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Abstract. We study the class of Borel equivalence relations under continuous reducibility. In partic-
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analogous results for the Borel equivalence relations with countably many equivalence classes. We
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1 Introduction

The present paper is about descriptive set theory, which is the study of definable subsets of Polish
spaces (recall that a topological space is Polish if it is separable and completely metrizable). The
reader should see [K1] for the standard descriptive set theoretic notions and notation. The most
classical hierarchy of topological complexity in descriptive set theory is the one given by the Borel
classes. If T' is a class of subsets of the metrizable spaces, then I':= {=S | S € T'} is its dual class.
Recall that the Borel hierarchy is the inclusion from left to right in the following picture:

%9 =open S)=F, 20=Uyee Mo
A =clopen AJ=%9NT1IY AQ:ZQHHQ

9 =closed 9=Gjs 1) =%

This hierarchy is strict in uncountable Polish spaces, in which the non self-dual classes are those of
the form 22 or Hg. In the sequel, by non self-dual Borel class, we mean exactly those classes.

The study of Borel equivalence relations under Borel reducibilty is one of the major topics in
descriptive set theory since more than three decades now. Several important dichotomy results con-
cerning the Borel equivalence relations have been proved (see, for example, [S], [Ha-K-Lo], [H-K]).
They are of the following form: a relation is either simple, or more complicated than a typical compli-
cated relation. Several quasi-orders have been used to compare the Borel equivalence relations (recall
that a quasi-order is a reflexive and transitive relation). The most common is Borel reducibility.
Recall that if X, Y are topological (or standard Borel) spaces and £ C X2, FCY?,

(X,E) <p (Y, F) & 3f: X =Y Borel with E=(f x f)"}(F)

(we say that f reduces E to ['). However, very early in the theory, the quasi-order C. of injective
continuous reducibility defined by

(X,E) C. (Y, F) < 3f: X =Y injective continuous with E=(f x f)"1(F)
has also been considered, for example in the main result of [S].

Theorem 1.1 (Silver) Let E be a co-analytic equivalence relation on a Polish space X. Then exactly
one of the following holds:

(a) the relation E has countably many equivalence classes,
(D) (20.)’ :) L. (X7 E)

The quasi-order <. of continuous reducibility can also be mentioned. We are interested in the
descriptive complexity of Borel equivalence relations on Polish spaces. In order to approach this
problem, it is useful to consider invariants for the considered quasi-order. In the context of Borel
relations on a Polish space, a natural invariant for Borel reducibility has been studied, the notion of
potential complexity (see, for example, [L2], [L3], and [Lo2] for the definition). A Borel relation R
on a Polish space X is potentially in a Wadge class I' if we can find a finer Polish topology 7 on X
such that R is in T" in the product (X, 7)2.



This is an invariant in the sense that any relation which is Borel reducible to a relation potentially
in I" has also to be potentially in I". Along similar lines, any relation which is continuously reducible
to a relation in I" has also to be in I'. Moreover, the pre-image of an equivalence relation by a square
map is an equivalence relation, which is not the case with arbitrary continuous maps. This motivates
the work in the present paper. We are looking for characterizations of the Borel equivalence relations
either in a fixed Borel class I', or whose equivalence classes are in I'.  So we will consider the
continuous and injective continuous reducibilities. In other words, we want to give answers to the
following very simple questions.

Questions. (1) When is a Borel equivalence relation 22 (or Hg)?

(2) When are the equivalence classes of a Borel equivalence relation 22 (or Hg)?

Question (1) is the most natural one. Question (2) is also natural, in particular when we think
about classical uniformization results for instance (see Section 18 in [K1]). As we will see, it turns
out that the solution to Question (2) is an important step towards the solution to Question (1) (see
Theorem 4.3). There are several possible approaches to try to solve these problems. One can try an
approach “from above”, which means finding a relation universal for (i.e., above for the considered
quasi-order) the relations in I'. For instance, it is known that there is a universal K, equivalence
relation for Borel reducibility (see [R]). It is an open and difficult problem to find a universal Fi,
equivalence relation for Borel reducibility, and thus for continuous reducibility also. In this paper,
we will follow another approach, “from below”, which means that we will prove dichotomies of
the form above. In particular, we will be able to characterize the F}, equivalence relations this way.
We provide a complete solution for the Borel equivalence relations with some countability property,
namely those with countably many equivalence classes and those with countable equivalence classes.
In order to describe this, we now introduce, for some Borel classses I" and some natural numbers n,
useful examples of complex equivalence relations EL ¢ T

Notation. Let T be a non self-dual Borel class, K be a metrizable compact space, and C € T'(K)\T.

If the rank of T' is one (i.e., if T' € {29, TI9}), then we set K:= {0} U {27% | k € w} CR,
C:={0}if I'=X9, and C:=K\ {0} if T =TI?, since we want some injectivity results.

If the rank of T is at least two, then we set K:=2%, and C N N, € I'(N,)\T for each s € 2<% (we
will check that this is possible). In particular, C is dense and co-dense in 2“. We set

C:={aec2” | Incw a(n)=1}

if =39, and C:={a €2 | V*ncw a(n)=0} if T =TII9, for injectivity reasons again. In the
sequel, we will say that K or C is as above if it satisfies all the properties mentioned here.

Examples. We introduce two equivalence relations on K. We set
v Ef y & (2,y€C)V (z=y),

rET y & (2,y€C) Vv (z,y¢C).

° °
Note that ;"' =E;™.
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We solve Question (2) for the Borel classes of rank at most two. Recall that if (@), <) is a quasi-
ordered class, then a basis is a subclass B of () such that any element of () is <-above an element of
B. We are looking for basis as small as possible, so in fact for antichains (an antichain is a subclass
of () made of pairwise <-incomparable elements). So we want antichain basis. We set

L [{®ED}fr=IT,
A=
{(K,EL) | n<1} if T =X or the rank of T is two.

Most of our results will hold in analytic spaces and not only in Polish spaces. Recall that a separable
metrizable space is an analytic space if it is homeomorphic to an analytic subset of a Polish space.

Theorem 1.2 Let T’ be a non self-dual Borel class of rank at most two, K, C as above, X be an
analytic space, and E be a Borel equivalence relation on X. Then exactly one of the following holds:

(a) the equivalence classes of I/ are in T,
(b) there is (X, E) € AL such that (X,E) C. (X, E).

Moreover, AT is a <.-antichain (and thus a C. and a <.-antichain basis).

In order to state our results concerning Question (1), we introduce some other examples of com-
plex equivalence relations.

Examples. We define three equivalence relations on H:=2x K. We set

(e,2) EY (n,y) & (e,2)=(n,y) V (z=y€C),

(e,2) EY (n,y) & (e,2)=(n,y) V(z=yeC)V (n=e=1Az,y¢C),

(e,2) EY (n,y) & (e,2)=(n,y) V(z=yeC) V (n=c Az,y¢C).

i IT

119 9 .
Note that £, ' =E. ' =E;'. We solve Question (1) for the Borel classes of rank at most two. We set

Pif T=x9,
BY:=AT U { {(H,ED)}if =119,
{(H,EL) | 3<n <5} if the rank of T is two.
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Theorem 1.3 Let T be a non self-dual Borel class of rank at most two, K, C as above, X be an
analytic space, and E be a Borel equivalence relation on X. Then exactly one of the following holds:

(a) the relation E is a T subset of X2,
(b) there is (X, E) € BY such that (X,E) C. (X, E).

Moreover, BY is a <.-antichain (and thus a C. and a <.-antichain basis).
In particular, this characterizes the F), equivalence relations, from below.

Remarks. (1) This result contrasts with the case of potentially open equivalence relations. Indeed, by
Silver’s theorem, if F is a Borel equivalence relation on a Polish space X, then either E is potentially
open, or (2¥, A(2¥)) C. (X, E) (where A(X):={(z,y) € X? | z =y} is the diagonal of X, see
[SD. So there is a C.-minimum non-potentially open Borel equivalence relation, and no C.-minimum
non-open Borel equivalence relation.



(2) This result also contrasts with the case of potentially closed equivalence relations. Indeed, by the
Harrington-Kechris-Louveau theorem, if E is a Borel equivalence relation on a Polish space X, then
either E is potentially closed, or (2¥,Eg) C. (X, E) (where

Fo:={(a, B)€(2°)? | Y°necw a(n)=4(n)},

see [Ha-K-Lo]). So there is a C.-minimum non-potentially closed Borel equivalence relation, and no
C .-minimum non-closed Borel equivalence relation.

(3) As mentioned in [C-L-M], there is no equivalence relation which is <g-minimum among non-
potentially in I Borel equivalence relations if I' O Eg is a Borel class. Theorem 1.3 gives a C,-
antichain basis among non-X9 Borel equivalence relations. This leads to the question of knowing
whether there is a < g-antichain basis among non-potentially 39 Borel equivalence relations.

We now turn our attention to the class € of countable Borel equivalence relations. Recall that an
equivalence relation is countable if all its equivalence classes are countable. The class € has been
widely studied (see, for instance, [J-K-Lo], [K2]). This class is extremely big. For instance, Adams
and Kechris proved in [A-K] that we can embed the quasi-order of inclusion on the Borel subsets
of R into the quasi-order of Borel reducibility on €. Moreover, the Feldman-Moore theorem (see
18.16 in [K1]) says that such relations are induced by a Borel action of a countable group, and the
study of Borel actions of Polish groups is currently a very active area of research. Theorem 1.3 solves
Question (1) for the Borel classes of rank at most two. Our main result, which solves Question (1) for
the other Borel classes in the case of countable equivalence relations (and in fact more), is as follows.

Theorem 1.4 Let T be a non self-dual Borel class of rank at least three, C as above, X be an analytic
space, and E be a Borel equivalence relation on X with F, classes. Then exactly one of the following
holds:

(a) the relation E is a T subset of X2,

(b) (H,EY) C. (29, E).

Theorem 1.4 can be extended to the first ranks, using Theorem 1.3. The set {(H, EL)} has to be

replaced with
{(K,E), (K,EF)} if D=5,

{(K,Ef), (H,EF)} if T € {TI}, TI3},

{(H,EL) | 3<n<5}if =X,

since E has F}; classes. So we completely solved Questions (1) and (2) for countable equivalence
relations.

In the case of Borel reducibility, the Borel equivalence relations with countably many equivalence
classes are trivial. We can pick a point in each equivalence class, which Borel reduces such a relation
to (k, =), where k <w is an ordinal, and the reduction works in both directions. The situation is much
more complicated in the case of continuous reducibility. We solve Question (2) for these relations.



Theorem 1.5 Let £ > 1 be a countable ordinal, K as above, C € Eg(K) not in Hg (as above if £ <2),
X be an analytic space, and E be a Borel equivalence relation on X with countably many classes.
Then exactly one of the following holds:

(a) the equivalence classes of E are Hg,
0
(b) (K,E, ) T, (X, E).

IfT'= 22 with & > 3, then we will have to consider another equivalence relation on 2*. We can

write “C =J,,c,, Cy, where (C,)nec. is a sequence of pairwise disjoint Ag sets (which will not be
arbitrary and be given by Theorem 1.10 to come, as we will see). We set

20
zE,* y & (z,yeC)V (Fncw z,yeC,).

EO 20 20 EO EO
Note that tC E, tC E, £. Also, we set E, ‘.= E, < if & <2 since the C,,’s are singletons in this

case.

Theorem 1.6 Let £ > 1 be a countable ordinal, K as above, C € Hg(K) not in Zg (as above if £ <2),
X be an analytic space, and E be a Borel equivalence relation on X with countably many classes.
Then exactly one of the following holds:

(a) the equivalence classes of E are 22 (exactly when E is a 22 subset of X?),

(b) there is n e {1,2} such that (K, E-%) C, (X, E).
Moreover, {(K, Ef 2) | 1<n<2}is a <.-antichain (and thus a C. and a <.-antichain basis).

Note that Theorem 1.6 characterizes when a Borel equivalence relation with countably many
classes is Zg. In order to finish the study of Borel equivalence relations with countably many classes,

it remains to characterize those which are not Hg if £ > 3. The partition (C,,),e., of Cinto Ag subsets
of 2% allows us to define an equivalence relation on 2 x 2* by

(6,0) ER¢ (n, ) & (Bnew a, feCy) V (=¢ A, B£C)

(we use the number 8 here because we can consider some examples EL for n € {6,7, 8}, in the spirit
of those for n € {3,4, 5} respectively, to state a general conjecture that we will not give here).



Theorem 1.7 Let £ > 1 be a countable ordinal, K, C as above, X be an analytic space, and E be

a Borel equivalence relation on X with countably many classes. Then exactly one of the following
holds:

(a) the relation E is a Hg subset of X2,

119 119
(b) there is (X, E) € {(K,E; *), (H, Eg *)} such that (X,E) C. (X, E).
119 119
Moreover, {(K,E; *), (H,Eg *)} is a <.-antichain (and thus a C. and a <.-antichain basis).

