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Energy Dissipating Flows for Solving Nonlinear

Eigenpair Problems

Ido Cohen and Guy Gilboa

May 31, 2018

Abstract

This work is concerned with computing nonlinear eigenpairs, which
model solitary waves and various other physical phenomena. We aim at
solving nonlinear eigenvalue problems of the general form T (u) = λQ(u).
In our setting T is a variational derivative of a convex functional (such as
the Laplacian operator with respect to the Dirichlet energy), Q is an arbi-
trary bounded nonlinear operator and λ is an unknown (real) eigenvalue.
We introduce a flow that numerically generates an eigenpair solution by
its steady state.

Analysis for the general case is performed, showing a monotone de-
crease in the convex functional throughout the flow. When T is the Lapla-
cian operator, a complete discretized version is presented and analyzed.
We implement our algorithm on Korteweg Vries (KdV) and Nonlinear
Schrdinger (NLS) equations in one and two dimensions. The proposed
approach is very general and can be applied to a large variety of models.
Moreover, it is highly robust to noise and to perturbations in the initial
conditions, compared to classical Petiashvili-based methods.

1 Introduction

Nonlinear elliptic equations arise in various problems in physics, e.g. for station-
ary solutions of equations, such as Bose-Einstein condensates (BEC), Nonlinear
Schrdinger (NLS) and Korteweg Vries (KdV) [38]. In this work we focus on
nonlinear problems of the form,

T (u) = λQ(u), (1)

where u is a function in a Banach space U , and T and Q are (possibly) nonlinear
operators. More specifically, we assume T to be a subgradient of a convex,
proper, lower-semi-continuous functional J ,

T (u) ∈ ∂uJ(u), (2)

where ∂uJ(u) denotes the subdifferential of J(u). On the right-hand-side of (1),
Q : U → U is a bounded (possibly) nonlinear operator. We refer to functions u
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which admit (1) as eigenfunctions, with a corresponding eigenvalue λ ∈ R. Our
aim is to find a pair (u, λ) ∈ U ×R that admits (1), referred to as an eigenpair.

Eigenpairs of nonlinear operators appear in various fields of science and
engineering. Their analysis can provide deeper understanding and significant
insights related to nonlinear systems. Nonlinear eigenvalue analysis is an active
field of research, from both a theoretical and a computational perspective. In
some nonlinear problems, such as [17] the underlying operators are linear but
the dependency on λ is nonlinear. A recent review of such Nonlinear Eigenvalue
Problems (NEP) appear in [22]. These studies are part of a different branch of
problems (not in the scope of this paper). We examine solutions which can
be formulated by Eq. (1), where the eigenvalue is linearly dependent. We
summarize below the main related studies.

1.1 Solitary Waves as Solutions of Nonlinear Eigenvalue
Problems

A pioneering work in this field, which was followed by many, is that of Petvi-
ashvili [33]. It was aimed at finding numerical approximations of stationary so-
lutions for the Kadomtsev-Petviashvili equation with positive dispersion (KPI
equation). The method, originally, was develop to obtain stationary solutions
of wave equations of the form

−Mu+ up = 0, (3)

where M is a positive, self-adjoint operator and p is a constant. We note that
M should be invertible, as the iterative procedure is based on its inversion.
Conditions for the convergence of Petviashvili’s method were established in [31].
The approach of Petviashvili was later generalized and applied to a family of
nonlinear problems, such as [32, 26, 1, 2]. However, all these algorithms assume
M is invertible. Moreover, it is not aimed at finding eigenpairs, but at solving
a more restricted problem. When casted within the formulation of (1), the
eigenvalue is set to a unit value (λ = 1). Our proposed method is based on
a forward flow, and hence M is not require to be invertible. Moreover, it is
aimed at finding eigenpairs, of unknown λ. The resulting eigenpair is related
to an initial condition, provided by the user, which can emerge from noisy
experimental data, for instance.

Yang and Lakoba [26, 40, 25] generalized Petviashvili’s iteration method,
accelerated the inverse power method and used modified conjugate gradient to
find solitary waves. In [39] it was suggested to combine the conjugate gradient
method with accelerated inverse power method into a unified algorithm, which
coincides with Petviashvili’s method for small enough error. This method was
shown to provide fast convergence rates. In our work we compare the numerical
results to this method and to a modified version of it for adaptively computing
eigenpairs . The focus of this paper is on the robustness of the methods, rather
than on the convergence rate. We note that our forward flow requires consid-
erably more iterations to converge, compared to algorithms based on inversion.
However, it is much more stable and general.
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1.2 Variational Formulations of Eigenpair Problems

Eigenvalue problems are often analyzed theoretically and solved numerically
based on energy minimization methods. Within a variational setting, it can be
shown that an eigenpair is an extremum of a generalized Rayleigh quotient [37].
This extends in a natural manner the linear case, where any eigenvector v of
a Hermitian matrix A, admitting Av = λv, is an extremal point of the asso-
ciated Rayleigh quotient R(v) = (v∗Av)/(v∗v) = λ, where v∗ is the conjugate
transpose of v. The studies of [6, 19, 7, 12] aim at finding a minimum (or a
local minimum) of an energy functional associated to the eigenvalue problem.
In [6, 19] a constrained steepest descent is used for solving ground states of
BEC. Alternative approaches, such as [7, 12], are based on constrained energy
minimization techniques with a suitable Lagrange function. In the above cases,
both sides of the eigenvalue problem (1) should have an associated energy. This
puts some limitations on the variety of problems that can be solved. In our
work this restriction is relaxed (so only the operator T is associated with an
energy term).

1.2.1 Eigenpairs Associated with Total Variation

The TV! (TV!) functional, JTV =
∫
|∇u(x)|dx, has been thoroughly inves-

tigated in recent decades [11]. Since its introduction to the image processing
field for denoising and deconvolution by [34], it has been used as an edge pre-
serving regularizer for algorithms related to stereo, optical flow, segmentation
and many other computer vision tasks [13]. Eigenpairs associated with TV!
were investigated by [27] and [3]. It was shown that convex disk-like shapes are
eigenfunctions of the nonlinear eigenvalue problem

T (u) = λu, T (u) ∈ ∂uJTV (u),

where ∂uJTV (u) is the subdifferential of TV. For smooth, non-vanishing gradi-
ent, we have ∂uJTV (u) = −div(∇u/|∇u|), which is the 1-Laplacian operator. In
recent years, a theory of nonlinear transforms for one-homogeneous functionals
has been formulated [20, 21, 10]. It is based on the analysis of nonlinear eigen-
value problems. The work of [29] proposed a flow for finding eigenfunctions of
one-homogeneous functionals, and is described in more detail below. Numeri-
cal methods for finding p-Laplacian eigenpairs were proposed in [41] and [24].
Solutions of semilinear elliptic eigen-problems were presented in [38]. Ground
states of generalized eigenvalue problems, which may involve also a smoothing
kernel, were analyzed in [8]. An iterative algorithm for finding nonlinear eigen-
pairs by an extended inverse-power method was proposed by [23]. All of these
methods are based partially or mostly on the fact that the eigenpair satisfies an
extremum of the associated (generalized) Rayleigh quotient.

