Nicolas Auger

Vincent Jugé

Cyril Nicaud

Carine Pivoteau

On the Worst-Case Complexity of TimSort

Keywords: 2012 ACM Subject Classification Theory of computation → Sorting and searching Sorting algorithms, Merge sorting algorithms, TimSort, Analysis of algorithms Digital Object Identifier 10.4230/LIPIcs

TimSort is an intriguing sorting algorithm designed in 2002 for Python, whose worst-case complexity was announced, but not proved until our recent preprint. In fact, there are two slightly different versions of TimSort that are currently implemented in Python and in Java respectively. We propose a pedagogical and insightful proof that the Python version runs in O(n log n). The approach we use in the analysis also applies to the Java version, although not without very involved technical details. As a byproduct of our study, we uncover a bug in the Java implementation that can cause the sorting method to fail during the execution. We also give a proof that Python's TimSort running time is in O(n+n log ρ), where ρ is the number of runs (i.e. maximal monotonic sequences), which is quite a natural parameter here and part of the explanation for the good behavior of TimSort on partially sorted inputs.

Introduction

TimSort is a sorting algorithm designed in 2002 by Tim Peters [START_REF] Peters | Timsort description[END_REF], for use in the Python programming language. It was thereafter implemented in other well-known programming languages such as Java. The algorithm includes many implementation optimizations, a few heuristics and some refined tuning, but its high-level principle is rather simple: The sequence S to be sorted is first decomposed greedily into monotonic runs (i.e. nonincreasing or nondecreasing subsequences of S as depicted on Figure 1), which are then merged pairwise according to some specific rules.)

Figure 1 A sequence and its run decomposition computed by TimSort: for each run, the first two elements determine if it is increasing or decreasing, then it continues with the maximum number of consecutive elements that preserves the monotonicity.

The idea of starting with a decomposition into runs is not new, and already appears in Knuth's NaturalMergeSort [START_REF] Knuth | The Art of Computer Programming[END_REF], where increasing runs are sorted using the same mechanism as in MergeSort. Other merging strategies combined with decomposition

TimSort core algorithm

The idea of TimSort is to design a merge sort that can exploit the possible "non randomness" of the data, without having to detect it beforehand and without damaging the performances on random-looking data. This follows the ideas of adaptive sorting (see [START_REF] Mannila | Measures of presortedness and optimal sorting algorithms[END_REF] for a survey on taking presortedness into account when designing and analyzing sorting algorithms).

Algorithm 1: TimSort (Python 3.6.5)

Input : A sequence S to sort Result: The sequence S is sorted into a single run, which remains on the stack.

Note:

The function merge_force_collapse repeatedly pops the last two runs on the stack R, merges them and pushes the resulting run back on the stack. The first feature of TimSort is to work on the natural decomposition of the input sequence into maximal runs. In order to get larger subsequences, TimSort allows both nondecreasing and decreasing runs, unlike most merge sort algorithms.

Then, the merging strategy of TimSort (Algorithm 1) is quite simple yet very efficient. The runs are considered in the order given by the run decomposition and successively pushed onto a stack. If some conditions on the size of the topmost runs of the stack are not satisfied after a new run has been pushed, this can trigger a series of merges between pairs of runs at the top or right under. And at the end, when all the runs in the initial decomposition have been pushed, the last operation is to merge the remaining runs two by two, starting at the top of the stack, to get a sorted sequence. The conditions on the stack and the merging rules are implemented in the subroutine called merge_collapse detailed in Algorithm 2. This is what we consider to be TimSort core mechanism and this is the main focus of our analysis.

Algorithm 2:

The merge_collapse procedure (Python 3.6.5)

Input : A stack of runs R Result: The invariant of Equations (1) and (2) is established.

Note:

The runs on the stack are denoted by R [START_REF] Auger | Merge strategies: From Merge Sort to TimSort[END_REF] . . . R[height(R)], from top to bottom. The length of run R[i] is denoted by ri. The blue highlight indicates that the condition was not present in the original version of TimSort (this will be discussed in section 5). Another strength of TimSort is the use of many effective heuristics to save time, such as ensuring that the initial runs are not to small thanks to an insertion sort or using a special dichotomy called "gallop" to optimize the merges. However, this does not interfere with our analysis and we will not discuss this matter any further.

1 while height(R) > 1 do 2 n ← height(R) -2 3 if (n > 0

XX:4

On the Worst-Case Complexity of TimSort

Figure 2

The successive states of the stack R (the values are the lengths of the runs) during an execution of the main loop of TimSort (Algorithm 1), with the lengths of the runs in runs being (24, 18, 50, 28, 20, 6, 4, 8, 1). The label #1 indicates that a run has just been pushed onto the stack. The other labels refer to the different merges cases of merge_collapse as translated in Algorithm 3.

Let us have a closer look at Algorithm 2 which is a pseudo-code transcription of the merge_collapse procedure found in the latest version of Python (3.6.5). To illustrate its mechanism, an example of execution of the main loop of TimSort (lines 3-5 of Algorithm 1) is given in Figure 2. As stated in its note [START_REF] Peters | Timsort description[END_REF], Tim Peter's idea was that: "The thrust of these rules when they trigger merging is to balance the run lengths as closely as possible, while keeping a low bound on the number of runs we have to remember."

To achieve this, the merging conditions of merge_collapse are designed to ensure that the following invariant3 is true at the end of the procedure:

r i+2 > r i+1 + r i , (1)
r i+1 > r i . (2
)
This means that the runs lengths r i on the stack grow at least as fast as the Fibonacci numbers and, therefore, that the height of the stack stays logarithmic (see Lemma 6, section 3). Note that the bound on the height of the stack is not enough to justify the O(n log n) running time of TimSort. Indeed, without the smart strategy used to merge the runs "on the fly", it is easy to build an example using a stack containing at most two runs and that gives a Θ(n 2) complexity: just assume that all runs have size two, push them one by one onto a stack and perform a merge each time there are two runs in the stack.

We are now ready to proceed with the analysis of TimSort complexity. As mentioned earlier, Algorithm 2 does not correspond to the first implementation of TimSort in Python, nor to the current one in Java, but to the latest Python version. The original version will be discussed in details later, in Section 5.

TimSort runs in O(n log n)

At the first release of TimSort [START_REF] Peters | Timsort description[END_REF], a time complexity of O(n log n) was announced with no element of proof given. It seemed to remain unproved until our recent preprint [START_REF] Auger | Merge strategies: From Merge Sort to TimSort[END_REF], where we provide a confirmation of this fact, using a proof which is not difficult but a bit tedious. This result was refined later in [START_REF] Buss | Strategies for stable merge sorting[END_REF], where the authors provide lower and upper bounds, including explicit multiplicative constants, for different merge sort algorithms. Our main concern is to provide an insightful proof of the complexity of TimSort, in order to highlight how well designed is the strategy used to choose the order in which the merges are performed. The present section is more detailed than the following ones as we want it to be self-contained once TimSort has been translated into Algorithm 3 (see below). As our analysis is about to demonstrate, in terms of worst-case complexity, the good performances of TimSort do not rely on the way merges are performed. Thus we choose to ignore their many optimizations and consider that merging two runs of lengths r and r requires both r + r element moves and r + r element comparisons. Therefore, to quantify the running time of TimSort, we only take into account the number of comparisons performed.

Theorem 1. The running time of TimSort is O(n log n).

The first step consists in rewriting Algorithm 1 and Algorithm 2 in a form that is easier to deal with. This is done in Algorithm 3.

Claim 2. For any input, Algorithms 1 and 3 perform the same comparisons.

Proof. The only difference is that Algorithm 2 was changed into the while loop of lines 5 to 10 in Algorithm 3. Observing the different cases, it is straightforward to verify that the same merges, i.e. merges involving the same runs, take place in the same order in both algorithms.

Remark 3. Proving Theorem 1 only requires analyzing the main loop of the algorithm (lines 3 to 10). Indeed, computing the run decomposition (line 1) can be done on the fly, by a greedy algorithm, in time linear in n, and the final loop (line 11) might be performed in the main loop by adding a fictitious run of length n + 1 at the end of the decomposition.

In the sequel, for the sake of readability, we also omit checking that h is large enough to trigger the cases #2 to #5. Once again, such omissions are benign, since adding fictitious runs of respective lengths 8n, 4n, 2n and n (in this order) at the beginning of the decomposition would ensure that h 4 during the whole loop.

