
HAL Id: hal-01798381
https://hal.science/hal-01798381v1

Submitted on 23 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Worst-Case Complexity of TimSort
Nicolas Auger, Vincent Jugé, Cyril Nicaud, Carine Pivoteau

To cite this version:
Nicolas Auger, Vincent Jugé, Cyril Nicaud, Carine Pivoteau. On the Worst-Case Complexity of
TimSort. 26th Annual European Symposium on Algorithms (ESA 2018), Aug 2018, Helsinki, Finland.
pp.4:1–4:13, �10.4230/LIPIcs.ESA.2018.4�. �hal-01798381�

https://hal.science/hal-01798381v1
https://hal.archives-ouvertes.fr

On the Worst-Case Complexity of TimSort
Nicolas Auger
Université Paris-Est, LIGM (UMR 8049), UPEM, F77454 Marne-la-Vallée, France

Vincent Jugé
Université Paris-Est, LIGM (UMR 8049), UPEM, F77454 Marne-la-Vallée, France

Cyril Nicaud
Université Paris-Est, LIGM (UMR 8049), UPEM, F77454 Marne-la-Vallée, France

Carine Pivoteau
Université Paris-Est, LIGM (UMR 8049), UPEM, F77454 Marne-la-Vallée, France

Abstract
TimSort is an intriguing sorting algorithm designed in 2002 for Python, whose worst-case com-
plexity was announced, but not proved until our recent preprint. In fact, there are two slightly
different versions of TimSort that are currently implemented in Python and in Java respec-
tively. We propose a pedagogical and insightful proof that the Python version runs in O(n logn).
The approach we use in the analysis also applies to the Java version, although not without very
involved technical details. As a byproduct of our study, we uncover a bug in the Java implemen-
tation that can cause the sorting method to fail during the execution. We also give a proof that
Python’s TimSort running time is in O(n+n log ρ), where ρ is the number of runs (i.e. maximal
monotonic sequences), which is quite a natural parameter here and part of the explanation for
the good behavior of TimSort on partially sorted inputs.

2012 ACM Subject Classification Theory of computation → Sorting and searching

Keywords and phrases Sorting algorithms, Merge sorting algorithms, TimSort, Analysis of al-
gorithms

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

TimSort is a sorting algorithm designed in 2002 by Tim Peters [8], for use in the Python
programming language. It was thereafter implemented in other well-known programming
languages such as Java. The algorithm includes many implementation optimizations, a
few heuristics and some refined tuning, but its high-level principle is rather simple: The
sequence S to be sorted is first decomposed greedily into monotonic runs (i.e. nonincreasing
or nondecreasing subsequences of S as depicted on Figure 1), which are then merged pairwise
according to some specific rules.

S = (12, 10, 7, 5︸ ︷︷ ︸
first run

, 7, 10, 14, 25, 36︸ ︷︷ ︸
second run

, 3, 5, 11, 14, 15, 21, 22︸ ︷︷ ︸
third run

, 20, 15, 10, 8, 5, 1︸ ︷︷ ︸
fourth run

)

Figure 1 A sequence and its run decomposition computed by TimSort: for each run, the first
two elements determine if it is increasing or decreasing, then it continues with the maximum number
of consecutive elements that preserves the monotonicity.

The idea of starting with a decomposition into runs is not new, and already appears
in Knuth’s NaturalMergeSort [6], where increasing runs are sorted using the same
mechanism as in MergeSort. Other merging strategies combined with decomposition

© Nicolas Auger, Vincent Jugé, Cyril Nicaud, and Carine Pivoteau;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 On the Worst-Case Complexity of TimSort

into runs appear in the literature, such as the MinimalSort of [9] (see also [2] for other
considerations on the same topic). All of them have nice properties: they run in O(n logn)
and even O(n+ n log ρ), where ρ is the number of runs, which is optimal in the model of
sorting by comparisons [7], using the classical counting argument for lower bounds. And
yet, among all these merge-based algorithms, TimSort was favored in several very popular
programming languages, which suggests that it performs quite well in practice.

TimSort running time was implicitly assumed to be O(n logn), but our unpublished
preprint [1] contains, to our knowledge, the first proof of it. This was more than ten years after
TimSort started being used instead of QuickSort in several major programming languages.
The growing popularity of this algorithm invites for a careful theoretical investigation. In
the present paper, we make a thorough analysis which provides a better understanding of
the inherent qualities of the merging strategy of TimSort. Indeed, it reveals that, even
without its refined heuristics,1 this is an effective sorting algorithm, computing and merging
runs on the fly, using only local properties to make its decisions.

As the analysis we made in [1] was a bit involved and clumsy, we first propose in Section 3
a new pedagogical and self-contained exposition that TimSort runs in O(n logn) time,
which we want both clear and insightful. Using the same approach, we also establish in
Section 4 that it runs in O(n+ n log ρ), a question left open in our preprint and also in a
recent work2 on TimSort [4]. Of course, the first result follows from the second, but since
we believe that each one is interesting on its own, we devote one section to each of them.
Besides, the second result provides with an explanation to why TimSort is a very good
sorting algorithm, worth considering in most situations where in-place sorting is not needed.

To introduce our last contribution, we need to look into the evolution of the algorithm:
there are actually not one, but two main versions of TimSort. The first version of the
algorithm contained a flaw, which was spotted in [5]: while the input was correctly sorted, the
algorithm did not behave as announced (because of a broken invariant). This was discovered
by De Gouw and his co-authors while trying to prove formally the correctness of TimSort.
They proposed a simple way to patch the algorithm, which was quickly adopted in Python,
leading to what we consider to be the real TimSort. This is the one we analyze in Sections 3
and 4. On the contrary, Java developers chose to stick with the first version of TimSort,
and adjusted some tuning values (which depend on the broken invariant; this is explained in
Sections 2 and 5) to prevent the bug exposed by [5]. Motivated by its use in Java, we explain
in Section 5 how, at the expense of very complicated technical details, the elegant proofs of
the Python version can be twisted to prove the same results for this older version. While
working on this analysis, we discovered yet another error in the correction made in Java.
Thus, we compute yet another patch, even if we strongly agree that the algorithm proposed
and formally proved in [5] (the one currently implemented in Python) is a better option.

2 TimSort core algorithm

The idea of TimSort is to design a merge sort that can exploit the possible “non randomness”
of the data, without having to detect it beforehand and without damaging the performances
on random-looking data. This follows the ideas of adaptive sorting (see [7] for a survey on
taking presortedness into account when designing and analyzing sorting algorithms).

1 These heuristics are useful in practice, but do not improve the worst-case complexity of the algorithm.
2 In [4], the authors refined the analysis of [1] to obtain very precise bounds for the complexity of TimSort

and of similar algorithms.

N. Auger, V. Jugé, C. Nicaud, and C. Pivoteau XX:3

Algorithm 1: TimSort (Python 3.6.5)
Input : A sequence S to sort
Result: The sequence S is sorted into a single run, which remains on the stack.
Note: The function merge_force_collapse repeatedly pops the last two runs on the

stack R, merges them and pushes the resulting run back on the stack.
1 runs← a run decomposition of S

2 R← an empty stack
3 while runs 6= ∅ do // main loop of TimSort
4 remove a run r from runs and push r onto R
5 merge_collapse(R)
6 if height(R) 6= 1 then // the height of R is its number of runs
7 merge_force_collapse(R)

The first feature of TimSort is to work on the natural decomposition of the input
sequence into maximal runs. In order to get larger subsequences, TimSort allows both
nondecreasing and decreasing runs, unlike most merge sort algorithms.

Then, the merging strategy of TimSort (Algorithm 1) is quite simple yet very efficient.
The runs are considered in the order given by the run decomposition and successively pushed
onto a stack. If some conditions on the size of the topmost runs of the stack are not satisfied
after a new run has been pushed, this can trigger a series of merges between pairs of runs at
the top or right under. And at the end, when all the runs in the initial decomposition have
been pushed, the last operation is to merge the remaining runs two by two, starting at the
top of the stack, to get a sorted sequence. The conditions on the stack and the merging rules
are implemented in the subroutine called merge_collapse detailed in Algorithm 2. This is
what we consider to be TimSort core mechanism and this is the main focus of our analysis.

Algorithm 2: The merge_collapse procedure (Python 3.6.5)
Input : A stack of runs R
Result: The invariant of Equations (1) and (2) is established.
Note: The runs on the stack are denoted by R[1] . . .R[height(R)], from top to bottom. The

length of run R[i] is denoted by ri. The blue highlight indicates that the condition was
not present in the original version of TimSort (this will be discussed in section 5).

1 while height(R) > 1 do
2 n← height(R)− 2
3 if (n > 0 and r3 6 r2 + r1) or (n > 1 and r4 6 r3 + r2) then
4 if r2 < r1 then
5 merge runs R[2] and R[3] on the stack
6 else merge runs R[1] and R[2] on the stack
7 else if r2 6 r1 then
8 merge runs R[1] and R[2] on the stack
9 else break

Another strength of TimSort is the use of many effective heuristics to save time, such as
ensuring that the initial runs are not to small thanks to an insertion sort or using a special
dichotomy called “gallop” to optimize the merges. However, this does not interfere with our
analysis and we will not discuss this matter any further.

XX:4 On the Worst-Case Complexity of TimSort

24

#1 18
24

#1 50
18
24

#1

50
42

#2

92

#3 28
92

#1 20
28
92

#1 6
20
28
92

#1 4
6
20
28
92

#1 8
4
6
20
28
92

#1

8
10
20
28
92

#2

18
20
28
92

#5

38
28
92

#4

66
92

#3 1
66
92

#1

merge_collapse merge_collapse

Figure 2 The successive states of the stack R (the values are the lengths of the runs) during an
execution of the main loop of TimSort (Algorithm 1), with the lengths of the runs in runs being
(24, 18, 50, 28, 20, 6, 4, 8, 1). The label #1 indicates that a run has just been pushed onto the stack.
The other labels refer to the different merges cases of merge_collapse as translated in Algorithm 3.

Let us have a closer look at Algorithm 2 which is a pseudo-code transcription of the
merge_collapse procedure found in the latest version of Python (3.6.5). To illustrate its
mechanism, an example of execution of the main loop of TimSort (lines 3-5 of Algorithm 1)
is given in Figure 2. As stated in its note [8], Tim Peter’s idea was that:

“The thrust of these rules when they trigger merging is to balance the run lengths
as closely as possible, while keeping a low bound on the number of runs we have to
remember.”

To achieve this, the merging conditions of merge_collapse are designed to ensure that the
following invariant3 is true at the end of the procedure:

ri+2 > ri+1 + ri, (1)
ri+1 > ri. (2)

This means that the runs lengths ri on the stack grow at least as fast as the Fibonacci numbers
and, therefore, that the height of the stack stays logarithmic (see Lemma 6, section 3).

Note that the bound on the height of the stack is not enough to justify the O(n logn)
running time of TimSort. Indeed, without the smart strategy used to merge the runs “on
the fly”, it is easy to build an example using a stack containing at most two runs and that
gives a Θ(n2) complexity: just assume that all runs have size two, push them one by one
onto a stack and perform a merge each time there are two runs in the stack.

We are now ready to proceed with the analysis of TimSort complexity. As mentioned
earlier, Algorithm 2 does not correspond to the first implementation of TimSort in Python,
nor to the current one in Java, but to the latest Python version. The original version will be
discussed in details later, in Section 5.

3 TimSort runs in O(n log n)

At the first release of TimSort [8], a time complexity of O(n logn) was announced with no
element of proof given. It seemed to remain unproved until our recent preprint [1], where we
provide a confirmation of this fact, using a proof which is not difficult but a bit tedious. This

3 Actually, in [8], the invariant is only stated for the 3 topmost runs of the stack.

N. Auger, V. Jugé, C. Nicaud, and C. Pivoteau XX:5

result was refined later in [4], where the authors provide lower and upper bounds, including
explicit multiplicative constants, for different merge sort algorithms.

Our main concern is to provide an insightful proof of the complexity of TimSort, in
order to highlight how well designed is the strategy used to choose the order in which the
merges are performed. The present section is more detailed than the following ones as we
want it to be self-contained once TimSort has been translated into Algorithm 3 (see below).

Algorithm 3: TimSort: translation of Algorithm 1 and Algorithm 2
Input : A sequence to S to sort
Result: The sequence S is sorted into a single run, which remains on the stack.
Note: At any time, we denote the height of the stack R by h and its ith top-most run (for

1 6 i 6 h) by Ri. The size of this run is denoted by ri.

