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CNRS, Université Paris Diderot, Projet Analyse Fonctionnelle,

Campus Pierre et Marie Curie, Case 247, 4, place Jussieu, 75 252 Paris cedex 5, France

dominique.lecomte@upmc.fr
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Abstract. We study the class of Borel equivalence relations under continuous reducibility. In partic-

ular, we characterize when a Borel equivalence relation with countable equivalence classes is Σ0
ξ (or

Π
0
ξ). We characterize when all the equivalence classes of such a relation are Σ

0
ξ (or Π0

ξ). We prove

analogous results for the Borel equivalence relations with countably many equivalence classes. We

also completely solve these two problems for the first two ranks. In order to do this, we prove some

extensions of the Louveau-Saint Raymond theorem which itself generalized the Hurewicz theorem

characterizing when a Borel subset of a Polish space is Gδ.

2010 Mathematics Subject Classification. Primary: 03E15, Secondary: 28A05, 54H05

Keywords and phrases. Borel class, Borel equivalence relation, descriptive complexity, Borel reducibiity, continuous

reducibility, dichotomy

1



1 Introduction

The present paper is about descriptive set theory, which is the study of definable subsets of Polish

spaces (recall that a topological space is Polish if it is separable and completely metrizable). The

reader should see [K1] for the standard descriptive set theoretic notions and notation. The most

classical hierarchy of topological complexity in descriptive set theory is the one given by the Borel

classes. If Γ is a class of subsets of the metrizable spaces, then Γ̌ := {¬S | S ∈Γ} is its dual class.

Recall that the Borel hierarchy is the inclusion from left to right in the following picture:

Σ
0
1=open Σ

0
2=Fσ Σ

0
ξ=(

⋃

η<ξ Π
0
η)σ

∆
0
1=clopen ∆

0
2=Σ

0
2 ∩Π

0
2 · · · ∆

0
ξ=Σ

0
ξ ∩Π

0
ξ · · ·

Π
0
1=closed Π

0
2=Gδ Π

0
ξ=Σ̌0

ξ

This hierarchy is strict in uncountable Polish spaces, in which the non self-dual classes are those of

the form Σ
0
ξ or Π0

ξ . In the sequel, by non self-dual Borel class, we mean exactly those classes.

The study of Borel equivalence relations under Borel reducibilty is one of the major topics in

descriptive set theory since more than three decades now. Several important dichotomy results con-

cerning the Borel equivalence relations have been proved (see, for example, [S], [Ha-K-Lo], [H-K]).

They are of the following form: a relation is either simple, or more complicated than a typical compli-

cated relation. Several quasi-orders have been used to compare the Borel equivalence relations (recall

that a quasi-order is a reflexive and transitive relation). The most common is Borel reducibility.

Recall that if X,Y are topological (or standard Borel) spaces and E⊆X2, F ⊆Y 2,

(X,E) ≤B (Y, F ) ⇔ ∃f :X→Y Borel with E=(f×f)−1(F )

(we say that f reduces E to F ). However, very early in the theory, the quasi-order ⊑c of injective

continuous reducibility defined by

(X,E) ⊑c (Y, F ) ⇔ ∃f :X→Y injective continuous with E=(f×f)−1(F )

has also been considered, for example in the main result of [S].

Theorem 1.1 (Silver) Let E be a co-analytic equivalence relation on a Polish space X. Then exactly

one of the following holds:

(a) the relation E has countably many equivalence classes,

(b) (2ω,=) ⊑c (X,E).

The quasi-order ≤c of continuous reducibility can also be mentioned. We are interested in the

descriptive complexity of Borel equivalence relations on Polish spaces. In order to approach this

problem, it is useful to consider invariants for the considered quasi-order. In the context of Borel

relations on a Polish space, a natural invariant for Borel reducibility has been studied, the notion of

potential complexity (see, for example, [L2], [L3], and [Lo2] for the definition). A Borel relation R
on a Polish space X is potentially in a Wadge class Γ if we can find a finer Polish topology τ on X
such that R is in Γ in the product (X, τ)2.
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This is an invariant in the sense that any relation which is Borel reducible to a relation potentially

in Γ has also to be potentially in Γ. Along similar lines, any relation which is continuously reducible

to a relation in Γ has also to be in Γ. Moreover, the pre-image of an equivalence relation by a square

map is an equivalence relation, which is not the case with arbitrary continuous maps. This motivates

the work in the present paper. We are looking for characterizations of the Borel equivalence relations

either in a fixed Borel class Γ, or whose equivalence classes are in Γ. So we will consider the

continuous and injective continuous reducibilities. In other words, we want to give answers to the

following very simple questions.

Questions. (1) When is a Borel equivalence relation Σ
0
ξ (or Π0

ξ)?

(2) When are the equivalence classes of a Borel equivalence relation Σ
0
ξ (or Π0

ξ)?

Question (1) is the most natural one. Question (2) is also natural, in particular when we think

about classical uniformization results for instance (see Section 18 in [K1]). As we will see, it turns

out that the solution to Question (2) is an important step towards the solution to Question (1) (see

Theorem 4.3). There are several possible approaches to try to solve these problems. One can try an

approach “from above”, which means finding a relation universal for (i.e., above for the considered

quasi-order) the relations in Γ. For instance, it is known that there is a universal Kσ equivalence

relation for Borel reducibility (see [R]). It is an open and difficult problem to find a universal Fσ
equivalence relation for Borel reducibility, and thus for continuous reducibility also. In this paper,

we will follow another approach, “from below”, which means that we will prove dichotomies of

the form above. In particular, we will be able to characterize the Fσ equivalence relations this way.

We provide a complete solution for the Borel equivalence relations with some countability property,

namely those with countably many equivalence classes and those with countable equivalence classes.

In order to describe this, we now introduce, for some Borel classses Γ and some natural numbers n,

useful examples of complex equivalence relations EΓ
n /∈Γ.

Notation. Let Γ be a non self-dual Borel class, K be a metrizable compact space, and C∈ Γ̌(K)\Γ.

If the rank of Γ is one (i.e., if Γ ∈ {Σ0
1,Π

0
1}), then we set K := {0} ∪ {2−k | k ∈ ω} ⊆ R,

C :={0} if Γ=Σ
0
1, and C :=K\{0} if Γ=Π

0
1, since we want some injectivity results.

If the rank of Γ is at least two, then we set K :=2ω, and C ∩Ns∈ Γ̌(Ns)\Γ for each s∈2<ω (we

will check that this is possible). In particular, C is dense and co-dense in 2ω . We set

C :={α∈2ω | ∃∞n∈ω α(n)=1}

if Γ=Σ
0
2, and C := {α∈ 2ω | ∀∞n∈ω α(n) = 0} if Γ=Π

0
2, for injectivity reasons again. In the

sequel, we will say that K or C is as above if it satisfies all the properties mentioned here.

Examples. We introduce two equivalence relations on K. We set

x EΓ

0 y ⇔ (x, y∈C) ∨ (x=y),

x EΓ

1 y ⇔ (x, y∈C) ∨ (x, y /∈C).

Note that EΠ
0
1

1 =EΠ
0
1

0 .

3



�
�
�
�
�
�
�

C ¬C

C

¬C

EΓ

1

�
�
�
�
�
�
�

♣ ♣ ♣ ♣ ♣♣

♣

♣

♣

♣

C ¬C

C

¬C

EΓ

0

We solve Question (2) for the Borel classes of rank at most two. Recall that if (Q,≤) is a quasi-

ordered class, then a basis is a subclass B of Q such that any element of Q is ≤-above an element of

B. We are looking for basis as small as possible, so in fact for antichains (an antichain is a subclass

of Q made of pairwise ≤-incomparable elements). So we want antichain basis. We set

AΓ :=







{(K,EΓ

0 )} if Γ=Π
0
1,

{(K,EΓ
n ) | n≤1} if Γ=Σ

0
1 or the rank of Γ is two.

Most of our results will hold in analytic spaces and not only in Polish spaces. Recall that a separable

metrizable space is an analytic space if it is homeomorphic to an analytic subset of a Polish space.

Theorem 1.2 Let Γ be a non self-dual Borel class of rank at most two, K,C as above, X be an

analytic space, and E be a Borel equivalence relation on X. Then exactly one of the following holds:

(a) the equivalence classes of E are in Γ,

(b) there is (X,E)∈AΓ such that (X,E) ⊑c (X,E).

Moreover, AΓ is a ≤c-antichain (and thus a ⊑c and a ≤c-antichain basis).