We can now proceed with the core of our proof, which is the analysis of the main loop. We used the framework of amortized complexity of algorithms: we credit tokens to the elements of the input array, which are spent for comparisons. One token is paid for every comparison performed by the algorithm and each element is given O(log n) tokens. Since the balance is always non-negative, we can conclude that at most O(n log n) comparisons are performed, in total, during the main loop.

Elements of the input array are easily identified by their starting position in the array, so we consider them as well-defined and distinct entities (even if they have the same value). The height of an element is the number of runs that are below it in the stack: the elements belonging to the run R i in the stack (R 1 , . . . , R h) have height h -i. To simplify the presentation, we also distinguish two kinds of tokens, the ♦-tokens and the ♥-tokens, which can both be used to pay for comparisons.

Two ♦-tokens and one ♥-token are credited to an element when it enters the stack or when its height decreases: all the elements of R 1 are credited when R 1 and R 2 are merged, and all the elements of R 1 and R 2 are credited when R 2 and R 3 are merged.

Tokens are spent to pay for comparisons, depending on the case triggered: Case #2: every element of R 1 and R 2 pays 1 ♦. This is enough to cover the cost of merging R 2 and R 3 , since r 2 + r 3 r 2 + r 1 , as r 3 r 1 in this case.

Case #3: every element of R 1 pays 2 ♦. In this case r 1 r 2 and the cost is

r 1 + r 2 2r 1 .
Cases #4 and #5: every element of R 1 pays 1 ♦ and every element of R 2 pays 1 ♥. The cost r 1 + r 2 is exactly the number of tokens spent.

Lemma 4. The balances of ♦-tokens and ♥-tokens of each element remain non-negative throughout the main loop of TimSort.

Proof. In all four cases #2 to #5, because the height of the elements of R 1 and possibly the height of those of R 2 decrease, the number of credited ♦-tokens after the merge is at least the number of ♦-tokens spent. The ♥-tokens are spent in Cases #4 and #5 only: every element of R 2 pays one ♥-token, and then belongs to the topmost run R 1 of the new stack S = (R 1 , . . . , R h-1) obtained after merging R 1 and R 2 . Since R i = R i+1 for i 2, the condition of Case #4 implies that r 1 r 2 and the condition of Case #5 implies that r 1 + r 2 r 3 : in both cases, the next modification of the stack S is another merge. This merge decreases the height of R 1 , and therefore decreases the height of the elements of R 2 , who will regain one ♥-token without loosing any, since the topmost run of the stack never pays with ♥-tokens. This proves that, whenever an element pay one ♥-token, the next modification is another merge during which it regains its ♥-token. This concludes the proof by direct induction.

Let h max be the maximum number of runs in the stack during the whole execution of the algorithm. Due to the crediting strategy, each element is given at most 2h max ♦-tokens and at most h max ♥-tokens in total. So we only need to prove that h max is O(log n) to complete the proof that the main loop running time is in O(n log n). This fact is a consequence of TimSort's invariant established with a formal proof in the theorem prover KeY [START_REF] Beckert | Verification of object-oriented software: The KeY approach[END_REF][START_REF] De Gouw | OpenJDK's Java.utils.Collection.sort() is broken: The good, the bad and the worst case[END_REF]: at the end of any iteration of the main loop, we have r i + r i+1 < r i+2 , for every i 1 such that the run R i+2 exists.

For completeness, and because the formal proof is not meant to be read by humans, we sketch a "classical" proof of the invariant. It is not exactly the same statement as in [START_REF] De Gouw | OpenJDK's Java.utils.Collection.sort() is broken: The good, the bad and the worst case[END_REF], since our invariant holds at any time during the main loop: in particular we cannot say anything about R 1 , which can have any size when a run has just been added. For technical reasons, and because it will be useful later on, we establish four invariants in our statement.

Lemma 5. At any step during the main loop of TimSort, we have

(i) r i + r i+1 < r i+2 for i ∈ {3, . . . , h -2}, (ii) r 2 < 3r 3 , (iii) r 3 < r 4 and (iv) r 2 < r 3 + r 4 .
Proof. The proof is done by induction. It consists in verifying that, if all four invariants hold at some point, then they still hold when an update of the stack occurs in one of the five situations labeled #1 to #5 in the algorithm. This can be done by a straightforward case analysis. We denote by S = (R 1 , . . . , R h) the new state of the stack after the update:

If Case #1 just occurred, a new run R 1 was pushed. This implies that none of the conditions of Cases #2 to #5 hold in S, otherwise merges would have continued. In particular, we have r 1 < r 2 < r 3 and r 2 + r 3 < r 4 . As r i = r i-1 for i 2, and invariant (i) holds for S, we have r 2 < r 3 < r 4 , and thus invariants (i) to (iv) hold for S.

If one of the Cases #2 to #5 just occurred, we have r 2 = r 2 + r 3 (in Case #2) or r 2 = r 3 (in Cases #3 to #5). This implies that r 2 r 2 + r 3 . As r i = r i+1 for i 3, and invariants (i) to (iv) hold for S, we have r 2 r 2 + r 3 < r 3 + r 4 + r 3 < 3r 4 = 3r 3 , r 3 = r 4 r 3 + r 4 < r 5 = r 4 , and r 2 r 2 + r 3 < r 3 + r 4 + r 3 < r 3 + r 5 < r 4 + r 5 = r 3 + r 4 . Thus, invariants (i) to (iv) hold for S.

At this point, invariant (i) can be used to bound h max from above. Lemma 6. At any time during the main loop of TimSort, if the stack is (R 1 , . . . , R h) then we have r 2 /3 < r 3 < r 4 < . . . < r h and, for all i j 3, we have r i > √ 2 i-j-1 r j . As a consequence, the number of runs in the stack is always O(log n).

Proof. By Lemma 5, we have r i + r i+1 < r i+2 for 3 i h -2. Thus r i+2 -r i+1 > r i > 0 and the sequence is increasing from index 4: r 4 < r 5 < r 6 < . . . < r h . The increasing sequence of the statement is then obtained using the invariants (ii) and (iii). Hence, for j 3, we have r j+2 > 2r j , from which one can get that r i > √ 2 i-j-1 r j . In particular, if

h 3 then r h > √ 2 h-4 r 3 , which yields that the number of runs is O(log n) as r h n.
Collecting all the above results is enough to prove Theorem 1. First, as mentioned in Remark 3, computing the run decomposition can be done in linear time. Then, we proved that the main loop requires O(nh max) comparisons, by bounding from above the total number of tokens credited, and that h max = O(log n), by showing that the run sizes grow at exponential speed. Finally, the final merges of line 11 might be taken care of by Remark 3, but they can also be dealt with directly: 4 if we start these merges with a stack S = (R 1 , . . . , R h), then every element of the run R i takes part in h + 1 -i merges at most, which proves that the overall cost of line 11 is O(n log n). This concludes the proof of the theorem.

Refined analysis parametrized with the number of runs

A widely spread idea to explain why certain sorting algorithms perform better in practice than expected is that they are able to exploit presortedness [START_REF] Mannila | Measures of presortedness and optimal sorting algorithms[END_REF]. This can be quantified in many ways, the number of runs in the input sequence being one. Since this is the most natural parameter, we now consider the complexity of TimSort, according to it. We establish the following result, which was left open in [START_REF] Auger | Merge strategies: From Merge Sort to TimSort[END_REF][START_REF] Buss | Strategies for stable merge sorting[END_REF]:

Theorem 7.
The complexity of TimSort on inputs of size n with ρ runs is O(n + n log ρ).

XX:8

On the Worst-Case Complexity of TimSort

If ρ = 1, then no merge is to be performed, and the algorithm clearly runs in time linear in n. Hence, we assume below that ρ 2, and we show that the complexity of TimSort is O(n log ρ) in this case.

To obtain the O(n log ρ) complexity, we need to distinguish several situations. First, consider the sequence of Cases #1 to #5 triggered during the execution of the main loop of TimSort. It can be seen as a word on the alphabet {#1, . . . , #5} that starts with #1, which completely encodes the execution of the algorithm. We split this word at every #1, so that each piece corresponds to an iteration of the main loop. Those pieces are in turn split into two parts, at the first occurrence of a symbol #3, #4 or #5. The first half is called a starting sequence and is made of a #1 followed by the maximal number of #2. The second half is called an ending sequence, it starts with #3, #4 or #5 (or is empty) and it contains no occurrence of #1 (see Figure 3 for an example).