We now say a few words about some of the methods used in this paper, and state some general
results interesting for themselves. First, we make a strong use of the representation theorem for Borel
sets due to Debs and Saint Raymond. In particular, it provides the sequence (C,),c. mentioned
before. Secondly, our work is partly based on the Louveau-Saint Raymond theorem (see page 433 in
[Lo-SR]) generalizing the Hurewicz theorem (see 21.22 in [K1]).

Theorem 1.8 (Louveau-Saint Raymond) Let £ > 1 be a countable ordinal, K as above, C € Hg(K)
not in 22 (as above if £ <2), X be a Polish space, and A, B be disjoint analytic subsets of X. Then
exactly one of the following holds:

(a) the set A is separable from B by a Eg set,
(b) we can find f:K— X injective continuous such that CC f~1(A) and -CC f~1(B).

We will prove and use the following extension of Theorem 1.8.

Theorem 1.9 Let T be a non self-dual Borel class, K as above, C € f‘(K) not in I' (as above if the
rank of T is at most two), X be an analytic space, and A, B be disjoint analytic relations on X, the
sections of A being in I'. Then exactly one of the following holds:

(a) the set A is separable from B by a T set,

(b) we can find f: K — X? continuous with injective coordinate functions such that CC f~(A)
and -CC f~Y(B).



The proofs of Theorems 1.6 and 1.7 use our following other extension of Theorem 1.8, which
provides more control than Theorem 1.8 on where the Ag sets decomposing —C are sent by f.

Theorem 1.10 Ler £ > 1 be a countable ordinal, K as above, and C € Hg(K) (as above if £ < 2).
Then we can find 1 Cw and a partition (C,,)pe1 of =C into Ag subsets of K such that for any analytic
space X, for any analytic subset A of X, and for any sequence (Dy,)ne., of pairwise disjoint analytic
subsets of X such that A is both disjoint from | J D,, and separable from any of the D,,’s by a 22
set, one of the following holds:

(a) the set A is separable from | J,,c,, Dn by a Zg set,

(b) we can find ¢ : 1 — w and f : K — X injective continuous such that C C f~1(A) and
C, C f_l(D¢(n)) for each n € I. Moreover, we can ensure that if (F},)ne, is a sequence of finite
subsets of w, then ¢(n) ¢ Fy,) whenever p<n are in 1. In particular;, ¢ can be injective.

If moreover C ¢ X2, then this is a dichotomy.

new

The organization of the paper is as follows. In Section 2, we first recall the material about rep-
resentation of Borel sets and effective topologies needed here. Then we prove our extensions of the
Louveau-Saint Raymond Theorem. In Section 3, we prove the main lemma used in the proof of our
main result. Essentially, it provides a Cantor set C' as in the Mycielski-Kuratowski theorem (see 19.1
in [K1]), with the additional property that the set C as above remains complex on C'. In Section 4, we
prove some general facts giving additional motivation for introducing our examples, and prove that
AT and BT are <_-antichains. In Sections 5 and 6, we solve our main questions for the Borel classes
of rank one. In Sections 7, 8 and 9, we solve our main questions for the Borel classes of rank two. In
Section 10, we prove our results about relations with countably many equivalence classes. In Section
11, we prove our main result.

2 Extensions of the Louveau-Saint Raymond theorem

As in [L2] and [L3], the main results in this section are based on the representation theorem for
Borel sets due to Debs and Saint Raymond. We first recall the material related to that needed here.

2.1 Representation of Borel sets
The following definition can be found in [D-SR].

Definition 2.1.1 (Debs-Saint Raymond) A partial order relation R on 2<% is a tree relation if, for
SE2<W

(a) D R s,

(b) the set Pr(s):={t€ 2<% | t R s} is finite and linearly ordered by R (hg(s) will denote the
number of strict R-predecessors of s, so that hg(s)= Card(Pg(s))—1).
e Let R be a tree relation. An R-branch is a C-maximal subset of 2<% linearly ordered by R. We
denote by [R] the set of all infinite R-branches.

We equip (2<“)% with the product of the discrete topology on 2<“. If R is a tree relation, then the
space [R] C (2<¥)¥ is equipped with the topology induced by that of (2<“)%, and is a Polish space.
A basic clopen set is of the form NI':={~y€[R] | y(hg(s))=s}, where s €2<%.



e Let R, S be tree relations with R C S. The canonical map I1: [R] — [S] is defined by
I1(y):= the unique S-branch containing .

The canonical map is continuous.
e Let S be a tree relation. We say that RC S is distinguished in S if

sStSu
Vs, t,u€2<¥ = s Rt.
sRu
o Let n<wi. A family (R"),<y, of tree relations is a resolution family if
(a) RP*Y is a distinguished subtree of RP, for each p <.
(b) R = Np<r I, for each limit ordinal X <n.

The representation theorem of Borel sets is as follows in the successor case (see Theorems 1-6.6
and I-3.8 in [D-SR]).

Theorem 2.1.2 (Debs-Saint Raymond) Let 1) be a countable ordinal, and P € Hg +1([E)). Then there
is a resolution family (R?),<, such that

(a) R°=C,
(b) the canonical map 11:[R"]— [R°] is a continuous bijection with 297 1-measurable inverse,
(c) the set TI"(P) is a closed subset of [R"].

For the limit case, we need some more definition that can be found in [D-SR].

Definition 2.1.3 (Debs-Saint Raymond) Let & be an infinite limit countable ordinal. We say that a
resolution family (R”),<¢ with R®=C is uniform if

Vkew Jep <& Vs, te2<w (min(hRg(s), hge(t)) <k A s RS t) = s RSt
We may (and will) assume that £, > 1.

The representation theorem of Borel sets is as follows in the limit case (see Theorems 1-6.6 and
I-4.1 in [D-SR)).

Theorem 2.1.4 (Debs-Saint Raymond) Let & be an infinite limit countable ordinal, and P € Hg([g]).
Then there is a uniform resolution family (R"),<¢ such that

(a) R°=C,
(b) the canonical map I1:[R¢] — [RP] is a continuous bijection with Eg—measumble inverse,
(c) the set I (P) is a closed subset of [RE].

We will use the following extension of the property of distinction (see Lemma 2.3.2 in [L2]):

Lemma 2.1.5 Let n < wi, (RP),<y be a resolution family, and p < 1. Assume that s,t,u € 2<%,
s ROt R? wand s RPT u. Then s RPT1 t.

10



Notation. Let  <w;, (R”),<y be a resolution family with RY=C, 5s€2<¥, and p <. We define

oo 0if s=0,
© | slmax{l<|s| | s|l R? s} if s#£0.

The map h: 2% — [C], for which h(«) is the strictly C-increasing sequence of initial segments of «,
is a homeomorphism.

2.2 Topologies

Notation. Let S be a recursively presented Polish space.

(1) The Gandy-Harrington topology on S is generated by X1(S) and denoted Y. Recall the
following facts about X'g (see [L1]).

- Yg is finer than the initial topology of S.
-Weset Qg :={se S| wf:wch}. Then Qg is X (S) and dense in (S, Xg).
- W N Qg is a clopen subset of (g, Xg) for each W € X1(9).

- (25, Xs) is a zero-dimensional Polish space. So we fix a complete compatible metric on (Q2g, Xg).

(2) We call T the usual topology on S, and T;, is the topology generated by the xin Hgn subsets of
Sift2<n< w1CK (see Definition 1.5 in [Lol]).

The next result is essentially Lemma 2.2.2 and the claim in the proof of Theorem 2.4.1 in [L2].

Lemma 2.2.1 Let S be a recursively presented Polish space, and 1 <n< w1CK.

(a) (Louveau) Fix A€ X} (S). Then A s H% and L.

(b) (Louveau) Fix A, D € X} (S) disjoint. Then D is separable from A by a 1'[97 set exactly when
AND =9

(c) Let p>1 be a natural number, 1 <n; <no<...<np,<n, S1, ..., Sp€ 211(5), and O e EIO(S).
Assume that S; Qmﬂ““ if1<i<p. Then S, N ﬂngp E-Tni N O is T -dense in S_lTl N O.

(d) Let (RP) <y, be a resolution family with R® =C, s € 2<“\ {0}, Ss» € L1 (S) (for 1< p<n),
E e XL(9), and O € 5(S). We assume that Sgn CS"" and S,C S, fuRPtSsand 1<p<n.
Then Sgn N m1§p<n S—spr NOand EN nlgpgn S—Spr N O are Ty-dense in S, N O.

Proof. (a) and (b) See Lemmas 1.7 and 1.9 in [Lol].
(c) and (d) See Lemma 2.2.1 in [L4]. ]

Lemma 2.2.2 Let S be a recursively presented Polish space.
(a) The set A% N S is countable, Hll, and Tj)-clopen if 3<n< wlc .

(b) If A, B are disjoint subsets of S and 2<n< w1CK, then ANB'" does not meet Alns.

11



Proof. (a) By 4D.2 and 4D.14 in [M], A% N S is countable and Hll, so that its complement is Ell N Hg
and thus 7T},-open if > 3. Moreover, Al N S is the union of its singletons, which are closed and Al
and thus T;-open if 7> 2. This shows that AN Sis T,-open if n > 2.

(b) We argue by contradiction, which gives s in the intersection of A N B and AN S. By (a), {s}
is T;,-open, so that s € B N A, contradicting the disjointness of A and B. O

2.3 Proof of Theorem 1.10

(A) The successor case

Assume that { =n+1> 3. As h is a homeomorphism, P := h[C] € 97+1([ ]). Theorem 2.1.2
gives a resolution family (R*),<, such that C :=I1"1(P) is a closed subset of [R"]. If v € [R"]\C,
then there is k-, € w minimal such that NR{7 k) 1 C=0. We set s, :="(ky), so that =C = U,ch Ns}z".
We enumerate injectively S := {s, | v ¢ C}, which gives I C w such that S = {s,, | n € I}. As
S C 2<%, we can ensure that the enumaration is made in the increasing order of the lengths, and in the
lexicographical order inside each length. We set C,, := N, 5:7, so that =C = J,,¢; Cpn. By minimality,
this union is disjoint. We then set C,, := h~1(II[C,]), so that (C,,),¢ is a partition of =C into Ag
subsets of 2*. Note that diam(C,,) tends to 0 as n goes to infinity if I is infinite since C,, C Nj,,.

Assume that (a) does not hold. As X is analytic, we may assume that X is an analytic subset
of S:=10,1]“, as well as A and the D,,’s. As our separation assumptions also hold in .S, we may

assume that X =.S. In order to simplify the notatlon we will assume that § <wy CK , A€ X} and the
relation defined by R(a,n) & o € D,, is KL As J,,c, Dn is not separable from Abya HO set,
N:=AnU,e, D nT‘E is a nonempty %! subset of S, by Lemma 2.2.1.(a). We set U := Al N S.
By Lemma 2.2.2.(b), N N U =(. By Lemma 2.2.2.(a), U is T¢-clopen since § > 3. This shows that

N=AnU Té\U AﬂU Dn\UTé.ByLernma2.2.1.(b),AﬂD_nT5:@ for each n € w,
sothat N=ANU,e\r Dn\U for each finite subset F' of w.

new nEw

We set, for n €I, O, :={s €2 | s,, R" s}, and Z:=2%\ (U,,c; On). By definition of the
$n’s, 2<% is the disjoint union of Z and the O,;’s. If ) ¢ Z, then there is n €1 such that () € O,,, so that
sp="0, 0, =2<¥ 1= {n}, C,, =2% and C = (). There is p € w such that D,, is uncountable since
€ > 3, so that we can set ¢(n) := p by the perfect set theorem. So in the sequel we will assume that
()€ Z. We construct

- a sequence (Z5)gco<w of points of S,

- a sequence (Xs),eo<w of XY subsets of S,
- a sequence (S5),eco<w of X} subsets of S,
-o:l—w,

satisfying the following conditions.
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(1) X, CX,if s ROt A s#t
S CSsif sRT"tA(s,teZVInel s,te0,)

(2) zs€ S C X NQs\U
(3) diam(X), diamgy(Ss) < 2 Il
(4) XN Xslz(b

Nif seZ

-
(5) S5 € {D(j)(n) if s€O,

(6) S, CS, "if s RFtA1<p<n

Assume that this is done. Let o € 2“. Then (m) lew 1s a decreasing sequence of nonempty closed
subsets of S with vanishing diameters, which defines f : 2 — S injective continuous. If o € C,
then II* (h(a)) (k) € Z for each k € w. Note that (St1-1(h(a)) (k) Jkew 1s @ decreasing sequence of
nonempty clopen subsets of N N Qg C A with vanishing GH-diameters, which defines G(«) € A. As
SsC X, G(a)=f(a), so that f(a)€ A. If now a € Cy, then IT™! (h(e)) €Cp, and I (R () (k) is
in Oy, if k> ko. Note that (St—1(p(a)) (k) )k>ko 1S @ decreasing sequence of nonempty clopen subsets of
Dy N s with vanishing GH-diameters, which defines H () € Dy(y,y. As Ss € X, H(a) = f (),
so that f(a) € Dy(p).