In order to state our results concerning Question (1), we introduce some other examples of com-

plex equivalence relations.

Examples. We define three equivalence relations on H :=2×K. We set

(ε, x) EΓ

3 (η, y) ⇔ (ε, x)=(η, y) ∨ (x=y∈C),

(ε, x) EΓ

4 (η, y) ⇔ (ε, x)=(η, y) ∨ (x=y∈C) ∨ (η=ε=1 ∧ x, y /∈C),

(ε, x) EΓ

5 (η, y) ⇔ (ε, x)=(η, y) ∨ (x=y∈C) ∨ (η=ε ∧ x, y /∈C).

Note that EΠ
0
1

4 =EΠ
0
1

5 =EΠ
0
1

3 . We solve Question (1) for the Borel classes of rank at most two. We set

BΓ :=AΓ ∪























∅ if Γ=Σ
0
1,

{(H,EΓ

3 )} if Γ=Π
0
1,

{(H,EΓ
n ) | 3≤n≤5} if the rank of Γ is two.
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Theorem 1.3 Let Γ be a non self-dual Borel class of rank at most two, K,C as above, X be an

analytic space, and E be a Borel equivalence relation on X. Then exactly one of the following holds:

(a) the relation E is a Γ subset of X2,

(b) there is (X,E)∈BΓ such that (X,E) ⊑c (X,E).

Moreover, BΓ is a ≤c-antichain (and thus a ⊑c and a ≤c-antichain basis).

In particular, this characterizes the Fσ equivalence relations, from below.

Remarks. (1) This result contrasts with the case of potentially open equivalence relations. Indeed, by

Silver’s theorem, if E is a Borel equivalence relation on a Polish space X, then either E is potentially

open, or
(

2ω,∆(2ω)
)

⊑c (X,E) (where ∆(X) := {(x, y)∈X2 | x= y} is the diagonal of X, see

[S]). So there is a ⊑c-minimum non-potentially open Borel equivalence relation, and no ⊑c-minimum

non-open Borel equivalence relation.
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(2) This result also contrasts with the case of potentially closed equivalence relations. Indeed, by the

Harrington-Kechris-Louveau theorem, if E is a Borel equivalence relation on a Polish space X, then

either E is potentially closed, or (2ω,E0) ⊑c (X,E) (where

E0 :={(α, β)∈(2ω)2 | ∀∞n∈ω α(n)=β(n)},

see [Ha-K-Lo]). So there is a ⊑c-minimum non-potentially closed Borel equivalence relation, and no

⊑c-minimum non-closed Borel equivalence relation.

(3) As mentioned in [C-L-M], there is no equivalence relation which is ≤B-minimum among non-

potentially in Γ Borel equivalence relations if Γ ⊇ Σ
0
2 is a Borel class. Theorem 1.3 gives a ⊑c-

antichain basis among non-Σ0
2 Borel equivalence relations. This leads to the question of knowing

whether there is a ≤B-antichain basis among non-potentially Σ
0
2 Borel equivalence relations.

We now turn our attention to the class C of countable Borel equivalence relations. Recall that an

equivalence relation is countable if all its equivalence classes are countable. The class C has been

widely studied (see, for instance, [J-K-Lo], [K2]). This class is extremely big. For instance, Adams

and Kechris proved in [A-K] that we can embed the quasi-order of inclusion on the Borel subsets

of R into the quasi-order of Borel reducibility on C. Moreover, the Feldman-Moore theorem (see

18.16 in [K1]) says that such relations are induced by a Borel action of a countable group, and the

study of Borel actions of Polish groups is currently a very active area of research. Theorem 1.3 solves

Question (1) for the Borel classes of rank at most two. Our main result, which solves Question (1) for

the other Borel classes in the case of countable equivalence relations (and in fact more), is as follows.

Theorem 1.4 Let Γ be a non self-dual Borel class of rank at least three, C as above, X be an analytic

space, and E be a Borel equivalence relation on X with Fσ classes. Then exactly one of the following

holds:

(a) the relation E is a Γ subset of X2,

(b) (H,EΓ

3 ) ⊑c (2
ω , E).

Theorem 1.4 can be extended to the first ranks, using Theorem 1.3. The set {(H,EΓ

3 )} has to be

replaced with






















{(K,EΓ

0 ), (K,E
Γ

1 )} if Γ=Σ
0
1,

{(K,EΓ

0 ), (H,E
Γ

3 )} if Γ∈{Π0
1,Π

0
2},

{(H,EΓ
n) | 3≤n≤5} if Γ=Σ

0
2,

since E has Fσ classes. So we completely solved Questions (1) and (2) for countable equivalence

relations.

In the case of Borel reducibility, the Borel equivalence relations with countably many equivalence

classes are trivial. We can pick a point in each equivalence class, which Borel reduces such a relation

to (κ,=), where κ≤ω is an ordinal, and the reduction works in both directions. The situation is much

more complicated in the case of continuous reducibility. We solve Question (2) for these relations.
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Theorem 1.5 Let ξ≥1 be a countable ordinal, K as above, C∈Σ
0
ξ(K) not in Π

0
ξ (as above if ξ≤2),

X be an analytic space, and E be a Borel equivalence relation on X with countably many classes.

Then exactly one of the following holds:

(a) the equivalence classes of E are Π
0
ξ ,

(b) (K,E
Π

0
ξ

1 ) ⊑c (X,E).

If Γ=Σ
0
ξ with ξ≥ 3, then we will have to consider another equivalence relation on 2ω . We can

write ¬C=
⋃

n∈ω Cn, where (Cn)n∈ω is a sequence of pairwise disjoint ∆0
ξ sets (which will not be

arbitrary and be given by Theorem 1.10 to come, as we will see). We set

x E
Σ

0
ξ

2 y ⇔ (x, y∈C) ∨ (∃n∈ω x, y∈Cn).

Note that E
Σ

0
ξ

0 ⊆E
Σ

0
ξ

2 ⊆E
Σ

0
ξ

1 . Also, we set E
Σ

0
ξ

2 :=E
Σ

0
ξ

0 if ξ≤ 2 since the Cn’s are singletons in this

case.

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣ ♣ ♣ ♣

♣

♣

♣

♣

C ¬C

C

¬C

E
Σ

0
ξ

2

Theorem 1.6 Let ξ≥1 be a countable ordinal, K as above, C∈Π
0
ξ(K) not in Σ

0
ξ (as above if ξ≤2),

X be an analytic space, and E be a Borel equivalence relation on X with countably many classes.

Then exactly one of the following holds:

(a) the equivalence classes of E are Σ
0
ξ (exactly when E is a Σ

0
ξ subset of X2),

(b) there is n∈{1, 2} such that (K,E
Σ

0
ξ

n ) ⊑c (X,E).

Moreover, {(K,E
Σ

0
ξ

n ) | 1≤n≤2} is a ≤c-antichain (and thus a ⊑c and a ≤c-antichain basis).

Note that Theorem 1.6 characterizes when a Borel equivalence relation with countably many

classes is Σ0
ξ . In order to finish the study of Borel equivalence relations with countably many classes,

it remains to characterize those which are not Π0
ξ if ξ≥3. The partition (Cn)n∈ω of C into ∆

0
ξ subsets

of 2ω allows us to define an equivalence relation on 2×2ω by

(ε, α) E
Π

0
ξ

8 (η, β) ⇔ (∃n∈ω α, β∈Cn) ∨ (η=ε ∧ α, β /∈C)

(we use the number 8 here because we can consider some examples EΓ
n for n∈{6, 7, 8}, in the spirit

of those for n∈{3, 4, 5} respectively, to state a general conjecture that we will not give here).
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Theorem 1.7 Let ξ ≥ 1 be a countable ordinal, K,C as above, X be an analytic space, and E be

a Borel equivalence relation on X with countably many classes. Then exactly one of the following

holds:

(a) the relation E is a Π
0
ξ subset of X2,

(b) there is (X,E)∈{(K,E
Π

0
ξ

1 ), (H,E
Π

0
ξ

8 )} such that (X,E) ⊑c (X,E).

Moreover, {(K,E
Π

0
ξ

1 ), (H,E
Π

0
ξ

8 )} is a ≤c-antichain (and thus a ⊑c and a ≤c-antichain basis).

We now say a few words about some of the methods used in this paper, and state some general

results interesting for themselves. First, we make a strong use of the representation theorem for Borel

sets due to Debs and Saint Raymond. In particular, it provides the sequence (Cn)n∈ω mentioned

before. Secondly, our work is partly based on the Louveau-Saint Raymond theorem (see page 433 in

[Lo-SR]) generalizing the Hurewicz theorem (see 21.22 in [K1]).