#1 #2 #2 #2 starting seq. #3 #2 #5 #2 #4 #2 ending seq. #1 #2 #2 #2 #2 #2 starting seq. #5 #2 #3 #3 #4 #2 ending seq.

Figure 3

The decomposition of the encoding of an execution into starting and ending sequences.

We treat starting and ending sequences separately in our analysis. The following lemma points out one of the main reasons TimSort is so efficient regarding the number of runs.

Lemma 8. The total number of comparisons performed during starting sequences is O(n).

Proof. More precisely, for a stack S = (R 1 , . . . , R h), we prove that a starting sequence beginning with a push of a run R of size r onto S uses at most γr comparisons in total, where γ is the real constant 3

√ 2 i 0 i √ 2 -i . After the push, the stack is S = (R, R 1 , . . . , R h)
and, if the starting sequence contains k 1 letters, i.e. k -1 occurrences of #2, then this sequence consists in merging the runs R 1 , R 2 , . . . , R k . Since no merge is performed if k = 1, we assume below that k 2. Looking closely at these runs, we compute that they require a total of

C = (k -1)r 1 + (k -1)r 2 + (k -2)r 3 + . . . + r k k i=1 (k + 1 -i)r i comparisons.
The last occurrence of Case #2 ensures that r r k , hence applying Lemma 6 to the stack S shows that r

1 3 √ 2 k-i r i for all i = 1, . . . , k. It follows that C r 3 k i=2 k + 1 -i √ 2 k-i < γ.
This concludes the proof, since each run is the beginning of exactly one starting sequence, and the sum of their lengths is n.

We can now focus on the cost of ending sequences. Because the inner loop (line 5) of TimSort has already begun, during the corresponding starting sequence, we have some information on the length of the topmost run.

Proof. The proof is done by induction. At the beginning of the ending sequence, the condition of #2 cannot be true, so r 1 < r 3 < 3r 3 . Before any merge during an ending sequence, if the stack is S = (R 1 , . . . R h), then we denote by S = (R 1 , . . . , R h-1) the stack after that merge. If the invariant holds before the merge, and since r 2 < r 3 + r 4 and r 3 < r 4 by Lemma 5, we have r 1 = r 1 < 3r 3 < 3r 4 = 3r 3 in Case #2, and r 1 = r 1 + r 2 < r 3 + r 3 + r 4 < 3r 4 = 3r 3 in Cases #3 to #5 (because r 1 < r 3), concluding the proof.

In order to obtain a suitable upper bound for the merges that happen during ending sequences, we refine the analysis of the previous section. We still use ♦-tokens and ♥-tokens to pay for comparisons when the stack is not too high, and we use different tokens otherwise: at the beginning of the algorithm, a common pool is credited with 24 n ♣-tokens, all elements are still credited two ♦-tokens and one ♥-token when entering the stack, no token (of any kind) is credited nor spent during merges of starting sequences (the cost of such sequences is already taken care of by Lemma 9), if the stack has height less than κ = 2 log 2 ρ , elements are credited ♦-tokens and ♥-tokens and merges (of ending sequences) are paid in the same fashion as in Section 3, if the stack has height at least κ, then merges (of ending sequences) are paid using ♣-tokens, and elements are not credited any token when a merge decreases their height.

By the analysis of the previous section, at most O(nκ) comparisons are paid with ♦-tokens and ♥-tokens. Hence, using Remark 3, we complete the proof of Theorem 7 by checking that we initially credited enough ♣-tokens. This is a direct consequence of the following lemma, since at most ρ merges are paid by ♣-tokens. Lemma 10. A merge performed during an ending sequence with a stack containing at least κ runs costs at most 24n/ρ comparisons.

Proof. Lemmas 5 and 9 prove that r 2 < 3r 3 and r 1 < 3r 3 . Since a merging step either merges R 1 and R 2 , or R 2 and R 3 , it requires at most 6r 3 comparisons. By Lemma 6, we have r h √ 2 h-4 r 3 , whence 6r

3 24 √ 2 -h r h 24n √ 2 -κ 24n/ρ.

About the Java version of TimSort

Algorithm 2 (and therefore Algorithm 3) does not correspond to the original TimSort. Before release 3.4.4 of Python, the second part of the condition (in blue) in the test at line 3 Figure 4 Execution of the main loop of Java's TimSort (Algorithm 3, without merge case #5, at line 9), with the lengths of the runs in runs being (24, 18, 50, 28, 20, 6, 4, 8, 1). When the second to last run (of length 8) is pushed onto the stack, the while loop of line 5 stops after only one merge, breaking the invariant (in red), which was not the case with the same example using the Python version of TimSort (see Figure 2). of merge_collapse (and therefore merge case #5 of Algorithm 3) was missing. This version of the algorithm worked fine, meaning that it did actually sort arrays, but the invariant given by Equation (1) did not hold. Figure 4 illustrates the difference caused by the missing condition when running Algorithm 3 on the same input as in Figure 2.

This was discovered by de Gouw et al. [START_REF] De Gouw | OpenJDK's Java.utils.Collection.sort() is broken: The good, the bad and the worst case[END_REF] when trying to prove the correctness of the Java implementation of TimSort (which is the same as in the earlier versions of Python). And since the Java version of the algorithm uses the (wrong) invariant to compute the maximum size of the stack used to store the runs, the authors were able to build a sequence of runs that causes the Java implementation of TimSort to crash. They proposed two solutions to fix TimSort: reestablish the invariant, which led to the current Python version, or keep the original algorithm and compute correct bounds for the stack size, which is the solution that was chosen in Java 9 (note that this is the second time these values had to be changed). To do the latter, the developers used the claim in [START_REF] De Gouw | OpenJDK's Java.utils.Collection.sort() is broken: The good, the bad and the worst case[END_REF] that the invariant cannot be violated for two consecutive runs on the stack, which turns out to be false,5 as illustrated in Figure 5. Thus, it is still possible to cause the Java implementation to fail: it uses a stack of runs of size at most 49 and we were able to compute an example requiring a stack of size 50 (see http://igm.univ-mlv.fr/~pivoteau/Timsort/Test.java), causing an error at runtime in Java's sorting method. Even if the bug we highlighted in Java's TimSort is very unlikely to happen, this should be corrected. And, as advocated by de Gouw et al. and Tim Peters himself, 6 we strongly believe that the best solution would be to correct the algorithm as in the current version of Python, in order to keep it clean and simple. However, since this is the implementation of Java's sort for the moment, there are two questions we would like to tackle: Does the complexity analysis holds without the missing condition? And, can we compute an actual bound for the stack size?

We first address the complexity question. And, it turns out that the missing invariant was a key ingredient for having a simple an elegant proof.

Proposition 11.

Full proof in Section A.1.1.

At any time during the main loop of Java's TimSort, if the stack of runs is (R 1 , . . . , R h) then we have r 3 < r 4 < . . . < r h and, for all i 3, we have

(2 + √ 7)r i r 2 + . . . + r i-1 .
Proof ideas. The proof of Proposition 11 is much more technical and difficult than insightful, and therefore we just summarize its main steps. As in previous sections, this proof relies on several inductive arguments, using both inductions on the number of merges performed, on the stack size and on the run sizes. The inequalities r 3 < r 4 < . . . < r h come at once, hence we focus on the second part of Proposition 11. Since separating starting and ending sequences was useful in Section 4, we first introduce the notion of stable stacks: a stack S is stable if, when operating on the stack S = (R 1 , . . . , R h), Case #1 is triggered (i.e. Java's TimSort is about to perform a run push operation).

We also call obstruction indices the integers i 3 such that r i r i-1 + r i-2 : although they do not exist in Python's TimSort, they may exist, and even be consecutive, in Java's TimSort. We prove that, if i -k, i -k + 1, . . . , i are obstruction indices, then the stack sizes r i-k-2 , . . . , r i grow "at linear speed". For instance, in the last stack of Figure 5, obstruction indices are 4 and 5, and we have r 2 = 28, r 3 = r 2 + 28, r 4 = r 3 + 27 and r 5 = r 4 + 26.