Our work generalizes the flow of [29]. It goes beyond the variational setting
and allows the nonlinear operator Q in Eq. (1) to be very general.
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1.3 Main Contributions

The main contributions of this work are as follows:

1. A new flow is introduced, which generates eigenpairs admitting (1). A
decrease in the convex functional J associated with the operator T is
shown in the continuous setting, under mild assumptions (Sec. 2). When
J is a regularizing term, such as the Dirichlet energy, we get a dissipating
flow which ensures robustness against noise and stability of the algorithm.

2. The need to omit residual parts perpendicular to the operator T are ex-
plained. The concept of the Q∗ subspace, where all eigenfunctions must
reside in, is introduced (Sec. 2.4). A complementary flow which directs
the function u to this subspace is presented and combined with the main
flow (Sec. 2.5, Sec. 3).

3. A discrete explicit implementation is proposed and analyzed, when T is
the negative Laplacian. We formulate a time step bound that guarantees
the monotonic decrease of J throughout the flow (Section 4).

4. We employ our algorithm on KdV and NLS equation and draw a com-
parison between our algorithm and Newton Conjugate Gradient Meth-
ods (NCGM) [39] in one and two dimensions (section 5), showing excellent
stability of the flow, for various initial conditions (Sec. 5).

2 Flows for Generating Eigenpairs

2.1 Preliminary Notations and Definitions

We first introduce some standard definitions and notations used in this paper.
Let Ω be a bounded subset of RN . We use the L2 inner product, 〈u, v〉 =∫

Ω
uv · dx and its associated norm ‖u‖ =

√
〈u, u〉. Let J : U → R be a convex

functional. We denote by ∂J(u) the subdifferential set of J at u. Let us recall
the subgradient inequality: For any T ∈ ∂J(u), the following inequality holds:

J(v) ≥ J(u) + 〈T, v − u〉. (4)

The set of all T for which this inequality holds is the subdifferential. A necessary
and sufficient condition for u to be a global minimum of J is if zero is contained
in ∂J(u). We recall the “chain rule” for the differentiation of functionals (see
Lemma 3.3 of Brezis [9] and recent extensions e.g. in [4]). Let J be a convex,
lower semi-continuous, proper functional, τ > 0, and u ∈ W 1,2((0, τ);U). Let
also T ∈ L2((0, τ);U), such that T ∈ ∂J(u(t)) a.e. in (0, τ). Then the function
J ◦ u : [0, τ ]→ R is absolutely continuous in [0, τ ] with:

d

dt
J(u(t)) = 〈T, ut〉 ∀T ∈ ∂J(u(t)) a.e. in (0, τ). (5)
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2.2 Nossek & Gilboa Flow

Our work generalizes the work of Nossek & Gilboa [29], for which J is assumed
to be convex, absolutely one-homogeneous functional and Q(u) = u. We briefly
describe this flow and its main properties. The flow is given by,

ut =
u

‖u‖
− T

‖T‖
, T ∈ ∂uJ, u(0) = f, (6)

where f admits ‖f‖ 6= 0 and has zero mean. If J is invariant to a global
constant change, i.e. J(u) = J(u+ c), ∀c ∈ R, the solution u (t) of this flow has
the following properties:

1. The mean value of u (t) is preserved throughout the flow:

〈u (t) , 1〉 = 0.

2. The value of J(u(t)) is decreasing with time

d

dt
J (u (t)) ≤ 0, a.e. in (0,∞)

where equality is reached iff u is an eigenfunction.

3. The L2 norm of the solution is increasing with time,

d

dt
‖u (t)‖2 ≥ 0,

where equality is reached iff u is an eigenfunction.

4. A steady-state, ut = 0, holds iff u is an eigenfunction.

For further details see [29]. Aujol et al. [5] analyzed the flow and proposed a
modification for which existence and uniqueness of the continuous flow can be
shown as well as convergence of the discrete iterative algorithm. Following this,
we now turn to formulate the main flow which is designed to find solutions for
Eq. (1). We will see later that an auxiliary (complementary) flow is required
for this generalization to work properly, in order to allow minimal assumptions
regarding the operator Q.

2.3 The Main Flow

We introduce a flow which generates eigenpairs of the form of Eq. (1). Given
some initial condition u(t = 0) = f , u(t) is evolved by the following PDE,

ut(t) = M(u(t)), (7)

where

M(u) = s
Q(u)

‖Q(u)‖
− T (u)

‖T (u)‖
,

and s = sign(〈Q(u), T (u)〉).
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Theorem 1. Assuming the flow of Eq. (7) exists and is unique and J(u) satisfies
Eq. (5), the solution u(t) has the following attributes:

1. The value of J is decreasing with time,

d

dt
J(u) ≤ 0, a.e. in (0,∞),

where equality is reached iff u admits Eq. (1).

2. A necessary condition for steady state ut = 0 holds iff u is an eigenfunc-
tion.

Proof. We denote T = T (u(t)), Q = Q(u(t)).

1. From (5) and (7) we deduce,

d

dt
J(u) =〈T, ut〉

=〈T, s Q

‖Q‖
− T

‖T‖
〉

=
|〈T,Q〉|
‖Q‖

− ‖T‖ ≤ 0, a.e. in (0,∞).

(8)

If u is an eigenfunction in the sense of Eq. (1), then the eigenvalue λ can
be evaluated by using (1) and taking the inner-product with respect to
either Q or T , to have,

λ =
〈T,Q〉
‖Q‖2

=
‖T‖2

〈T,Q〉
= sign(〈T,Q〉) ‖T‖

‖Q‖
. (9)

This yields |〈T,Q〉| = ‖Q‖·‖T‖ and therefore (d/dt)J(u) = 0. Conversely,
if (d/dt)J(u) = 0 then, following (8),

|〈T,Q〉| = ‖T‖ · ‖Q‖,

i.e., Q and T are collinear and u admits Eq. (1), hence an eigenfunction.

2. If u admits Eq. (1) then we can assign T = λQ with λ evaluated by the
expression on the right of Eq. (9) to get ut = M(u) = 0 in (7). Conversely,
let ut = 0 then T and Q are collinear, hence we reach Eq. (1).