1 runs← the run decomposition of S

2 R← an empty stack
3 while runs 6= ∅ do // main loop of TimSort
4 remove a run r from runs and push r onto R // #1
5 while true do
6 if h > 3 and r1 > r3 then merge the runs R2 and R3 // #2
7 else if h > 2 and r1 > r2 then merge the runs R1 and R2 // #3
8 else if h > 3 and r1 + r2 > r3 then merge the runs R1 and R2 // #4
9 else if h > 4 and r2 + r3 > r4 then merge the runs R1 and R2 // #5

10 else break

11 while h 6= 1 do merge the runs R1 and R2

As our analysis is about to demonstrate, in terms of worst-case complexity, the good
performances of TimSort do not rely on the way merges are performed. Thus we choose
to ignore their many optimizations and consider that merging two runs of lengths r and r′
requires both r+r′ element moves and r+r′ element comparisons. Therefore, to quantify the
running time of TimSort, we only take into account the number of comparisons performed.

I Theorem 1. The running time of TimSort is O(n logn).

The first step consists in rewriting Algorithm 1 and Algorithm 2 in a form that is easier
to deal with. This is done in Algorithm 3.

I Claim 2. For any input, Algorithms 1 and 3 perform the same comparisons.

Proof. The only difference is that Algorithm 2 was changed into the while loop of lines 5
to 10 in Algorithm 3. Observing the different cases, it is straightforward to verify that the
same merges, i.e. merges involving the same runs, take place in the same order in both
algorithms. J

I Remark 3. Proving Theorem 1 only requires analyzing the main loop of the algorithm
(lines 3 to 10). Indeed, computing the run decomposition (line 1) can be done on the fly, by
a greedy algorithm, in time linear in n, and the final loop (line 11) might be performed in
the main loop by adding a fictitious run of length n+ 1 at the end of the decomposition.

In the sequel, for the sake of readability, we also omit checking that h is large enough to
trigger the cases #2 to #5. Once again, such omissions are benign, since adding fictitious runs
of respective lengths 8n, 4n, 2n and n (in this order) at the beginning of the decomposition
would ensure that h > 4 during the whole loop.

XX:6 On the Worst-Case Complexity of TimSort

We can now proceed with the core of our proof, which is the analysis of the main loop. We
used the framework of amortized complexity of algorithms: we credit tokens to the elements
of the input array, which are spent for comparisons. One token is paid for every comparison
performed by the algorithm and each element is given O(logn) tokens. Since the balance is
always non-negative, we can conclude that at most O(n logn) comparisons are performed, in
total, during the main loop.

Elements of the input array are easily identified by their starting position in the array,
so we consider them as well-defined and distinct entities (even if they have the same value).
The height of an element is the number of runs that are below it in the stack: the elements
belonging to the run Ri in the stack (R1, . . . , Rh) have height h − i. To simplify the
presentation, we also distinguish two kinds of tokens, the ♦-tokens and the ♥-tokens, which
can both be used to pay for comparisons.

Two ♦-tokens and one ♥-token are credited to an element when it enters the stack or
when its height decreases: all the elements of R1 are credited when R1 and R2 are merged,
and all the elements of R1 and R2 are credited when R2 and R3 are merged.

Tokens are spent to pay for comparisons, depending on the case triggered:
Case #2: every element of R1 and R2 pays 1 ♦. This is enough to cover the cost of
merging R2 and R3, since r2 + r3 6 r2 + r1, as r3 6 r1 in this case.
Case #3: every element of R1 pays 2 ♦. In this case r1 > r2 and the cost is r1 + r2 6 2r1.
Cases #4 and #5: every element of R1 pays 1 ♦ and every element of R2 pays 1 ♥. The
cost r1 + r2 is exactly the number of tokens spent.

I Lemma 4. The balances of ♦-tokens and ♥-tokens of each element remain non-negative
throughout the main loop of TimSort.

Proof. In all four cases #2 to #5, because the height of the elements of R1 and possibly
the height of those of R2 decrease, the number of credited ♦-tokens after the merge is at
least the number of ♦-tokens spent. The ♥-tokens are spent in Cases #4 and #5 only:
every element of R2 pays one ♥-token, and then belongs to the topmost run R1 of the new
stack S = (R1, . . . , Rh−1) obtained after merging R1 and R2. Since Ri = Ri+1 for i > 2,
the condition of Case #4 implies that r1 > r2 and the condition of Case #5 implies that
r1 + r2 > r3: in both cases, the next modification of the stack S is another merge. This
merge decreases the height of R1, and therefore decreases the height of the elements of R2,
who will regain one ♥-token without loosing any, since the topmost run of the stack never
pays with ♥-tokens. This proves that, whenever an element pay one ♥-token, the next
modification is another merge during which it regains its ♥-token. This concludes the proof
by direct induction. J

Let hmax be the maximum number of runs in the stack during the whole execution of the
algorithm. Due to the crediting strategy, each element is given at most 2hmax ♦-tokens and
at most hmax ♥-tokens in total. So we only need to prove that hmax is O(logn) to complete
the proof that the main loop running time is in O(n logn). This fact is a consequence of
TimSort’s invariant established with a formal proof in the theorem prover KeY [3, 5]: at
the end of any iteration of the main loop, we have ri + ri+1 < ri+2, for every i > 1 such that
the run Ri+2 exists.

For completeness, and because the formal proof is not meant to be read by humans, we
sketch a “classical” proof of the invariant. It is not exactly the same statement as in [5], since
our invariant holds at any time during the main loop: in particular we cannot say anything
about R1, which can have any size when a run has just been added. For technical reasons,
and because it will be useful later on, we establish four invariants in our statement.

N. Auger, V. Jugé, C. Nicaud, and C. Pivoteau XX:7

I Lemma 5. At any step during the main loop of TimSort, we have (i) ri + ri+1 < ri+2
for i ∈ {3, . . . , h− 2}, (ii) r2 < 3r3, (iii) r3 < r4 and (iv) r2 < r3 + r4.

Proof. The proof is done by induction. It consists in verifying that, if all four invariants
hold at some point, then they still hold when an update of the stack occurs in one of the five
situations labeled #1 to #5 in the algorithm. This can be done by a straightforward case
analysis. We denote by S = (R1, . . . , Rh) the new state of the stack after the update:

If Case #1 just occurred, a new run R1 was pushed. This implies that none of the
conditions of Cases #2 to #5 hold in S, otherwise merges would have continued. In
particular, we have r1 < r2 < r3 and r2 +r3 < r4. As ri = ri−1 for i > 2, and invariant (i)
holds for S, we have r2 < r3 < r4, and thus invariants (i) to (iv) hold for S.
If one of the Cases #2 to #5 just occurred, we have r2 = r2 + r3 (in Case #2) or
r2 = r3 (in Cases #3 to #5). This implies that r2 6 r2 + r3. As ri = ri+1 for i > 3,
and invariants (i) to (iv) hold for S, we have r2 6 r2 + r3 < r3 + r4 + r3 < 3r4 = 3r3,
r3 = r4 6 r3 + r4 < r5 = r4, and r2 6 r2 + r3 < r3 + r4 + r3 < r3 + r5 < r4 + r5 = r3 + r4.
Thus, invariants (i) to (iv) hold for S.

J

At this point, invariant (i) can be used to bound hmax from above.

I Lemma 6. At any time during the main loop of TimSort, if the stack is (R1, . . . , Rh)
then we have r2/3 < r3 < r4 < . . . < rh and, for all i > j > 3, we have ri >

√
2i−j−1

rj. As
a consequence, the number of runs in the stack is always O(logn).

Proof. By Lemma 5, we have ri + ri+1 < ri+2 for 3 6 i 6 h− 2. Thus ri+2 − ri+1 > ri > 0
and the sequence is increasing from index 4: r4 < r5 < r6 < . . . < rh. The increasing
sequence of the statement is then obtained using the invariants (ii) and (iii). Hence, for
j > 3, we have rj+2 > 2rj , from which one can get that ri >

√
2i−j−1

rj . In particular, if
h > 3 then rh >

√
2h−4

r3, which yields that the number of runs is O(logn) as rh 6 n. J

Collecting all the above results is enough to prove Theorem 1. First, as mentioned in
Remark 3, computing the run decomposition can be done in linear time. Then, we proved that
the main loop requires O(nhmax) comparisons, by bounding from above the total number of
tokens credited, and that hmax = O(logn), by showing that the run sizes grow at exponential
speed. Finally, the final merges of line 11 might be taken care of by Remark 3, but they can
also be dealt with directly:4 if we start these merges with a stack S = (R1, . . . , Rh), then
every element of the run Ri takes part in h+ 1− i merges at most, which proves that the
overall cost of line 11 is O(n logn). This concludes the proof of the theorem.

4 Refined analysis parametrized with the number of runs

A widely spread idea to explain why certain sorting algorithms perform better in practice
than expected is that they are able to exploit presortedness [7]. This can be quantified in
many ways, the number of runs in the input sequence being one. Since this is the most natural
parameter, we now consider the complexity of TimSort, according to it. We establish the
following result, which was left open in [1, 4]:

I Theorem 7. The complexity of TimSort on inputs of size n with ρ runs is O(n+n log ρ).

4 Relying on Remark 3 will be necessary only in the next section, where we need more precise computations.

XX:8 On the Worst-Case Complexity of TimSort

If ρ = 1, then no merge is to be performed, and the algorithm clearly runs in time linear
in n. Hence, we assume below that ρ > 2, and we show that the complexity of TimSort
is O(n log ρ) in this case.

To obtain the O(n log ρ) complexity, we need to distinguish several situations. First,
consider the sequence of Cases #1 to #5 triggered during the execution of the main loop
of TimSort. It can be seen as a word on the alphabet {#1, . . . ,#5} that starts with #1,
which completely encodes the execution of the algorithm. We split this word at every #1, so
that each piece corresponds to an iteration of the main loop. Those pieces are in turn split
into two parts, at the first occurrence of a symbol #3, #4 or #5. The first half is called a
starting sequence and is made of a #1 followed by the maximal number of #2. The second
half is called an ending sequence, it starts with #3, #4 or #5 (or is empty) and it contains
no occurrence of #1 (see Figure 3 for an example).

#1 #2 #2 #2︸ ︷︷ ︸
starting seq.

#3 #2 #5 #2 #4 #2︸ ︷︷ ︸
ending seq.

#1 #2 #2 #2 #2 #2︸ ︷︷ ︸
starting seq.

#5 #2 #3 #3 #4 #2︸ ︷︷ ︸
ending seq.

Figure 3 The decomposition of the encoding of an execution into starting and ending sequences.

We treat starting and ending sequences separately in our analysis. The following lemma
points out one of the main reasons TimSort is so efficient regarding the number of runs.

I Lemma 8. The total number of comparisons performed during starting sequences is O(n).

Proof. More precisely, for a stack S = (R1, . . . , Rh), we prove that a starting sequence
beginning with a push of a run R of size r onto S uses at most γr comparisons in total,
where γ is the real constant 3

√
2
∑
i>0 i
√

2−i. After the push, the stack is S = (R,R1, . . . , Rh)
and, if the starting sequence contains k > 1 letters, i.e. k − 1 occurrences of #2, then this
sequence consists in merging the runs R1, R2, . . . , Rk. Since no merge is performed if k = 1,
we assume below that k > 2.

Looking closely at these runs, we compute that they require a total of

C = (k − 1)r1 + (k − 1)r2 + (k − 2)r3 + . . .+ rk 6
k∑
i=1

(k + 1− i)ri

comparisons. The last occurrence of Case #2 ensures that r > rk, hence applying Lemma 6
to the stack S shows that r > 1

3
√

2k−iri for all i = 1, . . . , k. It follows that

C

r
6 3

k∑
i=2

k + 1− i
√

2k−i
< γ.

This concludes the proof, since each run is the beginning of exactly one starting sequence,
and the sum of their lengths is n. J

We can now focus on the cost of ending sequences. Because the inner loop (line 5) of
TimSort has already begun, during the corresponding starting sequence, we have some
information on the length of the topmost run.

I Lemma 9. At any time during an ending sequence, including just before it starts and just
after it ends, we have r1 < 3r3.