Finally, we study so-called expansion functions, i.e. functions f : [0, 1] → R such that, for every stable stack S = (R 1 , . . . , R h), we have r 2 + . . . + r h-1 r h f (r h-1 /r h). We exhibit an explicit function f such that f (x) 2 + √ 7 for all x ∈ [0, 1], and we prove by induction on r h that f is an expansion function, from which we deduce Proposition 11.

Once Proposition 11 is proved, we easily recover the following variant of Lemmas 6 and 9.

Lemma 12. At any time during the main loop of Java

's TimSort, if the stack is (R 1 , . . . , R h) then we have r 2 /(2 + √ 7) r 3 < r 4 < . . . < r h and, for all i j 3,
we have r i δ i-j-4 r j , where δ = 5/(2 + √ 7)

1/5 > 1. Furthermore, at any time during an ending sequence, including just before it starts and just after it ends, we have r 1 (2 + √ 7)r 3 .

Proof. The inequalities r 2 /(2 + √ 7) r 3 < r 4 < . . . < r h are just a (weaker) restatement of Proposition 11. Then, for j 3, we have (2 + √ 7)r j+5 r j + . . . + r j+4 5r j , i.e. r j+5 δ 5 r j , from which one gets that r i δ i-j-4 r j .

Finally, we prove by induction that r 1 (2 + √ 7)r 3 during ending sequences. First, when the ending sequence starts, r 1 < r 3

(2 + √ 7)r 3 . Before any merge during this sequence, if the stack is S = (R 1 , . . . R h), then we denote by S = (R 1 , . . . , R h-1) the stack after the merge. If the invariant holds before the merge, in Case #2, we have

r 1 = r 1 (2+ √ 7)r 3 (2+ √ 7)r 4 = (2+ √
7)r 3 ; and using Proposition 11 in Cases #3 and #4, we have r 1 = r 1 + r 2 and r 1 r 3 , hence

r 1 = r 1 + r 2 r 2 + r 3 (2 + √ 7)r 4 = (2 + √ 7)r 3 , concluding the proof.
We can then recover a proof of complexity for the Java version of TimSort, by following the same proof as in Sections 3 and 4, but using Lemma 12 instead of Lemmas 6 and 9.

Theorem 13. The complexity of Java's TimSort on inputs of size n with ρ runs is

O(n + n log ρ).
Another question is that of the stack size requirements of Java's TimSort, i.e. computing h max . A first result is the following immediate corollary of Lemma 12.

Corollary 14. On an input of size n, Java's TimSort may create a stack of runs of maximal size h max 7 + log δ (n), where δ = 5/(2 + √ 7)

1/5 .
Proof. At any time during the main loop of Java's TimSort on an input of size n, if the stack is (R 1 , . . . , R h) and h 3, it follows from Lemma 12 that n r h δ h-7 r 3 δ h-7 .

Unfortunately, for integers smaller than 2 31 , Corollary 14 only proves that the stack size will never exceed 347. However, in the comments of Java's implementation of TimSort, 7 there is a remark that keeping a short stack is of some importance, for practical reasons, and that the value chosen in Python -85 -is "too expensive". Thus, in the following, we go to the extent of computing the optimal bound. It turns out that this bound cannot exceed 86 for such integers. This bound could possibly be refined slightly, but definitely not to the point of competing with the bound that would be obtained if the invariant of Equation (1) were correct. Once more, this suggests that implementing the new version of TimSort in Java would be a good idea, as the maximum stack height is smaller in this case.

Theorem 15.

Full proof in Sections A. 1.2 and A.1.3.

On an input of size n, Java's TimSort may create a stack of runs of maximal size h max 3 + log ∆ (n), where ∆ = (1 + √ 7) 1/5 . Furthermore, if we replace ∆ by any real number ∆ > ∆, the inequality fails for all large enough n.

Proof ideas. The first part of Theorem 15 is proved as follows. Ideally, we would like to show that r i+j ∆ j r i for all i 3 and some fixed integer j. However, these inequalities do not hold for all i. Yet, we prove that they hold if i + 2 and i + j + 2 are not obstruction indices, and i + j + 1 is an obstruction index, and it follows quickly that r h ∆ h-3 .

The optimality of ∆ is much more difficult to prove. It turns out that the constants 2+ √ 7, (1 + √ 7) 1/5 , and the expansion function referred to in the proof of Proposition 11 were constructed as least fixed points of non-decreasing operators, although this construction needed not be explicit for using these constants and function. Hence, we prove that ∆ is optimal by inductively constructing sequences of run sizes that show that lim sup{log(r h)/h} ∆; much care is required for proving that our constructions are indeed feasible.

Conclusion

At first, when we learned that Java's QuickSort had been replaced by a variant of MergeSort, we thought that this new algorithm -TimSort -should be really fast and efficient in practice, and that we should look into its average complexity to confirm this from a theoretical point of view. Then, we realized that its worst-case complexity had not been formally established yet and we first focused on giving a proof that it runs in O(n log n), which we wrote in a preprint [START_REF] Auger | Merge strategies: From Merge Sort to TimSort[END_REF]. In the present article, we simplify this preliminary work and provide a short, simple and self-contained proof of TimSort's complexity, which sheds some light on the behavior of the algorithm. Based on this description, we were also able to answer positively a natural question, which was left open so far: does TimSort runs in O(n + n log ρ), where ρ is the number of runs? We hope our theoretical work highlights that TimSort is actually a very good sorting algorithm. Even if all its fine-tuned heuristics are removed, the dynamics of its merges, induced by a small number of local rules, results in a very efficient global behavior, particularly well suited for almost sorted inputs. Besides, we want to stress the need for a thorough algorithm analysis, in order to prevent errors and misunderstandings. As obvious as it may sound, the three consecutive mistakes on the stack height in Java illustrate perfectly how the best ideas can be spoiled by the lack of a proper complexity analysis.

Finally, following [START_REF] De Gouw | OpenJDK's Java.utils.Collection.sort() is broken: The good, the bad and the worst case[END_REF], we would like to emphasize that there seems to be no reason not to use the recent version of TimSort, which is efficient in practice, formally certified and whose optimal complexity is easy to understand.

A Appendix

A.1 Proofs

We provide below complete proofs of the results mentioned in Section 5.

In what follows, we will often refer to so-called stable stacks: we say that a stack S = (R 1 , . . . , R h) is stable if r 1 + r 2 < r 3 and r 1 < r 2 , i.e. if the next operation that will be performed by TimSort is a push operation (Case #1).

A.1.1 Proving Proposition 11

Aiming to prove Proposition 11, and keeping in mind that studying stable stacks may be easier than studying all stacks, a first step is to introduce the following quantities.

Definition 16. Let n be a positive integer. We denote by α n (resp., β n), the smallest real number m such that, in every stack (resp., stable stack) S = (R 1 , . . . , R h) obtained during an execution of TimSort, and for every integer i ∈ {1, . . . , h} such that r i = n, we have r 2 + . . . + r i-1 m × r i ; if no such real number exists, we simply set α n = +∞ (resp., β n = +∞).

By construction, α n β n for all n 1. The following lemma proves that α n β n . Lemma 17. At any time during the main loop of TimSort, if the stack is (R 1 , . . . , R h), then we have (a) r i < r i+1 for all i ∈ {3, 4, . . . , h -1} and (b) r 2 + . . . + r i-1 β n r i for all n 1 and i h such that r i = n.

Proof. Assume that (a) and (b) do not always hold, and consider the first moment where some of them do not hold. When the main loop starts, both (a) and (b) are true. Hence, from a stack S = (R 1 , . . . , R h), on which (a) and (b) hold, we carried either a push step (Case #1) or a merging step (Cases #2 to #4), thereby obtaining the new stack S = (R 1 , . . . , R h). We consider separately these two cases: After a push step, we have h = h + 1 , r 1 + r 2 < r 3 (otherwise, we would have performed a merging step instead of a push step) and r i = r i-1 for all i 2. It follows that r 3 = r 2 < r 1 + r 2 < r 3 = r 4 , and that r i = r i-1 < r i = r i+1 for all i 4. This proves that S satisfies (a). In addition, the value of r 1 has no impact on whether S satisfies (b). Hence, we may assume without loss of generality that r 1 < min{r 2 , r 3 -r 2 } (up to doubling the size of every run ever pushed onto the stack so far and setting r 1 = 1), thereby making S stable. This proves that S satisfies (b). After a merging step, we have h = h -1, r 2 r 2 + r 3 and r i = r i+1 for all i 3. Hence, r i = r i+1 < r i+2 = r i+1 for all i 3, and S satisfies (a). Furthermore, we have 0 β r2 r 2 , and r 2 + r 3 + . . . + r i r 2 + r 3 + . . . + r i+1 β n r i+2 = β n r i+1 whenever i 1 and r i+1 = r i+2 = n. This proves that S also satisfies (b).