Theorem 1.8 (Louveau-Saint Raymond) Let ξ ≥ 1 be a countable ordinal, K as above, C∈Π
0
ξ(K)

not in Σ
0
ξ (as above if ξ≤2), X be a Polish space, and A,B be disjoint analytic subsets of X. Then

exactly one of the following holds:

(a) the set A is separable from B by a Σ
0
ξ set,

(b) we can find f :K→X injective continuous such that C⊆f−1(A) and ¬C⊆f−1(B).

We will prove and use the following extension of Theorem 1.8.

Theorem 1.9 Let Γ be a non self-dual Borel class, K as above, C∈ Γ̌(K) not in Γ (as above if the

rank of Γ is at most two), X be an analytic space, and A,B be disjoint analytic relations on X, the

sections of A being in Γ. Then exactly one of the following holds:

(a) the set A is separable from B by a Γ set,

(b) we can find f :K→X2 continuous with injective coordinate functions such that C⊆ f−1(A)
and ¬C⊆f−1(B).
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The proofs of Theorems 1.6 and 1.7 use our following other extension of Theorem 1.8, which

provides more control than Theorem 1.8 on where the ∆
0
ξ sets decomposing ¬C are sent by f .

Theorem 1.10 Let ξ ≥ 1 be a countable ordinal, K as above, and C ∈Π
0
ξ(K) (as above if ξ ≤ 2).

Then we can find I⊆ω and a partition (Cn)n∈I of ¬C into ∆
0
ξ subsets of K such that for any analytic

space X, for any analytic subset A of X, and for any sequence (Dn)n∈ω of pairwise disjoint analytic

subsets of X such that A is both disjoint from
⋃

n∈ω Dn and separable from any of the Dn’s by a Σ
0
ξ

set, one of the following holds:

(a) the set A is separable from
⋃

n∈ω Dn by a Σ
0
ξ set,

(b) we can find φ : I → ω and f : K → X injective continuous such that C ⊆ f−1(A) and

Cn ⊆ f−1(Dφ(n)) for each n ∈ I. Moreover, we can ensure that if (Fn)n∈ω is a sequence of finite

subsets of ω, then φ(n) /∈Fφ(p) whenever p<n are in I. In particular, φ can be injective.

If moreover C /∈Σ
0
ξ , then this is a dichotomy.

The organization of the paper is as follows. In Section 2, we first recall the material about rep-

resentation of Borel sets and effective topologies needed here. Then we prove our extensions of the

Louveau-Saint Raymond Theorem. In Section 3, we prove the main lemma used in the proof of our

main result. Essentially, it provides a Cantor set C as in the Mycielski-Kuratowski theorem (see 19.1

in [K1]), with the additional property that the set C as above remains complex on C . In Section 4, we

prove some general facts giving additional motivation for introducing our examples, and prove that

AΓ and BΓ are ≤c-antichains. In Sections 5 and 6, we solve our main questions for the Borel classes

of rank one. In Sections 7, 8 and 9, we solve our main questions for the Borel classes of rank two. In

Section 10, we prove our results about relations with countably many equivalence classes. In Section

11, we prove our main result.

2 Extensions of the Louveau-Saint Raymond theorem

As in [L2] and [L3], the main results in this section are based on the representation theorem for

Borel sets due to Debs and Saint Raymond. We first recall the material related to that needed here.

2.1 Representation of Borel sets

The following definition can be found in [D-SR].

Definition 2.1.1 (Debs-Saint Raymond) A partial order relation R on 2<ω is a tree relation if, for

s∈2<ω,

(a) ∅ R s,

(b) the set PR(s) := {t∈ 2<ω | t R s} is finite and linearly ordered by R (hR(s) will denote the

number of strict R-predecessors of s, so that hR(s)=Card
(

PR(s)
)

−1).

• Let R be a tree relation. An R-branch is a ⊆-maximal subset of 2<ω linearly ordered by R. We

denote by [R] the set of all infinite R-branches.

We equip (2<ω)ω with the product of the discrete topology on 2<ω. If R is a tree relation, then the

space [R]⊆ (2<ω)ω is equipped with the topology induced by that of (2<ω)ω , and is a Polish space.

A basic clopen set is of the form NR
s :=

{

γ∈ [R] | γ
(

hR(s)
)

=s
}

, where s∈2<ω.
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• Let R, S be tree relations with R⊆S. The canonical map Π:[R]→ [S] is defined by

Π(γ) := the unique S-branch containing γ.

The canonical map is continuous.

• Let S be a tree relation. We say that R⊆S is distinguished in S if

∀s, t, u∈2<ω
s S t S u

s R u







⇒ s R t.

• Let η<ω1. A family (Rρ)ρ≤η of tree relations is a resolution family if

(a) Rρ+1 is a distinguished subtree of Rρ, for each ρ<η.

(b) Rλ=
⋂

ρ<λ R
ρ, for each limit ordinal λ≤η.

The representation theorem of Borel sets is as follows in the successor case (see Theorems I-6.6

and I-3.8 in [D-SR]).

Theorem 2.1.2 (Debs-Saint Raymond) Let η be a countable ordinal, and P ∈Π
0
η+1([⊆]). Then there

is a resolution family (Rρ)ρ≤η such that

(a) R0=⊆,

(b) the canonical map Π:[Rη ]→ [R0] is a continuous bijection with Σ
0
η+1-measurable inverse,

(c) the set Π−1(P ) is a closed subset of [Rη].

For the limit case, we need some more definition that can be found in [D-SR].

Definition 2.1.3 (Debs-Saint Raymond) Let ξ be an infinite limit countable ordinal. We say that a

resolution family (Rρ)ρ≤ξ with R0=⊆ is uniform if

∀k∈ω ∃ξk<ξ ∀s, t∈2<ω
(

min
(

hRξ(s), hRξ (t)
)

≤k ∧ s Rξk t
)

⇒ s Rξ t.

We may (and will) assume that ξk≥1.

The representation theorem of Borel sets is as follows in the limit case (see Theorems I-6.6 and

I-4.1 in [D-SR]).

Theorem 2.1.4 (Debs-Saint Raymond) Let ξ be an infinite limit countable ordinal, and P ∈Π
0
ξ([⊆]).

Then there is a uniform resolution family (Rρ)ρ≤ξ such that

(a) R0=⊆,

(b) the canonical map Π:[Rξ ]→ [R0] is a continuous bijection with Σ
0
ξ-measurable inverse,

(c) the set Π−1(P ) is a closed subset of [Rξ].

We will use the following extension of the property of distinction (see Lemma 2.3.2 in [L2]):

Lemma 2.1.5 Let η < ω1, (Rρ)ρ≤η be a resolution family, and ρ < η. Assume that s, t, u ∈ 2<ω,

s R0 t Rρ u and s Rρ+1 u. Then s Rρ+1 t.
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Notation. Let η<ω1, (Rρ)ρ≤η be a resolution family with R0=⊆, s∈2<ω, and ρ≤η. We define

sρ :=

{

∅ if s=∅,

s|max{l< |s| | s|l Rρ s} if s 6=∅.

The map h : 2ω→ [⊆], for which h(α) is the strictly ⊆-increasing sequence of initial segments of α,

is a homeomorphism.

2.2 Topologies

Notation. Let S be a recursively presented Polish space.

(1) The Gandy-Harrington topology on S is generated by Σ
1
1(S) and denoted ΣS . Recall the

following facts about ΣS (see [L1]).

- ΣS is finer than the initial topology of S.

- We set ΩS := {s∈S | ωs1=ω
CK
1 }. Then ΩS is Σ 1

1 (S) and dense in (S,ΣS).

- W ∩ ΩS is a clopen subset of (ΩS ,ΣS) for each W ∈Σ
1
1 (S).

- (ΩS,ΣS) is a zero-dimensional Polish space. So we fix a complete compatible metric on (ΩS ,ΣS).

(2) We call T1 the usual topology on S, and Tη is the topology generated by the Σ
1
1 ∩Π

0
<η subsets of

S if 2≤η<ωCK
1 (see Definition 1.5 in [Lo1]).

The next result is essentially Lemma 2.2.2 and the claim in the proof of Theorem 2.4.1 in [L2].

Lemma 2.2.1 Let S be a recursively presented Polish space, and 1≤η<ωCK
1 .

(a) (Louveau) Fix A∈Σ
1
1 (S). Then A

Tη
is Π0

η and Σ
1
1 .