2.4 The Space of Solutions Q∗

Theorem 1 guarantees certain stability of the flow, since J(u) decreases with
time. In addition, the flow stops at an eigenpair, which is our aim. We will see
in the analysis below that u needs to be in a certain subspace of U , otherwise,
one will attain only trivial solutions of zero eigenvalue. We begin by stating
some definitions and notations. Let us define two subsets of U , T ⊥ and Q∗,
associated with the operators T and Q.
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Definition 1. Let T ⊥ be the set perpendicular to the image of the operator T :

T ⊥ = {v ∈ U : 〈T (u), v〉 = 0,∀u ∈ U}.

We note that T ⊥ is a linear subspace. This can be shown by taking two
functions in that set v1, v2 ∈ T ⊥ and observing that the following relation
holds:

〈T (u), α1v1 + α2v2〉 = α1〈T (u), v1〉+ α2〈T (u), v2〉 = 0, ∀u ∈ U , α1, α2 ∈ R.

We can now denote a basis for T ⊥.

Definition 2. Let B be an orthonormal basis of T ⊥.

Lemma 1. Let T ⊥ be defined as in Def. 1, then:

1. J(u) is invariant to addition of v ∈ T ⊥, i.e.:

J(u) = J(u+ v), ∀u ∈ U ,∀v ∈ T ⊥.

2. If the following two conditions hold: (i) The operator T is self-adjoint.
(ii) For any minimizer u of J , the subdifferential set, ∂uJ(u), has a single
element. Then T ⊥ = arg min{J(u)}.

Proof. 1. As J(u) is convex then, based on the subdifferential inequality (4),
we have

J(u) ≥ J(u+ v)− 〈T (u+ v), v〉 = J(u+ v), ∀v ∈ T ⊥,

and
J(u+ v) ≥ J(u) + 〈T (u), v〉 = J(u), ∀v ∈ T ⊥.

2. If u ∈ arg min{J} and v ∈ T ⊥ then:

J(u) ≥J(v) + 〈T (v), (u− v)〉
=J(v) + 〈T (v), u〉
=J(v) + 〈v, T (u)〉
=J(v),

but as u minimizes J we also have J(v) ≥ J(u), therefore J(v) = J(u)
and v ∈ arg min{J}. Conversely, if u ∈ arg min{J} then T (u) = 0, since
T is self-adjoint we get

〈T (u), v〉 = 〈u, T (v)〉 = 0, ∀v ∈ U .

Corollary 1. Let the conditions of Lemma 1, item 2 hold and min {J(u)} = 0,
then:

7



1. T ⊥ is the null space of J(u).

2. J(u) is invariant to addition of elements in the null space.

We would now like to define a second significant subset, denoted by Q∗.

Definition 3. Let Q∗ be defined by

Q∗ = {u ∈ U : 〈Q(u), ei〉 = 0 ∀ei ∈ B} ,

where B is defined in Def. 2 and ei are its orthonormal elements.

We would now like to define an energy which measures how far we are from
Q∗:

E(u) =
1

2

∑
ei∈B
〈Q(u), ei〉2. (10)

Remark 1. An alternative definition of Q∗ is the null space of the energy
functional E(u).

We observe that every v ∈ T ⊥ is perpendicular to Q(u∗) where u∗ is an
eigenfunction with λ 6= 0. This is a straightforward consequence of Eq. (1) and
Def. 1. Hence, λ〈Q(u∗), ei〉 = 〈T (u∗), ei〉 = 0. We can summarize this by the
following statement:

Remark 2. All eigenfunctions with nonzero eigenvalue belong to Q∗.

Proposition 1. Let Q∗ be defined as in Def. 3 and u(t) evolves according to
Eq. (7). If u(t) is not an eigenfunction with λ = 0, then the following properties
hold for all t ∈ (0,∞):

1. If u(t) /∈ Q∗ then (d/dt)J(u(t)) < 0.

2. If u(t) ∈ Q∗ then the projection of u(t) on the linear space T ⊥ is preserved
throughout the flow (Eq. (7)). In other words:

〈u(t), v〉 = const, ∀v ∈ T ⊥.

Proof. 1. This is an immediate consequence of Theorem 1 and Remark 2. Ac-
cording to Remark 2 and since we assume u(t) is not an eigenfunction with
zero eigenvalue, if u(t) /∈ Q∗ then u(t) is necessarily not an eigenfunction.
Recall Theorem 1, if u(t) is not an eigenfunction then (d/dt)J(u(t)) < 0.

2. Let us compute the derivative of 〈u(t), v〉 with respect to time:

d

dt
〈u(t), v〉 = 〈ut, v〉 = 〈s Q(u)

‖Q(u)‖
− T (u)

‖T (u)‖
, v〉 = s

〈Q(u), v〉
‖Q(u)‖

− 〈T (u), v〉
‖T (u)‖

.

If v ∈ T ⊥ then 〈T (u), v〉 = 0 and since u ∈ Q∗ then 〈Q(u), v〉 = 0.
Consequently,

d

dt
〈u(t), v〉 = 0 ⇒ 〈u(t), v〉 = const.
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Corollary 2. Let T be a self adjoint operator and min {J(u)} = 0. If u(t), the
solution of the main flow Eq. (7), admits u(t) ∈ Q∗, then its projection on the
null space of J is preserved.

This corollary is a generalization of the first attribute of the Nossek & Gilboa
flow which guarantees that the mean of u is preserved. A more significant
consequence of Prop. 1 is that if u /∈ Q∗ the main flow can reach a steady
state only at “trivial” eigenfunctions, with λ = 0. This leads us to propose a
complementary flow which retains u ∈ Q∗.

2.5 Complementary flow

The above discussion emphasizes the importance of retaining u(t) to be in Q∗.
Following Remark 1 we define a complementary flow that aims at maintain-
ing E(u) → 0 without changing the value of J(u). Let us first compute the
variational derivative of E(u):

∂uE =
∑
i

〈Q(u), ei〉 · ∂Qi(u), (11)

where

∂Qi =
∑
j

(−1)j
dj

dxj

(
∂Q

∂u(j)
ei

)
,

and u(j) denotes the jth derivative of u. We would like the complementary flow
not to interfere with the main flow, and specifically not to increase J . A flow
that decreases E(u) on one hand and retains J(u) unaffected on the other hand
is:

ut = C(u) (12)

where

C(u) = −∂uE +
〈∂uE, T (u)〉
‖T (u)‖2

T (u).