Let us prove that the construction is possible. We first choose xg € N N {2g, Xy semi-recursive
with diameter at most 1 containing x¢, and Sy € X! with GH-diameter at most 1 containing xy and
contained in Xy N N N {2g. Assume that our objects satisfying (1)-(6) have been contructed up to the
length [ (which means that ¢(n) is constructed if |s,| <I), which is the case for | =0.

Let t € 2!, and s := t0. We first define zs, and X, and Sy later, after the definition of x;;. Our
definitions are in the lexicographical order of the ¢’s.

Claim. (a) The set Ssn N (1< ,<yy S PN X 50 is Y1 and uncountable.

(b) If s" €L and F Cw is finite, then (e p Dn\U) N (1<,<, S—SpTP N Xy N Qg is X and
uncountable.

Indeed, by Lemma 2.2.1.(d) applied to E:= Unew\p D, \U and O:= X o, the sets

—1T,
Sen N ﬂ SsppﬂXso
1<p<n

and (U,eo r Dn\U) NNi<,<, S X0 are T7-dense in S—S1T1 N X0. As st R Y,

=17
S0 CSa ' N Xgo.
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This proves that the intersections in the statement are not empty since they are 211 by Lemma
2.2.1.(a). We argue by contradiction to see that they are uncountable. By 4F.1 in [Mos], they are
contained in U, which contradicts the induction assumption. o

Case 1 s€Z, which implies that s" €Z.

We choose x5 € Sgn N ﬂlgpq S—SpT” N Xo.
Case 2 s € O,,, which implies that s € O,

We proceed as in Case 1.
Case3s"cZ and s O,,.

In this case, s = s, and ¢(n) has to be defined. We choose it outside F := Up <npel Fo(p) In

such a way that (D) \U) N Mi<,<y Sy '* N X, N Qg is uncountable. Then we choose z in
_T -
(D¢(n)\U) A ﬂlgpgn Ser "N X0 NQg.

This finishes the construction of x40, which is in the right uncountable X set. The construction
of x4 is similar, the difference being that we ensure moreover that x4 # 2+, which is possible since
the right 2’11 set is uncountable. Then we choose disjoint Z{) sets X9 and X;; with diameter at most
271=1 such that z;. € X¢e € Xie € Xy, and Sy € Ell with GH-diameter at most 2~/~1 containing
x4 and contained in Xy and the right 2’11 set. Note that we ensured (1) and (6) for the immediate
predecessors of ¢, and not for an arbitrary s at this point. These conditions are transitive enough to
ensure the general case. For example, for (6), assume that s R” t. We may assume that s # ¢, so that
s RO s RP t. By Lemma 2.1.5, s R” s”. By induction assumption, Sg» C S_STP . We ensured that

S QS_SpTP , so that .S; QS_STP . O
We now study the case £ =2.

Notation. In this case, C =Py, :={a€2¥ | 3®ncw a(n)=1}. By 23.Ain [K1], Ps, € TTJ(2°)\XY.
Note that P, is dense and co-dense in 2“. We set Py :=—P, and enumerate P :={c, | n€w}. We
also set O:={0} U {ul | u€2<¥}, so that Py ={t0> |t O}.

We set [:=w and C,,:={a, }, which defines a partition of =C into A subsets of 2. We also set
RY:=C, and
sR'te sRUtA (seOVVYsROuR ¢ ugO).

Note that (R”),< is a resolution family such that

(b) the canonical map IT:[R'] — [R] is a continuous bijection with X9-measurable inverse,

(c) the sets C,, :=II"1(h[C,,]) are clopen subsets of [R'], so that C :=I1~!(h[C]) is a closed subset
of [RY].

In fact, as C,, is a singleton, C,, too, and C,, = N, 5 for some s,, € 2<% of the form ¢,,0 with t,, € O
(so that C,, = {t,,0°°}), and the C,,’s define a partition of —C as above.

14



We then argue as in the case £ > 3, with the following differences. This time, we only write

N:=An{] D, =An U D,

new new\F

for each finite subset F' of w. Note that @,, N 2! has cardinality at most 1 for each [ € w. Condition (2)
becomes
(2") 25,€5,C X, N Qs

Claim. (a) S;: N X0 is 211, nonempty, and uncountable if s' € O.

(b) If s' €O and F is a finite subset of w, then the set (UnEw\F Dn) N 5—51T1 N Xy NQgis DL
and nonempty.

In Case 3, we choose ¢(n) in such a way that Dy N S_SlTl N X4 N Qg is nonempty. Then we
choose x5 € D,y N S—81T1 N X0 NQg.

This finishes the construction of x;y, which is in the right 211 set. The construction of x;y is
similar. Note that x4y # x40 since t0¢ O and t1€ O, so that ;9 €|J,,c,, Dn and x4 € A.

Assume finally that £ = 1, so that C = {0}. We set I := w and C,, := {27}, which defines
a partition of —C into clopen subsets of K. Fix x € N, ¢(0) € w with B(z,1) N Dy ) # 0, and

xo € B(z,1) N Dgoy- As Dy, is separable from A by a closed set for each n, AN D_nT1 = () and

N=ANU,eum\r DnT1 for each finite subset F' of w. So we can choose ¢(1) €w\ (Fy(0) U {¢(0)})
with B(z,271) N D) #0, and 21 € B(x,27") N D). And so on. It remains to set f(0):=2 and
f27"):=mz,.

(B) The limit case

Assume that £ is an infinite limit ordinal. We indicate the differences with the successor case.
Theorem 2.1.4 gives a uniform resolution family (R*),<¢ such that C is a closed subset of [R¢]. This
time, O, :={s€2<¥ | s, RS s}. If s€2<%, then we set, as in the proof of Theorem 2.4.4 in [L2],

£(s) :maX{thé )41 | S s}
Note that £(t) <{(s) if t Cs.
Conditions (1) and (6) are changed as follows:

(1) X, CX,if s ROt A s#t
S;CSsif s REtA (s, t€TVInel s,te0y,)

(6') S, CS, 7 if s Rt A 1< p<£(s)

The next claim and the remark after it were already present in the proof of Theorem 2.4.4 in [L2].
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Claim 1 Assume that s” # s¢. Then p+1<£(sPH).
We argue by contradiction. We get
pHL>p2E(s" ) 28, (o)1= Enpe(s)-
As s? RP s, sP RS s and s? = s, which is absurd. o
Note that &, 1 <&,—1+1<E&(s8171) <€(s). Thus s8(8) = €.

Claim 2 (a) The set S;e N (), <p<t(s) S_spr N X is 211 and uncountable.

(b) If ¢ € Z and F Cw is finite, then (Unewr Dn\U) N Ni<p<es) SN X0 NQgis X and
uncountable. o

We conclude as in the successor case, using the facts that £, > 1 and £(.) is increasing. U

2.4 Proof of Theorem 1.9

We prove Theorem 1.9 for I'= 22, the other case being similar. Note that (a) and (b) cannot hold
simultaneously. We indicate the differences with the proof of Theorem 1.10.

(A) The successor case

Assume that (a) does not hold. As X is analytic, we may assume that X is an analytic subset of

[0,1], and that A and B are analytic subsets of S := [0, 1] x [0, 1]“. Note that A is not separable

from B by a Zg subset of S. In order to simplify the notation, we will assume that & < w1CK and

X, A, Be X}. As B is not separable from A by a Hg set, M:=AN Bisa nonempty X subset of
S, by Lemma 2.2.1.

Let us prove that M is not contained in the 7T5-open set

U= |J (=}x[0,12U[0,1]*x{z}).

zeAlN[0,1]w

We argue by contradiction to see that. Note that A\ET’3 is separable from B by the Eg set =B t. As
A is not separable from B by a Zg subset of 5, this implies that M is not separable from B by a Zg

subset of S. This gives = € Al N [0,1]“ such that, for example, A N ({z} x [0, 1]*) is not separable
from B N ({z} x[0,1]*) by a Zg subset of S since Al N [0,1]“ is countable (see Lemma 2.2.2).

Therefore A N ({z} x [0,1]¥) is not a 22 subset of X2, which means that € X and the vertical
section A, :={ye X | (x,y)€ A} isnot a 22 subset of X, which is absurd.

Note that any nonempty X subset of S which is disjoint from U has uncountable projections, by
4D.14 in [M]. By 4D.14 in [M], the set U is Hll N XY, so that its complement is Ell N Hg and thus

Te¢-open since > 3. This shows that N:=AN B \U=ANB \UTé is a nonempty X subset of S.
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We set 7:={s€ 2<% | NF"nC#0}. AsC+#0, ) € Z. We construct a sequence (ps)sca<e
of points of S (where ps := (x5, ys)), a sequence (X;)sco<w Of Z{) subsets of S, and a sequence
(Ss)sea<w of X subsets of S satisfying the following conditions.

1) X:CX,if s ROtAs#t

S CSgif sRTEA (s,t€TV s, t¢1)
(2) pSESngsﬂQs\U
(3) diam(X), diamgpy(Ss) <271

(4) Ve €2 proj.[Xso] N proj [Xs1]=0

Nif seT
(5) Ssg{BifsgéI

(6) S, CS, “if s RFEAL<p<n)

Assume that this is done. Let o € 2¢. Then (X,);)icw is a decreasing sequence of nonempty closed
subsets of S with vanishing diameters, which defines f:2“ — .S continuous with injective coordinates.
If « € C, then f(«) € A again. If now o ¢ C, then II"* (h(c)) (k) is not in Z if k > ko. Note that
(SH—I(h(a))(k)) k>ko 15 a decreasing sequence of nonempty clopen subsets of B N (g with vanishing
GH-diameters, which defines H (o) € B. As S; C X, H(o)= f(«), so that f(a) € B.

Let us prove that the construction is possible.
Claim. (a) The set Sgn N[ ;< p<n S—SpTP N X0 is X} and nonempty.
(b) If s" €L, then the set (B\U) N (<, <, S_spr N X0 N Qg is X} and nonempty.
Case 1 sc€Z, which implies that s" €Z.
We choose ps € Sgn N ﬂl§p<n S—SpT” N Xo.
Case 2 s ¢ 7, which implies that s ¢ Z.
We proceed as in Case 1.
Case3 s"eZ and s¢7.

We choose ps € (B\U)N nlgpgn S—SpT” N X0 N§g. This finishes the construction of p;y, which
is in the right uncountable X} set. The construction of p;; is similar, the difference being that we have
to ensure that moreover ;1 7 4o and y¢1 # Y. We first choose 1 in the right Ell set A as above,
ensuring that 241 # x4, which is possible since A is disjoint from U and therefore has an uncountable
first projection. We then choose O € XY with ;1 € O and x4 ¢ O, so that A N (O x [0, 1]*) is again
anonempty X} set disjoint from U. We now choose p;1 in AN (O x [0, 1]*), ensuring that y # 0,
which is possible since .4 N (O x [0, 1]*) has an uncountable second projection.
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Then we choose 210 sets Xyo and X;; with disjoint projections and diameter at most 2=~ such
that py. € X € Xye C Xy, and S, € 2’11 with GH-diameter at most 2~/~! containing p. and contained
in Xy and the right X! set. g

We now study the case £ = 2. The following lemma is a variant of the Mycielski-Kuratowski
theorem (see 19.1 in [K1]). Recall the notation after the proof of Theorem 1.10 in the successor case.

Lemma Let F' be a symmetric closed relation on 2% with nowhere dense sections. Then there is
f:2% = 2% injective continuous such that Py = f~*(Ps) and (f(c), f(B8)) ¢ F if a#p.

Proof. We inductively construct a sequence (n;);co<« of natural numbers, and a sequence (Uy)sco<w
of clopen subsets of 2 satisfying the following conditions:

(1) U CUy
)
)
)

5) nip=ny
)
)

Assume that this is done. Using (1)-(3), we define f:2% — 2% by {f(8)} := (e, Usjn, and f is
injective continuous by (4). If £ € O and a =10, then f(«) =, by (5). If B € P, then there is an
infinite strictly increasing sequence (I )re., of natural numbers with 3|l € O. Condition (6) implies
that f(3) € Poo. Condition (7) implies that (f(a), f(B)) ¢ F if a# 3, by symmetry. So we are done.