Hence, in both cases, (a) and (b) also hold in S, which contradicts our assumption and completes the proof.

Corollary 18. For all integers n 1, we have α n = β n .

It remains to prove that α n α ∞ for all n 1, where α ∞ = 2 + √ 7. This is the object of the next results.

Lemma 29. Let S = (r 1 , . . . , r h) be a producible stable stack of height h 3. There exists an integer κ ∈ {1, 4} and a producible stable stack S = (r 1 , . . . , r) such that 2, r h = r , r h-1 = r -1 and r 1 + . . . + r h-2 = r 1 + . . . + r -2 + κ.

Proof. First, Lemma 29 is immediate if h = 3, since the sequence of runs (r 3 , r 2 , r 1 -1) produces the stack (r 1 -1, r 2 , r 3). Hence, we assume that h 4. Let p 1 , . . . , p n be a sequence of runs, with n minimal, that produces S. We prove Lemma 29 by induction on n.

If the last step carried when producing S was pushing the run P n onto the stack, then the sequence p 1 , . . . , p n-1 , p n -1 produces the stack r 1 -1, r 2 , . . . , r h , and we are done in this case. Hence, assume that the last step carried was a merging step #2.

Let S = (q 1 , . . . , q m) be the stable stack produced by the sequence p 1 , . . . , p n-1 , and let i be the largest integer such that q i < p n . After pushing p n , the runs q 1 , . . . , q i are merged into one single run r 2 , and we also have p n = r 1 and q i+j = r 2+j for all j 1. Incidentally, this proves that m = h + i -2 and, since h 4, that i m -2. We also have i 2, otherwise, if i = 1, we would have had a merging step #3 instead.

If r 1 = p n q i + 2, then the sequence p 1 , . . . , p n-1 , p n -1 also produces the stack (r 1 -1, r 2 , . . . , r h), and we are done in this case. Hence, we further assume that r 1 = p n = q i +1. Since q i-1 + q i r 2 < r 3 = q i+1 , we know that i + 1 is not an obstruction index of S. Let a n -1 be a positive integer such that p 1 + . . . + p a = q i + q i+1 + . . . + q m . Lemma 28 states that p a+1 = q i-1 , and therefore that the sequence of runs p 1 , . . . , p a+1 produces the stack (q i-1 , . . . , q m).

If i = 2 and if q 1 3, then (q 1 -1) + q 2 q 2 + 2 > r 1 , and therefore the sequence of runs p 1 , . . . , p a , q 1 -1, r 1 produces the stable stack (r 1 , r 2 -1, r 3 , . . . , r h). However, if i = 2 and q 1 2, then the sequence of runs p 1 , . . . , p a , r 1 -2 produces the stable stack (r 1 -2, r 2 -2, . . . , r h). Hence, in both cases, we are done, by choosing respectively κ = 1 and κ = 4.

Les us now assume that i 3. Observe that n a + i 3 since, after the stack (q i-1 , . . . , q m) has been created, it remains to create runs q 1 , . . . , q i-2 and finally, r 1 , which requires pushing at least i -1 runs in addition to the a + 1 runs already pushed. Therefore, we must have q 1 + . . . + q i-1 q i , unless what the sequence p 1 , . . . , p a , q 1 + . . . + q i-1 , p n would have produced the stack S, despite being of length a + 2 < n. In particular, since q 1 + q 2 < q 3 , it follows that i 4. Consequently, we have q 1 1, q 2 2, q 3 4, and therefore q 1 + . . . + q i-1 7, i.e. r 2 q 2 + 7 = r 1 + 6.

Finally, by induction hypothesis, there exists a sequence p 1 , . . . , p u , with u minimal, that produced the stack (q 1 , . . . , q v) such that q v = q i , q v-1 = q i-1 and q 1 + . . . + q i-2 = q 1 + . . . + q v-2 + κ for some κ ∈ {1, 4}. Lemma 28 also states that p 1 = q i and that p 2 = q i-1 . It is then easy to check that the sequence of runs p 1 , . . . , p b+1 , p 3 , . . . , p u produces the stable stack (q 1 , . . . , q v-2 , q i-1 , q i , . . . , q m). Since q j < q i-1 < q i < r 1 < r 3 = q i+1 for all j v -2, pushing the run p n = r 1 onto that stack and letting merging steps #2 occur then gives the stack (r 1 , r 2 -κ, r 3 , . . . , r h), which completes the proof since r 1 r 2 -6 < r 2 -κ.

In what follows, we will only consider stacks that are producible and stable. Hence, from this point on, we omit mentioning that they systematically must be producible and stable, and we will say that "the stack S exists" in order to say that "the stack S is producible and stable". Lemma 30. Let S = (r 1 , . . . , r h) and S = (r 1 , . . . , r) be two stacks. Then (a) for all i h, there exists a stack (r 1 , . . . , r i), and (b) if r h-1 = r 1 and r h = r 2 , then there exists a stack (r 1 , . . . , r h , r 3 , . . . , r).

1 4 remove a run r from runs and push r onto R 5 merge_collapse(R) 6 7 merge_force_collapse

 4567 runs ← a run decomposition of S 2 R ← an empty stack 3 while runs = ∅ do // main loop of TimSort if height(R) = 1 then // the height of R is its number of runs

4 if r2 < r1 then 5 merge runs R[2] 6 else 7 else if r2 r1 then 8 merge runs R[1]

 4526781 and r3 r2 + r1) or (n > 1 and r4 r3 + r2) then and R[START_REF] Beckert | Verification of object-oriented software: The KeY approach[END_REF] on the stack merge runs R[START_REF] Auger | Merge strategies: From Merge Sort to TimSort[END_REF] and R[START_REF] Barbay | On compressing permutations and adaptive sorting[END_REF] on the stack and R[START_REF] Barbay | On compressing permutations and adaptive sorting[END_REF] on the stack 9 else break

Figure 5

 5 Figure 5 Execution of the main loop of the Java version of TimSort (without merge case #5, at line 9 of Algorithm 3), with the lengths of the runs in runs being (109, 83, 25, 16, 8, 7, 26, 2, 27).When the algorithm stops, the invariant is violated twice, for consecutive runs (in red).

Algorithm 3 :

 3 TimSort: translation of Algorithm 1 and Algorithm 2 The sequence S is sorted into a single run, which remains on the stack. Note: At any time, we denote the height of the stack R by h and its i th top-most run (for 1 i h) by Ri. The size of this run is denoted by ri.

		Input : A sequence to S to sort	
	Result: 1 runs ← the run decomposition of S	
	2 R ← an empty stack	
	3 while runs = ∅ do	// main loop of TimSort
	4	remove a run r from runs and push r onto R	// #1

5 while true do 6 if

		h 3 and r1 r3 then merge the runs R2 and R3	// #2
	7	else if h 2 and r1 r2 then merge the runs R1 and R2	// #3
	8	else if h 3 and r1 + r2 r3 then merge the runs R1 and R2	// #4
	9	else if h 4 and r2 + r3 r4 then merge the runs R1 and R2	// #5

10 else break 11 while

h = 1 do merge the runs R1 and R2

These heuristics are useful in practice, but do not improve the worst-case complexity of the algorithm.

In[START_REF] Buss | Strategies for stable merge sorting[END_REF], the authors refined the analysis of[START_REF] Auger | Merge strategies: From Merge Sort to TimSort[END_REF] to obtain very precise bounds for the complexity of TimSort and of similar algorithms.

Actually, in[START_REF] Peters | Timsort description[END_REF], the invariant is only stated for the 3 topmost runs of the stack.

Lemma 9.At any time during an ending sequence, including just before it starts and just after it ends, we have r 1 < 3r 3 .