Let us compute the time derivatives of J and E:

d

dt
J(u) =〈T (u), ut〉 = 〈T (u), C(u)〉

=〈T (u),−∂uE +
〈∂uE, T (u)〉
‖T (u)‖2

T (u)〉 = 0.
(13)

For E we have,

d

dt
E(u) =〈∂uE, ut〉 = 〈∂uE,C(u)〉

=− ‖∂uE‖2 +
〈∂uE, T (u)〉2

‖T (u)‖2
≤ 0,

(14)

where the last inequality follows Cauchy-Schwarz. Thus in the flow of (12)
E(u(t)) decreases with time whereas the value of J(u(t)) is unchanged. Note
that one should verify that ∂uE and ∂uJ are not exactly parallel with opposite
directions. The relations between ∂uE and ∂uJ are farther discussed in Sec. 5.
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3 Combined Flows

Constrained optimization problems in variational calculus are well studied, see
e.g. [18, 16, 15]. In light of Prop. 1 we would like our flow (7) to be constrained
to u ∈ Q∗. Otherwise, we will either not reach a steady state or reach a trivial
one (an eigenfunction of zero eigenvalue), which is usually not of interest. Such
constrained flows are tied, though not equivalent, to exact penalty methods,
as in [16, 15]. Inspired by these works, we couple the main flow (7) and the
complementary flow (12) as follows,

ut = M(u) + αC(u), (15)

where α ∈ R+ and M(u) and C(u) are as defined in the contexts of Eqs. (7)
and (12), respectively. This combined flow should retain the properties of the
main flow, while keeping E(u) zero (for α large enough). Let us now show that
(d/dt)E(u) and (d/dt)J(u) are nonpositive:

d

dt
J(u(t)) = 〈T (u), ut〉 = 〈T (u),M(u)〉︸ ︷︷ ︸

≤0

+α 〈T (u), C(u)〉︸ ︷︷ ︸
=0

≤ 0.

d

dt
E(u(t)) =〈∂uE, ut〉 = 〈∂uE,M(u)〉+ α〈∂uE,C(u)〉

=〈∂uE, s
Q(u)

‖Q(u)‖
− T (u)

‖T (u)‖
〉+ α

(
−‖∂uE‖2 +

〈∂uE, T (u)〉2

‖T (u)‖2

)

≤‖∂uE‖ −
〈∂uE, T (u)〉
‖T (u)‖

+ α

(
−‖∂uE‖2 +

〈∂uE, T (u)〉2

‖T (u)‖2

)

=

(
−‖∂uE‖+

〈∂uE, T (u)〉
‖T (u)‖

)
︸ ︷︷ ︸

≤0

(
−1 + α

(
‖∂uE‖+

〈∂uE, T (u)〉
‖T (u)‖

))
.

The inequality of the third row is based on Cauchy-Schwarz inequality, s〈∂uE,Q(u)〉/‖Q(u)‖ ≤
‖∂uE‖. If α� 1 and the elements ∂uE(u) and T (u) are not collinear (in oppo-
site directions) we can deduce that:

d

dt
E (u(t)) ≤ 0.

3.1 Towards a Discrete Setting

We propose in Algorithm 1 the general discrete iterations that approximate the
combined flow of (15). It is based on an explicit scheme for the time discretiza-
tion. The time step parameters dtC and dtM are not resolved here. A full
analysis and bounds on these time steps is given next, for the common case of
T (u) = −∆u.

Here, instead of choosing a specific α, the complementary flow is evolved (for
each time step of the main flow) until a certain accuracy is reached, with respect
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to being close enough to Q∗. This is analogous to having a time dependent α(t)
in (15). An illustration of the combined flow is shown in Fig. 1a where M(u) and
C(u) are invoked alternatingly. As discussed above, in the continuous setting
C(u) does not change the value of the functional J(u) and is along its level
lines. However, M(u) might cause u to be out of Q∗. The complementary
flow, C(u), “returns” u to Q∗ leaving J(u) unchanged. Note that in the exact
penalty algorithm [16] the flow is run in several iterations with increasing α.
The combined flow is repeated until the solution is close enough to an eigenpair
in terms of the respective angle (See Fig. 1b and Algo. 1).

Algorithm 1 Eigenpair Generating Flow

1: Inputs:
u0

2: Initialize:
δ, θth stop conditions
Compute θ0 according Eq. (16)

3: while θk > θth do
4: while E (u) > δ do

5: uk,l = uk,l−1 + uk,l−1
t · dtC (complementary flow)

6: end while
7: uk+1 = uk + ukt · dtM (main flow)
8: Compute θk+1 according Eq. (16)
9: end while

Our stopping condition is based on the absolute angle between T (u) and
Q(u),

|cos(θ)| = |〈T (u), Q(u)〉|
‖T (u)‖ · ‖Q(u)‖

. (16)

When the angle θ is zero, T and Q are collinear, and an exact eigenpair is

(a) J functional contour (b) The combined flow as finite state
machine

Figure 1: An illustration of the infinitesimally approximation of the combined
flow.
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attained. For numerical purposes, we seek a good approximation and stop
when θ is below a certain threshold. Further discussions related to the stopping
condition are in A.

3.2 Realization for T (u) = −∆u

As many phenomena are based on eigenpairs, in the sense of Eq. (1), with
T (u) the negative Laplacian operator, we devote the rest of this paper to that
particular case. In this case J is the Dirichlet energy,

J(u) =
1

2
‖∇u‖2.

It is clear that J admits the conditions of Eq. (1) and Eq. (5). The null space of
the Dirichlet energy is all functions in U of constant value. According to Cor. 2
it coincides with T ⊥. Therefore,

T ⊥ = {v ∈ U : v = const}.

The orthonormal basis of T ⊥ is

B =

{
1√
|Ω|

}
.

The energy functional E(u) is defined by,

E(u) =
1

2|Ω|
〈Q(u), 1〉2,

∂E =
1

|Ω|
〈Q(u), 1〉∂Q,

and ∂Q is the variational derivative of 〈Q(u), 1〉. Naturally, Q∗ is all u ∈ U such
that

∫
Ω
Q(u) dx = 0. The main and complementary operators, respectively, are,

M(u) = s
Q(u)

‖Q(u)‖
+

∆u

‖∆u‖
, (17)

where s = sign(〈Q(u),−∆u〉), and

C(u) = −∂uE +
〈∂uE,∆u〉
‖∆u‖2

∆u. (18)

In the following section we resolve the time step sizes for the discrete implemen-
tation when T is the negative Laplacian operator.

4 Implementation for the Laplacian operator

For the discrete implementation of the flow we follow the general algorithm pre-
sented in the previous section. However, instead of performing a full iterative

12



process of the complementary flow for each main time step, we perform a single
step. It is shown that for T = −∆, with an appropriate time step of the comple-
mentary flow, the energy E vanishes, up to a first order Taylor approximation.
We suggest the following iterations to approximate the combined flow: Initialize
with u0, iterate until convergence,

uk+ 1
2 =uk +M(uk) · dtM

uk+1 =uk+ 1
2 + C(uk+ 1

2 ) · dtC .
(19)

In the rest of this section we set bounds for dtM and dtC , to ensure stable
flows. These bounds guarantee that in every cycle (from k to k + 1) we obtain
J(uk)− J(uk+1) ≤ 0 and E(uk) ∼= 0, ∀k.