Let us prove that the construction is possible. For the first step of the induction, we set ng:=0
and Up := 2*. Assume that (n)|;<; and (Uy)} < satisfying (1)-(7) have been constructed, which is
the case for [ =0.

Let t € 2!. Condition (5) defines n9. As F has nowhere dense vertical sections, we can choose
ny1 in such a way that ay,,, € Up\({am, } U {ay, | n <1} U Fy,,, ). Then we choose disjoint clopen sets
Uiy, Uy with diameter at most 2==1 guch that o, € Uge CUy and satisfying (1)-(7). ]

If A(X) N A is not separable from A(X) N B by a T set, then Theorem 1.8 gives f : 2% — X2
injective continuous with C C f~*(A(X) N A) and -C C f~'(A(X) N B). If a # 3 € 2¥, then
F(@)# f(B). As f(a), f(B) € A(X), fe(a)# fo(B) for each e €2 (f = (fo, J1)).

If A(X) N A is separable from A(X) N B by a T set, then A\ A(X) is not separable from
B\ A(X) by a T set. Theorem 1.8 gives f := (fo, f1) : 2 — X? injective continuous such that
CC fH(A\A(X)) and ~C C f~1(B\A(X)). By the choice of C, we may assume that fo and f,
have disjoint ranges.

Note that the f.’s are nowhere dense-to-one. Indeed, we argue by contradiction, which gives € € 2
and s € 2<% such that f; is constant on Ny and equal to z € X. Assume for example that e =0. As f
is injective continuous, f1)y, is also injective continuous. Note also that f; [C N Ng]= f1[Ns] N A
As A, isin T, so are f1[C N Ng| and C N N, which contradicts the choice of C.
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We next prove that we may assume that f. is injective for each € € 2. In order to do this, we set

Fi={(0,0)€2“x2" | J€2 fol0)=f(H)}.

Note that F' is a symmetric closed relation on 2“ with nowhere dense sections. We apply Lemma 2.4
to F, which gives ¢ : 2 — 2* injective continuous such that Py =1~ (P;) and ((),¥(B)) ¢ F if
a# (. This proves that we may assume that the f.’s are injective.

Assume finally that { =1 and I" = 2(1), the other case being similar. As A is not separable from
B by an open set, we can find (o, 3) € A and ((ow,, B"))nEw € B converging to (o, 3). If a, =«
for all but finitely many n’s, then A, is not open, which is absurd. So, extracting a subsequence if
necessary, we may assume that the sequence (o, )ne,, is made of pairwise distinct elements different
from «. Similarly, we may assume that the sequence (3, )ncw is made of pairwise distinct elements
different from S. It remains to set f(0):=(a, 5) and f(27"):=(an, Bn)-

(B) The limit case

Condition (1) is changed as follows:
(1) X;CX,if s ROt As#t
S CSsif s REEA (s,t€TV s, t¢1)
Claim 2 (a) The set S N ﬂlgp<5(s) S—Spr N X0 is X} and nonempty.
(b) If s €Z, then the set (B\U) N Mi<p<e(s) SN X, N Qg is X! and nonempty.

We conclude as in the proof of Theorem 1.10. U

3 Preserving C and avoiding countably many Borel graphs of functions

The next lemma is essentially due to Louveau, even if it is not formally written like this in [Lol]
and [Lo2].

Lemma 3.1 (Louveau) Let 1 <£< wICK, X, Y be recursively presented Polish spaces, and B be Al

subset of X XY whose vertical sections are Hg. Then B € Hg (X, < A} >)xY).

Proof. Theorem 3.6 in [Lol] provides a Polish topology 7 on X finer than 7} such that B is in
Hg ((X,7)x (Y, T1)). We then argue as in the proof of Theorem 3.4 in [Lo2] (we use the notation

and material in this paper). Note first that B € (A{ x 2(1))6 if { <w, (A x 2(1))&1 otherwise. By
Example 2 of Chapter 3 in [Lo2], the family (N (n, Y))n cw is regular. By Corollary 2.10 in [Lo2],
Hg(Y), as well as Zg(Y) = Uy<e IT)(Y)) . are regular.

By Theorem 2.12 in [Lo2], A} X 2(1) is also regular. By Corollary 2.10.(v) in [Lo2], (A% X 2(1])5
is also regular. The equality Wg = Wg, of this corollary, applied to & := A% X 2(1), shows that
Be (Alx(Z9n A%))g if E<w, (A1x (29N A%))£+1 otherwise, and B eﬂg((X, < A} >)xY).0

In order to prove Theorem 1.4, the main lemma is as follows.
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Theorem 3.2 Let I' be a non self-dual Borel class of rank 3 <& < w1CK, Ce A} NT(2¥), and R be
a Al relation on 2% with F, vertical sections. We assume that there is a X} subset V of 2% disjoint
from A} N 2% such that RN V? is Y3, -meager in V2, and V N C is not separable from V\C by a set
in T. Then there is f :2% — 2% injective continuous such that C = f~(C) and (f(a), f(ﬁ)) ¢ Rif
a# L.

Proof. By Theorem 3.5.(ii) in [Lol], there is an increasing sequence (F});c,, of A% sets with closed
vertical sections whose union is .

Assume first that T’ = 22, so that C € Hg(Z“)\Zg. Weset N:=V NCnN V\(CTE. By Lemma
221, Nis 211 and nonempty.

(A) The successor case

As in Section 2, we represent h[C] and set Z := {s € 2<% | NE" N C # 0}, so that () € Z.
We construct a sequence (Xs)sco<w of nonempty XY subsets of 2¢, and a sequence (Ss)gea<w Of
nonempty i subsets of 2¢ satisfying the following conditions.

1) X, CX,if s ROt As#t
S CSif s Rt A (s,tel'\/s,tgfl')

(2) SsCXsNQ NV
(3) diam(X), diamgpy(Ss) <271°!
(4) Xs(] N X1 :(D

Nif seT
(5) Ssg{ﬁCifsgéI

(6) S, CS, "if s RFtA1<p<n)

(7) (Ssx X)) N Fy=0 if s £t 2!

As in Section 2, it is enough to prove that the construction is possible. Indeed, fix o # 3. Then the
inequality |l # 3|l holds if [ > Lg. We set [, := [lI7!(h(a))(k)|, so that ITI71(h(a)) (k) = all,
for each k € w. As in Section 2, there is kg € w such that [, > Lg if k > kg and (f(a), f(ﬁ)) is in
(Mo Safte) X (Miew Xap)- Thus (f(@), £(8)) € Nk (Sagi, X Xap,)- By (D, (f(@), f(8)) is
not in (Jy, Fi,- Therefore (f(a), f(B)) ¢R.

We first choose ap € N N (aw, X semi-recursive with diameter at most 1 containing oy, and
Sp € X} with GH-diameter at most 1 containing g and contained in Xy N N N Qow. Assume that our
objects satisfying (1)-(7) have been contructed up to the length [, which is the case for [ =0.

Claim. (a) Sgn N nl§p<77 S—SpTP N X0 is X and uncountable.
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(b)If s" €T, then (< <, S_Spr N X0 N Qo NV\Cis X} and uncountable.
Subase 2.1 s € Z, which implies that s7€Z.

We choose o € Sgn N ﬂlgpq S—SpTP N Xg0.
Subcase 2.2 s ¢ 7, which implies that s ¢ Z.

We argue as in Case 1.
Subcase 2.3 s"€Z and s¢ 7.

We choose «, € mlgpgn S—SPT” N Xg0 N Qe NV\C.

This finishes the construction of a4, which is in the right uncountable Ell set. The construction
of a4 is similar, the difference being that we ensure morover that a1 # i, which is possible since
the right Ell set is uncountable. Then we choose disjoint E{) sets X9 and X;; with diameter at most

2==1 such that ay. € Xta - th C X,. We choose, for each ue 2!, a 2’11 set S'u with GH-diameter at
most 271, containing «,, and contained in X,, and the right 211 set. Doing this, we ensured (1)-(6).

It remains to ensure (7). Assume that s #t € 241 We first note that Fiaan V2 is 22%, -meager
in V2. By Theorem 4.2 in [Ha-K-L] and 8.16 in [K1], (2¥, X5), (V, X5«) and (V, Yy )? are strong
Choquet. By 8.15 and 8.11 in [K1], (V, ng)Q is a Baire space. This implies that Ss X S’t is not
contained in Fjy;. By Lemma 3.1, Fj; is closed for < A% > xT1, and thus for ZZQW. So we can
choose nonempty X' sets S’, S/ contained in Sy, S; respectively with (S, x S/) N Fj.1 = 0. After
finitely many steps, we can ensure that this holds for any s, . We pick 3, € S, for each u € 2/*1, so
that (B, B;) ¢ Fi11 for any s,t. As Fj,q is closed for < Al > xT7, it is also closed for Yow x T7.
This gives, for each s,¢, 57, € X! and X!, € 2 with (Bs, 8;) € S¥, x X, C (S, x Xy)\ Fiya. It
remains to set Xy :=( cqrr1 X¢, and Ss:=[,cot1 S¢; N X,

(B) The limit case
We indicate the differences with the successor case and the proof of Theorem 1.10. We set
T:={se2< | NF' nc+0}.
Conditions (1) and (6) are changed as follows:
() {Kng.if s ROt A\ s#t
S, CSyif s REtA (s,tel'\/s,tgfl')
(6') S,C S, if s RPt A1<p<£(s)
Claim 2. (a) S N[ V1<peg(s) S—SpT” N X0 is X} and uncountable.
(b) If s¢ €T, then Mi<p<e(s) S—SpTP N Xy N Qoo NV\C is £ and uncountable.

We conclude as above. Assume now that I' = Hg, so that C € 22(2“’) \Hg. We indicate the

differences with the case I' = 22. Weset N:=VNC &N V\C. By Lemma 2.2.1, N is X} and
nonempty.
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(A) The successor case
We represent h[-C] and set Z:={s€ 2<% | NE" N TI~1(h[~C])#0}, so that ) € T. We ensure

Nif seZ
C
(5) Ss_{(CifsgéI
Claim. (a) Sgn N ﬂl§p<n S—SpTP N X0 is X and uncountable.

(b)If s"€L, then (VN C) N[ < )<y SN X0 N Qow is X and uncountable.
(B) The limit case
We set Z:={s€ 2<% | NE* 0TI~} (h[-C]) £0}.

Claim 2. (a) S, N n1gp<5(s) S—SpT” N X0 is X} and uncountable.

(b) If s* €T, then the set (V N C) N Mi<p<e(s) SN X0 N Qow is X} and uncountable.
We conclude as above. U

Corollary 3.3 Let T be a non self-dual Borel class of rank at least three, C € f‘(2w) not in T', and
R be a Borel relation on 2% with countable vertical sections. Then there is f : 2% — 2% injective

continuous such that C= f~(C), and (f(c), f(B)) & R if a5 5.

Proof. The Lusin-Novikov theorem gives a sequence (fy,)ncw Of partial Borel maps from 2 into
itself with R={J,,.,, Graph(f;) (see 18.10 in [K1]). Let & be the rank of I". In order to simplify the

notation, we assume that £ < wFK and C, (fn)new are A%. We set U := Ai N 2¥. Lemma 2.2.2.(a)
shows that U is countable and I7{. We will apply Theorem 3.2 to the X} set V := =U. Note that
Graph(f,) N V?is X3.-closed in V2 with nowhere dense vertical sections by definition of U. By the
Kuratowski-Ulam theorem (see 8.41 in [K1]), RN V2 is 22%, -meager in V2. It remains to note that
V N C is not separable from V'\C by a set in I" since U is countable and therefore in F, CT' N r. O

Remark. This corollary cannot be extended to lower levels. Indeed, for the rank one, as K is count-
able, R can be K2. For T'= Eg, R can be (—\(C)2 since —C is countable. Similarly, if I' = Hg, then R
can be C2.

4 Some general facts

We first note the following topological properties.

Lemma 4.1 Let T be a class of sets closed under continuous pre-images, Y be a topological space,
and F be an equivalence relation on'Y .

(a) if F'isin I, then the equivalence classes of I' are also in T,

(b) if Z is a topological space, G is an equivalence relation on Z whose classes are in T, and
(Y, F) <. (Z,Q), then the equivalence classes of F are also inT.
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Proof. (a) comes from the fact that if y € Y, then the map zy Y ( Y,y ) 1S contlnuous and satisfies

[yl =1, (F). The statement (b) comes from the fact that [y] = f " ([f(y)]c). O

>0
The introduction of IE(I)‘, Ef and E; ¢ is motivated by the following fact.

Proposition 4.2 Let T' be a non self-dual Borel class, K as above, C € T'(K)\T (as above if the rank
of T is at most two), X be an analytic space, and E be a Borel equivalence relation on X. Then
exactly one of the following holds:

(a) the equivalence classes of E are in T,
(b) there is a Borel equivalence relation E on K such that ES CECEY and (K,E) C. (X, E).