This is the consequence of a small error in the proof of their Lemma 1. The constraint C1 > C2 has no reason to be. Indeed, in our example, we have C1 = 25 and C2 = 31.

Here is the discussion about the correction in Python: https://bugs.python.org/issue23515.

http://envisage-project.eu/ * wp-content/uploads/

XX:15

What makes Java's TimSort much harder to study than Python's TimSort is the fact that, during the execution of Java's TimSort algorithm, we may have stacks S = (R 1 , . . . , R h) on which the invariant (1) : r i > r i-1 +r i-2 fails for many integers i 3, possibly consecutive. In Section 5, such integers were called obstruction indices of the stack S. Hence, we focus on sequences of consecutive obstruction indices.

Lemma 19. Let S = (R 1 , . . . , R h) be a stable stack obtained during the main loop of Java's TimSort. Assume that i -k, i + 1 -k, . . . , i are consecutive obstruction indices of S, and that α n α ∞ for all n r i -1. Then,

Proof. Let T be the number of merge or push operations performed between the start of the main loop and the creation of the stack S. For all k ∈ {0, . . . , T } and all j 1, we denote by S k the stack after k operations have been performed. We also denote by P j,k the j th bottom-most run of the stack S k , and by p j,k the size of P j,k ; we set P j,k = ∅ and p j,k = 0 if S k has fewer than j runs. Finally, for all j h, we set t j = min{k 0 | ∀ ∈ {k, . . . , T }, p j, = p j,T }. First, observe that t j < t j+2 for all j h -2, because a run can be pushed or merged only in top or 2 nd -to-top position. Second, if t j t j+1 for some j h -1, then the runs P j,tj , P j+1,tj are the two top runs of S tj . Since none of the runs P 1 , . . . , P j+1 is modified afterwards, it follows, if j 2, that p j+1 + p j = p j+1,tj + p j,tj < p j-1,tj = p j-1 , and therefore that h + 2 -j is not an obstruction index.

Conversely, let m 0 = h + 3 -i. We just proved that t m0-2 < t m0 and also that t m0-1 < t m0 < . . . < t m0+k . Besides, for all m ∈ {m 0 , . . . , m 0 + k}, we prove that the t m th operation was a merge operation of type #2. Indeed, if not, then the run P m,tm would be the topmost run of S tm ; since the runs P m-1 and P m-2 were not modified after that, we would have p m + p m-1 < p m-2 , contradicting the fact that h + 3 -m is an obstruction index. In particular, it follows that p m+1,tm = p m+2,tm-1 p m,tm-1 and that p m = p m,tm p m-1,tm -p m+1,tm = p m-1 -p m+1,tm .

Moreover, for m = m 0 , observe that p m = p m,tm = p m,tm-1 + p m+1,tm-1 . Applying Lemma 17 on the stacks S T and S tm-1 , we know that p m,tm-1 p m p m-2 -1 = r i -1 and that p p+1,tm-1 a pm,t m -1 p m,tm-1 α ∞ p m,tm-1 , which proves that p m (α ∞ + 1)p m,tm-1 (α ∞ + 1)p m+1,tm , i.e., p m0 (α ∞ + 1)p m0+1,tm 0 . Henceforth, we set κ = p m0+1,tm 0 .

In addition, for all m ∈ {m 0 + 1, . . . , m 0 + k}, observe that the sequence (p m+1,k) tm k T is non-decreasing. Indeed, when t m k, and therefore t i k for all i m, the run p m+1,k can only be modified by being merged with another run, thereby increasing in size. This proves that p m+2,tm+1 p m+1,tm+1-1 p m+1,tm . Hence, an immediate induction shows that p m+1,tm p m0+1,tm 0 = κ for all m ∈ {m 0 , . . . , m 0 + k}, and it follows that p m p m-1 -κ.

Overall, this implies that

Lemma 19 paves the way towards a proof by induction that α n α ∞ . Indeed, a first, immediate consequence of Lemma 19, is that, provided that α n α ∞ for all n r i -1, then the top-most part (R 1 , . . . , R i) may not contain more than α ∞ + 2 (and therefore no more XX:16 On the Worst-Case Complexity of TimSort than 6) consecutive obstruction indices. This suggests that the sequence r 1 , . . . , r i should grow "fast enough", which might then be used to prove that α ri α ∞ . We present below this inductive proof, which relies on the following objects. Definition 20. We call expansion function the function f : [0, 1] → R 0 defined by

In the following, we denote by θ the real number α ∞ /(2α ∞ -1). Let us first prove two technical results about the expansion function.

Proof. Since f is piecewise linear, it is enough to check the above inequalities when x is equal to 0, 1/2, θ or 1, which is immediate.

Lemma 22. For all real numbers x, y ∈ [0, 1] such that x(y + 1) 1, we have

Proof. We treat three cases separately, relying in each case on Lemma 21

Using Lemma 19 and the above results about the expansion function, we finally get the following result, of which Proposition 11 is an immediate consequence.

Lemma 23. Let S = (R 1 , . . . , R h) be a stable stack obtained during the main loop of Java's TimSort. For all integers i 2, we have r 1 + r 2 + . . . + r i-1 r i f (r i-1 /r i), where f is the expansion function. In particular, we have α n = β n α ∞ for all integers n 1.

Proof. Lemma 21 proves that 2x α ∞ x yf (x/y) whenever 0 < x y, and therefore the statement of Lemma 23 is immediate when i 3. Hence, we prove Lemma 23 for i 4, and proceed by induction on r i = n, thereby assuming that α n-1 exists.

Let x = r i-1 /r i and y = r i-2 /r i-1 . By Lemma 17, and since the stack S is stable, we know that r i-2 < r i-1 < r i , and therefore that x < 1 and y < 1. If i is not an obstruction index, then we have r i-2 + r i-1 r i , i.e., x(1 + y) 1 and, using Lemma 22, it follows that r 1 + . . .

N. Auger, V. Jugé, C. Nicaud, and C. Pivoteau

XX:17

On the contrary, if i is an obstruction index, let k be the smallest positive integer such that i -k is not an obstruction index. Since the stack S is stable, we have r 1 + r 2 < r 3 , which means that 3 is not an obstruction index, and therefore i -

Using Lemma 19, and since r i-k-1 < r i and α ri-1 f (1) = α ∞ by induction hypothesis, we have

The function g : t → α 2 ∞ + (4 + t)α ∞ -t 2 + 4t + 3 takes its maximal value, on the real line, at t = (α ∞ + 4)/2 ∈ (4, 5). Consequently, for all integers k, and since α ∞ 5, we have

Hence, regardless of whether i is an obstruction index or not, we have r 1 + . . . + r i-1 f (x)r i f (1)r i = α ∞ r i , which completes the proof.

A.1.2 Proving the first part of Theorem 15

We prove below the inequality of Theorem 15; proving that that the constant ∆ used in Theorem 15 is optimal will be the done in the next section.

In order to carry out this proof, we need to consider some integers of considerable interest. Let S = (R 1 , . . . , R h) be a stable stack of runs. We say that an integer i 1 is a growth index if i + 2 is not an obstruction index, and that i is a strong growth index if i is a growth index and if, in addition, i + 1 is an obstruction index. Note that h an h -1 are necessarily growth indices, since h + 1 and h + 2 are too large to be obstruction indices.

Our aim is now to prove inequalities of the form r i+j ∆ j r i , where 3 i i + j h. However, such inequalities do not hold in general, hence we restrict the scope of the integers i and i + j, which is the subject of the two following results.

Lemma 24. Let i and j be positive integers such that

Proof. For all n 0, let F n denote the n th Fibonacci number, defined by

Moreover, for all n 3, we have

XX:18 On the Worst-Case Complexity of TimSort

Lemma 25. Let i and j be positive integers such that 1 i j h. If i is a growth index and j is a strong growth index, then ∆ j-i r i r j .

Proof. Without loss of generality, let us assume that i < j and that there is no strong growth index k such that i < k < j. Indeed, if such an index k exists, then a simple induction completes the proof of Lemma 25.

Let be the largest integer such that j and is not an obstruction index. Lemmas 19 and 23 prove that (α ∞ + 2)r (α ∞ + 2 + -j)r j and that (α ∞ + 2)r -1 (α ∞ + 1 + -j)r j . The latter inequality proves that j -α ∞ + 1 = 5. By construction, we have i + 2

, and no integer k

Finally, the inequality of Theorem 15 is an immediate consequence of the following result.