4.1 Characterization of J(u) and E(u) within the Discrete
Setting

We now proceed with analyzing the behavior of J(uk) and E(uk) using the
iterations of (19), where M(uk) and C(uk) are defined by (17) and (18). For
simplicity, we use the same notations of gradient (∇) and Laplacian (∆) for the
discrete operators.

4.1.1 Main Flow Iteration

We first analyze the influence of an iteration of the main flow (first row of
Eq. (19)) on the functional J . We use the standard first order backward differ-
ence time-step approximation of explicit schemes. We examine the change in J
at iteration k, denoted by Dk

J , following a time step of the main flow:

Dk
J :=J(uk+ 1

2 )− J(uk)

=J
(
uk + dtM ·M(uk)

)
− J(uk).

Using the identity J(u) = 1
2 〈−∆u, u〉 yields:

Dk
J =

1

2

(
〈−∆

(
uk + dtM ·M(uk)

)
, uk + dtM ·M(uk)〉 − 〈−∆uk, uk〉

)
=dtM 〈−∆uk,M(uk)〉+

1

2
dt2M

∥∥∇M(uk)
∥∥2
.

(20)

According to Theorem 1 the expression 〈∆uk,M(uk)〉 is non-negative, thus, if

0 ≤ dtM ≤ 2
〈∆uk,M(uk)〉
‖∇M(uk)‖2

(21)

then Dk
J ≤ 0.

Let us now examine the influence of the main flow on the functional E. We
assume E(uk) is approximately zero (up to a first order Taylor approximation),

13



to be justified in the next paragraph. The Taylor approximation of E(uk+ 1
2 )is

given by:

E(uk+ 1
2 ) =

1

2|Ω|
〈Q(uk+ 1

2 ), 1〉2

=
1

2|Ω|
〈Q(uk + dtMM(uk)), 1〉2

=
1

2|Ω|
(
〈Q(uk), 1〉+ dtM 〈∂Q(uk),M(uk)〉+O(dt2M )

)2
∼=

1

2|Ω|
(
〈Q(uk), 1〉+ dtM 〈∂Q(uk),M(uk)〉

)2
Under the assumption E(uk) is approximately zero (i.e. 〈Q(uk), 1〉 ∼= 0) we
have,

Dk
E :=E(uk+ 1

2 )− E(uk)

∼=E(uk+ 1
2 )

∼=dt2M ·
〈∂Q(uk),M(uk)〉2

2|Ω|
.

(22)

4.1.2 Complementary flow iteration

We now analyze the influence of the complementary flow (second row of Eq. (19))
on the energies J and E. Here we begin with the analysis of E(u).

D
k+ 1

2

E :=E(uk+1)− E(uk+ 1
2 )

=E(uk+ 1
2 ) + dtC · 〈∂E(uk+ 1

2 ), C(uk+ 1
2 )〉+O(dt2C)− E(uk+ 1

2 )

∼=dtC · 〈∂E(uk+ 1
2 ), C(uk+ 1

2 )〉.

The step size for which E(uk+1) vanishes, as a first order approximation, is
therefore

dtC = − E(uk+ 1
2 )

〈∂E(uk+ 1
2 ), C(uk+ 1

2 )〉
. (23)

The step size dtC is positive since the denominator is negative (according to
Eq. (14)).

Finally, we examine the influence of the complementary flow on the func-
tional J . The change of J along one time step of the complementary flow is

D
k+ 1

2

J :=J(uk+1)− J(uk+ 1
2 )

=
1

2

(
〈−∆uk+1, uk+1〉 − 〈−∆uk+ 1

2 , uk+ 1
2 〉
)

=
1

2

(
〈−∆(uk+ 1

2 + dtC · C(uk+ 1
2 )), uk+ 1

2 + dtC · C(uk+ 1
2 )〉 − 〈−∆uk+ 1

2 , uk+ 1
2 〉
)
.
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Note that according to Eq. (13) 〈∆uk+ 1
2 , C(uk+ 1

2 )〉 = 0 and therefore

D
k+ 1

2

J = dt2C

∥∥∥∇C(uk+ 1
2 )
∥∥∥2

.

Using Eq. (23),

D
k+ 1

2

J = E2(uk+ 1
2 )

∥∥∥∇C(uk+ 1
2 )
∥∥∥2

〈∂E(uk+ 1
2 ), C(uk+ 1

2 )〉2
. (24)

Algorithm 2 Eigenpair Generation for the Laplacian Operator

1: Inputs:
u0

2: Initialize:
C(u0), Eq. (18)
dtC , Eq. (23)
u1 = u0 + C(u0) · dtC
Set threshold θth

θ1, Eq. (16)
3: while θth < θk do
4: uk+ 1

2 = uk + dtM ·M(uk), Eq. (30)

5: C(uk+ 1
2 ), Eq. (18)

6: dtC , Eq. (23)

7: uk+1 = uk+ 1
2 + C(uk+ 1

2 ) · dtC
8: θk+1, Eq. (16)
9: end while

4.1.3 Conditions for the monotonic decrease of J

Following the above constraints on the time step sizes of both flows we can now
analyze the change in J for the entire flow, Eq. (19),

J(uk+1)− J(uk) =D
k+ 1

2

J +Dk
J . (25)

We would like to find a bound on dtM which ensures J(uk+1) − J(uk) ≤ 0.

Substituting for D
k+ 1

2

J and Dk
J by Eqs. (24) and (20), respectively, we have,

J(uk+1)− J(uk) =E2(uk+ 1
2 )

∥∥∥∇C(uk+ 1
2 )
∥∥∥2

〈∂E(uk+ 1
2 ), C(uk+ 1

2 )〉2
+

dtM 〈−∆uk,M(uk)〉+
1

2
dt2M

∥∥∇M(uk)
∥∥2
.
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The term E(uk+ 1
2 ) is evaluated according to the first order approximation of

Eq. (22) to obtain,

J(uk+1)− J(uk) ∼=dt4M ·
〈∂Q(uk),M(uk)〉4

4|Ω|2
·

∥∥∥∇C(uk+ 1
2 )
∥∥∥2

〈∂E(uk+ 1
2 ), C(uk+ 1

2 )〉2
+

dtM 〈−∆uk,M(uk)〉+
1

2
dt2M

∥∥∇M(uk)
∥∥2
.