N. Auger, V. Jugé, C. Nicaud, and C. Pivoteau XX:9

Proof. The proof is done by induction. At the beginning of the ending sequence, the condition
of #2 cannot be true, so r1 < r3 < 3r3. Before any merge during an ending sequence, if the
stack is S = (R1, . . . Rh), then we denote by S = (R1, . . . , Rh−1) the stack after that merge.
If the invariant holds before the merge, and since r2 < r3 + r4 and r3 < r4 by Lemma 5, we
have r1 = r1 < 3r3 < 3r4 = 3r3 in Case #2, and r1 = r1 + r2 < r3 + r3 + r4 < 3r4 = 3r3 in
Cases #3 to #5 (because r1 < r3), concluding the proof. J

In order to obtain a suitable upper bound for the merges that happen during ending
sequences, we refine the analysis of the previous section. We still use ♦-tokens and ♥-tokens
to pay for comparisons when the stack is not too high, and we use different tokens otherwise:

at the beginning of the algorithm, a common pool is credited with 24n ♣-tokens,
all elements are still credited two ♦-tokens and one ♥-token when entering the stack,
no token (of any kind) is credited nor spent during merges of starting sequences (the cost
of such sequences is already taken care of by Lemma 9),
if the stack has height less than κ = d2 log2 ρe, elements are credited ♦-tokens and
♥-tokens and merges (of ending sequences) are paid in the same fashion as in Section 3,
if the stack has height at least κ, then merges (of ending sequences) are paid using
♣-tokens, and elements are not credited any token when a merge decreases their height.

By the analysis of the previous section, at most O(nκ) comparisons are paid with ♦-tokens
and ♥-tokens. Hence, using Remark 3, we complete the proof of Theorem 7 by checking that
we initially credited enough ♣-tokens. This is a direct consequence of the following lemma,
since at most ρ merges are paid by ♣-tokens.

I Lemma 10. A merge performed during an ending sequence with a stack containing at
least κ runs costs at most 24n/ρ comparisons.

Proof. Lemmas 5 and 9 prove that r2 < 3r3 and r1 < 3r3 . Since a merging step either
merges R1 and R2, or R2 and R3, it requires at most 6r3 comparisons. By Lemma 6, we
have rh >

√
2h−4

r3, whence 6r3 6 24
√

2−hrh 6 24n
√

2−κ 6 24n/ρ. J

5 About the Java version of TimSort

Algorithm 2 (and therefore Algorithm 3) does not correspond to the original TimSort.
Before release 3.4.4 of Python, the second part of the condition (in blue) in the test at line 3

24

#1 18
24

#1 50
18
24

#1

50
42

#2

92

#3 28
92

#1 20
28
92

#1 6
20
28
92

#1 4
6
20
28
92

#1 8
4
6
20
28
92

#1

8
10
20
28
92

#2 1
8
10
20
28
92

#1

Figure 4 Execution of the main loop of Java’s TimSort (Algorithm 3, without merge case #5,
at line 9), with the lengths of the runs in runs being (24, 18, 50, 28, 20, 6, 4, 8, 1). When the second
to last run (of length 8) is pushed onto the stack, the while loop of line 5 stops after only one merge,
breaking the invariant (in red), which was not the case with the same example using the Python
version of TimSort (see Figure 2).

XX:10 On the Worst-Case Complexity of TimSort

of merge_collapse (and therefore merge case #5 of Algorithm 3) was missing. This version
of the algorithm worked fine, meaning that it did actually sort arrays, but the invariant
given by Equation (1) did not hold. Figure 4 illustrates the difference caused by the missing
condition when running Algorithm 3 on the same input as in Figure 2.

This was discovered by de Gouw et al. [5] when trying to prove the correctness of the
Java implementation of TimSort (which is the same as in the earlier versions of Python).
And since the Java version of the algorithm uses the (wrong) invariant to compute the
maximum size of the stack used to store the runs, the authors were able to build a sequence
of runs that causes the Java implementation of TimSort to crash. They proposed two
solutions to fix TimSort: reestablish the invariant, which led to the current Python version,
or keep the original algorithm and compute correct bounds for the stack size, which is the
solution that was chosen in Java 9 (note that this is the second time these values had to be
changed). To do the latter, the developers used the claim in [5] that the invariant cannot be
violated for two consecutive runs on the stack, which turns out to be false,5 as illustrated in
Figure 5. Thus, it is still possible to cause the Java implementation to fail: it uses a stack
of runs of size at most 49 and we were able to compute an example requiring a stack of
size 50 (see http://igm.univ-mlv.fr/~pivoteau/Timsort/Test.java), causing an error
at runtime in Java’s sorting method.

109

#1 83
109

#1 25
83
109

#1 16
25
83
109

#1 8
16
25
83
109

#1 7
8
16
25
83
109

#1 26
7
8
16
25
83
109

#1

26
15
16
25
83
109

#2

26
31
25
83
109

#2

26
56
83
109

#2 2
26
56
83
109

#1 27
2
26
56
83
109

#1

27
28
56
83
109

#2

Figure 5 Execution of the main loop of the Java version of TimSort (without merge case #5,
at line 9 of Algorithm 3), with the lengths of the runs in runs being (109, 83, 25, 16, 8, 7, 26, 2, 27).
When the algorithm stops, the invariant is violated twice, for consecutive runs (in red).

Even if the bug we highlighted in Java’s TimSort is very unlikely to happen, this should
be corrected. And, as advocated by de Gouw et al. and Tim Peters himself,6 we strongly
believe that the best solution would be to correct the algorithm as in the current version
of Python, in order to keep it clean and simple. However, since this is the implementation
of Java’s sort for the moment, there are two questions we would like to tackle: Does the
complexity analysis holds without the missing condition? And, can we compute an actual
bound for the stack size?

We first address the complexity question. And, it turns out that the missing invariant
was a key ingredient for having a simple an elegant proof.

I Proposition 11. Full proof in
Section A.1.1.

At any time during the main loop of Java’s TimSort, if the stack
of runs is (R1, . . . , Rh) then we have r3 < r4 < . . . < rh and, for all i > 3, we have
(2 +

√
7)ri > r2 + . . .+ ri−1.

5 This is the consequence of a small error in the proof of their Lemma 1. The constraint C1 > C2 has no
reason to be. Indeed, in our example, we have C1 = 25 and C2 = 31.

6 Here is the discussion about the correction in Python: https://bugs.python.org/issue23515.

http://igm.univ-mlv.fr/~pivoteau/Timsort/Test.java
https://bugs.python.org/issue23515

N. Auger, V. Jugé, C. Nicaud, and C. Pivoteau XX:11

Proof ideas. The proof of Proposition 11 is much more technical and difficult than insightful,
and therefore we just summarize its main steps. As in previous sections, this proof relies on
several inductive arguments, using both inductions on the number of merges performed, on
the stack size and on the run sizes. The inequalities r3 < r4 < . . . < rh come at once, hence
we focus on the second part of Proposition 11.

Since separating starting and ending sequences was useful in Section 4, we first introduce
the notion of stable stacks: a stack S is stable if, when operating on the stack S = (R1, . . . , Rh),
Case #1 is triggered (i.e. Java’s TimSort is about to perform a run push operation).

We also call obstruction indices the integers i > 3 such that ri 6 ri−1 + ri−2: although
they do not exist in Python’s TimSort, they may exist, and even be consecutive, in Java’s
TimSort. We prove that, if i− k, i− k+ 1, . . . , i are obstruction indices, then the stack sizes
ri−k−2, . . . , ri grow “at linear speed”. For instance, in the last stack of Figure 5, obstruction
indices are 4 and 5, and we have r2 = 28, r3 = r2 + 28, r4 = r3 + 27 and r5 = r4 + 26.

Finally, we study so-called expansion functions, i.e. functions f : [0, 1] 7→ R such that, for
every stable stack S = (R1, . . . , Rh), we have r2 + . . .+ rh−1 6 rhf(rh−1/rh). We exhibit an
explicit function f such that f(x) 6 2 +

√
7 for all x ∈ [0, 1], and we prove by induction on

rh that f is an expansion function, from which we deduce Proposition 11. J

Once Proposition 11 is proved, we easily recover the following variant of Lemmas 6 and 9.

I Lemma 12. At any time during the main loop of Java’s TimSort, if the stack is
(R1, . . . , Rh) then we have r2/(2 +

√
7) 6 r3 < r4 < . . . < rh and, for all i > j > 3,

we have ri > δi−j−4rj, where δ =
(
5/(2 +

√
7)
)1/5

> 1. Furthermore, at any time during an
ending sequence, including just before it starts and just after it ends, we have r1 6 (2+

√
7)r3.

Proof. The inequalities r2/(2 +
√

7) 6 r3 < r4 < . . . < rh are just a (weaker) restatement
of Proposition 11. Then, for j > 3, we have (2 +

√
7)rj+5 > rj + . . . + rj+4 > 5rj , i.e.

rj+5 > δ5rj , from which one gets that ri > δi−j−4rj .
Finally, we prove by induction that r1 6 (2 +

√
7)r3 during ending sequences. First,

when the ending sequence starts, r1 < r3 6 (2 +
√

7)r3. Before any merge during this
sequence, if the stack is S = (R1, . . . Rh), then we denote by S = (R1, . . . , Rh−1) the
stack after the merge. If the invariant holds before the merge, in Case #2, we have
r1 = r1 6 (2+

√
7)r3 6 (2+

√
7)r4 = (2+

√
7)r3; and using Proposition 11 in Cases #3 and #4,

we have r1 = r1 + r2 and r1 6 r3, hence r1 = r1 + r2 6 r2 + r3 6 (2 +
√

7)r4 = (2 +
√

7)r3,
concluding the proof. J

We can then recover a proof of complexity for the Java version of TimSort, by following
the same proof as in Sections 3 and 4, but using Lemma 12 instead of Lemmas 6 and 9.

I Theorem 13. The complexity of Java’s TimSort on inputs of size n with ρ runs is
O(n+ n log ρ).

Another question is that of the stack size requirements of Java’s TimSort, i.e. comput-
ing hmax. A first result is the following immediate corollary of Lemma 12.

I Corollary 14. On an input of size n, Java’s TimSort may create a stack of runs of
maximal size hmax 6 7 + logδ(n), where δ =

(
5/(2 +

√
7)
)1/5.

Proof. At any time during the main loop of Java’s TimSort on an input of size n, if the
stack is (R1, . . . , Rh) and h > 3, it follows from Lemma 12 that n > rh > δh−7r3 > δh−7. J

XX:12 On the Worst-Case Complexity of TimSort

Unfortunately, for integers smaller than 231, Corollary 14 only proves that the stack size
will never exceed 347. However, in the comments of Java’s implementation of TimSort,7
there is a remark that keeping a short stack is of some importance, for practical reasons, and
that the value chosen in Python – 85 – is “too expensive”. Thus, in the following, we go to
the extent of computing the optimal bound. It turns out that this bound cannot exceed 86
for such integers. This bound could possibly be refined slightly, but definitely not to the
point of competing with the bound that would be obtained if the invariant of Equation (1)
were correct. Once more, this suggests that implementing the new version of TimSort in
Java would be a good idea, as the maximum stack height is smaller in this case.

I Theorem 15.Full proof in
Sections A.1.2

and A.1.3.

On an input of size n, Java’s TimSort may create a stack of runs of
maximal size hmax 6 3 + log∆(n), where ∆ = (1 +

√
7)1/5. Furthermore, if we replace ∆ by

any real number ∆′ > ∆, the inequality fails for all large enough n.

Proof ideas. The first part of Theorem 15 is proved as follows. Ideally, we would like to
show that ri+j > ∆jri for all i > 3 and some fixed integer j. However, these inequalities do
not hold for all i. Yet, we prove that they hold if i + 2 and i + j + 2 are not obstruction
indices, and i+ j + 1 is an obstruction index, and it follows quickly that rh > ∆h−3.

The optimality of ∆ is much more difficult to prove. It turns out that the constants 2+
√

7,
(1 +

√
7)1/5, and the expansion function referred to in the proof of Proposition 11 were con-

structed as least fixed points of non-decreasing operators, although this construction needed
not be explicit for using these constants and function. Hence, we prove that ∆ is optimal
by inductively constructing sequences of run sizes that show that lim sup{log(rh)/h} > ∆;
much care is required for proving that our constructions are indeed feasible. J

6 Conclusion

At first, when we learned that Java’s QuickSort had been replaced by a variant of MergeSort,
we thought that this new algorithm – TimSort – should be really fast and efficient in practice,
and that we should look into its average complexity to confirm this from a theoretical point
of view. Then, we realized that its worst-case complexity had not been formally established
yet and we first focused on giving a proof that it runs in O(n logn), which we wrote in a
preprint [1]. In the present article, we simplify this preliminary work and provide a short,
simple and self-contained proof of TimSort’s complexity, which sheds some light on the
behavior of the algorithm. Based on this description, we were also able to answer positively
a natural question, which was left open so far: does TimSort runs in O(n+ n log ρ), where
ρ is the number of runs? We hope our theoretical work highlights that TimSort is actually
a very good sorting algorithm. Even if all its fine-tuned heuristics are removed, the dynamics
of its merges, induced by a small number of local rules, results in a very efficient global
behavior, particularly well suited for almost sorted inputs.