Lemma 26. Let S = (R 1 , . . . , R h) be a stack obtained during the main loop of Java's TimSort. We have r h ∆ h-3 .

Proof. Let us first assume that S is stable. Then, r 1 1, and 1 is a growth index. If there is no obstruction index, then Lemma 24 proves that

Otherwise, let be the largest obstruction index. Then, -1 is a strong growth index, and Lemma 25 proves that r -1

Finally, if S is not stable, the result is immediate for h 3, hence we assume that h 4. The stack S was obtained by pushing a run onto a stable stack S of size at least h -1, then merging runs from S into the runs R 1 and R 2 . It follows that R h was already the largest run of S , and therefore that R h ∆ h-3 .

A.1.3 Proving the second part of Theorem 15

We finally focus on proving that the constant ∆ of Theorem 15 is optimal. The most important step towards this result consists in proving that α ∞ = lim n→∞ α n , with the real numbers α n introduced in Definition 16 and α ∞ = 2 + √ 7. Since it is already proved, in Lemma 23, that α n α ∞ for all n 1, it remains to prove that α ∞ lim inf n→∞ α n . We obtain this inequality by constructing explicitly, for k large enough, a stable sequence of runs (R 1 , . . . , R h) such that r h = k and r 2 + . . . + r h-1 ≈ α ∞ k. Hence, we focus on constructing sequences of runs.

In addition, let us consider the stacks of runs created by the main loop of Java's TimSort on a sequence of runs P 1 , . . . , P n . We say below that the sequence P 1 , . . . , P k produces a stack of runs S = (R 1 , . . . , R h) if the stack S is obtained after each of the runs P 1 , . . . , P n has been pushed; observe that the sequence P 1 , . . . , P n produces exactly one stable stack. We also say that a stack of runs is producible if it is produced by some sequence of runs.

Finally, in what follows, we are only concerned with run sizes. Hence, we abusively identify runs with their sizes. For instance, in Figure 5 We review now several results that will provide us with convenient and powerful ways of constructing producible stacks.

N. Auger, V. Jugé, C. Nicaud, and C. Pivoteau

XX:19

Lemma 27. Let S = (r 1 , . . . , r h) be a stable stack produced by a sequence of runs p 1 , . . . , p n . Assume that n is minimal among all sequences that produce S. Then, when producing S, no merging step #3 or #4 was performed.

Moreover, for all k n -1, after the run p k+1 has been pushed onto the stack, the elements coming from p k will never belong to the topmost run of the stack.

Proof. We begin by proving the first statement of Lemma 27 by induction on n, which is immediate for n = 1. Hence, we assume that n 2, and we further assume, for the sake of contradiction, that some merging step #3 or #4 took place. Let S = (r 1 , . . . , r) be the stable stack produced by the sequence p 1 , . . . , p n-1 . By construction, this sequence is as short as possible, and therefore no merging step #3 or #4 was used so far. Hence, consider the last merging step #3 or #4, which necessarily appears after p n was pushed onto the stack. Just after this step has occurred, we have a stack S = (r 1 , . . . , r m), with r i = r j whenever j 2 and i + m = j + , and the run r 1 was obtained by merging the runs p n , r 1 , . . . , r +1-m .

Let p 1 , . . . , p k be the runs that had been pushed onto the stack when the run r 2 = r m+2- was created. This creation was the result of either a push step or a merging step #2. In both cases, and until S is created, no merging step #3 or #4 ever involves any element placed within or below r 2 . Then, in the case of a push step, we have p k = r 2 , and therefore the sequence P #1 = (p 1 , . . . , p k , r 1) also produces the stack S . In the case of a merging step #2, it is the sequence P #2 = (p 1 , . . . , p k-1 , r) that also produces the stack S , where r is obtained by merging the runs p k , . . . , p n .

In both cases, since the sequences P #1 and P #2 produce S , they also produce S. It follows that k + 1 n (in the first case) or k n (in the second case). Moreover, the run r 2 was not modified between pushing the run p n and before obtaining the stack S , hence k n -1. This proves that k = n -1 and that the run r 2 was obtained through a push step, i.e. p n-1 = r 2 . But then, the run r 1 may contain elements of p n only, hence is not the result of a merging step #3 or #4: this disproves our assumption and proves the first statement of Lemma 27.

Finally, observe that push steps and merging steps #2 never allow a run in 2 nd -to-top position or below to go to the top position. This completes the proof of Lemma 27.

Lemma 28. Let S = (r 1 , . . . , r h) be a stable stack produced by a sequence of runs p 1 , . . . , p n . Assume that n is minimal among all sequences that produce S. There exist integers i 0 , . . . , i h such that 0 = i h < i h-1 < . . . < i 0 = n and such that, for every integer k h, (a) the runs p i k +1 , . . . , p i k-1 were merged into the run r k , and (b) i k-1 = i k + 1 if and only if k + 2 is not an obstruction index.

Proof. The existence (and uniqueness) of integers i 0 , . . . , i h satisfying (a) is straightforward, hence we focus on proving (b). That property is immediate if h = 1, hence we assume that 2 h n. Checking that the sequence r h , r h-1 , p i h-2 +1 , p i h-2 +2 , . . . , p n produces the stack S is immediate, and therefore i h-1 = 1 and i h-2 = 2, i.e., r h = p 1 and r h-1 = p 2 .

Consider now some integer k h -2, and let S be the stable stack produced by p 1 , . . . , p i k +1 . From that point on, the run p i k-1 +1 will never be the topmost run, and the runs p j with j i k-1 , which can never be merged together with the run p i k-1 +1 , will never be modified again. This proves that S = (p i k-1 +1 , r k+1 , . . . , r h).

Then, assume that i k-1 = i k + 1, and therefore that p i k-1 +1 = r k . Since S is stable, we know that r k + r k+1 < r k+2 , which means that k + 2 is not an obstruction index. Conversely, if k+2 is not an obstruction index, both sequences p 1 , . . . , p i k+1 +1 and p 1 , . . . , p i k-1 , r k , p i k+1 +1 produce the stack (p i k+1 +1 , r k , . . . , r h) and, since n is minimal, i k-1 = i k + 1.

Proof.

Let p 1 , . . . , p m and p 1 , . . . , p n be two sequences that respectively produce S and S . Let us further assume that m is minimal. First, consider some integer i h, and let a be the integer such that p 1 + . . . + p a = r i+1 + . . . + r h . It comes at once that the sequence p a+1 , . . . , p m produces the stack (r 1 , . . . , r i). Second, since m is minimal, Lemma 28 proves that p 1 = r h = r 2 and that p 2 = r h-1 = r 1 and, once again, the sequence p 1 , . . . , p n , p 3 , . . . , p 3 produces the stack (r 1 , . . . , r h , r 3 , . . . , r), which is also stable.

Lemma 31. For all positive integers k and such that k α , there exists a stack (r 1 , . . . , r h) such that r h = , k -3 r 1 + . . . + r h-1 k, and r 1 + . . .

Proof. First, if = 1, then α = 0, and therefore Lemma 31 is vacuously true. Hence, we assume that 2. Let Ω be the set of integers k for which some sequence of runs p 1 , . . . , p m produces a stack S = (r 1 , . . . , r h) such that r 1 + . . . + r h-1 = k and r h = . First, if k -1, the sequence , k produces the stack (, k), thereby proving that {1, 2, . . . , -1} ∈ Ω. Second, it follows from Lemma 30 that α ∈ Ω.

Finally, consider some integer k ∈ Ω such that k , and let p 1 , . . . , p m be a sequence of runs that produces a stack (r 1 , . . . , r h) such that r 1 + . . .

XX:22 On the Worst-Case Complexity of TimSort

Proof. Proposition 33 proves that there exists a positive real number ν > 1 + α ∞ /2 and a positive integer L 256 such that α ν for all L. Then, we set N = (α + 2)L + 6. Consider now some integer n N , and let k = (n -6)/(α + 2) . By construction, we have k L, and therefore α k ν.