Proof. Note that (a) and (b) cannot hold simultaneously by Lemma 4.1 since (b) implies that C is an
E-class. Assume that (a) does not hold, which gives = € X such that [z|g ¢ T'. Theorem 1.8 gives
i:K— X injective continuous such that C =i~!([z]g). It remains to set E:= (i xi)~!(E) to finish
the proof. ([l

The introduction of our equivalence relations on H is motivated by the following facts.

Theorem 4.3 Let I be a non self-dual Borel class, K, C as above, X be an analytic space, and E be
a Borel equivalence relation on X whose sections are in I'. Then exactly one of the following holds:

(a) the relation E is a T subset of X 2

(b) there is a Borel equivalence relation E on H:=2xK such that { ((0,a), (1,)) | € C} CE,
{((0,a),(1,@)) | a¢C} C—E and (H,E) C. (X, E).

Proof. We first note that (a) and (b) cannot hold simultaneously. Indeed, we argue by contradiction,
so that E€T'(H?), and EN {((0, ), (1,0)) | a€K} € 1"({ ((0,a),(1,)) | e K}) This implies
that C € T'(K), which is absurd. Assume now that (a) does not hold, so that T'# X9.

Theorem 1.9 gives f:=(fo, f1):K— X? continuous with injective coordinates with C= f~1(E).
If the rank of I' is at least two, then we may assume that fy and f; have disjoint ranges, by the choice
of C. We define g:H— X by g(e, a) := f- (). Note that g is continuous,

{((0,0),(1,0)) | @€C}C(gx9) 7' (E)
and {((0, ), (1,a)) | «¢C}C(gxg) ' (=E). It remains to set E:=(gx g) "' (E).

If T =TIY, then f(0) ¢ F, so that fo(0) # f1(0) and fo(27%) # f1(27%) if k> ko. So here again
we may assume that fy and f7 have disjoint ranges, and we conclude as above. O

Proposition 4.4 Let T' be a non self-dual Borel class, K as above, C C K, E be an equivalence

relation on H containing {((0, a), (1, a)) | € (C}, g,n€2and o, B €C. Then ((6, a), (n, 5)) ck
is equivalent to ((0, ), (0, 3)) €E.
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Proof. We may assume that 7=1. Assume first that ((e, @), (1, 8)) €E. As

((0,a),(1,0)), ((0,8), (1, 8)) €E,

((0,), (0, 8)) €E. Conversely, assume that ((0, ), (0, 3)) € E. Similarly, ((0,«), (1, 3)) €E and
((1,),(1,8)) €E. O

We now check a useful fact announced in the introduction.

Lemma 4.5 Let T be a non self-dual Borel class of rank at least two. Then there is C € T'(2¥)\T
such that C N Ng € I'(Ng)\T for each s € 2<%. In particular, C is dense and co-dense in 2.

Proof. We may assume that I' = 1'[2 with £ > 2, passing to complements if I' = 22. We will
inductively construct C¢ € Eg as required. As required in the introduction, we set

Cy:={ae2” |V*new a(n)=0}.

Note that C, is dense and co-dense in 2“, and we are done for £ = 2, by Baire’s theorem. Let
3<E=sup,c, (§n+1), with 2<E, <€ We set

Ce:={a€2 | Incw (a)n ¢ Cen, }.
By 22.10 in [K1], it is enough to check that C¢ N N, reduces any Zg subset S of 2“. Assume first
that s = (). Write S =J,,c,, ~Sn, where S, € Zgn. The induction assumption gives f,, : 2« — 2

continuous with S,, = f;1(C¢,). We define f : 2¥ — 2¢ by (f(a)), := fn),(a), so that f is
continuous. Then

a€S & Incw agSy o Incw fu(a)ECe, & Incw fi),(a)¢Ce
& dncw (f(a))n¢(C5(n)0 & fla)eCe.

If now s is arbitrary, then we define g:2“ — Ny by

)= {2y H O <

(@) <(n)o,(n)1 —|s|-1> if (n)1>]s],

so that g is continuous and reduces C¢ to C¢ N N, since

acC¢ & Incw (a)n¢<Cg(n)0 S dn,pew () <np>¢Ce,
& dnecw E|p> |8| (a)<n,p—\s|—1> ¢(C£n
< dn,pew (g(oz))<n7p> ¢C¢, & Incw (g(oz))n gé(Cg(n)O
& g(a)eCe N Ny,

This finishes the proof. ([l
Notation. If T" is a non self-dual Borel class, then Do(T')={A\ B | A, BT}, and
I'":={(AnC)U(B\C)| AcTABeT ACc A}

is the successor of I' in the Wadge quasi-order.
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In order to state the next result, we extend our sets AL and BY. We set

{(K,Ef)} if 0 =119,
AT {(K,EL) | n<1} if T =X or the rank of T is two,
T {KE) | 1<n<2}if Te{X2|£>3},
{(K,ED)}if Te{IIg | £>3},
pif T=xY,

{(H,EL) | 3<n <5} if the rank of T is two,
{(H,EY)} if e {IIY | >3}

Theorem 4.6 Let T be a non self-dual Borel class, K, C as above.

(a) The following properties of EL € BY hold:

n| I Number of classes Complexity of the classes Complexity of the relation
2if T =119 . - .
. e (30 50} Ty Dy () Da(T) i =T}
)i 2 T+ PQ(F)\DQ( 2 fr= 20
Da(D)\(T UT) if rk(T )
2| %2 w IT} Dy(Z)\ 22
3 w if T =119 o LH\(TuT) T =0
29 if rk(T) >2 ! D\T if rk(T) >2
4 2% r rt\(rur)
w if I =TI . 3
5 2 if T O3 r re-\(rur
8 | II w IT} Dy(Z)\(ZZUTLY)

(b) AT and BT are <.-antichains.
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Proof. (a).(0) Note that the equivalence classes of Ef are C, and {z} for z ¢ C. Note also that
0 -~ -~
E? '=A(K). If T #£I1Y, then E¥ is in T'\ T, and its equivalence classes are not all in T, and all in T".

(1) Note that the equivalence classes of E{ are C and K\ C. In particular, E{ isnotin T, not in T,

and its equivalence classes are all in I'", not all in T, and not all in I". However, it is in DQ(F). If
0 0 0
=39 as K\ {0} is dense in K, Elxl is not in Do (X9). For T' =TI1Y, note that E{Il :Elxl.
EO
(2) The equivalence classes of £, ¢ are C and the C,,’s.

(3) The equivalence classes of EX are 2x {x} for z € C, and {(e,z)} for e €2 and z ¢ C, and thus
closed. If T =TIY, then EL is Dy(T"). It is not closed since

E\ET = {((0,0), (1,0)), {((1,0),(0,0)) }.

In particular, EY is Do(T'). It is not open since ((0,0), (0,0)) € EX N —EF. So the exact complexity
of EL isT'F.

(4) The equivalence classes of E} are 2x {x} for x€C, {(0,2)} for z¢ C, and {1} x (=C), and thus
in Tif T # X9, T't otherwise.

(5) Note that the equivalence classes of EL are 2x {x} for z € C, and {e} x (—=C) for & €2, and thus
in T'if T # X0, ' otherwise.

119
(8) The equivalence classes of Eg © are 2x C,, for n€w, and {e} x (=C) for e €2.
(b).(1) Assume that T' # TI9. Note that (K, EL) is not <.-below (K,ET) since E} is in T' and ET
is not. Moreover, (K, E}) is not <.-below (K, EY) since E{ has infinitely many classes and ET has
only two classes.

Assume now that n > 1. Similarly, EL is not below Ef Conversely, as the classes of EL € B are
all in T or all in T', ET' is not below EL. Thus ET' is incomparable with the other relations in BY. In
particular, AT is a < -antichain.

0) IEOF is not below the other relations in BT, because of the complexity of the classes.

Let us prove that Eg is not below EOF if ' # %Y. We argue by contradiction, which gives f:H— K.
As T #3X9, Cis dense in K. This gives a€ C with £(0, ) # f(1, @), since otherwise
f(0,8)=f(1,5)

for each 8 € 2¢, and thus ((0, B), (1, ﬁ)) € EX for some 3 ¢ C, which cannot be. In particular,
f(0,a), f(1,a) € C. Similarly, working in C N Ny_, gy if necessary, we can find 3 € C\{a} with

£(0,8)# £(1,5) and £(0, B), f(1,8) € C. As (f(0,a), f(1,5)) €EF. ((0,a),(1,8)) €Ef, which

is absurd.

Appealing to the number of classes or the complexity of the relations, we see that Eg is above
neither EX, nor EL.
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) Eg is not above the other relations in BT, because of the number of classes. Appealing to the
complexity of the classes, we see that Eg is not below the other relations in BT .

3) Eg is not above the other relations, because of the complexity of the classes. Let us prove that E};
is not below Eg if the rank of T is at least two. We argue by contradiction, which gives

9=1(90,91):H—H.

Pick (¢,a) € 2x C. If g(e, ) = (g0,7) with v ¢ C, then g(1 —¢,a) = (g9,9) with 6 ¢ C. The
continuity of g gives [ € w such that go(e’, 5) = €¢ if (€', ) € 2 x N,;. Note that there is s in
2<% such that g(0, (all)8) # g(1,(a|l)B) if B € N, since otherwise there is (a|l)3 ¢ C with
9(0, (|)B) = g(1, (a]l)3), which is absurd. Then the map § — (g1(0,0),91(1,0)) reduces C to
(=C)? on N(q|1)s» Which contradicts Lemma 4.5. This shows that g1 (¢, ) € C. As the rank of T’
is at least two, C is dense, so that we may assume that there are o € C, g5 € 2 and v € C with
9(0, ) = (e0,7) and g(1,a) = (1 —¢€9,7). The continuity of g gives | € w and G : N,; — 2¥
continuous with ¢(0, 8) = (50, G(B)) and ¢(1,8) = (1—50, G(B)) if 3 € Ngy;- Note that G reduces
C N Ny to C. As the set C N N, is not open, there are 3, 3" € N,;\C with G(8) # G(B’). Note

that ((50, G(3)), (co, G(B’))) cEL and ((0, 8), (0, 8')) € EL, which is absurd.
This argument also shows that EX is not below EI' if the rank of T is at least two.

(4)-(8) As in (3), EE is not below Eg and Eg is not below E}; since Eof is not below A(2%). O

5 Non-X! equivalence relations

A strong form of Theorem 1.2 holds.

Theorem Let X be a metrizable topological space, and E be an equivalence relation on X. Then
exactly one of the following holds:

(a) the equivalence classes of E are 2(1) (exactly when E is a 2(1) subset of X?),

(b) there is (X,E) € A=Y such that (X,E) C, (X, E).

0. L Lo .
Moreover, A*1 is a < -antichain (and thus a C. and a <.-antichain basis).

Proof. By Lemma 4.1.(a), the equivalence classes of E are XY if E is an open subset of X2. The
converse comes from the fact that E is the union of the square of its equivalence classes. By Theorem
4.6.(a), (a) and (b) cannot hold simultaneously. So assume that (a) does not hold, which gives x € X
such that = € =[z]p.

Case 1 2 ¢ C if C is an E-class which does not contain z.

We inductively construct an injective sequence (xj)xe,, of points of X \ [z]g as follows. We first
choose zg € X\ [z]g. As = ¢ [vo]E, we choose x1 € B(z,27 1)\ ([z]g U [zo]r). Then we choose
w3 € B(x,272)\ ([z]g U [z0]r U [71]E), and so on. Note that (71 )xe,, converges to x. We define
f:K— X by setting £(0) := z and f(27") := . Note that f is injective continuous and reduces

20
Ey' to E.
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Case 2 There is an E-class C with 1 €C\C.

As X is metrizable, there is (x)rew injective in C converging to . We define f : K — X by
0
setting f(0):=xz and f(27%):=ux}. Note that f is injective continuous and reduces Efl to F. 0

Remark. This result does not hold for arbitrary relations, not even for linear quasi-orders. Indeed,
0
assume that (K, E, 1) <. (K, Q), where Q is a non-X linear quasi-order on K like

{(z,y)eK? |z <y}.

Pick (z,y) € K2\E§?. Then (f(x), f(y)) ¢ Q. so that (f(y), f(z)) € Q and (y, ) € EE(B, which
contradicts the symmetry of EE (1).

6 Non-IT! equivalence relations
A strong form of Theorem 1.2 holds.

Theorem 6.1 Let X be a metrizable topological space, and E be an equivalence relation on X. Then
exactly one of the following holds:

(a) the equivalence classes of E are H(l),

(b) (K,EM™) £, (X, B).