Besides, we want to stress the need for a thorough algorithm analysis, in order to prevent
errors and misunderstandings. As obvious as it may sound, the three consecutive mistakes
on the stack height in Java illustrate perfectly how the best ideas can be spoiled by the lack
of a proper complexity analysis.

Finally, following [5], we would like to emphasize that there seems to be no reason not
to use the recent version of TimSort, which is efficient in practice, formally certified and
whose optimal complexity is easy to understand.

7 Comment at line 168: http://igm.univ-mlv.fr/~pivoteau/Timsort/TimSort.java.

http://igm.univ-mlv.fr/~pivoteau/Timsort/TimSort.java

N. Auger, V. Jugé, C. Nicaud, and C. Pivoteau XX:13

References
1 N. Auger, C. Nicaud, and C. Pivoteau. Merge strategies: From Merge Sort to TimSort.

Research Report hal-01212839, hal, 2015.
2 J. Barbay and G. Navarro. On compressing permutations and adaptive sorting. Theor.

Comput. Sci., 513:109–123, 2013.
3 B. Beckert, R. Hähnle, and P. H. Schmitt. Verification of object-oriented software: The

KeY approach. Springer-Verlag, 2007.
4 S. Buss and A. Knop. Strategies for stable merge sorting. Research Report abs/1801.04641,

arXiv, 2018.
5 S. De Gouw, J. Rot, F. S. de Boer, R. Bubel, and R. Hähnle. OpenJDK’s

Java.utils.Collection.sort() is broken: The good, the bad and the worst case. In Inter-
national Conference on Computer Aided Verification, pages 273–289. Springer, 2015.

6 D. E. Knuth. The Art of Computer Programming, Volume 3: (2nd Ed.) Sorting and
Searching. Addison Wesley Longman Publish. Co., Redwood City, CA, USA, 1998.

7 H. Mannila. Measures of presortedness and optimal sorting algorithms. IEEE Trans.
Computers, 34(4):318–325, 1985.

8 T. Peters. Timsort description, accessed june 2015. http://svn.python.org/projects/
python/trunk/Objects/listsort.txt.

9 T. Takaoka. Partial solution and entropy. In R. Královič and D. Niwiński, editors, Math-
ematical Foundations of Computer Science 2009, pages 700–711, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

http://svn.python.org/projects/python/trunk/Objects/listsort.txt
http://svn.python.org/projects/python/trunk/Objects/listsort.txt

XX:14 On the Worst-Case Complexity of TimSort

A Appendix

A.1 Proofs
We provide below complete proofs of the results mentioned in Section 5.

In what follows, we will often refer to so-called stable stacks: we say that a stack
S = (R1, . . . , Rh) is stable if r1 + r2 < r3 and r1 < r2, i.e. if the next operation that will be
performed by TimSort is a push operation (Case #1).

A.1.1 Proving Proposition 11
Aiming to prove Proposition 11, and keeping in mind that studying stable stacks may be
easier than studying all stacks, a first step is to introduce the following quantities.

I Definition 16. Let n be a positive integer. We denote by αn (resp., βn), the smallest
real number m such that, in every stack (resp., stable stack) S = (R1, . . . , Rh) obtained
during an execution of TimSort, and for every integer i ∈ {1, . . . , h} such that ri = n,
we have r2 + . . . + ri−1 6 m × ri; if no such real number exists, we simply set αn = +∞
(resp., βn = +∞).

By construction, αn > βn for all n > 1. The following lemma proves that αn 6 βn.

I Lemma 17. At any time during the main loop of TimSort, if the stack is (R1, . . . , Rh),
then we have (a) ri < ri+1 for all i ∈ {3, 4, . . . , h− 1} and (b) r2 + . . .+ ri−1 6 βnri for all
n > 1 and i 6 h such that ri = n.

Proof. Assume that (a) and (b) do not always hold, and consider the first moment where
some of them do not hold. When the main loop starts, both (a) and (b) are true. Hence, from
a stack S = (R1, . . . , Rh), on which (a) and (b) hold, we carried either a push step (Case #1)
or a merging step (Cases #2 to #4), thereby obtaining the new stack S = (R1, . . . , Rh). We
consider separately these two cases:

After a push step, we have h = h+ 1 , r1 + r2 < r3 (otherwise, we would have performed
a merging step instead of a push step) and ri = ri−1 for all i > 2. It follows that
r3 = r2 < r1 + r2 < r3 = r4, and that ri = ri−1 < ri = ri+1 for all i > 4. This proves
that S satisfies (a).
In addition, the value of r1 has no impact on whether S satisfies (b). Hence, we may
assume without loss of generality that r1 < min{r2, r3 − r2} (up to doubling the size of
every run ever pushed onto the stack so far and setting r1 = 1), thereby making S stable.
This proves that S satisfies (b).
After a merging step, we have h = h− 1, r2 6 r2 + r3 and ri = ri+1 for all i > 3. Hence,
ri = ri+1 < ri+2 = ri+1 for all i > 3, and S satisfies (a). Furthermore, we have 0 6 βr2r2,
and r2 + r3 + . . . + ri 6 r2 + r3 + . . . + ri+1 6 βnri+2 = βnri+1 whenever i > 1 and
ri+1 = ri+2 = n. This proves that S also satisfies (b).

Hence, in both cases, (a) and (b) also hold in S, which contradicts our assumption and
completes the proof. J

I Corollary 18. For all integers n > 1, we have αn = βn.

It remains to prove that αn 6 α∞ for all n > 1, where α∞ = 2 +
√

7. This is the object
of the next results.

N. Auger, V. Jugé, C. Nicaud, and C. Pivoteau XX:15

What makes Java’s TimSort much harder to study than Python’s TimSort is the fact
that, during the execution of Java’s TimSort algorithm, we may have stacks S = (R1, . . . , Rh)
on which the invariant (1) : ri > ri−1 +ri−2 fails for many integers i > 3, possibly consecutive.
In Section 5, such integers were called obstruction indices of the stack S. Hence, we focus on
sequences of consecutive obstruction indices.

I Lemma 19. Let S = (R1, . . . , Rh) be a stable stack obtained during the main loop of Java’s
TimSort. Assume that i− k, i+ 1− k, . . . , i are consecutive obstruction indices of S, and
that αn 6 α∞ for all n 6 ri − 1. Then,

ri−k−2 6
α∞ + 1− k
α∞ + 2 ri−1.

Proof. Let T be the number of merge or push operations performed between the start of the
main loop and the creation of the stack S. For all k ∈ {0, . . . , T} and all j > 1, we denote by Sk
the stack after k operations have been performed. We also denote by Pj,k the jth bottom-most
run of the stack Sk, and by pj,k the size of Pj,k; we set Pj,k = ∅ and pj,k = 0 if Sk has fewer
than j runs. Finally, for all j 6 h, we set tj = min{k > 0 | ∀` ∈ {k, . . . , T}, pj,` = pj,T }.

First, observe that tj < tj+2 for all j 6 h− 2, because a run can be pushed or merged
only in top or 2nd-to-top position. Second, if tj > tj+1 for some j 6 h − 1, then the runs
Pj,tj , Pj+1,tj are the two top runs of Stj . Since none of the runs P1, . . . , Pj+1 is modified
afterwards, it follows, if j > 2, that pj+1 +pj = pj+1,tj +pj,tj < pj−1,tj = pj−1, and therefore
that h+ 2− j is not an obstruction index.

Conversely, let m0 = h + 3 − i. We just proved that tm0−2 < tm0 and also that
tm0−1 < tm0 < . . . < tm0+k. Besides, for all m ∈ {m0, . . . ,m0 + k}, we prove that
the tmth operation was a merge operation of type #2. Indeed, if not, then the run Pm,tm
would be the topmost run of Stm ; since the runs Pm−1 and Pm−2 were not modified after
that, we would have pm + pm−1 < pm−2, contradicting the fact that h + 3 − m is an
obstruction index. In particular, it follows that pm+1,tm = pm+2,tm−1 > pm,tm−1 and that
pm = pm,tm 6 pm−1,tm − pm+1,tm = pm−1 − pm+1,tm .

Moreover, for m = m0, observe that pm = pm,tm = pm,tm−1 + pm+1,tm−1. Applying
Lemma 17 on the stacks ST and Stm−1, we know that pm,tm−1 6 pm 6 pm−2 − 1 =
ri − 1 and that pp+1,tm−1 6 apm,tm−1pm,tm−1 6 α∞pm,tm−1, which proves that pm 6
(α∞ + 1)pm,tm−1 6 (α∞ + 1)pm+1,tm , i.e., pm0 6 (α∞ + 1)pm0+1,tm0

. Henceforth, we set
κ = pm0+1,tm0

.
In addition, for all m ∈ {m0 + 1, . . . ,m0 + k}, observe that the sequence (pm+1,k)tm6k6T

is non-decreasing. Indeed, when tm 6 k, and therefore ti 6 k for all i 6 m, the run pm+1,k
can only be modified by being merged with another run, thereby increasing in size. This
proves that pm+2,tm+1 > pm+1,tm+1−1 > pm+1,tm . Hence, an immediate induction shows that
pm+1,tm > pm0+1,tm0

= κ for all m ∈ {m0, . . . ,m0 + k}, and it follows that pm 6 pm−1 − κ.
Overall, this implies that ri−k−2 = pm0+k 6 pm0 − kκ. Note that pm0 6 min{(α∞ +

1)κ, pm0−1 − pm0+1,tm0
} = min{(α∞ + 1)κ, pm0−1 − κ}. It follows that

ri−k−2 6 min{(α∞ + 1)κ, pm0−1 − κ} − kκ 6 min{(α∞ + 1− k)κ, ri−1 − (k + 1)κ},

whence (α∞ + 2)ri−k−2 6 (k + 1)(α∞ + 1 − k)κ + (α∞ + 1 − k)(ri−1 − (k + 1)κ) =
(α∞ + 1− k)ri−1. J

Lemma 19 paves the way towards a proof by induction that αn 6 α∞. Indeed, a first,
immediate consequence of Lemma 19, is that, provided that αn 6 α∞ for all n 6 ri− 1, then
the top-most part (R1, . . . , Ri) may not contain more than α∞ + 2 (and therefore no more

XX:16 On the Worst-Case Complexity of TimSort

than 6) consecutive obstruction indices. This suggests that the sequence r1, . . . , ri should
grow “fast enough”, which might then be used to prove that αri

6 α∞. We present below
this inductive proof, which relies on the following objects.

I Definition 20. We call expansion function the function f : [0, 1]→ R>0 defined by

f : x→

(1 + α∞)x if 0 6 x 6 1/2
x+ α∞(1− x) if 1/2 6 x 6 α∞/(2α∞ − 1)
α∞x if α∞/(2α∞ − 1) 6 x 6 1.

In the following, we denote by θ the real number α∞/(2α∞ − 1). Let us first prove two
technical results about the expansion function.

I Lemma 21. We have α∞x 6 f(x) for all x ∈ [0, 1], f(x) 6 f(1/2) for all x ∈ [0, θ],
f(x) 6 f(1) for all x ∈ [0, 1], x+α∞(1− x) 6 f(x) for all x ∈ [1/2, 1] and x+α∞(1− x) 6
f(1/2) for all x ∈ [1/2, 1].

Proof. Since f is piecewise linear, it is enough to check the above inequalities when x is
equal to 0, 1/2, θ or 1, which is immediate. J

I Lemma 22. For all real numbers x, y ∈ [0, 1] such that x(y+1) 6 1, we have x(1+f(y)) 6
min{f(1/2), f(x)}.

Proof. We treat three cases separately, relying in each case on Lemma 21:
if 0 6 x 6 1/2, then x(1 + f(y)) 6 x(1 + f(1)) = (1 + α∞)x = f(x) 6 f(1/2);
if 1/2 < x 6 1 and f(1/2) < f(y), then θ 6 y 6 1, hence x(1 + f(y)) = x + α∞xy 6
x+ α∞(1− x) 6 min{f(x), f(1/2)};
if 0 6 f(y) 6 f(1/2), and since α∞ > 1, we have x(1 + f(y)) 6 x(1 + f(1/2)) =
x(3 + α∞)/2 6 x(1 + α∞) 6 f(x); if, furthermore, y 6 1/2, then

x(1 + f(y)) 6 (1 + (1 + α∞)y)/(1 + y) = (1 + α∞)− α∞/(1 + y)
6 (1 + α∞)− 2α∞/3 = (3 + α∞)/3,

and if 1/2 6 y, then x(1 + f(y)) 6 (1 + f(1/2))/(1 + y) 6 2(1 + f(1/2))/3 = (3 + α∞)/3;
since α∞ > 3, it follows that x(1 + f(y)) 6 (3 + α∞)/3 6 (1 + α∞)/2 = f(1/2) in both
cases.