(b) (Louveau) Fix A,D∈Σ
1
1 (S) disjoint. Then D is separable from A by a Π

0
η set exactly when

A ∩D
Tη

=∅.

(c) Let p≥1 be a natural number, 1≤η1<η2<. . .<ηp≤η, S1, . . ., Sp∈Σ
1
1 (S), and O∈Σ

0
1 (S).

Assume that Si⊆Si+1
Tηi+1

if 1≤ i<p. Then Sp ∩
⋂

1≤i<p Si
Tηi ∩O is T1-dense in S1

T1 ∩O.

(d) Let (Rρ)ρ≤η be a resolution family with R0 =⊆, s∈ 2<ω \{∅}, Ssρ ∈Σ
1
1 (S) (for 1≤ ρ≤ η),

E∈Σ
1
1 (S), and O∈Σ

0
1 (S). We assume that Ssη ⊆S

Tη+1
and St⊆Su

Tρ
if u Rρ t$s and 1≤ρ≤η.

Then Ssη ∩
⋂

1≤ρ<η Ssρ
Tρ ∩O and E ∩

⋂

1≤ρ≤η Ssρ
Tρ ∩O are T1-dense in Ss1

T1 ∩O.

Proof. (a) and (b) See Lemmas 1.7 and 1.9 in [Lo1].

(c) and (d) See Lemma 2.2.1 in [L4]. �

Lemma 2.2.2 Let S be a recursively presented Polish space.

(a) The set ∆1
1 ∩ S is countable, Π 1

1 , and Tη-clopen if 3≤η<ωCK
1 .

(b) If A,B are disjoint subsets of S and 2≤η<ωCK
1 , then A ∩B

Tη
does not meet ∆1

1 ∩ S.
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Proof. (a) By 4D.2 and 4D.14 in [M], ∆1
1∩S is countable and Π

1
1 , so that its complement is Σ 1

1 ∩Π
0
2

and thus Tη-open if η≥3. Moreover, ∆1
1 ∩ S is the union of its singletons, which are closed and ∆

1
1

and thus Tη-open if η≥2. This shows that ∆1
1 ∩ S is Tη-open if η≥2.

(b) We argue by contradiction, which gives s in the intersection of A ∩B
Tη

and ∆
1
1 ∩ S. By (a), {s}

is Tη-open, so that s∈B ∩A, contradicting the disjointness of A and B. �

2.3 Proof of Theorem 1.10

(A) The successor case

Assume that ξ = η+1≥ 3. As h is a homeomorphism, P := h[C]∈Π
0
η+1([⊆]). Theorem 2.1.2

gives a resolution family (Rρ)ρ≤η such that C :=Π−1(P ) is a closed subset of [Rη]. If γ ∈ [Rη]\C,

then there is kγ ∈ω minimal such that NRη

γ(kγ)
∩ C=∅. We set sγ :=γ(kγ), so that ¬C=

⋃

γ /∈C NRη

sγ .

We enumerate injectively S := {sγ | γ /∈ C}, which gives I ⊆ ω such that S = {sn | n ∈ I}. As

S⊆2<ω , we can ensure that the enumaration is made in the increasing order of the lengths, and in the

lexicographical order inside each length. We set Cn :=NRη

sn , so that ¬C=
⋃

n∈I Cn. By minimality,

this union is disjoint. We then set Cn := h−1(Π[Cn]), so that (Cn)n∈I is a partition of ¬C into ∆
0
ξ

subsets of 2ω . Note that diam(Cn) tends to 0 as n goes to infinity if I is infinite since Cn⊆Nsn .

Assume that (a) does not hold. As X is analytic, we may assume that X is an analytic subset

of S := [0, 1]ω , as well as A and the Dn’s. As our separation assumptions also hold in S, we may

assume that X=S. In order to simplify the notation, we will assume that ξ <ωCK
1 , A∈Σ

1
1 and the

relation defined by R(α, n) ⇔ α ∈Dn is Σ
1
1 . As

⋃

n∈ω Dn is not separable from A by a Π
0
ξ set,

N := A ∩
⋃

n∈ω Dn
Tξ

is a nonempty Σ
1
1 subset of S, by Lemma 2.2.1.(a). We set U := ∆

1
1 ∩ S.

By Lemma 2.2.2.(b), N ∩ U = ∅. By Lemma 2.2.2.(a), U is Tξ-clopen since ξ≥ 3. This shows that

N=A ∩
⋃

n∈ω Dn
Tξ
\U=A ∩

⋃

n∈ω Dn\U
Tξ

. By Lemma 2.2.1.(b), A ∩Dn
Tξ =∅ for each n∈ω,

so that N=A ∩
⋃

n∈ω\F Dn\U
Tξ

for each finite subset F of ω.

We set, for n∈ I, On := {s ∈ 2<ω | sn R
η s}, and I := 2<ω \ (

⋃

n∈I On). By definition of the

sn’s, 2<ω is the disjoint union of I and the On’s. If ∅ /∈I , then there is n∈I such that ∅∈On, so that

sn = ∅, On = 2<ω , I= {n}, Cn = 2ω and C= ∅. There is p ∈ ω such that Dp is uncountable since

ξ≥ 3, so that we can set φ(n) := p by the perfect set theorem. So in the sequel we will assume that

∅∈I . We construct

- a sequence (xs)s∈2<ω of points of S,

- a sequence (Xs)s∈2<ω of Σ 0
1 subsets of S,

- a sequence (Ss)s∈2<ω of Σ 1
1 subsets of S,

- φ :I→ω,

satisfying the following conditions.
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(1)

{

Xt⊆Xs if s R0 t ∧ s 6= t
St⊆Ss if s Rη t ∧ (s, t∈I ∨ ∃n∈I s, t∈On)

(2) xs∈Ss⊆Xs ∩ ΩS\U

(3) diam(Xs), diamGH(Ss)≤2−|s|

(4) Xs0 ∩Xs1=∅

(5) Ss⊆

{

N if s∈I
Dφ(n) if s∈On

(6) St⊆Ss
Tρ

if s Rρ t ∧ 1≤ρ≤η

Assume that this is done. Let α∈ 2ω . Then (Xα|l)l∈ω is a decreasing sequence of nonempty closed

subsets of S with vanishing diameters, which defines f : 2ω → S injective continuous. If α ∈ C,

then Π−1
(

h(α)
)

(k) ∈ I for each k ∈ ω. Note that (SΠ−1(h(α))(k))k∈ω is a decreasing sequence of

nonempty clopen subsets of N ∩ ΩS⊆A with vanishing GH-diameters, which defines G(α)∈A. As

Ss⊆Xs, G(α)=f(α), so that f(α)∈A. If now α∈Cn, then Π−1
(

h(α)
)

∈Cn and Π−1
(

h(α)
)

(k) is

in On if k≥k0. Note that (SΠ−1(h(α))(k))k≥k0 is a decreasing sequence of nonempty clopen subsets of

Dφ(n) ∩ ΩS with vanishing GH-diameters, which defines H(α)∈Dφ(n). As Ss⊆Xs, H(α)=f(α),
so that f(α)∈Dφ(n).

Let us prove that the construction is possible. We first choose x∅ ∈N ∩ ΩS , X∅ semi-recursive

with diameter at most 1 containing x∅, and S∅ ∈Σ
1
1 with GH-diameter at most 1 containing x∅ and

contained in X∅ ∩N ∩ΩS . Assume that our objects satisfying (1)-(6) have been contructed up to the

length l (which means that φ(n) is constructed if |sn|≤ l), which is the case for l=0.

Let t ∈ 2l, and s := t0. We first define xs, and Xs and Ss later, after the definition of xt1. Our

definitions are in the lexicographical order of the t’s.

Claim. (a) The set Ssη ∩
⋂

1≤ρ<η Ssρ
Tρ ∩Xs0 is Σ 1

1 and uncountable.

(b) If sη∈I and F ⊆ω is finite, then (
⋃

n∈ω\F Dn\U) ∩
⋂

1≤ρ≤η Ssρ
Tρ ∩Xs0 ∩ ΩS is Σ 1

1 and

uncountable.