Proof. By Lemma 4.1.(b), (a) and (b) cannot hold simultaneously since [1] ny = K\ {0} is not
E

0
closed. So assume that (a) does not hold, which gives 2 € X such that [z]g is not closed. Pick

y € [z]g\[z]e. As X is metrizable, there is an injective sequence (xj)ke, in [z]E converging to y.
We define f: K — X by setting f(0):=v and f(27%):=x;. Note that f is injective continuous and

HO
reduces E; ' to F. 0
A strong form of Theorem 1.3 holds.

Theorem 6.2 Let X be a metrizable topological space, and E be an equivalence relation on X. Then
exactly one of the following holds:

(a) Eisa H(l] subset 0fX2,
0 0
(b) there is (X, E) € {(K,Eg"), (H, E5 1)} such that (X, E) C. (X, E).

9 m,, . o o .
Moreover, {(K,Eq"), (H,E5 ")} is a <.-antichain (and thus a T, and a <.-antichain basis).

Proof. By Theorem 4.6.(a), (a) and (b) cannot hold simultaneously. So assume that (a) does not hold,
which gives (z,y) € E\ E, and ((zx, yk))kEw € EY converging to (z,y). Note that x # y, so that we

may assume that {z) | k€w} N {yr | k€w} =0. We may also assume that either z;, = z for each
k €w, or (zk)key is injective and xy, # x for each k € w. Moreover, we cannot have (zx, yr) = (z,y)
for each k€ w.

28



Case 1 x;, = and yi, #y for each k €w, and (yx ke 1S injective.

We define f: K— X by setting f(0):=y, f(1):=z and f(27%~1):=1,. Note that f is injective

continuous and reduces E v to E.
Case 2 y, =y and x #x for each k €w, and () ke, is injective.
We argue as in Case 1.
Case 3 z, #x and yy, #y for each k €w, and (zk)kew, (Yk)kew are injective.
Note that we may assume that either (z, zy) € F for each k€ w, or (x, xy) ¢ E for each k cw.
Case 3.1 (x, z,) € E for each k€ w.

Note that z, z, y; are in the same F-class, which does not contain y. We define f: K — X by
0
setting f(0):=v and f(27%):=1,. Note that f is injective continuous and reduces Egl to F.

Case 3.2 (z, zy) ¢ E for each kcw.

The previous discussion shows that we may assume that (z,yx), (v, zx), (v, yx) ¢ E for each
k € w. By Ramsey’s theorem (see 19.A in [K1]), we may assume that either (xy,z;) € E for each
k#1, or (zk,2;) ¢ E for each k#1.

Case 3.2.1 (v, x;) € E for each k#1.
We argue as in Case 3.1.
Case 3.2.2 (v, x;) ¢ E for each k#1.

The previous discussion shows that we may assume that (xy,v;), (yx, y;) ¢ E for each k#1. We
define f:H — X by setting f(0,0):=x, f(l 0):=y, £(0,27%):=x;, and f(1,27%):=y,. Note that

f is injective continuous and reduces E3 ! to F. O

7 Some facts about the rank two

Lemma 7.1 Let D be a non-nowhere dense subset of 2% contained in Py. Then there is f:2% — 2
injective continuous such that f[P¢]C D and f[Ps] CPos

Proof. Let s € 2<¥ such that N, C D. Note that Ny C N, N D, so that Ny N D is dense and co-dense
in N;. In particular, by Baire’s theorem, NN D is not separable from N NP, by a ITJ set. Theorem
1.8 gives f:2“ — 2“ injective continuous such that f[P;]C N, N D and f[Ps] C Ny N Po. O

Lemma 7.2 Let G be a non-meager subset of 2 having the Baire property and contained in Py
Then there is f:2% — 2% injective continuous such that f[Ps] CG and f[P;] CPy.
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Proof. As G has the Baire property and is not meager, there is s € 2<% such that Ny N G is comeager
in N,. By Baire’s theorem, N, N IP; is not separable from N, N G by a ITY set. Theorem 1.8 gives
f:2¥ — 2% injective continuous such that f[P;]C Ny NPy and f[Po] SN, N G. O

Convention. In the rest of Sections 7 to 9, we will perform a number of Cantor-like constructions. The
following will always hold. We fix s € 2<%, and inductively construct a sequence (n;);co<w of natural
numbers, and a sequence (Uy);co<w of clopen subsets of 2 satisfying the following conditions:

Assume that this is done. Using (1)-(3), we define f:2“ — N, by {f(8)} :=(,c., Uppn,and f is
injective continuous by (4). If ¢ € O and o =0, then f(«) = v, by (5). For the first step of the
induction, we choose ny in such a way that a,, € N and set Uy := Ng. Condition (5) defines ny.

Lemma 7.3 Let b: Py, — 2¥ be a nowhere dense-to-one continuous map. Then there is f:2% — 2%
injective continuous such that Py = f~1(Ps) and b(f(a)) =+ b(f(ﬁ)) ifa# B EPy.

Proof. We first prove the following.

Claim Let 3 €Py. Then there is a sequence (35 )qew Of finite binary sequences such that
() |s5]>q,
(b) sqla=Bla.

(c) sg LB,
(d)Vp#q BIN,s N Poc] NB[N 5 N Poc] =0.

Indeed, we first construct a sequence (3, )ne., of elements of P, converging to S and such that
(b(ﬁn))n <., 1s injective. Assume that (53, ),,<; have been constructed. As b is nowhere dense-to-one,

we can find fi11 € Ngj41) N Poo \ < Ungl bt ({b(ﬁn)}))

We can extract a subsequence if necessary to ensure that (b(ﬁn))n ¢, converges to some 7y € 2,
which is compact. Extracting again if necessary, we may assume that b(f3,,) # -y for each n € w. As
b(By)#~y and b is continuous, we can find ny € w and Iy >0 such that b(5y)(n9) #~(no), Bollo # Blo
and b(a)|(no+1)=b(Bo)|(no+1) if « € Ng,j; N Pso. We set sg := Bollo.

Extracting again if necessary, we may assume that 3,|1 = 8|1 and b(53,,)|(no+1) = v|(no+1)
for each n > 0. As b(f1) # 7 and b is continuous, we can find ny > ng and l; > [y such that
b(B1)(n1) # v(n1), Billn # Bl and b(a)|(n1+1) = b(B1)|(n1+1) if o € N, N Poo. We set
sf :=[1|l;. Note that b(«)(no) #v(no) if a € ng N Poo, and b(a)(ng) =(no) if € st N Ps, s0O
that b[ng NP N b[st N Poo] = 0. We just have to continue like this to finish the construction of

the desired s ’s. o
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We set s:={), and construct (n;)eo<w, (Ut)tca<w, (¢ )uco,mew satisfying (1)-(5) and

(6) g <dmia

() U N{an | n<|t|}=0

(8) Uuom1 € stgu
Assume that this is done. If 5 € P, then there is an infinite strictly increasing sequence (Ij)rcw Of
natural numbers with 3|l € O. Condition (7) implies that f(3) € Ps. Let a # 8 € P, which gives
u € O and m # p such that o € Nyom1 and 5 € Nygr1. Conditions (8) and (d) in the claim imply that

b(f())#b(f(B)). So we are done.

Let us prove that the construction is possible. Assume that (1) (¢<;» (Ut)j¢<i> (G )ueo, jul+m+1<i
satisfying (1)-(8) have been constructed, which is the case for [=0.

Let ¢ := u0™ € 2!, with u € O. As an, € Uy, Nanth C Uy if q is big enough, say g > ¢q;. We
choose gy, > max(max; <, ¢}, q), and ny in such a way that au,, € Noon, \{an, | n<1}. Note that

a9m

s?ﬁt | =, | @, D i, | gt SO that oy, € Uy and o, # o, We choose disjoint clopen sets Uy, Uy
with diameter at most 2~/~1 such that O, € Uge CUy and satisfying (7)-(8). O

8 Non-X) equivalence relations
Notation. We set C:=P..

Proof of Theorem 1.2 when I' = Zg. By Lemma 4.1.(b), (a) and (b) cannot hold simultaneously.
So assume that (a) does not hold. By Proposition 4.2, we may assume that X = 2“ and C is an
equivalence class of F.

Case 1 [o] g is nowhere dense for each a¢ C.

We inductively construct a sequence (ny)ge,, of natural numbers as follows. Let (Og)xe,, be a
basis for the topology of 2 made of nonempty sets. Pick ng € w such that a,,, € Og. As [an,|E 18
nowhere dense, we can find n; €w such that o, € O1\ [, ] E. AS [, | £ is nowhere dense, we can
find ng € w such that o, € O2\ ([any]E U [on,]E). And so on. Note that (o, )ke, is dense and
co-dense in C U {av,,, | k € w} (which is co-countable in 2¥), so that {av,, | k € w} is not IT9, by
Baire’s theorem. By Hurewicz’s theorem, there is f:2¥ — C U {«,, | k € w} injective continuous

0
such that C= f~1(C). Note that f reduces E? 20 E.

Case 2 there is a ¢ C such that [o] g is not nowhere dense.

Let s € 2<% such that N5 C [a]g. Note that the countable and thus X9 set N N [ap is
dense and co-dense in Ny N (C U [a]g) (which is co-countable in Ny). As in the Case 1, we get

0
f:2¥— NyN (CU[a]g) injective continuous such that C = f~*(C). Note that f reduces E?Q to E.
This finishes the proof. (]
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Proof of Theorem 1.3 when ' = 0. If (X, E) € B=2, then E ¢ XY by Theorem 4.6.(a), so that (a)
and (b) cannot hold simultaneously. Assume that (a) does not hold. By Theorem 1.2, we may assume
that the equivalence classes of F are 9. By Theorem 4.3, we may assume that X =2 x 2%,

A2x2°)U{((0,0),(1,0)) |a€C}CE
and {((0,),(1,0)) | a¢C} C—E.

We will now prove that we may assume that ((e,a), (1—¢,8)) ¢ Eif e€2 and o, 3¢ C. Indeed,
assume first that (E(. o))1-c \C is not nowhere dense in 2 for some ¢ € 2 and some o ¢ C. Then

(1=2,8), (1=£,7)) € E. ((0,8),(1,7)) & E and ((1,8),(0,7)) ¢ E if .7 € (Ec.a))1--\C.
Lemma 7.1 gives f:2¥ — 2* injective continuous such that f[2\C]C (E . 4))1-\C and f[C]CC,
so we are done. Assume now that (F(. ,))1-< \C is nowhere dense in 2 for each ¢ € 2 and each
a¢ C. We set s:=(), and construct (n:);eo<w, (Ut)iea<w satisfying (1)-(5) and the following:

(6) Qnyy ¢{ant} U {an ‘ n< ’t’} U U (E(e,ans))l—a U U (E(e,ansl))l—a

e€2,se2ltl 562,362\t\,s<lext

Assume that this is done. If 8 € C, then there is an infinite strictly increasing sequence (Ix)kcw
of natural numbers with 5|l € O. Condition (6) implies that f(3) € C. Now let 5 # ' ¢ C.

Condition (6) implies that ((5, f(8)), (1—¢, f(ﬁ’))) ¢ E for each € € 2. So we are done. Let us

prove that the construction is possible. Assume that (1) <; and (Uy) )y <; satisfying (1)-(6) have been

constructed, which is the case for [ =0. Let ¢ € 2!. We define n; by induction on ¢ with respect to the
lexicographical ordering. We choose it in such a way that

s €UN ({an} Ufon [n<U ) Beahia\CU U Bean,)1i-\C).

e€2,5€2! aez,se2l,s<lext

We do this for each ¢ € 2!, in the lexicographical ordering. Then we choose disjoint clopen subsets
Uy, Uy of Uy with diameter at most 211 with O, € Uy for each e € 2.

Similarly, we may assume that either ((e, ), (¢, 8)) € E for each a# 3¢ C, or ((g, ), (¢, 8)) is
not in E for each a# 5 ¢ C, for each e € 2.

Let us prove that ' has meager classes. We argue by contradiction, which gives (¢, a) € 2 x 2%
such that [(g,a)]g is not meager. As [(¢,a)]g isin T' = XY, we get &’ € 2 and s € 2<“ such that
{e'} x Ns C[(e, )] g. Assume, for example, that ¢’ = 0, so that {1} x (N, N C) C [(¢, )] g. Thus
({1} x Ny) N [(e, @)] g is comeager in {1} x N, and 29, which gives ¢ € 2<“ such that

{1} x N Cl(e, o)|E.
Thus (0, st0°°), (1, st0>) € [(¢, )] g and ((0, st0°°), (1, st0>)) € E, which is absurd.