(26)

A deeper analysis shows that when the directions of ∂E(u) and ∆u are far
enough from being collinear the fourth order term is small and thus can be omit-
ted. After neglecting the fourth order term on the right-hand-side of Eq. (26)
the inequality coincides with Eq. (21). We now use the following inequality
based on the operator norm of the discrete gradient:

‖∇u‖2 ≤ 4d

h2
‖u‖2, (27)

where d is the dimension and h is the spatial grid size. Based on the expression
on the right-hand-side of Eq. (21), and the definition of M(u) for the Laplacian
case, (17), we have

2
〈∆uk,M(uk)〉
‖∇M(uk)‖2

≥ h2

2d

〈∆uk,M(uk)〉
‖M(uk)‖2

=
h2

2d

|〈∆uk,Q(uk)〉|
‖Q(uk)‖ +

∥∥∆uk
∥∥

2 + 2 |〈∆u
k,Q(uk)〉|

‖∆uk‖·‖Q(uk)‖

=
h2

4d

∥∥∆uk
∥∥.

(28)
Therefore, to ensure the expression in (26) is negative, we set the following
bound on the time step size,

dtM ≤
h2

4d

∥∥∆uk
∥∥. (29)

According to Eq. (20), Dk
J depends on dtM quadratically, therefore, the optimal

dtM is half of the upper bound. Consequently, we choose

dtM =
h2

8d

∥∥∆uk
∥∥. (30)

Typical values of dtM in our experiments were in the range [0.002, 0.6] for one
dimension and [0.05, 0.13] for two dimensions. These values highly depend on
the noise level. A detailed description of the algorithm, in the case of the
Laplacian operator, is presented in Algorithm 2.

4.2 Interpretations

Let us revisit Eq. (1) and the main flow. Given uk we can evaluate the eigenvalue
according to Eq. (9) and define the error of the solution uk as:

err(uk) = −∆uk − λ(uk) ·Q(uk) (31)
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which is zero if uk is an eigenfunction. In addition, by using the expression of
dtM in Eq. (30), we can calculate the change of u at the kth step as,

uk+ 1
2 − uk =M(uk) · dtM

=
h2

8d

(
∆uk + sign(〈Q(uk),−∆uk〉)

∥∥∆uk
∥∥

‖Q(uk)‖
Q(uk)

)

=
h2

8d

(
∆uk + λ(uk) ·Q(uk)

)
=− h2

8d
· err(uk).

(32)

We note that [26] suggests a general eigenvalue approximation by: λ(u) =
〈−∆u, f(u)〉/〈Q(u), f(u)〉 with an arbitrary operator f(u) as long as this ratio
exists. In particular we can have f(u) = u. Then we can replace Line 4 in
Algo. 2 with Eq. (32) using other eigenvalue evaluations. We can conclude that
any flow in the sense of Eq. (32) with an eigenvalue approximation for which
Theorem 1 holds, the later properties of Sec. 2 (Lemma 1 and Prop. 1) also hold.
This conclusion is valid not only for T (u) = −∆u but for any operator T (u)
admitting Eq. (1). However, different step size constraints should be found.

5 Applications

In this section we present several numerical experiments using the proposed
method. We compare our results with NCGM introduced in [39]. NCGM as-
sumes the eigenvalue is given, therefore we supply the correct eigenvalue to
the algorithm. In addition, we compare our method to an adaptive version of
NCGM when the eigenvalue is not given (thus the task is to find a full eigenpair,
as our flow does). The eigenvalue is approximated at each iteration based on
[26]. We denote this method by Adaptive NCGM (ANCGM).

5.1 1 Dimension

5.1.1 Soliton Equations

In 1895 Korteweg Vries (KdV) formulated a mathematical model of waves on
shallow water surfaces which were previously described by Russell. Later studies
have shown that the KdV equation is the continuum limit of a discrete nonlinear
mass-spring model [30]. The formulation by Kruskal and Zabusky [42] for such
phenomena was:

ut + uux + δ2uxxx = 0,

with δ a small real scalar. Reformulating this expression for a stationary wave
yields the following equation:

−uXX = λ

(
−cu+

u2

2

)
, (33)
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where c is the wave velocity, X = x − ct and λ = δ−2. Naturally, λ can be
understood as an eigenvalue. In this example we have Q(u) = −cu+u2/2. The
solution to this equation models well a family of solitary waves referred to as
solitons, (named by Kruskal and Zabusky). In this case an analytic solution can
be formulated, which makes it feasible to compare the experimental results to
the ground truth. The solution for (33) is:

u(X) = 3c · sech2

(√
c · λX

2

)
.

The implementation of our flow is based on Algo. 2, where for solving Eq. (33)
we have:

Q(u) = −cu+
u2

2
,

∂Q(u) = −c+ u,

∂uE = 〈Q(u), 1〉 (−c+ u) .

The operators in NCGM [39] are:

L = ∆ + λ (c− u) ,

M = ∆ + λ · c,

where λ is given. The notations L andM are taken from [39] (not to confuse with
M(u) of our algorithm). In the adaptive version, ANCGM, λ is approximated
by λ(u) = 〈−∆u, u〉/〈Q (u) , u〉.

5.1.2 Experimental setup

In our experiments we initialize with the a noisy version of the solution, by
adding white Gaussian noise N of a certain variance to the analytic solution for
some given λ. Note that we also allow some bias in the simulated measurements
so the noise mean in not zero. The noise parameters are denoted by a normal
distribution N ∼ N (µ, σ2), with mean µ and variance σ2. We employ the
aforementioned algorithms with a stopping condition θth ≤ 2◦ (where θ is the
angle between T and Q, as defined in (16)).

In Fig. 2 the results of the generated eigenfunctions are shown. The noise
parameters are µ = 0.1 with variance values of σ2 = 0.2 and σ2 = 0.36, for the
first and second experiments, respectively. For this relatively simple case we
compare our results to ANCGM, where both algorithms try to find an eigenpair
(λ is not known). We show that our algorithm is quite stable, for different levels
of noise. ANCGM on the other hand, collapses to the trivial solution (−∆u =
λQ(u) = 0) for high noise levels (and is less accurate also for moderate noise).
We should emphasize that our algorithm runs considerably more iterations than
ANCGM. However, our iterations are very fast, as they are based on explicit
forward-flow computations, compared to computationally-intensive iterations of
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(a) N ∼ N (0.1, 0.2) (b) N ∼ N (0.1, 0.36)

Figure 2: A comparison of eigenpair generating algorithms for KdV equation
with different noise levels. In Fig. 2a we summarize the results of ANCGM and
our flow when the initial function u0, red solid line, is an eigenfunction with
additive white Gaussian noise (of mean of 0.1 and variance of 0.2). In Fig. 2b
we repeat the experiment with higher level of noise (variance is 0.36).