J

Using Lemma 19 and the above results about the expansion function, we finally get the
following result, of which Proposition 11 is an immediate consequence.

I Lemma 23. Let S = (R1, . . . , Rh) be a stable stack obtained during the main loop of Java’s
TimSort. For all integers i > 2, we have r1 + r2 + . . .+ ri−1 6 rif(ri−1/ri), where f is the
expansion function. In particular, we have αn = βn 6 α∞ for all integers n > 1.

Proof. Lemma 21 proves that 2x 6 α∞x 6 yf(x/y) whenever 0 < x 6 y, and therefore the
statement of Lemma 23 is immediate when i 6 3. Hence, we prove Lemma 23 for i > 4, and
proceed by induction on ri = n, thereby assuming that αn−1 exists.

Let x = ri−1/ri and y = ri−2/ri−1. By Lemma 17, and since the stack S is stable, we
know that ri−2 < ri−1 < ri, and therefore that x < 1 and y < 1. If i is not an obstruction
index, then we have ri−2 + ri−1 6 ri, i.e., x(1 + y) 6 1 and, using Lemma 22, it follows that
r1 + . . .+ ri−1 = (r1 + . . .+ ri−2) + ri−1 6 f(y)ri−1 + ri−1 = x(1 + f(y))ri 6 f(x)ri.

N. Auger, V. Jugé, C. Nicaud, and C. Pivoteau XX:17

On the contrary, if i is an obstruction index, let k be the smallest positive integer such
that i − k is not an obstruction index. Since the stack S is stable, we have r1 + r2 < r3,
which means that 3 is not an obstruction index, and therefore i−k > 3. Let u = ri−k−1/ri−k
and v = ri−k−2/ri−k−1. By construction, we have ri−k−2 + ri−k−1 6 ri−k, i.e., u(1 + v) 6 1.
Using Lemma 19, and since ri−k−1 < ri and αri−1 6 f(1) = α∞ by induction hypothesis,
we have

r1 + . . .+ ri−1 = (r1 + . . .+ ri−k−2) + ri−k−1 + . . .+ ri−1 6 ri−k−1f(v) + ri−k−1 + . . .+ ri−1

6 ri−ku(1 + f(v)) + ri−k + . . .+ ri−1 6 ri−kf(1/2) + ri−k + . . .+ ri−1

6
1

α∞ + 2

(α∞ + 3− k)f(1/2) +
k∑
j=1

(α∞ + 3− j)

 ri−1

6
1

2(α∞ + 2)
(
α2
∞ + (4 + k)α∞ − k2 + 4k + 3

)
ri−1.

The function g : t→ α2
∞ + (4 + t)α∞ − t2 + 4t+ 3 takes its maximal value, on the real

line, at t = (α∞ + 4)/2 ∈ (4, 5). Consequently, for all integers k, and since α∞ 6 5, we have

g(k) 6 max{g(4), g(5)} = α2
∞ + max{8α∞ + 3, 9α∞ − 2} = α2

∞ + 8α∞ + 3.

Then, observe that 2(α∞ + 2)α∞ = 30 + 12
√

7 = α2
∞ + 8α∞ + 3. It follows that

r1 + . . .+ ri−1 6
α2
∞ + 8α∞ + 3
2(α∞ + 2) ri−1 = α∞xri 6 f(x)ri.

Hence, regardless of whether i is an obstruction index or not, we have r1 + . . .+ ri−1 6
f(x)ri 6 f(1)ri = α∞ri, which completes the proof. J

A.1.2 Proving the first part of Theorem 15
We prove below the inequality of Theorem 15; proving that that the constant ∆ used in
Theorem 15 is optimal will be the done in the next section.

In order to carry out this proof, we need to consider some integers of considerable interest.
Let S = (R1, . . . , Rh) be a stable stack of runs. We say that an integer i > 1 is a growth
index if i+ 2 is not an obstruction index, and that i is a strong growth index if i is a growth
index and if, in addition, i+ 1 is an obstruction index. Note that h an h− 1 are necessarily
growth indices, since h+ 1 and h+ 2 are too large to be obstruction indices.

Our aim is now to prove inequalities of the form ri+j > ∆jri, where 3 6 i 6 i+ j 6 h.
However, such inequalities do not hold in general, hence we restrict the scope of the integers i
and i+ j, which is the subject of the two following results.

I Lemma 24. Let i and j be positive integers such that i + 2 6 j 6 h. If no obstruction
index k exists such that i+ 2 6 k 6 j, then 2∆j−i−2ri 6 rj.

Proof. For all n > 0, let Fn denote the nth Fibonacci number, defined by F0 = 0, F1 = 1
and Fn+2 = Fn + Fn+1 or, alternatively, by Fn = (φn − (−φ)−n)/

√
5, where φ = (1 +

√
5)/2

is the Golden ratio. Observe now that

Fj−i+1ri 6 Fj−i−1ri + Fj−iri+1 6 Fj−i−2ri+1 + Fj−i−1ri+2 6 . . . 6 F0rj−1 + F1rj = rj .

Moreover, for all n > 3, we have Fn = 2Fn/F3 = 2φn−3(1 − (−1)nφ−2n)/(1 − φ−6) >
2φn−3. Since ∆ < φ, it follows that 2∆j−i−2ri 6 Fj−i+1ri 6 rj . J

XX:18 On the Worst-Case Complexity of TimSort

I Lemma 25. Let i and j be positive integers such that 1 6 i 6 j 6 h. If i is a growth index
and j is a strong growth index, then ∆j−iri 6 rj.

Proof. Without loss of generality, let us assume that i < j and that there is no strong growth
index k such that i < k < j. Indeed, if such an index k exists, then a simple induction
completes the proof of Lemma 25.

Let ` be the largest integer such that ` 6 j and ` is not an obstruction index. Lemmas 19
and 23 prove that (α∞+2)r` 6 (α∞+2+`−j)rj and that (α∞+2)r`−1 6 (α∞+1+`−j)rj .
The latter inequality proves that j − ` 6 bα∞ + 1c = 5.

By construction, we have i + 2 6 `, and no integer k such that i + 2 6 k 6 ` is an
obstruction index. Hence, Lemma 24 proves that 2(α∞ + 2)∆`−i−2ri 6 (α∞ + 2)r` 6
(α∞ + 2 + `− j)rj . Moreover, simple numerical computations, for j − ` ∈ {0, . . . , 5}, prove
that ∆j−`+2 6 2(α∞ + 2)/(α∞ + 2 + `− j), with equality when j − ` = 3. It follows that
∆j−iri = ∆j−`+2∆`−i−2ri 6 rj . J

Finally, the inequality of Theorem 15 is an immediate consequence of the following result.

I Lemma 26. Let S = (R1, . . . , Rh) be a stack obtained during the main loop of Java’s
TimSort. We have rh > ∆h−3.

Proof. Let us first assume that S is stable. Then, r1 > 1, and 1 is a growth index. If there
is no obstruction index, then Lemma 24 proves that rh > 2∆h−3r1 > ∆h−2.

Otherwise, let ` be the largest obstruction index. Then, `− 1 is a strong growth index,
and Lemma 25 proves that r`−1 > ∆`−2r1 > ∆`−2. If ` = h, then rh > r`−1 > ∆h−2, and if
` 6 h− 1, then Lemma 24 also proves that rh > 2∆h−`−1r`−1 > ∆h−`∆`−2 = ∆h−2.

Finally, if S is not stable, the result is immediate for h 6 3, hence we assume that h > 4.
The stack S was obtained by pushing a run onto a stable stack S ′ of size at least h− 1, then
merging runs from S ′ into the runs R1 and R2. It follows that Rh was already the largest
run of S′, and therefore that Rh > ∆h−3. J

A.1.3 Proving the second part of Theorem 15
We finally focus on proving that the constant ∆ of Theorem 15 is optimal. The most
important step towards this result consists in proving that α∞ = limn→∞ αn, with the real
numbers αn introduced in Definition 16 and α∞ = 2 +

√
7. Since it is already proved, in

Lemma 23, that αn 6 α∞ for all n > 1, it remains to prove that α∞ 6 lim infn→∞ αn. We
obtain this inequality by constructing explicitly, for k large enough, a stable sequence of runs
(R1, . . . , Rh) such that rh = k and r2 + . . .+ rh−1 ≈ α∞k. Hence, we focus on constructing
sequences of runs.

In addition, let us consider the stacks of runs created by the main loop of Java’s TimSort
on a sequence of runs P1, . . . , Pn. We say below that the sequence P1, . . . , Pk produces a
stack of runs S = (R1, . . . , Rh) if the stack S is obtained after each of the runs P1, . . . , Pn
has been pushed; observe that the sequence P1, . . . , Pn produces exactly one stable stack.
We also say that a stack of runs is producible if it is produced by some sequence of runs.

Finally, in what follows, we are only concerned with run sizes. Hence, we abusively identify
runs with their sizes. For instance, in Figure 5, the sequence (109, 83, 25, 16, 8, 7, 26, 2, 27)
produces the stacks (27, 2, 26, 56, 83, 109) and (27, 28, 56, 83, 109); only the latter stack is
stable.

We review now several results that will provide us with convenient and powerful ways of
constructing producible stacks.

N. Auger, V. Jugé, C. Nicaud, and C. Pivoteau XX:19

I Lemma 27. Let S = (r1, . . . , rh) be a stable stack produced by a sequence of runs p1, . . . , pn.
Assume that n is minimal among all sequences that produce S. Then, when producing S, no
merging step #3 or #4 was performed.

Moreover, for all k 6 n − 1, after the run pk+1 has been pushed onto the stack, the
elements coming from pk will never belong to the topmost run of the stack.

Proof. We begin by proving the first statement of Lemma 27 by induction on n, which is
immediate for n = 1. Hence, we assume that n > 2, and we further assume, for the sake
of contradiction, that some merging step #3 or #4 took place. Let S ′ = (r′1, . . . , r′`) be the
stable stack produced by the sequence p1, . . . , pn−1. By construction, this sequence is as
short as possible, and therefore no merging step #3 or #4 was used so far. Hence, consider
the last merging step #3 or #4, which necessarily appears after pn was pushed onto the stack.
Just after this step has occurred, we have a stack S ′′ = (r′′1 , . . . , r′′m), with r′i = r′′j whenever
j > 2 and i+m = j+ `, and the run r′′1 was obtained by merging the runs pn, r′1, . . . , r′`+1−m.

Let p1, . . . , pk be the runs that had been pushed onto the stack when the run r′′2 = r′m+2−`
was created. This creation was the result of either a push step or a merging step #2. In
both cases, and until S ′ is created, no merging step #3 or #4 ever involves any element
placed within or below r′′2 . Then, in the case of a push step, we have pk = r′′2 , and therefore
the sequence P#1 = (p1, . . . , pk, r

′′
1) also produces the stack S ′. In the case of a merging

step #2, it is the sequence P#2 = (p1, . . . , pk−1, r
′′′) that also produces the stack S ′′, where

r′′′ is obtained by merging the runs pk, . . . , pn.
In both cases, since the sequences P#1 and P#2 produce S ′′, they also produce S. It

follows that k + 1 > n (in the first case) or k > n (in the second case). Moreover, the run r′′2
was not modified between pushing the run pn and before obtaining the stack S ′′, hence
k 6 n− 1. This proves that k = n− 1 and that the run r′′2 was obtained through a push step,
i.e. pn−1 = r′′2 . But then, the run r′′1 may contain elements of pn only, hence is not the result
of a merging step #3 or #4: this disproves our assumption and proves the first statement of
Lemma 27.

Finally, observe that push steps and merging steps #2 never allow a run in 2nd-to-top
position or below to go to the top position. This completes the proof of Lemma 27. J

I Lemma 28. Let S = (r1, . . . , rh) be a stable stack produced by a sequence of runs p1, . . . , pn.
Assume that n is minimal among all sequences that produce S. There exist integers i0, . . . , ih
such that 0 = ih < ih−1 < . . . < i0 = n and such that, for every integer k 6 h, (a) the runs
pik+1, . . . , pik−1 were merged into the run rk, and (b) ik−1 = ik + 1 if and only if k + 2 is
not an obstruction index.