Indeed, by Lemma 2.2.1.(d) applied to E :=
⋃

n∈ω\F Dn\U and O :=Xs0 , the sets

Ssη ∩
⋂

1≤ρ<η

Ssρ
Tρ ∩Xs0

and (
⋃

n∈ω\F Dn\U) ∩
⋂

1≤ρ≤η Ssρ
Tρ ∩Xs0 are T1-dense in Ss1

T1 ∩Xs0 . As s1 R1 s0,

Ss0⊆Ss1
T1 ∩Xs0 .
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This proves that the intersections in the statement are not empty since they are Σ
1
1 by Lemma

2.2.1.(a). We argue by contradiction to see that they are uncountable. By 4F.1 in [Mos], they are

contained in U , which contradicts the induction assumption. ⋄

Case 1 s∈I , which implies that sη∈I .

We choose xs∈Ssη ∩
⋂

1≤ρ<η Ssρ
Tρ ∩Xs0 .

Case 2 sη∈On, which implies that s∈On.

We proceed as in Case 1.

Case 3 sη∈I and s∈On.

In this case, s = sn and φ(n) has to be defined. We choose it outside F :=
⋃

p<n,p∈I Fφ(p) in

such a way that (Dφ(n) \U) ∩
⋂

1≤ρ≤η Ssρ
Tρ ∩ Xs0 ∩ ΩS is uncountable. Then we choose xs in

(Dφ(n)\U) ∩
⋂

1≤ρ≤η Ssρ
Tρ ∩Xs0 ∩ ΩS .

This finishes the construction of xt0, which is in the right uncountable Σ
1
1 set. The construction

of xt1 is similar, the difference being that we ensure moreover that xt1 6=xt0, which is possible since

the right Σ 1
1 set is uncountable. Then we choose disjoint Σ 0

1 sets Xt0 and Xt1 with diameter at most

2−l−1 such that xtε ∈ Xtε ⊆ Xtε ⊆ Xt, and Stε ∈ Σ
1
1 with GH-diameter at most 2−l−1 containing

xtε and contained in Xtε and the right Σ 1
1 set. Note that we ensured (1) and (6) for the immediate

predecessors of t, and not for an arbitrary s at this point. These conditions are transitive enough to

ensure the general case. For example, for (6), assume that s Rρ t. We may assume that s 6= t, so that

s R0 sρ Rρ t. By Lemma 2.1.5, s Rρ sρ. By induction assumption, Ssρ ⊆ Ss
Tρ

. We ensured that

St⊆Ssρ
Tρ

, so that St⊆Ss
Tρ

. �

We now study the case ξ=2.

Notation. In this case, C=P∞ :={α∈2ω | ∃∞n∈ω α(n)=1}. By 23.A in [K1], P∞∈Π
0
2(2

ω)\Σ0
2.

Note that P∞ is dense and co-dense in 2ω . We set Pf :=¬P∞ and enumerate Pf :={αn | n∈ω}. We

also set O :={∅} ∪ {u1 | u∈2<ω}, so that Pf={t0∞ | t∈O}.

We set I :=ω and Cn :={αn}, which defines a partition of ¬C into ∆
0
2 subsets of 2ω . We also set

R0 :=⊆, and

s R1 t⇔ s R0 t ∧
(

s∈O ∨ ∀s R0 u R0 t u /∈O
)

.

Note that (Rρ)ρ≤1 is a resolution family such that

(b) the canonical map Π:[R1]→ [R0] is a continuous bijection with Σ
0
2-measurable inverse,

(c) the sets Cn :=Π−1(h[Cn]) are clopen subsets of [R1], so that C :=Π−1(h[C]) is a closed subset

of [R1].

In fact, as Cn is a singleton, Cn too, and Cn=N
R1

sn for some sn∈2<ω of the form tn0 with tn∈O
(so that Cn={tn0

∞}), and the Cn’s define a partition of ¬C as above.
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We then argue as in the case ξ≥3, with the following differences. This time, we only write

N :=A ∩
⋃

n∈ω

Dn

T2
=A ∩

⋃

n∈ω\F

Dn

T2

for each finite subset F of ω. Note that On ∩ 2l has cardinality at most 1 for each l∈ω. Condition (2)

becomes

(2′) xs∈Ss⊆Xs ∩ ΩS

Claim. (a) Ss1 ∩Xs0 is Σ 1
1 , nonempty, and uncountable if s1∈O.

(b) If s1∈O and F is a finite subset of ω, then the set
(
⋃

n∈ω\F Dn

)

∩ Ss1
T1 ∩Xs0 ∩ ΩS is Σ 1

1

and nonempty.

In Case 3, we choose φ(n) in such a way that Dφ(n) ∩ Ss1
T1 ∩Xs0 ∩ ΩS is nonempty. Then we

choose xs∈Dφ(n) ∩ Ss1
T1 ∩Xs0 ∩ ΩS .

This finishes the construction of xt0, which is in the right Σ 1
1 set. The construction of xt1 is

similar. Note that xt1 6=xt0 since t0 /∈O and t1∈O, so that xt0∈
⋃

n∈ω Dn and xt1∈A.

Assume finally that ξ = 1, so that C = {0}. We set I := ω and Cn := {2−n}, which defines

a partition of ¬C into clopen subsets of K. Fix x ∈ N , φ(0) ∈ ω with B(x, 1) ∩ Dφ(0) 6= ∅, and

x0 ∈ B(x, 1) ∩ Dφ(0). As Dn is separable from A by a closed set for each n, A ∩ Dn
T1 = ∅ and

N=A ∩
⋃

n∈ω\F Dn
T1

for each finite subset F of ω. So we can choose φ(1)∈ω\
(

Fφ(0) ∪ {φ(0)}
)

with B(x, 2−1) ∩Dφ(1) 6=∅, and x1∈B(x, 2−1) ∩Dφ(1). And so on. It remains to set f(0) :=x and

f(2−n) :=xn.

(B) The limit case

Assume that ξ is an infinite limit ordinal. We indicate the differences with the successor case.

Theorem 2.1.4 gives a uniform resolution family (Rρ)ρ≤ξ such that C is a closed subset of [Rξ]. This

time, On :={s∈2<ω | sn R
ξ s}. If s∈2<ω, then we set, as in the proof of Theorem 2.4.4 in [L2],

ξ(s) :=max{ξh
Rξ (t)+1 | t⊆s}.

Note that ξ(t)≤ξ(s) if t⊆s.

Conditions (1) and (6) are changed as follows:

(1′)

{

Xt⊆Xs if s R0 t ∧ s 6= t
St⊆Ss if s Rξ t ∧ (s, t∈I ∨ ∃n∈I s, t∈On)

(6′) St⊆Ss
Tρ

if s Rρ t ∧ 1≤ρ≤ξ(s)

The next claim and the remark after it were already present in the proof of Theorem 2.4.4 in [L2].
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Claim 1 Assume that sρ 6=sξ. Then ρ+1≤ξ(sρ+1).

We argue by contradiction. We get

ρ+1>ρ≥ξ(sρ+1)≥ξh
Rξ (sξ)+1=ξh

Rξ (s).

As sρ Rρ s, sρ Rξ s and sρ=sξ, which is absurd. ⋄

Note that ξn−1<ξn−1+1≤ξ(sξn−1+1)≤ξ(s). Thus sξ(s)=sξ.

Claim 2 (a) The set Ssξ ∩
⋂

1≤ρ<ξ(s) Ssρ
Tρ ∩Xs0 is Σ 1

1 and uncountable.

(b) If sξ∈I and F ⊆ω is finite, then (
⋃

n∈ω\F Dn\U)∩
⋂

1≤ρ≤ξ(s) Ssρ
Tρ ∩Xs0 ∩ΩS is Σ 1

1 and

uncountable.

We conclude as in the successor case, using the facts that ξk≥1 and ξ(.) is increasing. �

2.4 Proof of Theorem 1.9

We prove Theorem 1.9 for Γ=Σ
0
ξ , the other case being similar. Note that (a) and (b) cannot hold

simultaneously. We indicate the differences with the proof of Theorem 1.10.

(A) The successor case

Assume that (a) does not hold. As X is analytic, we may assume that X is an analytic subset of

[0, 1]ω , and that A and B are analytic subsets of S := [0, 1]ω× [0, 1]ω . Note that A is not separable

from B by a Σ
0
ξ subset of S. In order to simplify the notation, we will assume that ξ < ωCK

1 and

X,A,B∈Σ
1
1 . As B is not separable from A by a Π

0
ξ set, M :=A ∩B

Tξ
is a nonempty Σ

1
1 subset of

S, by Lemma 2.2.1.

Let us prove that M is not contained in the T2-open set

U :=
⋃

x∈∆1
1∩[0,1]

ω

({x}×[0, 1]ω ∪ [0, 1]ω×{x}).