ANCGM which involve inversion. Overall, the computations are comparable.
The running time (using Matlab code) in the experiment with variance 0.2 are
t = 0.336[sec] for ANCGM and t = 0.1[sec] for our algorithm. For variance
0.36, it was t = 1.7[sec] for ANCGM and t = 1.19[sec] for ours.

According to Theorem 1, the main flow reaches a steady state when an eigen-
pair is attained. Thus, it is expected that if ut = 0 then sign(〈Q(u),−∆u〉)Q(u)/‖Q(u)‖ =
−∆u/‖∆u‖. In Fig. 3 we plotted sign(〈Q(u),−∆u〉)Q(u)/‖Q(u)‖ and−∆u/‖∆u‖.
Moreover, on the top left side of these plots we present the approximated eigen-
value λ = 〈−∆u, u〉/ 〈Q (u) , u〉 and the computed pointwise ratio λ(x) =
−∆u(x)/Q(u(x)) (u(x) is the result of our algorithm at convergence). One
can observe these graphs coincide very well. In Fig. 4 the values of J(u(t)) and
the mean of u(t) as a function of t are shown. Our theoretical analysis predicts
J(u(t)) should be decreasing with time (Theorem 1 in the time continuous case
and the bound on dtM of Eq. (29) in the discrete setting). Moreover, since u(t)
is very close to Q∗, the mean of u(t) should be almost constant in time (Prop. 1,
item 2). It is shown that the numerical implementation approximates well the
theoretical analysis.

5.1.3 Low SNR

An essential assumption of algorithms based on linearization, such as NCGM,
is that the initial guess u0 is close enough to the true solution. In this example
we try to demonstrate what happens when this assumption is not valid. In
this experiment we initialize with the eigenfunction corresponding to λ = 2
and c = 0.25 and add noise with normal distribution N ∼ N (0.25, 0.25). We
compared our algorithm and NCGM, giving both of them this initial function
(and additionally providing NCGM the correct λ). Fig. 5 shows the results of
this experiment. In Fig. 5a the eigenfunction u∗, the initial function u0, our
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(a) N ∼ N (0.1, 0.2) (b) N ∼ N (0.1, 0.36)

Figure 3: We show here that our algorithm indeed reaches an eigenpair. The
results of T/‖T‖ and sQ/‖Q‖ are shown when the algorithm converges for the
KdV equation. One can observe they coincide very well. The black solid line
stands for sQ(u)/‖Q(u)‖ and dashed yellow line is −∆u/‖∆u‖. In left top side
the approximated λ∗ = 〈−∆u∗, u∗〉/〈Q (u∗) , u∗〉 is plotted with dashed red line
and the solid blue line is the ratio −∆u/Q(u).

(a) N ∼ N (0.1, 0.2) (b) N ∼ N (0.1, 0.36)

Figure 4: The value of J(uk) and the mean of uk (right top axis) as a function of
iteration number k when applying our flow on KdV for the experiments depicted
in Fig. 2.
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(a) N ∼ N (0.25, 0.25) (b) Two opposite counterparts
of ut.

(c) J(u) and mean of u (right
top axis) as a function of the it-
eration number.

Figure 5: Experiment when the premise
∥∥u∗ − u0

∥∥ << 1 does not hold. Fig. 5a
summarizes the result of NCGM and our flow when the initial function is far
from the eigenpair (high level of noise). Whereas NCGM collapses to the trivial
solution our flow reaches a meaningful solutions. In Fig. 5b it is demonstrated
that a good eigenpair approximation is attained. In Fig. 5c the evolution of J
and the mean of u as a function of number of iterations are presented.

algorithm and NCGM results are plotted. Our algorithm converges to another
eigenfunction whereas NCGM collapses to a trivial solution. Fig. 5b illustrates
the similarity of the two opposite normalized counterparts of the flow ut, i.e.
sQ(u)/‖Q(u)‖ and−∆u/‖∆u‖ showing we indeed approximate an eigenfunction
well. In Fig. 5c the value of J and the mean of u are plotted as a function of
iteration.

5.1.4 One Dimensional Nonlinear Schrdinger (NLS) Equation

In this part we would like to emphasize the simplicity of our approach. Our
algorithm is easy to adjust to other applications and the adjustment amounts
to redefining Q(u) and its variational derivative. We demonstrate this by the
NLS equation as discussed in [35, 43]:

i
∂u

∂t
+
∂2u

∂x2
− k
∣∣u2
∣∣u = 0.

To find a stationary solution we assign u(x, t) = u(x)eiµ(u)t. This yields −uxx =

−µ(u)u−ku3, which can be rewritten as −uxx = λ(−µ̂(u)u− k̂u3) with µ̂(u) =

1− 3u2 and k̂ = 2. Finally we reach the problem formulation of (1),

−uxx = λ(u3 − u).

Therefore, we have
Q(u) = u3 − u,
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(a) Numerical eigenpair result. (b) Two counterparts of ut. (c) J and the mean of u as a
function of iteration number.

Figure 6: One dimension NLS equation. The initial function u0 is an eigen-
function with additive noise, µ = 0, σ2 = 0.45. Our algorithm result is shown
in Fig. 6a. In Fig. 6b the two counterparts of the main flow are shown when
an eigenpair is attained. The functional J and the mean of u are presented in
Fig. 6c. NCGM diverges in this experiment and ANCGM converges to a trivial
solution (λ = 0). Both of these results are not in the same scale as the initial
signal u0 and therefore are not presented.

and
∂Q(u) = 3u2 − 1.

We initiate the algorithm with u0 = u∗ + N where u∗ is the eigenfunction
u(x) =

√
2 sech (

√
λx) and N ∼ N (0, 0.45), see Fig. 6. We similarly initiate

the algorithms NCGM and ANCGM. The first diverges and the second one
converges to the trivial solution, λ = 0. Both of these results are not in the
same scale as the initial signal and therefore are not plotted.

5.2 Two Dimensions NLS Equation

The following experiment is based on Example 3.4 from [39] and demonstrates
the performance of our algorithm in 2D. We apply our algorithm on NLS equa-
tion with periodic potentials which models nonlinear light propagation as well
as Bose-Einstein condensate’s dynamics in optical lattices. It is formulated as:

iUt + Uxx + Uyy − V0

(
sin2x+ sin2y

)
U + σ|U |2U = 0.

This equation is discussed in details in [14, 28, 36] and admits a rich variety of
solitary waves of the form of U(x, y, t) = u(x, y)e−iµt, where u(x, y) satisfies the
equation:

uxx + uyy − V0

(
sin2x+ sin2y

)
u+ σ|u|2u = −µu.