Proof. The existence (and uniqueness) of integers i0, . . . , ih satisfying (a) is straightforward,
hence we focus on proving (b). That property is immediate if h = 1, hence we assume
that 2 6 h 6 n. Checking that the sequence rh, rh−1, pih−2+1, pih−2+2, . . . , pn produces the
stack S is immediate, and therefore ih−1 = 1 and ih−2 = 2, i.e., rh = p1 and rh−1 = p2.

Consider now some integer k 6 h − 2, and let S ′ be the stable stack produced by
p1, . . . , pik+1. From that point on, the run pik−1+1 will never be the topmost run, and the
runs pj with j 6 ik−1, which can never be merged together with the run pik−1+1, will never
be modified again. This proves that S ′ = (pik−1+1, rk+1, . . . , rh).

Then, assume that ik−1 = ik + 1, and therefore that pik−1+1 = rk. Since S ′ is stable, we
know that rk + rk+1 < rk+2, which means that k+ 2 is not an obstruction index. Conversely,
if k+2 is not an obstruction index, both sequences p1, . . . , pik+1+1 and p1, . . . , pik−1 , rk, pik+1+1
produce the stack (pik+1+1, rk, . . . , rh) and, since n is minimal, ik−1 = ik + 1. J

XX:20 On the Worst-Case Complexity of TimSort

I Lemma 29. Let S = (r1, . . . , rh) be a producible stable stack of height h > 3. There exists
an integer κ ∈ {1, 4} and a producible stable stack S ′ = (r′1, . . . , r′`) such that ` > 2, rh = r′`,
rh−1 = r′`−1 and r1 + . . .+ rh−2 = r′1 + . . .+ r′`−2 + κ.

Proof. First, Lemma 29 is immediate if h = 3, since the sequence of runs (r3, r2, r1 − 1)
produces the stack (r1−1, r2, r3). Hence, we assume that h > 4. Let p1, . . . , pn be a sequence
of runs, with n minimal, that produces S. We prove Lemma 29 by induction on n.

If the last step carried when producing S was pushing the run Pn onto the stack, then
the sequence p1, . . . , pn−1, pn − 1 produces the stack r1 − 1, r2, . . . , rh, and we are done in
this case. Hence, assume that the last step carried was a merging step #2.

Let S ′ = (q1, . . . , qm) be the stable stack produced by the sequence p1, . . . , pn−1, and let i
be the largest integer such that qi < pn. After pushing pn, the runs q1, . . . , qi are merged into
one single run r2, and we also have pn = r1 and qi+j = r2+j for all j > 1. Incidentally, this
proves that m = h+ i− 2 and, since h > 4, that i 6 m− 2. We also have i > 2, otherwise,
if i = 1, we would have had a merging step #3 instead.

If r1 = pn > qi + 2, then the sequence p1, . . . , pn−1, pn − 1 also produces the stack
(r1−1, r2, . . . , rh), and we are done in this case. Hence, we further assume that r1 = pn = qi+1.
Since qi−1 + qi 6 r2 < r3 = qi+1, we know that i+ 1 is not an obstruction index of S. Let
a 6 n − 1 be a positive integer such that p1 + . . . + pa = qi + qi+1 + . . . + qm. Lemma 28
states that pa+1 = qi−1, and therefore that the sequence of runs p1, . . . , pa+1 produces the
stack (qi−1, . . . , qm).

If i = 2 and if q1 > 3, then (q1 − 1) + q2 > q2 + 2 > r1, and therefore the sequence
of runs p1, . . . , pa, q1 − 1, r1 produces the stable stack (r1, r2 − 1, r3, . . . , rh). However,
if i = 2 and q1 6 2, then the sequence of runs p1, . . . , pa, r1 − 2 produces the stable stack
(r1 − 2, r2 − 2, . . . , rh). Hence, in both cases, we are done, by choosing respectively κ = 1
and κ = 4.

Les us now assume that i > 3. Observe that n > a + i > 3 since, after the stack
(qi−1, . . . , qm) has been created, it remains to create runs q1, . . . , qi−2 and finally, r1, which
requires pushing at least i− 1 runs in addition to the a+ 1 runs already pushed. Therefore,
we must have q1 + . . . + qi−1 > qi, unless what the sequence p1, . . . , pa, q1 + . . . + qi−1, pn
would have produced the stack S, despite being of length a + 2 < n. In particular, since
q1 + q2 < q3, it follows that i > 4. Consequently, we have q1 > 1, q2 > 2, q3 > 4, and
therefore q1 + . . .+ qi−1 > 7, i.e. r2 > q2 + 7 = r1 + 6.

Finally, by induction hypothesis, there exists a sequence p′1, . . . , p′u, with u minimal,
that produced the stack (q′1, . . . , q′v) such that q′v = qi, q′v−1 = qi−1 and q1 + . . . + qi−2 =
q′1 + . . .+ q′v−2 +κ for some κ ∈ {1, 4}. Lemma 28 also states that p′1 = qi and that p′2 = qi−1.
It is then easy to check that the sequence of runs p1, . . . , pb+1, p

′
3, . . . , p

′
u produces the stable

stack (q′1, . . . , q′v−2, qi−1, qi, . . . , qm). Since q′j < qi−1 < qi < r1 < r3 = qi+1 for all j 6 v − 2,
pushing the run pn = r1 onto that stack and letting merging steps #2 occur then gives the
stack (r1, r2 − κ, r3, . . . , rh), which completes the proof since r1 6 r2 − 6 < r2 − κ. J

In what follows, we will only consider stacks that are producible and stable. Hence, from
this point on, we omit mentioning that they systematically must be producible and stable,
and we will say that “the stack S exists” in order to say that “the stack S is producible and
stable”.

I Lemma 30. Let S = (r1, . . . , rh) and S ′ = (r′1, . . . , r′`) be two stacks. Then (a) for all i 6 h,
there exists a stack (r1, . . . , ri), and (b) if rh−1 = r′1 and rh = r′2, then there exists a stack
(r1, . . . , rh, r

′
3, . . . , r

′
`).

N. Auger, V. Jugé, C. Nicaud, and C. Pivoteau XX:21

Proof. Let p1, . . . , pm and p′1, . . . , p′n be two sequences that respectively produce S and S ′.
Let us further assume that m is minimal. First, consider some integer i 6 h, and let a be
the integer such that p1 + . . . + pa = ri+1 + . . . + rh. It comes at once that the sequence
pa+1, . . . , pm produces the stack (r1, . . . , ri). Second, since m is minimal, Lemma 28 proves
that p1 = rh = r′2 and that p2 = rh−1 = r′1 and, once again, the sequence p′1, . . . , p′n, p3, . . . , p3
produces the stack (r1, . . . , rh, r

′
3, . . . , r

′
`), which is also stable. J

I Lemma 31. For all positive integers k and ` such that k 6 `α`, there exists a stack
(r1, . . . , rh) such that rh = `, k− 3 6 r1 + . . .+ rh−1 6 k, and r1 + . . .+ rh−1 = k if k = `α`.

Proof. First, if ` = 1, then α` = 0, and therefore Lemma 31 is vacuously true. Hence, we
assume that ` > 2. Let Ω be the set of integers k for which some sequence of runs p1, . . . , pm
produces a stack S = (r1, . . . , rh) such that r1 + . . .+ rh−1 = k and rh = `. First, if k 6 `−1,
the sequence `, k produces the stack (`, k), thereby proving that {1, 2, . . . , `−1} ∈ Ω. Second,
it follows from Lemma 30 that `α` ∈ Ω.

Finally, consider some integer k ∈ Ω such that k > `, and let p1, . . . , pm be a sequence
of runs that produces a stack (r1, . . . , rh) such that r1 + . . .+ rh−1 = k and rh = `. Since
k > ` = rh > rh−1, we know that h > 3. Hence, due to Lemma 29, either k − 1 or k − 4 (or
both) belongs to Ω. This completes the proof of Lemma 31. J

I Lemma 32. For all positive integers k and ` such that k 6 `, we have α` > (1− k/`)αk
and α` > kαk/`.

Proof. Let n = b`/kc. Using Lemma 31, there exists a sequence of runs p1, . . . , pm that
produces a stack (r1, . . . , rh) such that rh = k and r1 + . . .+ rh−1 = kαk. By choosing m
minimal, Lemma 28 further proves that p1 = rh = k. Consequently, the sequence of
runs np1, . . . , npm−1, ` produces the stack (nr1, . . . , nrh−1, `), and therefore we have `α` >
n(r1 + . . .+ rh−1) = nkαk > max{1, `/k − 1}kαk = `max{k/`, 1− k/`}αk. J

A first intermediate step towards proving that limn→∞ αn = α∞ is the following result,
which is a consequence of the above Lemmas.

I Proposition 33. Let α = sup{αn | n ∈ N∗}. We have 1 + α∞/2 < α 6 α∞, and αn → α

when n→ +∞.

Proof. Let α = sup{αn | n ∈ N∗}. Lemma 23 proves that α 6 α∞. Then, let ε be a positive
real number, and let k be a positive integer such that αk > α− ε. Lemma 32 proves that
lim inf αn > αk > α − ε, and therefore lim inf αn > α. This proves that αn → α when
n→ +∞.

Finally, it is tedious yet easy to verify that the sequence 360, 356, 3, 2, 4, 6, 10, 2, 1, 22,
4, 2, 1, 5, 1, 8, 4, 2, 1, 73, 4, 2, 5, 7, 2, 16, 3, 2, 4, 6, 21, 4, 2, 22, 4, 2, 1, 5, 8, 3, 2, 79, 3, 2, 4,
6, 2, 10, 6, 3, 2, 33, 4, 2, 5, 7, 1, 13, 4, 2, 1, 5, 1, 80, 4, 2, 5, 7, 1, 95, 3, 2, 4, 6, 10, 20, 4, 2, 5,
7, 3, 2, 26, 6, 3, 1, 31, 3, 2, 4, 6, 2, 1, 12, 4, 2, 5 produces the stack (5, 6, 12, 18, 31, 36, 68,
95, 99, 195, 276, 356, 360). Moreover, since (20

√
7)2 = 2800 < 2809 = 532, it follows that

80 + 20
√

7 < 133, i.e., that 1 + α∞/2 = 2 +
√

7/2 < 133/40. This proves that

α > α360 >
5 + 6 + 12 + 18 + 31 + 36 + 68 + 95 + 99 + 195 + 276 + 356

360 = 133
40 > 1+α∞/2.

J

I Lemma 34. There exists a positive integer N such that, for all integers n > N and
k = b(n− 6)/(α+ 2)c, the stack (k + 1, k+, αk, n− 4, n) exists.

XX:22 On the Worst-Case Complexity of TimSort

Proof. Proposition 33 proves that there exists a positive real number ν > 1 + α∞/2 and a
positive integer L > 256 such that α` > ν for all ` > L. Then, we set N = d(α+ 2)Le+ 6.
Consider now some integer n > N , and let k = b(n− 6)/(α+ 2)c. By construction, we have
k > L, and therefore αk > ν.

Let p1, . . . , pm be a sequence of runs that produces a stack (r1, . . . , rh) such that rh = k

and r1 + . . .+ rh−1 = kαk. Lemma 23 proves that αk 6 f(rh−1/k), where f is the expansion
function of Definition 20. Since αk > ν > 1 + α∞/2 = f(1/2), it follows that k > rh−1 > θk.
Assuming that m is minimal, Lemma 28 proves that p1 = rh = k and that p2 = rh−1.

Now, let k′ = bk/2c + 1, and let ` be the largest integer such that 2`+4 6 k′. Since
k > L > 256, we know that k′ > 128, and therefore that ` > 3. Observe also that, since
θ = α∞/(2α∞− 1) > 11/20 and k′ > 20, we have rm−1 > θk > bk/2c+ k/20 > k′. We build
a stack of runs p2, k, n− 4, n by distinguishing several cases, according to the value of k′/2`.

If 16 × 2` 6 k′ 6 24 × 2` + 1, let x be the smallest integer such that x > 2 and
k′ < 2(9× 2` + x+ 1). Since k′ 6 24× 2` + 1, we know that x 6 3× 2`, and that x = 2 if
k 6 18×2`+1. Therefore, the sequence of runs (n, n−4, 3, 2, 4, 6, 10, 3×8, 3×16, . . . , 3×
2`, 3×2`+x) produces the stack (3×2`+x, 3×2`+1 +1, n−4, n). Moreover, observe that
(3× 2`+1 + 1) + (9× 2` + x+ 1) = 15× 2` + 4 < k′ if 16× 2` 6 k′ 6 18× 2` + 1, and that
(3×2`+1 +1)+(9×2`+x+1) 6 18×2`+1 < k′ if 18×2`+2 6 k′. Since, in both cases, we
also have k′ < 2(9×2`+x+1), it follows that 3×2`+1+1 < k′−(9×2`+x+1) < 9×2`+x+1.
Consequently, pushing an additional run of size k′ − (9 × 2` + x + 1) produces the
stack k′ − (9 × 2` + x + 1), 9 × 2` + x + 1, n − 4, n. Finally, the inequalities 2k′ > k,
k − k′ > k/2− 1 > k′ − 2 > 18× 2` and x 6 3× 2` prove that

9× 2` + x+ 1 6 12× 2` + 1 < 16× 2` − 2 6 k − k′ < k′.