We argue by contradiction to see that. Note that A\B
Tξ

is separable from B by the Σ
0
ξ set ¬B

Tξ
. As

A is not separable from B by a Σ
0
ξ subset of S, this implies that M is not separable from B by a Σ

0
ξ

subset of S. This gives x∈∆
1
1 ∩ [0, 1]ω such that, for example, A ∩ ({x}×[0, 1]ω) is not separable

from B ∩ ({x}× [0, 1]ω) by a Σ
0
ξ subset of S since ∆

1
1 ∩ [0, 1]ω is countable (see Lemma 2.2.2).

Therefore A ∩ ({x}× [0, 1]ω) is not a Σ
0
ξ subset of X2, which means that x ∈ X and the vertical

section Ax :={y∈X | (x, y)∈A} is not a Σ
0
ξ subset of X, which is absurd.

Note that any nonempty Σ
1
1 subset of S which is disjoint from U has uncountable projections, by

4D.14 in [M]. By 4D.14 in [M], the set U is Π 1
1 ∩Σ

0
2, so that its complement is Σ 1

1 ∩Π
0
2 and thus

Tξ-open since ξ≥3. This shows that N :=A ∩B
Tξ\U=A ∩B\U

Tξ
is a nonempty Σ

1
1 subset of S.
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We set I := {s ∈ 2<ω | NRη

s ∩ C 6= ∅}. As C 6= ∅, ∅ ∈ I . We construct a sequence (ps)s∈2<ω

of points of S (where ps := (xs, ys)), a sequence (Xs)s∈2<ω of Σ
0
1 subsets of S, and a sequence

(Ss)s∈2<ω of Σ 1
1 subsets of S satisfying the following conditions.

(1)

{

Xt⊆Xs if s R0 t ∧ s 6= t
St⊆Ss if s Rη t ∧ (s, t∈I ∨ s, t /∈I)

(2) ps∈Ss⊆Xs ∩ ΩS\U

(3) diam(Xs), diamGH(Ss)≤2−|s|

(4) ∀ε∈2 projε[Xs0] ∩ projε[Xs1]=∅

(5) Ss⊆

{

N if s∈I
B if s /∈I

(6) St⊆Ss
Tρ

if s Rρ t ∧ 1≤ρ≤η

Assume that this is done. Let α∈ 2ω . Then (Xα|l)l∈ω is a decreasing sequence of nonempty closed

subsets of S with vanishing diameters, which defines f :2ω→S continuous with injective coordinates.

If α ∈C, then f(α) ∈A again. If now α /∈ C, then Π−1
(

h(α)
)

(k) is not in I if k ≥ k0. Note that

(SΠ−1(h(α))(k))k≥k0 is a decreasing sequence of nonempty clopen subsets of B ∩ ΩS with vanishing

GH-diameters, which defines H(α)∈B. As Ss⊆Xs, H(α)=f(α), so that f(α)∈B.

Let us prove that the construction is possible.

Claim. (a) The set Ssη ∩
⋂

1≤ρ<η Ssρ
Tρ ∩Xs0 is Σ 1

1 and nonempty.

(b) If sη∈I , then the set (B\U) ∩
⋂

1≤ρ≤η Ssρ
Tρ ∩Xs0 ∩ ΩS is Σ 1

1 and nonempty.

Case 1 s∈I , which implies that sη∈I .

We choose ps∈Ssη ∩
⋂

1≤ρ<η Ssρ
Tρ ∩Xs0 .

Case 2 sη /∈I , which implies that s /∈I .

We proceed as in Case 1.

Case 3 sη∈I and s /∈I .

We choose ps∈(B\U)∩
⋂

1≤ρ≤η Ssρ
Tρ ∩Xs0 ∩ΩS . This finishes the construction of pt0, which

is in the right uncountable Σ
1
1 set. The construction of pt1 is similar, the difference being that we have

to ensure that moreover xt1 6= xt0 and yt1 6= yt0. We first choose p̃t1 in the right Σ 1
1 set A as above,

ensuring that x̃t1 6=xt0, which is possible since A is disjoint from U and therefore has an uncountable

first projection. We then choose O∈Σ
0
1 with x̃t1∈O and xt0 /∈O, so that A ∩ (O×[0, 1]ω) is again

a nonempty Σ
1
1 set disjoint from U . We now choose pt1 in A ∩ (O×[0, 1]ω), ensuring that yt1 6=yt0,

which is possible since A ∩ (O×[0, 1]ω) has an uncountable second projection.
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Then we choose Σ
0
1 sets Xt0 and Xt1 with disjoint projections and diameter at most 2−l−1 such

that ptε∈Xtε⊆Xtε⊆Xt, and Stε∈Σ
1
1 with GH-diameter at most 2−l−1 containing ptε and contained

in Xtε and the right Σ 1
1 set. �

We now study the case ξ = 2. The following lemma is a variant of the Mycielski-Kuratowski

theorem (see 19.1 in [K1]). Recall the notation after the proof of Theorem 1.10 in the successor case.

Lemma Let F be a symmetric closed relation on 2ω with nowhere dense sections. Then there is

f :2ω→2ω injective continuous such that Pf=f−1(Pf ) and
(

f(α), f(β)
)

/∈F if α 6=β.

Proof. We inductively construct a sequence (nt)t∈2<ω of natural numbers, and a sequence (Ut)t∈2<ω

of clopen subsets of 2ω satisfying the following conditions:

(1) Utε⊆Ut
(2) αnt ∈Ut
(3) diam(Ut)≤2−|t|

(4) Ut0 ∩ Ut1=∅
(5) nt0=nt
(6) Ut1 ∩ {αn | n≤|t|}=∅
(7) (Ut0×Ut1) ∩ F =∅

Assume that this is done. Using (1)-(3), we define f : 2ω → 2ω by {f(β)} :=
⋂

n∈ω Uβ|n, and f is

injective continuous by (4). If t∈O and α= t0∞, then f(α)=αnt by (5). If β∈P∞, then there is an

infinite strictly increasing sequence (lk)k∈ω of natural numbers with β|lk ∈O. Condition (6) implies

that f(β)∈P∞. Condition (7) implies that
(

f(α), f(β)
)

/∈F if α 6=β, by symmetry. So we are done.

Let us prove that the construction is possible. For the first step of the induction, we set n∅ := 0
and U∅ := 2ω . Assume that (nt)|t|≤l and (Ut)|t|≤l satisfying (1)-(7) have been constructed, which is

the case for l=0.

Let t∈ 2l. Condition (5) defines nt0. As F has nowhere dense vertical sections, we can choose

nt1 in such a way that αnt1∈Ut\({αnt} ∪ {αn | n≤ l}∪Fαnt
). Then we choose disjoint clopen sets

Ut0, Ut1 with diameter at most 2−l−1 such that αntε ∈Utε⊆Ut and satisfying (1)-(7). �

If ∆(X) ∩ A is not separable from ∆(X) ∩ B by a Γ set, then Theorem 1.8 gives f : 2ω →X2

injective continuous with C ⊆ f−1
(

∆(X) ∩ A
)

and ¬C ⊆ f−1
(

∆(X) ∩ B
)

. If α 6= β ∈ 2ω , then

f(α) 6=f(β). As f(α), f(β)∈∆(X), fε(α) 6=fε(β) for each ε∈2
(

f=(f0, f1)
)

.

If ∆(X) ∩ A is separable from ∆(X) ∩ B by a Γ set, then A\∆(X) is not separable from

B \∆(X) by a Γ set. Theorem 1.8 gives f := (f0, f1) : 2
ω → X2 injective continuous such that

C⊆ f−1
(

A\∆(X)
)

and ¬C⊆ f−1
(

B\∆(X)
)

. By the choice of C, we may assume that f0 and f1
have disjoint ranges.

Note that the fε’s are nowhere dense-to-one. Indeed, we argue by contradiction, which gives ε∈2
and s∈2<ω such that fε is constant on Ns and equal to x∈X. Assume for example that ε=0. As f
is injective continuous, f1|Ns

is also injective continuous. Note also that f1[C ∩Ns]= f1[Ns] ∩ Ax.

As Ax is in Γ, so are f1[C ∩Ns] and C ∩Ns, which contradicts the choice of C.
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We next prove that we may assume that fε is injective for each ε∈2. In order to do this, we set

F :={(α, β)∈2ω×2ω | ∃ε∈2 fε(α)=fε(β)}.

Note that F is a symmetric closed relation on 2ω with nowhere dense sections. We apply Lemma 2.4

to F , which gives ψ : 2ω→2ω injective continuous such that Pf =ψ−1(Pf ) and
(

ψ(α), ψ(β)
)

/∈F if

α 6=β. This proves that we may assume that the fε’s are injective.

