1). Then

(|ζ|(s?−s+1) , |ζ|(s?−s+2) , . . . , |ζ|(n−s)) 4 (λBH
s?+1, λ

BH
s?+2, . . . , λ

BH
n )

with probability approaching one.

We adapt from [42] the definition of a resolvent set below, useful to de-
termine the true support of the mean-shift parameters.

Definition D.4. Let s? be an integer obeying s < s? < n. The set S?(S, s?)
is said to be a resolvent set if it is the union of S and
the s? − s indices corresponding to the largest entries of the error term ε
restricted to S̄.

Let c be any positive constant and fix s? ≥ s(1 + c)/(1 − q) (q being
the target FDR level), so that assumptions of Lemma D.3 are satisfied. For
clarity, we denote S? = S?(S, s?). For a resolvent set S? of cardinality s?,
define the reduced minimization as:
(D.1)

βS
?
, µS

?
= argmin

β∈Rp,µ∈Rs?

{
‖y −Xβ − IS?µ‖22 + 2ρJλ̃(β) + 2ρJλ[s?](µ)

}
,

where λ[s?] is the beginning (the first s? terms) of the sequence of weights in
the global problem. Note that a resolvent set contains the support of the true
parameter µ?, so the generalized versions of the main results in Section 3,
considered in the proof in Appendix C, hold.

We want to show that the estimator of the unreduced problem µ̂ has
null values for coordinates which indices are not in S?. Precisely, we will
show that µ̂ = IS?µS

?
. The first order conditions for global and reduced

minimisation problem above are respectively:
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(D.2)

(D.3)

{
X>(y −Xβ̂ − µ̂) ∈ ρ∂Jλ̃(β̂)

y −Xβ̂ − µ̂ ∈ ρ∂Jλ(µ̂)

and

(D.4)

(D.5)

{
X>(y −XβS? − IS?µS

?
) ∈ ρ∂Jλ̃(βS

?
)

I>S?(y −XβS? − IS?µS
?
) ∈ ρ∂Jλ[s?](µ

S?
)

Clearly, Equation (D.4) leads to Equation (D.2) taking β̂ = βS
?

and µ̂ = IS?µS
?
.

We must now show that this choice of β̂ and µ̂ satisfies Equation (D.3).
First, y − Xβ̂ − µ̂ must be in the unit ball of the dual norm, that

is y −Xβ̂ − µ̂ 4 ρλ. Because y−Xβ̂−µ̂ ∈ Rn is the concatenation of I>S?(y −Xβ̂ − µ̂)

and I>
S̄?(y −Xβ̂ − µ̂), we must check that S? satisfy:

I>
S?(y −Xβ̂S? − IS? µ̂S

?
) 4 ρλ−[s?],

where λ−[s?] is the end of the sequence in the global problem (omitting the
first s? terms). If so, noting that if a1 4 b1 and a2 4 b2 then a 4 b (with a
and b being the respective concatenation of a1, a2 and b1, b2) and combining
it with Equation (D.5) will lead to the belonging at the unit ball of the dual
norm.

Equivalently, we must check that

yS? −XS?,·β
S?

4 ρλ−[s?],

or also

(D.6) XS?,·(β
? − βS?

) + IS?,·ε 4 ρλ−[s?]

Lemma D.3, together with the definition of the resolvent set S? given in Def-
inition D.4, allows us to handle the second term to obtain, with probability
tending to one:

IS?,·ε 4 (λBH)−[s?] 4 ρ(λBH)−[s?].

It remains to control the term XS?,·(β
?−βS?

). For our purpose, it is sufficient

to show that ‖XS?,·(β
? − βS

?
)‖∞ tends to zero when n goes to infinity,

because in this case we would have XS?,·(β
? − βS?

) 4 ρε(λBH)−[s?] if n is

large enough. Thus, let i ∈ {1, . . . , n} and xi the ith row of X, then we have:

|〈xi, β? − βS
?〉| ≤

p∑
j=1

|xi,j ||β? − βS
? |j ≤

M√
n
‖β? − βS?‖1.
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Now we distinguish the three cases. For Procedure 3.7, we do not assume
sparsity on β so we rely on the Cauchy-Schwarz inequality to obtain

|〈xi, β? − βS
?〉| ≤ M√

n

√
p‖β? − βS?‖2.

For Procedure 3.8, Equation (C.17) lead to the bound

|〈xi, β? − βS
?〉| ≤ M√

n
C
(
k log p ∨ s log(2en/s)

)(
‖β? − βS?‖2 ∨ ‖µ? − µS

?‖2
)
,

with C being some positive constant. For Procedure 3.9, Equation (C.20)
lead to the bound

|〈xi, β?−βS
?〉| ≤ M√

n
C ′
(
k log(2ep/k)∨s log(2en/s)

)(
‖β?−βS?‖2∨‖µ?−µS

?‖2
)
,

with C ′ being some positive constant.
Therefore the coordinates are uniformly bounded by a quantity tend-

ing to zero in each of the three cases of the theorem, thanks to the upper
bounds obtained in Section 3. Now it is sufficient to choose n such that∣∣〈xi, β? − βS?〉

∣∣ ≤ ρελBH
n (it is important to notice that the right term

does not depend on n and equals to ρεΦ−1(1 − q/2)) to finally obtain
Equation (D.6). Note that Equation (D.6) is the necessary condition for
y − XβS? − IS?µS

?
to be feasible (meaning in the unit ball Cλ of the dual

norme of Jλ) but this is also sufficient for being in the subdifferential because

∂Jλ(x) = {ω ∈ Cλ : 〈ω, x〉 = Jλ(x)},

and as we have, due to Equation(D.5):

〈I>S?(y −XβS? − IS?µS
?
), µS

?〉 = Jλ[s?](µ
S?