Recalling that k > p2 > k′, it follows that pushing additional runs of sizes k − k′ and p2
produces the stack (p2, k, n− 4, n).
If 24×2`+ 2 6 k′ < 32×2`, let x be the smallest integer such that x > 2 and k′ < 2(12×
2`+x+1). Since k′ < 32×2`, we know that x+1 6 2`+2. Therefore, the sequence of runs
n, n− 4, 3, 2, 4, 8, 16, 32, . . . , 2`+2, 2`+2 +x produces the stack (2`+2 +x, 2`+3 + 1, n− 4, n).
Moreover, the inequalities

(2`+3 + 1) + (3× 2`+2 + x+ 1) 6 6× 2`+2 + 1 < k′ < 2(3× 2`+2 + x+ 1)

prove that 2`+3 + 1 < k′ − (3× 2`+2 + x+ 1) < 3× 2`+2 + x+ 1.
Consequently, pushing an additional run of size k′ − (3 × 2`+2 + x + 1) produces the
stack (k′ − (3× 2`+2 + x+ 1), 3× 2`+2 + x+ 1, n− 4, n). Finally, the inequalities 2k′ > k,
k − k′ > k/2− 1 > k′ − 2 > 6× 2`+2 and x+ 1 6 2`+2 prove that

3× 2`+2 + x+ 1 6 4× 2`+2 < 6× 2`+2 6 k − k′ < k′.

Recalling once again that k > p2 > k′, it follows that pushing additional runs of sizes
k − k′ and p2 produces the stack (p2, k, n− 4, n) in this case too.

Finally, after having obtained the stack (p2, k, n− 4, n), let us add the sequence of runs
p3, . . . , pm, k+ 1. Since k(1 +αk) + (k+ 1) 6 k(α+ 2) + 1 6 n− 6 + 1 < n− 4, adding these
runs produces the stack (k + 1, k + kαk, n− 4, n), which completes the proof. J

I Lemma 35. For all integers n > N and k = b(n − 6)/(α + 2)c there exists a stack
(k+3, k(αk−1)−7−x−y, kαk−3−x, k(1+αk), n−4, n) for some integers x, y ∈ {0, 1, 2, 3}.

N. Auger, V. Jugé, C. Nicaud, and C. Pivoteau XX:23

Proof. Consider some integer n > N , and let k = b(n− 6)/(α∞ + 2)c. By Lemma 34, there
exists a stack (k + 1, k + kαk, n− 4, n).

Lemma 32 proves then that kαk > (k + 1)αk+1. Therefore, Lemma 31 proves that there
exists a stack (r1, . . . , rh) such that rh = k+1 and r1 + . . .+rh−1 = k(αk−1)−4−x for some
integer x ∈ {0, 1, 2, 3}. By construction, we have r1 < r2 < . . . < rh, hence rh−1 + rh < 2(k+
1) < k(1+αk). Consequently, there also exists a stack (r1, r2, . . . , rh−1, k+1, k(1+αk), n−4, n).
Then, k+2+r1+. . .+rh 6 k+2+k(αk−1)−4+k+1 = k(1+αk)−1 < k(1+αk), and therefore
pushing an additional run of size k+2 produces a stack (k+2, kαk−3−x, k(1+αk), n−4, n).

Once again, there exists a stack (r′1, . . . , r′h′) such that r′h′ = k + 2 and r′1 + . . . +
r′h′−1 = k(αk − 2) − 9 − x − y for some integer y ∈ {0, 1, 2, 3}. By construction, we have
r′1 < r′2 < . . . < r′h′ , hence r′h′−1 + r′h′ < 2(k + 2) < kαk − 3− x, and therefore there exists a
stack (r′1, r′2, . . . , r′h′−1, k+2, kαk−3−x, k(1+αk), n−4, n). Then, k+3+r′1+. . .+r′h′ 6 k+3+
k(αk−2)−9−x−y+k+2 = kαk−4−x−y < kαk−3−x, and therefore pushing an additional
run of size k+3 produces a stack (k+3, k(αk−1)−7−x−y, kαk−3−x, k(1+αk), n−4, n). J

We introduce now a variant of the real numbers αn and βn, adapted to our construction.

I Definition 36. Let n be a positive integer. We denote by γn the smallest real number m
such that, in every stack S = (r1, . . . , rh) such that h > 2, rh = n and rh−1 = n− 4, we have
r1 + . . .+ rh−1 6 m× n. If no such real number exists, we simply set γn = +∞.

I Lemma 37. Let γ = lim inf γn. We have γ > (αγ + 9α− γ + 3)/(2α+ 4).

Proof. Let ε be a positive real number, and let Nε > N be an integer such that α` > α− ε
and γ` > γ − ε for all ` > b(N − 6)/(α∞ + 2)c. Since α > 3, and up to increasing the value
of Nε, we may further assume that `(α` − 3) > 30 for every such integers `.

Then, consider some integer n > Nε, and let k = b(n − 6)/(α + 2)c. By Lemma 35,
there exists a stack (k + 3, k(αk − 1)− 7− x− y, kαk − 3− x, k(1 + αk), n− 4, n) for some
integers x, y ∈ {0, 1, 2, 3}. Let also k′ = b(k(αk − 1)− 7− x− y)/2c. Since k(αk − 3) > 30,
it follows that 2(k′ − 4) > k(αk − 1) − 7 − x − y − 2 − 8 > k(αk − 1) − 23 > 2k + 7 >

2(k + 3). Similarly, and since αk 6 α∞ < 5, we have k′ 6 k(αk − 1)/2 < 2k < 2(k + 3).
Consequently, pushing additional runs of sizes k′ − (k + 3) and k′ − 4 produces the stack
(k′ − 4, k′, k(αk − 1)− 7− x− y, kαk − 3− x, k(1 + αk), n− 4, n).

Finally, by definition of γn, there exists a sequence of runs p1, . . . , pm that produces a
stack (r1, . . . , rh) such that p1 = rh = k′, p2 = rh−1 = k′ − 4 and r1 + . . . + rh−1 = k′γk′ .
Hence, pushing the runs p3, . . . , pm produces the stack (r1, . . . , rh−1, k

′, k(αk − 1)− 7− x−
y, kαk − 3− x, k(1 + αk), n− 4, n).

Then, recall that that γ 6 α, that 3 < α 6 α∞ < 5 and that 0 6 x, y 6 3. It follows that
k > (n−6)/(α+2)−1 > n/(α+2)−3 and that k′ > (k(αk−1)−7−x−y)/2−1 > k(αk−1)/2−8.
This proves that

nγn > r1 + . . .+ rh−1 + k′ + k(αk − 1)− 7− x− y + kαk − 3− x+ k(1 + αk) + n− 4
> k′γk′ + k′ + k(αk − 1)− 13 + kαk − 6 + k(1 + αk) + n− 4
> k′(1 + γ − ε) + 3kαk + n− 23
> (k(αk − 1)/2− 8)(1 + γ − ε) + 3kαk + n− 23
> k(3αk + (1 + γ − ε)(αk − 1)/2) + n− 23− 8× 6

XX:24 On the Worst-Case Complexity of TimSort

nγn > (n/(α+ 2)− 3)(3α− 3ε+ (1 + γ − ε)(α− ε− 1)/2) + n− 71
>
(
6α− 6ε+ (1 + γ − ε)(α− ε− 1) + 2α+ 4

)
n/(2α+ 4)−

3(3α+ (1 + γ)(α− 1)/2)− 71
>
(
αγ + 9α− γ + 3− (α+ γ − ε)ε

)
n/(2α+ 4)− 152.

Hence, by choosing n arbitrarily large, then ε arbitrarily small, Lemma 37 follows. J

From Lemma 37, we derive the asymptotic evaluation of the sequence (αn), as announced
at the beginning of Section A.1.3.

I Proposition 38. We have α = α∞ = 2 +
√

7.

Proof. Lemma 37 states that γ > (αγ + 9α − γ + 3)/(2α + 4) or, equivalently, that γ >
(9α+ 3)/(α+ 5). Since α > γ, it follows that α > (9α+ 3)/(α+ 5), i.e., that α > 2 +

√
7 or

that α 6 2−
√

7 < 0. The latter case is obviously impossible, hence α = α∞ = 2 +
√

7. J

Finally, we may prove that the constant ∆ of Theorem 15 is optimal, as a consequence of
the following result.

I Lemma 39. For all real numbers Λ > ∆, there exists a positive real number KΛ such that,
for all h > 1, there is a stack (r1, . . . , rh) for which rh 6 KΛΛh.

Proof. Let ε be an arbitrarily small real number such that 0 < ε < Λ/∆− 1, and let Nε be
a large enough integer such that α` > α∞ − ε and for all ` > b(N − 6)/(α∞ + 2)c. Then,
consider some integer n0 > Nε, and let k = b(n− 6)/(α∞ + 2)c. As shown in the proof of
Lemma 37, there are integers x, y ∈ {0, 1, 2, 3}, and n1 = b(k(αk − 1)− 7− x− y)/2c, such
that there exists a stack (n1 − 4, n1, k(αk − 1)− 7− x− y, kαk − 3− x, k(1 +αk), n0 − 4, n0).
Since α∞ 6 5, we have then

∆5n1 > ∆5(k(α∞ − 1− ε)/2− 8) > ∆5 ((α∞ − 1− ε)/(2α∞ + 4)n0 − 16)
> (α∞ − 1− ε)/(α∞ − 1)n0 − 16∆5.

It follows that n0 6 ∆5(n1 + 16)(α∞ − 1)/(α∞ − 1− ε) 6 ∆5(1 + ε)2n1 6 Λ5n1.
Then, we repeat this construction, but replacing n0 by n1, thereby constructing a new

integer n2, then replacing n0 by n2, and so on, until we construct an integer n` such that
n` < Nε. Doing so, we built a stack (n` − 4, n`, . . . , n0 − 4, n0) of size 5`+ 2, and we also
have Λ5`Nε > Λ5`n` > Λ5(`−1)n`−1 > . . . > n0. Choosing KΛ = Nε completes the proof. J

Proof of Theorem 15. We focus here on proving the second part of Theorem 15. Consider
a real constant ∆′ > ∆, and let Λ = (∆ + ∆′)/2. If h is large enough, then hKΛΛh 6
(∆′)h−4. Then, let (r1, . . . , rh) be a stack such that rh 6 KΛΛh, and let n be some integer
such that (∆′)h−4 6 n < (∆′)h−3, if any. Considering the stack (r1, . . . , rh + m), where
m = n − (r1 + r2 + . . . + rh), we deduce that hmax > h > 3 + log∆′(n). Therefore, if n is
large enough, we complete the proof by choosing h = blog∆′(n)c+ 3. J

N. Auger, V. Jugé, C. Nicaud, and C. Pivoteau XX:25

A.2 Programs

Algorithm 4: C++ code, file listobject.c, python 3.6.5
/* Merge the two runs at stack indices i and i+1.
* Returns 0 on success, -1 on error.
*/

static Py_ssize_t merge_at(MergeState *ms, Py_ssize_t i);

/* Examine the stack of runs waiting to be merged, merging
* adjacent runs until the stack invariants are re-established:
*
* 1. len[-3] > len[-2] + len[-1]
* 2. len[-2] > len[-1]
*
* See listsort.txt for more info.
*
* Returns 0 on success, -1 on error.
*/

static int merge_collapse(MergeState *ms){
struct s_slice *p = ms->pending;

assert(ms);
while (ms->n > 1) {

Py_ssize_t n = ms->n - 2;
if ((n > 0 && p[n-1].len <= p[n].len + p[n+1].len) ||

(n > 1 && p[n-2].len <= p[n-1].len + p[n].len)) {
if (p[n-1].len < p[n+1].len)

--n;
if (merge_at(ms, n) < 0)

return -1;
}
else if (p[n].len <= p[n+1].len) {

if (merge_at(ms, n) < 0)
return -1;

}
else

break;
}
return 0;

}

XX:26 On the Worst-Case Complexity of TimSort

Algorithm 5: Java code, file java.util.TimSort, jdk 9
/* Allocate runs-to-be-merged stack (which cannot be expanded).
* The stack length requirements are described in listsort.txt.
* The C version always uses the same stack length (85), but
* this was measured to be too expensive when sorting "mid-sized"
* arrays (e.g., 100 elements) in Java. Therefore, we use smaller
* (but sufficiently large) stack lengths for smaller arrays.
* The "magic numbers" in the computation below must be changed
* if MIN_MERGE is decreased. See the MIN_MERGE declaration above
* for more information. The maximum value of 49 allows for an
* array up to length Integer.MAX_VALUE-4, if array is filled by
* the worst-case stack size increasing scenario. More explana-
* tions are given in section 4 of: http://envisage-project.eu/
* wp-content/uploads/2015/02/sorting.pdf
*/

int stackLen = (len < 120 ? 5 :
len < 1542 ? 10 :
len < 119151 ? 24 : 49);

runBase = new int[stackLen];
runLen = new int[stackLen];
...