Assume finally that ξ =1 and Γ=Σ
0
1, the other case being similar. As A is not separable from

B by an open set, we can find (α, β) ∈A and
(

(αn, βn)
)

n∈ω
∈Bω converging to (α, β). If αn =α

for all but finitely many n’s, then Aα is not open, which is absurd. So, extracting a subsequence if

necessary, we may assume that the sequence (αn)n∈ω is made of pairwise distinct elements different

from α. Similarly, we may assume that the sequence (βn)n∈ω is made of pairwise distinct elements

different from β. It remains to set f(0) :=(α, β) and f(2−n) :=(αn, βn).

(B) The limit case

Condition (1) is changed as follows:

(1′)

{

Xt⊆Xs if s R0 t ∧ s 6= t
St⊆Ss if s Rξ t ∧

(

s, t∈I ∨ s, t /∈I
)

Claim 2 (a) The set Ssξ ∩
⋂

1≤ρ<ξ(s) Ssρ
Tρ ∩Xs0 is Σ 1

1 and nonempty.

(b) If sξ∈I , then the set (B\U) ∩
⋂

1≤ρ≤ξ(s) Ssρ
Tρ ∩Xs0 ∩ΩS is Σ 1

1 and nonempty.

We conclude as in the proof of Theorem 1.10. �

3 Preserving C and avoiding countably many Borel graphs of functions

The next lemma is essentially due to Louveau, even if it is not formally written like this in [Lo1]

and [Lo2].

Lemma 3.1 (Louveau) Let 1≤ξ<ωCK
1 , X,Y be recursively presented Polish spaces, and B be ∆

1
1

subset of X×Y whose vertical sections are Π
0
ξ . Then B∈Π

0
ξ

(

(X,< ∆
1
1 >)×Y

)

.

Proof. Theorem 3.6 in [Lo1] provides a Polish topology τ on X finer than T1 such that B is in

Π
0
ξ

(

(X, τ)×(Y, T1)
)

. We then argue as in the proof of Theorem 3.4 in [Lo2] (we use the notation

and material in this paper). Note first that B ∈
(

∆
1
1×Σ

0
1

)

ξ
if ξ < ω,

(

∆
1
1×Σ

0
1

)

ξ+1
otherwise. By

Example 2 of Chapter 3 in [Lo2], the family
(

N(n, Y )
)

n∈ω
is regular. By Corollary 2.10 in [Lo2],

Π
0
ξ(Y ), as well as Σ0

ξ(Y )=
(
⋃

η<ξ Π
0
η(Y )

)

σ
, are regular.

By Theorem 2.12 in [Lo2], ∆1
1×Σ

0
1 is also regular. By Corollary 2.10.(v) in [Lo2],

(

∆
1
1×Σ

0
1

)

ξ

is also regular. The equality W ξ
Φ = WΦξ

of this corollary, applied to Φ := ∆
1
1×Σ

0
1, shows that

B∈
(

∆
1
1×(Σ0

1 ∩∆
1
1)
)

ξ
if ξ<ω,

(

∆
1
1×(Σ0

1 ∩∆
1
1)
)

ξ+1
otherwise, and B∈Π

0
ξ

(

(X,< ∆
1
1 >)×Y

)

.�

In order to prove Theorem 1.4, the main lemma is as follows.
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Theorem 3.2 Let Γ be a non self-dual Borel class of rank 3≤ ξ <ωCK
1 , C∈∆

1
1 ∩ Γ̌(2ω), and R be

a ∆
1
1 relation on 2ω with Fσ vertical sections. We assume that there is a Σ

1
1 subset V of 2ω disjoint

from ∆
1
1 ∩ 2ω such that R∩ V 2 is Σ2

2ω -meager in V 2, and V ∩C is not separable from V \C by a set

in Γ. Then there is f : 2ω → 2ω injective continuous such that C= f−1(C) and
(

f(α), f(β)
)

/∈R if

α 6=β.

Proof. By Theorem 3.5.(ii) in [Lo1], there is an increasing sequence (Fl)l∈ω of ∆1
1 sets with closed

vertical sections whose union is R.

Assume first that Γ=Σ
0
ξ , so that C∈Π

0
ξ(2

ω)\Σ0
ξ . We set N := V ∩ C ∩ V \C

Tξ
. By Lemma

2.2.1, N is Σ 1
1 and nonempty.

(A) The successor case

As in Section 2, we represent h[C] and set I := {s ∈ 2<ω | NRη

s ∩ C 6= ∅}, so that ∅ ∈ I .

We construct a sequence (Xs)s∈2<ω of nonempty Σ
0
1 subsets of 2ω , and a sequence (Ss)s∈2<ω of

nonempty Σ
1
1 subsets of 2ω satisfying the following conditions.

(1)

{

Xt⊆Xs if s R0 t ∧ s 6= t
St⊆Ss if s Rη t ∧

(

s, t∈I ∨ s, t /∈I
)

(2) Ss⊆Xs ∩ Ω2ω ∩ V

(3) diam(Xs), diamGH(Ss)<2−|s|

(4) Xs0 ∩Xs1=∅

(5) Ss⊆

{

N if s∈I
¬C if s /∈I

(6) St⊆Ss
Tρ

if s Rρ t ∧ 1≤ρ≤η

(7) (Ss×Xt) ∩ Fl=∅ if s 6= t∈2l

As in Section 2, it is enough to prove that the construction is possible. Indeed, fix α 6= β. Then the

inequality α|l 6= β|l holds if l ≥ L0. We set lk := |Π−1(h(α))(k)|, so that Π−1(h(α))(k) = α|lk,

for each k ∈ ω. As in Section 2, there is k0 ∈ ω such that lk ≥ L0 if k ≥ k0 and
(

f(α), f(β)
)

is in

(
⋂

k≥k0
Sα|lk)×(

⋂

l∈ω Xβ|l). Thus
(

f(α), f(β)
)

∈
⋂

k≥k0
(Sα|lk×Xβ|lk). By (7),

(

f(α), f(β)
)

is

not in
⋃

k≥k0
Flk . Therefore

(

f(α), f(β)
)

/∈R.

We first choose α∅ ∈ N ∩ Ω2ω , X∅ semi-recursive with diameter at most 1 containing α∅, and

S∅∈Σ
1
1 with GH-diameter at most 1 containing α∅ and contained in X∅ ∩N ∩Ω2ω . Assume that our

objects satisfying (1)-(7) have been contructed up to the length l, which is the case for l=0.

Claim. (a) Ssη ∩
⋂

1≤ρ<η Ssρ
Tρ ∩Xs0 is Σ 1

1 and uncountable.
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(b) If sη∈I , then
⋂

1≤ρ≤η Ssρ
Tρ ∩Xs0 ∩ Ω2ω ∩ V \C is Σ 1

1 and uncountable.

Subase 2.1 s∈I , which implies that sη∈I .

We choose αs∈Ssη ∩
⋂

1≤ρ<η Ssρ
Tρ ∩Xs0 .

Subcase 2.2 sη /∈I , which implies that s /∈I .

We argue as in Case 1.

Subcase 2.3 sη∈I and s /∈I .

We choose αs∈
⋂

1≤ρ≤η Ssρ
Tρ ∩Xs0 ∩ Ω2ω ∩ V \C.

This finishes the construction of αt0, which is in the right uncountable Σ
1
1 set. The construction

of αt1 is similar, the difference being that we ensure morover that αt1 6=αt0, which is possible since

the right Σ 1
1 set is uncountable. Then we choose disjoint Σ 0

1 sets X̃t0 and X̃t1 with diameter at most

2−l−1 such that αtε∈X̃tε⊆X̃tε⊆Xt. We choose, for each u∈2l+1, a Σ 1
1 set S̃u with GH-diameter at

most 2−l−1, containing αu and contained in X̃u and the right Σ 1
1 set. Doing this, we ensured (1)-(6).