In our example µ = 4.11, V 0 = 6 , σ = 1 and Dirichlet boundary conditions
are used. There is no known analytic solution for these equations. The initial
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(a) The initial function u0 (b) Result of NCGM (c) Angle Vs. Iterations,
NCGM

(d) J(u) and mean of u (right
top axis)

(e) Our flow’s result (f) Angle Vs. Iterations, ours

Figure 7: Two dimension NLS.

function of our algorithm is u0 (x, y) = 1.15 sech
(√

x2 + y2
)

. The settings for

our flow are:

Q(u) = −V0

(
sin2 x+ sin2 y

)
u+ σu3 + µu,

∂Q(u) = −V0

(
sin2 x+ sin2 y

)
+ 3σu2 + µ.

The results of our algorithm and NCGM with u0 are summarized in Fig. 7.
In Fig. 7a the initial guess u0 is shown. The results of NCGM and our flow
are presented in Figs. 7b and 7e, respectively, and the angle evolutions along
iterations are presented in Figs. 7c and 7f. In Fig. 7d we show the behavior of
the functional J and the mean of u as a function of time.

We performed a similar experiment of the problem with noise level ofN (0, 0.0125).
The result of the experiment are similarly organized in Fig. 8. It is easy to see
that NCGM converges approximately to the linear case with very small ampli-
tude signal.
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(a) Initial function u0 (b) Result of NCGM (c) Angle Vs. Iterations,
NCGM

(d) J(u) and mean of u (right
top axis)

(e) Our flow’s result (f) Angle Vs. Iterations, ours

Figure 8: Two dimension NLS with noisy initial function.
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Figure 9: Function decomposition. On the left column, the dashed red line is the
initial signal u0, which is a combination of two eigenfunctions (λ = 0.25, λ =
4). The blue solid lines are the reconstructions of the signal up to the kth

eigenfunction, i.e. f̂k =
∑k
i=1 αk · φk as described in Algo. 3. On the right

column, we show the eigenfunctions found by Algo. 3, in the respective order.
The first two functions are very similar to the original ones. The third one is a
residual function of low amplitude (dominated by the linear part).

5.3 Decomposition into Eigenfunctions

A signal may be modeled in some cases by a linear combination of nonlinear
eigenfunctions. In this case we would like to decompose it into its basic elements.
We suggest below a simple iterative algorithm to perform that (Algo. 3). In
Fig. 9 we show an example of such a decomposition for the case of KdV. We
compute the eigenfunctions φ1, φ2, φ3 with respective eigenvalues λ1, λ2, λ3. We
used as initial condition a combination of two eigenfunctions of KdV (with
eigenvalues λ = 0.25, λ = 4). One of them is translated in space (therefore their
correlation is low). In the decomposition results, the first two eigenfunctions
are very similar to the original ones. The third one is of small amplitude. In
that case the linear part becomes dominant and the problem reduces to finding
eigenfunctions of the ordinary heat equation. Thus, we get a harmonic function.

6 Conclusions

In this paper we presented a new nonlinear flow which can generate a very
broad family of nonlinear eigenfunctions. The flow reaches a steady state only
for eigenpairs. Moreover, the process is a forward flow, which is based on the
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Algorithm 3 Nonlinear Eigenfunction Decomposition

1: Inputs:
u0

2: while ‖uk−1‖ > th do
3: Find an eigenpair (φk, λk) using Algo. 2

4: αk = 〈uk−1,φk〉
‖φk‖2

5: uk = uk−1 − αk · φk
6: end while
7: Compute the approximated function f̂k =

∑k
i=1 αk · φk

original operators and does not need their inversion. We thus obtain a very
stable process and our assumptions regarding the operators are less restrictive.
When T is the negative Laplacian operator, we prove that the flow decreases
the Dirichlet energy. This yields a highly stable smoothing process, which is
robust to noise.

We introduced the space Q∗, where all nontrivial eigenfunctions reside in,
and explained the requirement of the flow to be constrained to this space. A
complementary flow was proposed in order to achieve this requirement. We have
tested our algorithm on several nonlinear eigenvalue problems in one and two
dimensions, and have shown the stability of the algorithm and its robustness
to various initial conditions. Finally, it was demonstrated how potentially our
process can be used iteratively, in order to decompose a signal into a linear
combination of eigenpairs.

A Considerations for the stopping condition

Implementations of numerical solutions are concerned with issues related to
the appropriate stopping condition. As T (u) and Q(u) are fully correlated
when eigensolution of Eq. (1) is attained, the most natural criteria is the angle
between them (see Eq. (16)). Other criteria worth mentioning are (d/dt)J(u)
Eq. (8) and ‖M(u)‖ which are shown to be zero when an eigenpair is reached.
The norm of the main flow can be calculated as:

‖M(u)‖ =
√

2

√
1− |〈Q(u), T (u)〉|
‖Q(u)‖ · ‖T (u)‖

. (34)

If u /∈ Q∗ then ∃e ∈ B s.t. 〈Q(u), e〉 6= 0. Let us denote the projection of Q(u)
on T ⊥ as:

Q⊥(u) =
∑
ei∈B

ei · 〈Q(u), ei〉 6= 0,

and the “residue” of Q(u) as:

Q‖(u) = Q(u)−Q⊥(u).
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As E(u) is positive we get the following inequalities:

|cos(θ)| = |〈T (u), Q(u)〉|
‖T (u)‖ · ‖Q(u)‖

=

∣∣〈T (u), Q‖(u)〉
∣∣

‖T (u)‖ · ‖Q(u)‖

≤
∥∥Q‖(u)

∥∥
‖Q(u)‖

=

∥∥Q‖(u)
∥∥√∥∥Q‖(u)

∥∥2
+ 2E(u)

and similarly

‖M(u)‖ =
√

2

√
1− |〈Q(u), T (u)〉|
‖Q(u)‖ · ‖T (u)‖

≥
√

2

√√√√1−
∥∥Q‖(u)

∥∥√∥∥Q‖(u)
∥∥2

+ 2E(u)
,

d

dt
J(u) ≤

 ∥∥Q‖(u)
∥∥√∥∥Q‖(u)

∥∥2
+ 2E(u)

− 1

 ‖T (u)‖.

As long as E(u) > 0 our analysis has shown that a precise eigenfunction cannot
be obtained. However, one can set a small threshold on E(u), for example, if
E(u) ≤ δ we have:

‖M(u)‖th =
√

2

√√√√1−
∥∥Q‖(u)

∥∥√∥∥Q‖(u)
∥∥2

+ 4δ

d

dt
J(u)th =

 ∥∥Q‖(u)
∥∥√∥∥Q‖(u)

∥∥2
+ 4δ

− 1

 ‖T (u)‖

|cos(θ)|th =

∥∥Q‖(u)
∥∥√∥∥Q‖(u)

∥∥2
+ 4δ

.

(35)

We note that the above discussion concerns the true evolution in the time con-
tinuous setting. However its implications can naturally affect the numerical
algorithms.
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