/**
* Examines the stack of runs waiting to be merged and merges
* adjacent runs until the stack invariants are reestablished:
*
* 1. runLen[i - 3] > runLen[i - 2] + runLen[i - 1]
* 2. runLen[i - 2] > runLen[i - 1]
*
* This method is called each time a new run is pushed onto
* the stack, so the invariants are guaranteed to hold
* for i < stackSize upon entry to the method.
*/

private void mergeCollapse() {
while (stackSize > 1) {

int n = stackSize - 2;
if (n > 0 && runLen[n-1] <= runLen[n] + runLen[n+1]) {

if (runLen[n - 1] < runLen[n + 1])
n--;

mergeAt(n);
} else if (runLen[n] <= runLen[n + 1]) {

mergeAt(n);
} else {

break; // Invariant is established
}

}
}

N. Auger, V. Jugé, C. Nicaud, and C. Pivoteau XX:27

Algorithm 6: Java code that raises a java.lang.ArrayIndexOutOfBoundsException,
file http://igm.univ-mlv.fr/~pivoteau/Timsort/Test.java

import java.util.Arrays;
public class Test {

final static int[] runLengths = new int[] { 76405736, 74830360, 1181532, 787688, 1575376, 2363064, 3938440,
6301504, 1181532, 393844, 15753760, 1575376, 787688, 393844, 1969220, 3150752, 1181532, 787688, 5513816,
3938440, 1181532, 787688, 1575376, 18116824, 1181532, 787688, 1575376, 2363064, 3938440, 787688, 26781392,
1181532, 787688, 1575376, 2363064, 393844, 4332284, 1181532, 787688, 1575376, 12209164, 1181532, 787688,
1575376, 2363064, 787688, 393844, 4726128, 1575376, 787688, 1969220, 76405758, 53168940, 1181532, 787688,
1575376, 2363064, 3938440, 1575376, 787688, 393844, 10633788, 1181532, 787688, 1575376, 2363064, 4332284,
1181532, 787688, 1575376, 12996852, 1181532, 787688, 1575376, 2363064, 393844, 17329136, 1575376, 787688,
393844, 1969220, 3150752, 1181532, 393844, 7483036, 1575376, 787688, 1969220, 2756908, 1181532, 787600,
76405780, 38202802, 114608494, 66, 44, 88, 176, 352, 704, 1408, 2816, 5632, 11264, 22528, 45056, 90112,
180224, 360448, 720896, 1441792, 2883584, 5767168, 11387222, 22495132, 319836, 213224, 426448, 639672,
1066120, 1705792, 426448, 213224, 106612, 4584316, 426448, 213224, 106612, 533060, 106612, 852896, 426448,
213224, 1599180, 1172732, 319836, 213224, 426448, 5223988, 319836, 213224, 426448, 639672, 1066120, 319836,
213224, 7782676, 426448, 213224, 533060, 746284, 213224, 1705792, 319836, 213224, 426448, 639672, 2238852,
426448, 213224, 106612, 2345464, 426448, 213224, 106612, 533060, 106612, 852896, 426448, 213224, 106612,
22921602, 15245516, 319836, 213224, 426448, 639672, 1172732, 319836, 213224, 426448, 3304972, 319836,
213224, 426448, 639672, 213224, 1279344, 426448, 213224, 533060, 3838032, 319836, 213224, 426448, 639672,
213224, 106612, 5330600, 319836, 213224, 426448, 639672, 1066120, 213224, 2345464, 426448, 213224, 106612,
533060, 106612, 852896, 426448, 213224, 106524, 22921624, 11460724, 34382260, 66, 44, 88, 176, 352, 704,
1408, 2816, 5632, 11264, 22528, 45056, 90112, 180224, 360448, 720896, 1001792, 1783584, 2649020, 6739370,
102630, 68420, 136840, 205260, 342100, 547360, 102630, 68420, 1436820, 102630, 68420, 136840, 205260,
342100, 547360, 102630, 68420, 136840, 205260, 68420, 34210, 1607870, 102630, 68420, 136840, 205260, 342100,
68420, 34210, 2428910, 102630, 68420, 136840, 205260, 34210, 410520, 102630, 68420, 136840, 1094720, 102630,
68420, 136840, 205260, 68420, 34210, 444730, 136840, 68420, 34210, 171050, 34210, 6876232, 4618350, 102630,
68420, 136840, 205260, 34210, 342100, 136840, 68420, 34210, 992090, 102630, 68420, 136840, 205260, 68420,
342100, 205260, 102630, 68420, 1163140, 102630, 68420, 136840, 205260, 68420, 1607870, 102630, 68420,
136840, 205260, 342100, 34210, 684200, 136840, 68420, 171050, 239470, 102630, 68332, 6876254, 3438028,
10314194, 66, 44, 88, 176, 352, 704, 1408, 2816, 5632, 11264, 22528, 45056, 90112, 180224, 360448, 500896,
840554, 2018720, 32736, 21824, 43648, 65472, 21824, 10912, 141856, 43648, 21824, 10912, 54560, 10912,
425568, 43648, 21824, 54560, 76384, 21824, 10912, 185504, 32736, 21824, 43648, 65472, 21824, 10912, 491040,
32736, 21824, 43648, 65472, 109120, 10912, 731104, 32736, 21824, 43648, 65472, 120032, 32736, 21824, 43648,
327360, 32736, 21824, 43648, 65472, 21824, 130944, 43648, 21824, 54560, 2062390, 1396736, 32736, 21824,
43648, 65472, 109120, 43648, 21824, 10912, 294624, 32736, 21824, 43648, 65472, 120032, 32736, 21824, 43648,
360096, 32736, 21824, 43648, 65472, 10912, 480128, 32736, 21824, 43648, 65472, 109120, 196416, 65472, 32736,
10912, 76384, 21824, 10824, 2062412, 1031118, 3093442, 66, 44, 88, 176, 352, 704, 1408, 2816, 5632, 11264,
22528, 45056, 90112, 180224, 258170, 605616, 9768, 6512, 13024, 19536, 6512, 3256, 42328, 13024, 6512, 3256,
16280, 3256, 126984, 13024, 6512, 16280, 22792, 6512, 3256, 55352, 9768, 6512, 13024, 19536, 6512, 3256,
146520, 9768, 6512, 13024, 19536, 32560, 3256, 218152, 9768, 6512, 13024, 19536, 35816, 9768, 6512, 13024,
100936, 9768, 6512, 13024, 19536, 6512, 3256, 39072, 13024, 6512, 16280, 618662, 416768, 9768, 6512, 13024,
19536, 32560, 13024, 6512, 3256, 87912, 9768, 6512, 13024, 19536, 35816, 9768, 6512, 13024, 107448, 9768,
6512, 13024, 19536, 3256, 143264, 13024, 6512, 3256, 16280, 26048, 9768, 3256, 61864, 13024, 6512, 16280,
22792, 9768, 3168, 618684, 309254, 927850, 66, 44, 88, 176, 352, 704, 1408, 2816, 5632, 11264, 22440, 23056,
45056, 72314, 181632, 2838, 1892, 3784, 5676, 9460, 15136, 2838, 946, 37840, 3784, 1892, 946, 4730, 7568,
2838, 1892, 13244, 9460, 2838, 1892, 3784, 43516, 2838, 1892, 3784, 5676, 9460, 1892, 65274, 2838, 1892,
3784, 5676, 946, 10406, 2838, 1892, 3784, 30272, 2838, 1892, 3784, 5676, 1892, 946, 12298, 3784, 1892, 946,
4730, 185438, 127710, 2838, 1892, 3784, 5676, 9460, 3784, 1892, 946, 26488, 2838, 1892, 3784, 5676, 946,
10406, 2838, 1892, 3784, 31218, 2838, 1892, 3784, 5676, 946, 42570, 2838, 1892, 3784, 5676, 9460, 17974,
3784, 1892, 4730, 6622, 2838, 1804, 185460, 92642, 278014, 66, 44, 88, 176, 352, 704, 1408, 2816, 5632,
9064, 11528, 23606, 54340, 858, 572, 1144, 1716, 2860, 4576, 858, 286, 11440, 1144, 572, 286, 1430, 2288,
858, 572, 4004, 2860, 858, 572, 1144, 13156, 858, 572, 1144, 1716, 2860, 572, 19448, 858, 572, 1144, 1716,
286, 3146, 858, 572, 1144, 8866, 858, 572, 1144, 1716, 572, 286, 3432, 1144, 572, 1430, 55506, 38610, 858,
572, 1144, 1716, 2860, 1144, 572, 286, 7722, 858, 572, 1144, 1716, 3146, 858, 572, 1144, 9438, 858, 572,
1144, 1716, 286, 12584, 1144, 572, 286, 1430, 2288, 858, 286, 5434, 1144, 572, 1430, 2002, 858, 484, 55528,
27676, 83116, 66, 44, 88, 176, 352, 704, 1408, 1716, 3872, 8118, 16192, 264, 176, 352, 528, 176, 88, 1144,
352, 176, 88, 440, 88, 3432, 352, 176, 440, 616, 176, 88, 1408, 264, 176, 352, 528, 176, 88, 3960, 264, 176,
352, 528, 880, 88, 5808, 264, 176, 352, 528, 968, 264, 176, 352, 2640, 264, 176, 352, 528, 176, 1056, 352,
176, 440, 16566, 11264, 264, 176, 352, 528, 880, 352, 176, 2376, 264, 176, 352, 528, 968, 264, 176, 352,
2816, 264, 176, 352, 528, 88, 3872, 264, 176, 352, 528, 880, 1584, 528, 264, 88, 616, 176, 16588, 8206,
24706, 66, 44, 88, 176, 352, 704, 1408, 2090, 4708, 66, 44, 88, 132, 220, 352, 66, 44, 88, 990, 66, 44, 88,
132, 220, 418, 88, 44, 110, 154, 66, 44, 1122, 66, 44, 88, 132, 220, 88, 44, 22, 1716, 88, 44, 110, 154, 44,
352, 66, 44, 88, 132, 44, 22, 462, 110, 44, 22, 528, 88, 44, 22, 110, 22, 176, 88, 44, 22, 4950, 3256, 66,
44, 88, 132, 22, 242, 66, 44, 88, 704, 66, 44, 88, 132, 44, 22, 264, 88, 44, 110, 814, 88, 44, 110, 154, 22,
1144, 66, 44, 88, 132, 220, 44, 22, 506, 88, 44, 22, 110, 22, 176, 88, 44, 22, 4972, 2398, 7282, 66, 44, 88,
176, 242, 418, 660, 1496, 66, 44, 88, 132, 242, 66, 44, 88, 682, 66, 44, 88, 132, 44, 22, 264, 88, 44, 110,
1716, 858, 88, 44, 110, 154, 44, 22, 352, 66, 44, 88, 132, 44, 22, 1738, 198, 1760, 175, 156, 18, 17, 19,
36, 65, 21, 20, 22, 18, 452, 114, 95, 18, 17, 21, 36, 18, 17, 115, 76, 144, 44, 38, 61, 20, 19, 21, 17 };

public static void main(String[] args) {
Integer[] arrayToSort = new Integer[1091482190];
Arrays.fill(arrayToSort, 0);
int sum = -1;
for (int i : runLengths) {

sum += i;
arrayToSort[sum] = 1;

}
Arrays.sort(arrayToSort);

}
}

http://igm.univ-mlv.fr/~pivoteau/Timsort/Test.java

	Introduction
	TimSort core algorithm
	TimSort runs in Lg
	Refined analysis parametrized with the number of runs
	About the Java version of TimSort
	Conclusion
	Appendix
	Proofs
	Proving Proposition 11
	Proving the first part of Theorem 15
	Proving the second part of Theorem 15

	Programs