The Sarbadhikari theorem gives an increasing sequence (F});e,, of Borel relations on 2 x 2 with
closed nowhere dense vertical sections whose union contains F (see 5.12.11 in [Sr]).
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We will now prove that we may assume that ((¢, a), (¢/, 8)) ¢ E if e,¢’ €2, and either a € C and
B&C,orag¢Cand feC. Weset s:=0), and construct (n¢)sco<w, (Ur)iea<w satisfying (1)-(5) and
the following:

(6) Utl N ({ant} U {an ‘ n< ’t’} U Ue,€’€2,s€2‘t‘ ((ﬂt\)(e,ans))€/> :(Z)

Assume that this is done. If 8 € C, then there is an infinite strictly increasing sequence (Ix)ge., of
natural numbers with 3|l € O. Condition (6) implies that f(3) € C. Condition (6) also implies that

((a, f), (¢, f(é))) ¢ FEif e,¢/ €2, and either y € C and § ¢ C, or v ¢ C and 6 € C. So we are
done. Let us prove that the construction is possible. Assume that (n;)};<; and (Ut)lt\ < satisfying
(1)-(6) have been constructed, which is the case for I =0. Let t € 2!. As (Fl)(e,a) is closed nowhere

dense for each (g, a)) €2x 2%, ((Fl)(&a))s, is a nowhere dense closed subset of 2 for each (¢,¢’, «)
in 22 x 2%, We choose n;; in such a way that

s €UN ({an} Ufan 0200 | (F)ean)s )

e,e’€2,5€2!

Then we choose disjoint clopen sets Uyg, U;; with diameter at most 2==1 guch that O, €U C UL
and satisfying (6).

We will now prove that we may assume that EN (2xC)?={((e, ), (¢',)) | &,¢’ €2 A€ C}.
By Proposition 4.4, we just have to prove that we may assume that

ENn({0}xC)*={((0,a),(0,a)) | a€C}.

We set B/ := { (o, 8) € 29 x 2% | ((0,),(0,8)) € E}, so that we must see that we may assume
that E' N C2= A(C). As E is a Borel equivalence relation on 2 x 2* with X9 classes, we can write
E={ qew Kg> Where K is a Borel relation on 2 with nonempty closed vertical sections, by the
Saint Raymond theorem (see 35.45 in [K1]). By Theorem 3.6 in [Lol], there is for each n € w a finer
Polish topology 7, on 2% such that K, € 119 ((2‘*’, Tq)><2‘*’). By 8.38 in [K1], there is a dense G5 subset
G, of 2% on which 7, coincides with the usual topology on 2, so that K, N (G, x2¥) € II{ (G, x2%).
We equip the hyperspace F'(2¢) of closed subsets of 2* with the Effros Borel structure (see 12.C in
[K1]). The following maps are Borel.

(1) 1q:2¥ — F(2*)\{0} defined by () := (Kg)~-

Indeed, (Ky)y N Ns#0 < 3B N (v,0)€ Ky, so that {ye2¥ | (K,), N Ns#0} is analytic.
Assume, for simplicity of the notation, that K, is A{. If v € 2%, then (K,), N Ny is A}(y) and
compact. By 4F.11 in [Mos], (K,), N N; is not empty if and only if it contains a A}(~y) point. This
shows that {y€2¥ | (K,), N Ns#0} is also co-analytic, and thus Borel. Thus v, is Borel.

(i) ¢o: F(2¥)\ {0} — R defined by ¢ (K):=d(c, K).

By 12.13 in [K1], there is a sequence (dj)xe,, of Borel functions from F'(2¢) into 2* such that

(dk(K))kew is dense in K if K € F'(2*) is not empty. We get the following, for a,be R:

do, K)>a < Ipew Vkew d(a,di(K))>a+27P,

d(o, K)<b < Jkew d(a,dy(K)) <b,
showing that ¢, is Borel.
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(iii) g, : 2 — R defined by ¢q.q(7):=d(a, (Kq)y)-

Indeed, 4o = ¢q © Y4. Consequently, 8.38 in [K1] gives a dense G's subset H,, , of 2 on which
Pg,a is continuous. We set H:=C N ¢, G N, nen Hoan s0 that H is also a dense G5 subset
of 2%, In particular, H =", O;, where (O;);c., is a decreasing sequence of dense open subsets of
2%,

We set s:=(), and construct (n¢)sco<w, (Up)iea<w satisfying (1)-(5) and the following:

(6) Ut SO \{an | n<|t]}
(7) (Use2\t\,nez,sn7&t1 (Usn NH)x (U N H)) N (Uqg|t\+1 Kq) =0

Assume that this is done. If 5 € C, then there is an infinite strictly increasing sequence (Ij)kecw Of
natural numbers with S|l € O. Condition (6) implies that f(3) € C. Conditions (6)-(7) imply that
(f(), f(8)) ¢ E"if y#6 € C. So we are done. Let us prove that the construction is possible. Assume
that (1¢)<; and (Uy)}y<; satisfying (1)-(7) have been constructed, which is the case for [ = 0. Note
first that £’ is a meager relation on 2* since E has meager classes and is Borel. In particular, £ N H?
is meager in H 2 since H is a dense G subset of 2. Moreover, U (<l+1 K,NH 2 is a closed relation
on H contained in E’, so that Uq<l+1 K, N H? is nowhere dense in H2. Now let s #t € 2! (we have
s1 and t1 in mind). Note that (Us N H)x (U N H) ZUJ,<;,; Ky- So we can find a nonempty clopen
subset V of Us N O\ ({an, } U {a | n<1}) such that (Vs N H)x (VN H)) N (Uy<i1 Kq)=0if
s#te 2. Now let s,t € 2! (we have s0 and ¢1 in mind). We choose Vst € Vi N H. If ¢ <I+1, then
i, & (Ky)5,, since ay,, ¢ Cand (K,),,, € (E'),,, CC. As (Kg),,, is closed in 2¢, it is compact.
This gives ps;q € w such that d(ap,, (Ky),,,) > 27744, The continuity of ¢, o, on H gives
ls,t,q € w such that d(a, (Kg)y) >27Pstaif a € Ny, and y € H NNy oo Nog i o € Vi
Neviltong CUss Ny, y1arg M Na =(). We replace V; with Ny, g, and Us with N, for
the biggest l5 ; , with ¢ <I+1, which gives V// and U.. We do this for all the possible s, t € 2!, which
lead to \N/t’s and U s’s. We now choose ay,,, € f/t Then we choose disjoint clopen sets Uy, Uy with
diameter at most 2~/~! such that O, €U C ﬁt and satisfying (6)-(7).

ns|ls,t,a nslls,t,q

There are three cases to conclude.

Case 1 ((¢,a), (¢, 8)) ¢ E for each a5 3¢ C and each € € 2.

0
Then E=E,>.

Case2 ((c,a),(c,8)) €Eand ((1—¢,a), (1—¢,8)) ¢ E for each a# 3 ¢ C and some ¢ € 2.

. . . =9
Exchanging the first coordinate if necessary, we may assume that e=1. Then £ =E} .

Case 3 ((,a), (¢, 8)) € E for each a# 3¢ C and each e € 2.

Then E=E>>. O

9 Non-IT equivalence relations

Notation. We set C:=P;:={a, | ncw}.
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Proof of Theorem 1.2 when I' = Hg. By Lemma 4.1.(b), (a) and (b) cannot hold simultaneously. So
assume that (a) does not hold. By the proof of Proposition 4.2, we may assume that X =2“ and C
is an equivalence class of . By the Harrington-Kechris-Louveau theorem (see Theorem 13 in [M]),
either there is b: 2 — 2% Borel with E' = (bx b)~*(A(2¥)), or (2*,E¢) T, (2¢, E). In the latter
case, the map ¢: 2<% — 2<% defined inductively by ¢(0):=0, ¢(s1):=¢(s)1¢(s) and

9(s0) = (s)0" 1)

0 0
induces f :2“ — 2“ injective continuous reducing E(I)IQ to £y, showing that Egl 2 is below FE. We
apply Lemma 7.2 to a dense Gi5 subset G of 2“ contained in —C on which b is continuous, so that we
may assume that there is b: =C — 2“ continuous such that (o, 8) € E < b(a) =b(3) if a, 5 ¢ C.

Case 1 [ g is meager for each v € 2% (i.e., b is nowhere dense-to-one).

Lemma 7.3 gives f:2% — 2% injective continuous such that C= f~(C) and b(f(a)) #b(f(8))
if a# 8¢ C. It remains to note that f reduces E?g to F.

Case 2 there is o € 2¥ such that [o] g is not meager.

0
We apply Lemma 7.2 to G:= ] g, which gives f:2“ — 2“ injective continuous reducing E{IQ to
E. O

Proof of Theorem 1.3 when I' = ITJ. If (X, E) € B™2, then E ¢ ITJ, so that (a) and (b) cannot hold
simultaneously. Assume that (a) does not hold. By Theorem 1.2, we may assume that the equivalence
classes of F are I1. By Theorem 4.3, we may assume that X =2 x 2,

A(QXQ“)) U {((0,0Z), (1,0&)) | OZG(C} CFE
and {((0,0Z), (1,0&)) | a%@} C—FE.
Claim (E,. .)). N C is nowhere dense in 2* for each €2 and each ¢, €' €2.

Indeed, we argue by contradiction, which gives s € 2<“ such that N; C (E(aﬁ)) o NC. As B )
is II9, (E( 4))er N N\ C is comeager in Ny. Moreover, (B ,))er N CC (B 4))1—e since

{((0,0),(1,0)) |a€C}CE.

This implies that (E(spf))l—s’ NNy is a dense Hg subset of N, and is therefore comeager in N,. Thus
(E(e,1))o N (Eeq))1 N Ns\Cis comeager in N; and contains some 3. Therefore ((0,8),(1,8)) isin
FE, which is absurd. o

The Sarbadhikari theorem gives an increasing sequence (Fj);c., of Borel relations on 2* with
closed nowhere dense vertical sections whose union contains £ N ((2 X 2¥) x (2% (C))

We will now prove that we may assume that

ECA@2x2?)U{((e,a),(1-¢c,a)) |[e€c2naecC}U{((c,®), (¢, B)) |e,e'€2Aa#B¢C}.
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We set s:=(), and construct (n¢)yeo<w, (Up)ieo<w satisfying (1)-(5) and the following:

(6) Ua N ({ant} U{ay, [ n<[t}U Ue,s’,n€2,s€2l,77:0\/s<lext (E(e,ansn))a’ ncC

U Ue,e’e2,sezl ((E)(57a7ls))a’) =0
Assume that this is done. If § ¢ C, then there is an infinite strictly increasing sequence (x)ge,, of nat-
ural numbers with 3|l;, € O, so that f(3) ¢ C by Condition (6). Note that ((a, f(@), (¢, f(o/))) ¢E
if a# o/ € C, by Condition (6). Moreover, ((E, f(@), (¢, f(ﬂ))) ¢ E if a€C and ¢ C, by Condi-

tion (6). Thus we are done. Let us prove that the construction is possible. Assume that (1) <; and
(Uy) It|<1 satisfying (1)-(6) have been constructed, which is the case for [=0. Lett € 2!, We define ny
by induction on ¢ with respect to the lexicographical ordering. As (Fl)(e,a) is closed nowhere dense
for each (g, ) € 2x 2%, ((ﬂ)(&a))a, is a closed nowhere dense subset of 2¢ for each (¢,¢’, a) in
22 % 2% We choose n;; in such a way that

Qpyy € Ut\ <{ant} U {Oén ‘ nél} U Ue,€’€2,s€2l (E(a,ocns))f:" NnCu ((E)(E,ans))glu

U€,€’€2,s€2l,s<lext (E(s,ansl))e’ N (C),

We do this for each ¢ € 2!, in the lexicographical ordering. Then we choose disjoint clopen sets
Uy, Uy with diameter at most 27/~ such that O, € Uge CU; and satisfying (6).

We now prove that we may assume that
ECA@2x2?)U{((e,a),(1-¢,a)) |[e€c2naeC}U{((c,a),(s,B)) |ec2ha#B¢C}.

Theorem 3.6 in [Lol] gives a finer Polish topology ¢ on 2x 2% such that E' Hg ((2 x 2%, 0)2) since
the equivalence classes of E are II9. Corollary 1.2 in [Ha-K-Lo] gives another Polish topology 7 on
2x 2%, finer than o, such that F' € H? ((2><2“, 7')2). By 8.38 in [K1], there is a dense G subset of —=C

on which 7 and the usual topology coincide. This shows that we may assume that £ N (2 X (—|(C))2 is
closed in (2x (—|(C))2, which gives a closed relation F' on 2x 2¥ with

EN (2x(-C))*=Fn (2x(-C))%
Fix e €2. Note that F N {((e, ), (1—¢,a)) | «€C} is nowhere dense in

{((e;a),(1—¢,0)) | a€2v}.