Let p 1 , . . . , p m be a sequence of runs that produces a stack (r 1 , . . . , r h) such that r h = k and r 1 + . . . + r h-1 = kα k . Lemma 23 proves that α k f (r h-1 /k), where f is the expansion function of Definition 20. Since

Assuming that m is minimal, Lemma 28 proves that p 1 = r h = k and that p 2 = r h-1 . Now, let k = k/2 + 1, and let be the largest integer such that 2 +4 k . Since k L 256, we know that k 128, and therefore that 3. Observe also that, since θ = α ∞ /(2α ∞ -1) > 11/20 and k 20, we have r m-1 > θk k/2 + k/20 k . We build a stack of runs p 2 , k, n -4, n by distinguishing several cases, according to the value of k /2 .

If 16 × 2 k 24 × 2 + 1, let x be the smallest integer such that x 2 and k < 2(9 × 2 + x + 1). Since k 24 × 2 + 1, we know that x 3 × 2 , and that x = 2 if k 18 × 2 + 1. Therefore, the sequence of runs (n, n -4, 3, 2, 4, 6, 10, 3

Recalling that k > p 2 > k , it follows that pushing additional runs of sizes k -k and p 2 produces the stack (p 2 , k, n -4, n).

If 24 × 2 + 2 k < 32 × 2 , let x be the smallest integer such that x 2 and k < 2(12 × 2 + x + 1). Since k < 32 × 2 , we know that x + 1 2 +2 . Therefore, the sequence of runs n, n -4, 3, 2, 4, 8, 16, 32, . . . , 2 +2 , 2 +2 + x produces the stack (2 +2 + x, 2 +3 + 1, n -4, n). Moreover, the inequalities

Consequently, pushing an additional run of size k -

Recalling once again that k > p 2 > k , it follows that pushing additional runs of sizes k -k and p 2 produces the stack (p 2 , k, n -4, n) in this case too.

Finally, after having obtained the stack (p 2 , k, n -4, n), let us add the sequence of runs p 3 , . . . , p m , k + 1. Since k(1 + α k) + (k + 1) k(α + 2) + 1 n -6 + 1 < n -4, adding these runs produces the stack (k + 1, k + kα k , n -4, n), which completes the proof.

Lemma 35. For all integers n

N and k = (n -6)/(α + 2) there exists a stack Proof. Consider some integer n N , and let k = (n -6)/(α ∞ + 2) . By Lemma 34, there exists a stack (k + 1, k + kα k , n -4, n).

Lemma 32 proves then that kα k (k + 1)α k+1 . Therefore, Lemma 31 proves that there exists a stack (r 1 , . . . , r h) such that r h = k + 1 and r 1 + . . . + r h-1 = k(α k -1) -4 -x for some integer x ∈ {0, 1, 2, 3}. By construction, we have r 1 < r 2 < . . . < r h , hence r h-1 + r h < 2(k + 1) < k(1+α k). Consequently, there also exists a stack (r 1 , r 2 , . . . , r h-1 , k+1, k(1+α k), n-4, n). Then, k+2+r 1 +. . .+r h k+2+k(α k -1)-4+k+1 = k(1+α k)-1 < k(1+α k), and therefore pushing an additional run of size k + 2 produces a stack (k + 2,

Once again, there exists a stack (r 1 , . . . , r h) such that r h = k + 2 and r 1 + . . . + r h -1 = k(α k -2) -9 -x -y for some integer y ∈ {0, 1, 2, 3}. By construction, we have r 1 < r 2 < . . . < r h , hence r h -1 + r h < 2(k + 2) < kα k -3 -x, and therefore there exists a stack (r 1 , r 2 , . . . , r h -1 , k+2, kα k -3-x, k(1+α k), n-4, n). Then, k+3+r 1 +. . .+r h k+3+ k(α k -2)-9-x-y +k+2 = kα k -4-x-y < kα k -3-x, and therefore pushing an additional run of size k+3 produces a stack (k+3, k(α k -1)-7-x-y, kα k -3-x, k(1+α k), n-4, n).

We introduce now a variant of the real numbers α n and β n , adapted to our construction. Definition 36. Let n be a positive integer. We denote by γ n the smallest real number m such that, in every stack S = (r 1 , . . . , r h) such that h 2, r h = n and r h-1 = n -4, we have r 1 + . . . + r h-1 m × n. If no such real number exists, we simply set γ n = +∞.

Lemma 37. Let γ = lim inf γ n . We have γ (αγ + 9α -γ + 3)/(2α + 4).

Proof. Let ε be a positive real number, and let N ε N be an integer such that α α -ε and γ γ -ε for all (N -6)/(α ∞ + 2) . Since α > 3, and up to increasing the value of N ε , we may further assume that (α -3) 30 for every such integers .

Then, consider some integer n N ε , and let k = (n -6)/(α + 2) . By Lemma 35, there exists a stack (k + 3, k(α k -1) -7 -x -y, kα k -3 -x, k(1 + α k), n -4, n) for some integers x, y ∈ {0, 1, 2, 3}. Let also k = (k(α k -1) -7 -x -y)/2 . Since k(α k -3) 30, it follows that 2(k -4) k(α k -1) -7 -x -y -2 -8 k(α k -1) -23 2k + 7 > 2(k + 3). Similarly, and since α k α ∞ < 5, we have k k(α k -1)/2 < 2k < 2(k + 3). Consequently, pushing additional runs of sizes k -(k + 3) and k -4 produces the stack

Finally, by definition of γ n , there exists a sequence of runs p 1 , . . . , p m that produces a stack (r 1 , . . . , r h) such that p

Hence, pushing the runs p 3 , . . . , p m produces the stack (r 1 , . . .

Then, recall that that γ α, that 3 < α α ∞ < 5 and that 0 x, y 3. It follows that k

XX:24 On the Worst-Case Complexity of TimSort

Hence, by choosing n arbitrarily large, then ε arbitrarily small, Lemma 37 follows.

From Lemma 37, we derive the asymptotic evaluation of the sequence (α n), as announced at the beginning of Section A.1.3.

Proof. Lemma 37 states that γ (αγ + 9α -γ + 3)/(2α + 4) or, equivalently, that γ (9α + 3)/(α + 5). Since α γ, it follows that α (9α + 3)/(α + 5), i.e., that α 2 + √ 7 or that α 2 -√ 7 < 0. The latter case is obviously impossible, hence α = α ∞ = 2 + √ 7.

Finally, we may prove that the constant ∆ of Theorem 15 is optimal, as a consequence of the following result.

Lemma 39. For all real numbers Λ > ∆, there exists a positive real number K Λ such that, for all h 1, there is a stack (r 1 , . . . , r h) for which r h K Λ Λ h . Proof. Let ε be an arbitrarily small real number such that 0 < ε < Λ/∆ -1, and let N ε be a large enough integer such that α α ∞ -ε and for all (N -6)/(α ∞ + 2) . Then, consider some integer n 0 N ε , and let k = (n -6)/(α ∞ + 2) . As shown in the proof of Lemma 37, there are integers x, y ∈ {0, 1, 2, 3}, and n 1 = (k(α k -1) -7 -x -y)/2 , such that there exists a stack (n 1 -4, n 1 , k(α k -1) -7 -x -y, kα k -3 -x, k(1 + α k), n 0 -4, n 0). Since α ∞ 5, we have then

Then, we repeat this construction, but replacing n 0 by n 1 , thereby constructing a new integer n 2 , then replacing n 0 by n 2 , and so on, until we construct an integer n such that n < N ε . Doing so, we built a stack (n -4, n , . . . , n 0 -4, n 0) of size 5 + 2, and we also have Λ 5 N ε Λ 5 n Λ 5(-1) n -1 . . . n 0 . Choosing K Λ = N ε completes the proof.

Proof of Theorem 15. We focus here on proving the second part of Theorem 15. Consider a real constant ∆ > ∆, and let Λ = (∆ + ∆)/2. If h is large enough, then hK Λ Λ h (∆) h-4 . Then, let (r 1 , . . . , r h) be a stack such that r h K Λ Λ h , and let n be some integer such that (∆) h-4 n < (∆) h-3 , if any. Considering the stack (r 1 , . . . , r h + m), where m = n -(r 1 + r 2 + . . . + r h), we deduce that h max h > 3 + log ∆ (n). Therefore, if n is large enough, we complete the proof by choosing h = log ∆ (n) + 3.

N. Auger