),

then:
〈y −XβS? − IS?µS

?
, IS?µS

?〉 = Jλ(IS?µS
?
).

Therefore, with probability tending to one, µ̂ = IS?µS
?

and in particular

(D.7) supp(µ̂) ⊂ S?.

We now show that the support of µ̂ contains the support of µ?. Consid-
ering Equation (D.5) we have in particular the belonging to the unit ball of
the dual norm, that is to say:

I>S?(y −XβS? − IS?µS
?
) 4 ρλ[s?].
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In particular we have

‖I>S?(y −XβS? − IS?µS
?
)‖∞ ≤ ρλ1.

Having y = Xβ? + µ? + ε = Xβ? + IS?(µ?)S? + ε, the inequality above
re-writes as:

‖XS?,·(β
? − βS?

) + µ?S? − µS
?

+ I>S?ε‖∞ ≤ ρλ1.

By the triangle inequality, we obtain:

‖µ?S?−µS
?‖∞ ≤ ρλ1+‖XS?,·(β

?−βS?
)+I>S?ε‖∞ ≤ ρλ1+‖XS?,·(β

?−βS?
)‖∞+‖I>S?ε‖∞

Now, we already said that we have ‖XS?,·(β
? − βS?

)‖∞ ≤ ρελBH
n ≤ ρελBH

1 ,
and using the standard bound on the norm of a Gaussian noise (see Lemma B.2),
we also have, with probability tending to one (precisely with probability
1/n):

‖I>S?ε‖∞ ≤ ‖ε‖∞ ≤ 2σ
√

log n.

Combining the previous inequalities leads to:

‖µ?S? − µS
?‖∞ ≤ ρλ1 + ρελBH

1 + 2σ
√

log n = ρ(1 + 2ε)λBH
1 + 2σ

√
log n.

A standard bound for the Gaussian quantile function gives λBH
1 ≤ σ

√
2 log(2n/q),

so with q ≥ 2/n (this is quite artificial, q is generally more than 0.01) we
obtain:

‖(µ?)S? − µS?‖∞ ≤ (1 + ρ(1 + 2ε))2σ
√

log n.

Therefore, because the entries of µ? are of absolute values greater than the
right bound of the above inequality we obtain:

S ⊂ supp((µ?)S?) ⊂ supp(µS
?
) ⊂ supp(µ̂),

and so the Power tends to one.
It remains to show the FDR control, using Equation (D.7). Define the

False Discovery Proportion (FDP) as V/(R ∨ 1), where R and V are de-
fined in Equation (4.1). Because of the inclusion S ⊂ supp(µ̂), the FDP
is (R− s)/R = 1− s/R with probability tending to one. According to Equa-
tion (D.7) and the assumption on s?,

FDP = 1− s

R
≤ 1− s

s?
≤ 1− 1− q

1 + c
=
q + c

1 + c
≤ q + c,

with probability tending to one. In expectation, and with n tending to in-
finity, we obtain:

lim sup
n→+∞

FDR(µ̂) ≤ q + c,

and c being arbitrarily close to zero leads to the conclusion.
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APPENDIX E: SUPPLEMENTARY SIMULATIONS

We gather here some extra-simulations in low dimension to complete the
ones from Section 5.2 with higher FDR level or/and higher correlation level
for the design matrix. As it is our particular interest, we focus on experiments
with outliers of weak magnitudes.

Figure 7 below is the same as in Section 5.2 for settting 1, excepted that
the correlation of the design matrix is now higher (0.8). Results are similar
to those obtained in Section 5.2, that is even with a higher correlation, E-
SLOPE is able to make much more discoveries while keeping the FDR under
control.
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Fig 7: Results for simulation Setting 1 with low-magnitude outliers and
correlation ρ = 0.8. First row gives the FDR (left) and power (right) of each
considered procedure for outliers discoveries. Second row gives the MSE for
regressors (left) and intercepts (right). E-SLOPE gives perfect power, is the
only one to respect the required FDR, and provides the best MSEs.

Figures 8, 9 below gather the results of simulations in setting 1 of Section 5
with other target FDR (here 10% and 20%) and for both moderate and high
correlation (respectively 0.4 and 0.8). E-LASSO and IPOD do not depend
on the target FDR so they are not plotted again. The results confirm the
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fact that E-SLOPE provides a high power together with a FDR control for
a wide range of target FDR level. The left (resp. right) columns contain the
results for α = 10% (resp. α = 20%) as indicated by the straight lines.
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Fig 8: Results for simulation Setting 1 with low-magnitude outliers, corre-
lation ρ = 0.4. Left column gives the FDR (top) and power (bottom) for
E-SLOPE with target FDR α = 10%. Right column gives the FDR (top)
and power (bottom) for E-SLOPE with target FDR α = 20%.
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Fig 9: Results for simulation Setting 1 with low-magnitude outliers, corre-
lation ρ = 0.8. Left column gives the FDR (top) and power (bottom) for
E-SLOPE with target FDR α = 10%. Right column gives the FDR (top)
and power (bottom) for E-SLOPE with target FDR α = 20%.
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