Indeed, we argue by contradiction, which gives s € 2<% such that

{((e,;a),(1—¢,0)) | e N} CFN{((e,),(1—¢,a)) | acC} CF,
and a¢ C such that ((g, @), (1—¢,)) is in F, and thus in E, which cannot be. This gives ¢ € O such

that ((e,t0°°), (1—¢,t0°°)) ¢ F, and | € w with (({e} x Nyt ) X ({1—e} x N;qt)) N F=0. So we are
done.
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The previous point shows that we may assume that £/ N ({E} X (—|(C))2 is a closed equivalence
relation on {e} x (—C) for each £ € 2. By 18.D in [K1], there is a o(X})-measurable map

S:{e} % (=C) = {e} x (<C)

such that S(g,a) = S(e, B) E (g, ) if ((e,a), (e, 8)) € EN ({e} x (—|(C))2. By 8.38 and 29.D in
[K1], there is a dense G subset G of —C such that the restriction of S to {¢}xG is continuous. So we
may assume that there is b, : =C — 2* continuous such that ((¢, @), (¢, 8)) € E < b.(a) =b.(B) if
a, ¢ C. Assume first that b is nowhere dense-to-one. By Lemma 7.3, there is f:2“ — 2% injective

continuous such that C= f~!(C) and b (f()) #b<(f(8)) if w5 B¢ C. This implies that f reduces
0
Egl:l2 to F if both by and b; are nowhere dense-to-one. If by is not nowhere dense-to-one and by is

. g . . ..
nowhere dense-to-one, then using Lemma 7.2 we see that [ 2 is reducible to E. This is also the case
if by is not nowhere dense-to-one and by is nowhere dense-to-one, since we can exchange the first

. . . g . . ..
coordinate. If neither by, nor by is nowhere dense-to-one, then E; ? is reducible to F, similarly. [

10 Equivalence relations with countably many classes

10.1 Non-Eg equivalence relations with countably many classes

If £ > 2 is a countable ordinal, then Lemma 4.5 provides C € H2(2“’)\22. Subsection 2.3 provides
a partition (C,,)e., of =C into Ag subsets of 2, which allows to define an equivalence relation on

>0
29 by E; *:=C*U,,c,, CZ, as in the introduction.

Proof of Theorem 1.6. By Lemma 4.1.(a), the equivalence classes of E are Zg if Fisa Zg subset of
X?2. The converse comes from the fact that E is the countable union of the square of its equivalence

classes. By Lemma 4.1, (a) and (b) cannot hold simultaneously. By Theorem 1.2, we may assume
that £ > 3.

By Proposition 4.2, we may assume that X = 2“ and C is an equivalence class of the Borel
relation . As E has countably many classes, we can write -C = | D,,, where the D,, are
distinct E'-classes and [ is countable and nonempty.

nel

If there is n such that the Borel set D,, is not separable from the Borel set C by a Hg set, then
Theorem 1.8 gives j: 2* — X injective continuous such that C C j~!(C) and ~C C j~(D,,). This
0

p>
implies that (2, *) C,. (X, E).
If the D,,’s are separable from C by a Hg set, then they are separable from C by a Ag set. In

particular, [ is infinite and we may assume that / =w. Theorem 1.10 provides ¢ :w — w injective and
f:2¥ = X injective continuous such that C C f~(C) and C,, C f~! (D) for each n € w. Note

EO
that f reduces E, ° to E as desired. O
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10.2 Non-Hg equivalence relations with countably many classes

Proof of Theorem 1.5. By Theorem 4.6, (a) and (b) cannot hold simultaneously. By Proposition
4.2, we may assume that X = K and C is an equivalence class of the Borel relation £. As E has
countably many classes, we can write ~C={J,,.; Cy, where the C,, are distinct E-classes and I is
countable and nonempty. As C ¢ I12, there is n such that C,, is not separable from C by a 22 set.

As C and C), are Borel, Theorem 1.8 glves j:K— X injective continuous such that C C j~*(C) and
~CCj~YCy,). This implies that (K, El ) C. (X, E) as desired. O

In order to finish the study of Borel equivalence relations with countably many classes, it remains
to characterize those which are not Hg if £ > 3. Lemma 4.5 provides C € 22(2“) \Hg. Subsection

2.3 provides a partition (C,,),c, of C into Ag subsets of 2%, which allows to define an equivalence
. m . . .
relation Eg © on 2x 2% as in the introduction.

Notation. Let £ be an equivalence relation on 2 x 2“. We set, for €, € 2,

E.,={(a,8)€2°%x2¥ | ((¢,), (n, B)) EE}.

Note that E, . is an equivalence relation on 2%,

119
Proof of Theorem 1.7. By Theorem 1.3, we may assume that £ >3. If n.€ {1, 8}, then E,, ¢ T1Z, so
that (a) and (b) cannot hold simultaneously. Assume that (a) does not hold. By Theorem 1.5, we may
assume that £ has Hg classes. By Theorem 4.3, in order to prove that (2 x 2% Es ) C. (X,E),w
may assume that X =2x 2%, {((0,a), (1,@)) | a€C} CE and {((0, ), (1,)) | ag;‘(C}g—'E.

Note that £, . has countably many 1'[2 classes, for each € € 2, since the map o +— (e, ) reduces

E. . to E. Consequently, we can write -C = J D;,, where the Dy,’s are Hg and contained in

new
distinct E; .-classes. Note that there is n € w such that Dy, is not separable from C by a Zg set.
Theorem 1.8 gives g : 2% — 2¥ injective continuous such that ~C C g=!(D%) and C C g~ *(C). So,
replacing E with ((Idg x g) % (Idg x g)) 71(E ) if necessary, we may assume that —C is contained in a

single E; .-class K., for each e €2.

Let us prove that —C is separable from Ky N C by a 22 set, say S. We argue by contradiction.
Theorem 1.8 gives h:2* — 2¢ injective continuous such that ~C C h~(—~C) and CC h~1 (Ko N C).
We set E' := ((Idy x h) x (Idy X h)) 71(E) so that F’ is a Borel equivalence relation on 2 x 2% with
countably many HO classes. Moreover, C2 C EJ, oN C?= E1 . N C2, by Proposition 4.4. So C is

contained in an E171 -class C’, which has to be II0 as above. So let B e C’'\C, and o € C. Then
(o, B)EE] 1, (B,) € Ej g, and (v, @) € B 4, so that (3, 8) € E 1, which is absurd.

Let us prove that —C is not separable from =K by a 22 set. We argue by contradiction, which
gives S’ € 22. Note that 2¥ =C U S’ is a covering into 22 sets. The reduction property of 22 gives
Ac Ag with A C S and ~A C C (see 22.16 in [K1]). Then ~CC A C Ky, so that -C=AN S e XY,
which is absurd.

38



Theorem 1.8 gives k:2% —2“ injective continuous such that C C k~*(—Kj) and =C C k~!(~C).

So, replacing E with ((Idaxk)x(Idgxk)) ! (E) if necessary, we may assume that ~C is an Ej o-class.

As Ej o has countably many Hg classes, we can write C=|J D,,, where the D,,’s are distinct

new
Hg classes for . Theorem 1.10 provides ¢ :w — w injective and k : 2 — 2“ injective continuous

such that ~C C k~*(—~C) and C,, C k‘l(D¢(n)) for each n € w. Replacing E with

((1da x k) x (1dy x k) (E)
if necessary, we consequently may assume that

h EOvO = (_\(C)2 U UnEw (CT%,’
- {((0’04)7 (1,0[)) | OZG(C} CE,
-{((0,0).(1,0)) | a¢C}CE.

- =C s contained in an F -class.

Proposition 4.4 shows that if £, €2 and «, € C, then (a, 3) € E. ;, is equivalent to («, 3) € Ep o
(and (CY, ﬁ) G UnEw (C727,)

Note that £, 1. N (—=C)? =0. Indeed, we argue by contradiction and we may assume that ¢ =0,
which gives «, 5 ¢ C such that (o, 5) € Eg 1. As (o, 8) € Eo 0, (8, 5) € Ep,1, which is absurd.

We set, for pew, Bpt1:={8¢C | JacC, (o, )€ Ey1}. Note that By is analytic. In fact, if
B € Bpy1 with witness « and v € C,, then (7, o) € Ey o, so that (v, §) € Ep,1 and

Bpi1:={B8¢C | Vy€C,; (v,8)€Ep1}

is also co-analytic and thus Borel. Moreover, the B, 1’s are pairwise disjoint since two different C,,’s
are not Ey o-related. We set Bo:=(—~C)\(U,e,, Bp+1)- Then (Bp)pe., is a partition of —C into Borel
sets. Note that there is p such that B, is not separable from C by a Eg set. Theorem 1.10 provides
¢ :w—w injective and /:2* — 2 injective continuous such that ~CC1~!(B,) and C,, 171 (Cyyp))

for each n € w. So, replacing E with ((Idy x 1) x (Idg x 1)) 1(E) if necessary, we may assume that

(o, B) & Ep1 if B¢C, a €C, and n#p. As ~C is not separable from | J,,,, C,, by a 22 set, we can

apply again Theorem 1.10 to see that we may assume that (o, 3) ¢ Ep 1 if 3¢ C, a € C,, and n € w.

By symmetry, (o, 5) ¢ Ey if a¢ C, 3€C,, and n € w. Similarly, we may assume that (o, 3) ¢ E1 o

if 6¢C, a€C,, and n € w. By symmetry, (o, 5) ¢ Ep 1 if ¢ C, € C,, and n € w. Similarly again,

we may assume that (a, 3) ¢ Ey 1 if ¢ C, 5 €C,, and n € w. By symmetry, (o, 3) ¢ Eq ; if 3¢ C,
0

II 119
a€C,, and n€w. So we proved that we may assume that E=Eg °, i.e., (H,Eg *) C. (X, E). O

11 Borel equivalence relations with 7 classes

Proof of Theorem 1.4. By Theorem 4.6, (a) and (b) cannot hold simultaneously. So assume that (a)
does not hold. As E has F;, classes, its sections are in I'. By Theorem 4.3, we may assume that
X=H, {((0,a),(1,a)) | «eC} CE,and {((0,),(1,a)) | «¢C} C—E.
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Recall that E. . is a Borel equivalence relation on 2¢ with F; classes. In order to simplify the

notation, we may assume by relativization that £ :=rk(T') < w1CK and C, F € A%. We partly follow
the proof of Silver’s theorem (see [S]) given in [G]. So we set

W:={a€2” | Ve A}(2¥) acUC[g,}

and V := 2%\ W. The proof of Theorem 5.3.5 in [G] shows that V € X}, and that Eq o N V? is X2.-
meager in V2. Note also that W contains Al N 2%, As A}(2¢) is countable, we can find a countable
set I and a sequence (U;);cs of nonempty Af sets each contained in a single Ey o-class such that W
is contained in the F5, set S:=J;c; [UilEgy o, Where [Ui]g, ,:={a€2¥ | 3B U; (o, )€ Epp} is
X1, Pick o; € U; for each i € 1, so that [U;] g, , = [vi] 5, , and S is the disjoint union of the [v] g, ,s.

Let us prove that V' NC is not separable from V\C by a set in I'. We argue by contradiction, so that
C\ S is also separable from =(SUC) by asetinI'. As C¢ T and S € F, CT', SN C is not separable
from S\ C by a set in I'. This gives i € I such that [a;] g, , N C is not separable from [a;] g, , \ C by
a set in I. In particular, there is o € [ay] g, , N C. If B € [a]g,, N C, then ((0, ), (1, 8)) € E. Thus
{1} x(la] gy, N C) is contained in the F5 set [(0, )]z N ({1} x [a]x,,). This gives v € [a]g,, \C
such that ((0, ), (1,7)) € E. As ((0,), (0,7)) € E, ((0,7), (1,7)) € E, which is absurd.

Theorem 3.2 provides f : 2% — 2% injective continuous such that C= f~!(C) and (f(«), f(8))
is not in Ey g if a5 3. This shows that we may assume that E coincides with Ef on ({0} x 2¥)2.

Similarly, we may assume that £ coincides with Ef on ({1} x 2*)2. By Proposition 4.4, E
coincides with EX on ({e}xC)x ({n}xC) for each £, € 2. Pick av, 8, y€2%. If both ((0, ), (1, 3))
and ((0, ), (1,)) are in E, then #=+. Similarly, if ((0, ), (1,)), ((0,7), (1,®)) € E, then 3=.
This shows that E coincides with EX on ({e}xC)x ({1—¢}x(~C)) and ({e}x(=C)) x ({1—e}xC)
for each € €2, and also that £ N <({5} x (=C)) x ({1—€} x (—(C))) is the graph of a Borel injection.
In particular, F is countable. We set R:= Us,nez E. ;. Note that R is a locally countable relation on
2%, Corollary 3.3 provides [: 2 — 2 injective continuous such that C=1"*(C) and ({(),1(8)) ¢ R’
if a7 3. So we may assume that E' coincides with E:l; O
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