It remains to ensure (7). Assume that s 6= t∈ 2l+1. We first note that Fl+1 ∩ V
2 is Σ 2

2ω -meager

in V 2. By Theorem 4.2 in [Ha-K-L] and 8.16 in [K1], (2ω ,Σ2ω), (V,Σ2ω ) and (V,Σ2ω )
2 are strong

Choquet. By 8.15 and 8.11 in [K1], (V,Σ2ω )
2 is a Baire space. This implies that S̃s× S̃t is not

contained in Fl+1. By Lemma 3.1, Fl+1 is closed for < ∆
1
1 >×T1, and thus for Σ 2

2ω . So we can

choose nonempty Σ
1
1 sets S′

s, S
′
t contained in S̃s, S̃t respectively with (S′

s×S
′
t) ∩ Fl+1 = ∅. After

finitely many steps, we can ensure that this holds for any s, t. We pick βu∈S
′
u for each u∈ 2l+1, so

that (βs, βt) /∈ Fl+1 for any s, t. As Fl+1 is closed for < ∆
1
1 >×T1, it is also closed for Σ2ω ×T1.

This gives, for each s, t, S′′
s,t ∈ Σ

1
1 and X ′′

s,t ∈ Σ
0
1 with (βs, βt) ∈ S

′′
s,t×X

′′
s,t ⊆ (S′

s×X̃t)\Fl+1. It

remains to set Xt :=
⋂

s∈2l+1 X ′′
s,t and Ss :=

⋂

t∈2l+1 S′′
s,t ∩Xs.

(B) The limit case

We indicate the differences with the successor case and the proof of Theorem 1.10. We set

I :={s∈2<ω | NRξ

s ∩ C 6=∅}.

Conditions (1) and (6) are changed as follows:

(1′)

{

Xt⊆Xs if s R0 t ∧ s 6= t
St⊆Ss if s Rξ t ∧

(

s, t∈I ∨ s, t /∈I
)

(6′) St⊆Ss
Tρ

if s Rρ t ∧ 1≤ρ≤ξ(s)

Claim 2. (a) Ssξ ∩
⋂

1≤ρ<ξ(s) Ssρ
Tρ ∩Xs0 is Σ 1

1 and uncountable.

(b) If sξ∈I , then
⋂

1≤ρ≤ξ(s) Ssρ
Tρ ∩Xs0 ∩ Ω2ω ∩ V \C is Σ 1

1 and uncountable.

We conclude as above. Assume now that Γ = Π
0
ξ , so that C ∈ Σ

0
ξ(2

ω)\Π0
ξ . We indicate the

differences with the case Γ =Σ
0
ξ . We set N := V ∩ C

Tξ ∩ V \C. By Lemma 2.2.1, N is Σ
1
1 and

nonempty.
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(A) The successor case

We represent h[¬C] and set I :={s∈2<ω | NRη

s ∩Π−1(h[¬C]) 6=∅}, so that ∅∈I . We ensure

(5) Ss⊆

{

N if s∈I
C if s /∈I

Claim. (a) Ssη ∩
⋂

1≤ρ<η Ssρ
Tρ ∩Xs0 is Σ 1

1 and uncountable.

(b) If sη∈I , then (V ∩ C) ∩
⋂

1≤ρ≤η Ssρ
Tρ ∩Xs0 ∩Ω2ω is Σ 1

1 and uncountable.

(B) The limit case

We set I :={s∈2<ω | NRξ

s ∩Π−1(h[¬C]) 6=∅}.

Claim 2. (a) Ssξ ∩
⋂

1≤ρ<ξ(s) Ssρ
Tρ ∩Xs0 is Σ 1

1 and uncountable.

(b) If sξ∈I , then the set (V ∩ C) ∩
⋂

1≤ρ≤ξ(s) Ssρ
Tρ ∩Xs0 ∩ Ω2ω is Σ 1

1 and uncountable.

We conclude as above. �

Corollary 3.3 Let Γ be a non self-dual Borel class of rank at least three, C ∈ Γ̌(2ω) not in Γ, and

R be a Borel relation on 2ω with countable vertical sections. Then there is f : 2ω → 2ω injective

continuous such that C=f−1(C), and
(

f(α), f(β)
)

/∈R if α 6=β.

Proof. The Lusin-Novikov theorem gives a sequence (fn)n∈ω of partial Borel maps from 2ω into

itself with R=
⋃

n∈ω Graph(fn) (see 18.10 in [K1]). Let ξ be the rank of Γ. In order to simplify the

notation, we assume that ξ <ωCK
1 and C, (fn)n∈ω are ∆

1
1. We set U :=∆

1
1 ∩ 2ω . Lemma 2.2.2.(a)

shows that U is countable and Π
1
1 . We will apply Theorem 3.2 to the Σ

1
1 set V := ¬U . Note that

Graph(fn)∩ V
2 is Σ 2

2ω -closed in V 2 with nowhere dense vertical sections by definition of U . By the

Kuratowski-Ulam theorem (see 8.41 in [K1]), R ∩ V 2 is Σ 2
2ω -meager in V 2. It remains to note that

V ∩C is not separable from V \C by a set in Γ since U is countable and therefore in Fσ⊆Γ ∩ Γ̌. �

Remark. This corollary cannot be extended to lower levels. Indeed, for the rank one, as K is count-

able, R can be K2. For Γ=Σ
0
2, R can be (¬C)2 since ¬C is countable. Similarly, if Γ=Π

0
2, then R

can be C2.

4 Some general facts

We first note the following topological properties.

Lemma 4.1 Let Γ be a class of sets closed under continuous pre-images, Y be a topological space,

and F be an equivalence relation on Y .

(a) if F is in Γ, then the equivalence classes of F are also in Γ,

(b) if Z is a topological space, G is an equivalence relation on Z whose classes are in Γ, and

(Y, F ) ≤c (Z,G), then the equivalence classes of F are also in Γ.
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Proof. (a) comes from the fact that if y∈Y , then the map iy : y
′ 7→ (y, y′) is continuous and satisfies

[y]F = i−1
y (F ). The statement (b) comes from the fact that [y]F =f−1

(

[f(y)]G
)

. �

The introduction of EΓ

0 ,E
Γ

1 and E
Σ

0
ξ

2 is motivated by the following fact.

Proposition 4.2 Let Γ be a non self-dual Borel class, K as above, C∈ Γ̌(K)\Γ (as above if the rank

of Γ is at most two), X be an analytic space, and E be a Borel equivalence relation on X. Then

exactly one of the following holds:

(a) the equivalence classes of E are in Γ,

(b) there is a Borel equivalence relation E on K such that EΓ

0 ⊆E⊆EΓ

1 and (K,E) ⊑c (X,E).

Proof. Note that (a) and (b) cannot hold simultaneously by Lemma 4.1 since (b) implies that C is an

E-class. Assume that (a) does not hold, which gives x ∈X such that [x]E /∈ Γ. Theorem 1.8 gives

i :K→X injective continuous such that C= i−1([x]E). It remains to set E := (i×i)−1(E) to finish

the proof. �

The introduction of our equivalence relations on H is motivated by the following facts.

Theorem 4.3 Let Γ be a non self-dual Borel class, K,C as above, X be an analytic space, and E be

a Borel equivalence relation on X whose sections are in Γ. Then exactly one of the following holds:

(a) the relation E is a Γ subset of X2,

(b) there is a Borel equivalence relation E on H :=2×K such that
{(

(0, α), (1, α)
)

| α∈C
}

⊆E,
{(

(0, α), (1, α)
)

| α /∈C
}

⊆¬E and (H,E) ⊑c (X,E).

Proof. We first note that (a) and (b) cannot hold simultaneously. Indeed, we argue by contradiction,

so that E∈Γ(H2), and E ∩
{(

(0, α), (1, α)
)

| α∈K
}

∈Γ

(

{(

(0, α), (1, α)
)

| α∈K
}

)

. This implies

that C∈ Γ(K), which is absurd. Assume now that (a) does not hold, so that Γ 6=Σ
0
1.

Theorem 1.9 gives f :=(f0, f1) :K→X2 continuous with injective coordinates with C=f−1(E).
If the rank of Γ is at least two, then we may assume that f0 and f1 have disjoint ranges, by the choice

of C. We define g :H→X by g(ε, α) :=fε(α). Note that g is continuous,

{(

(0, α), (1, α)
)

| α∈C
}

⊆(g×g)−1(E)

and
{(

(0, α), (1, α)
)

| α /∈C
}

⊆(g×g)−1(¬E). It remains to set E :=(g×g)−1(E).

If Γ=Π
0
1, then f(0) /∈E, so that f0(0) 6= f1(0) and f0(2

−k) 6= f1(2
−k) if k≥ k0. So here again

we may assume that f0 and f1 have disjoint ranges, and we conclude as above. �

Proposition 4.4 Let Γ be a non self-dual Borel class, K as above, C ⊆ K, E be an equivalence

relation on H containing
{(

(0, α), (1, α)
)

| α∈C
}

, ε, η∈ 2 and α, β ∈C. Then
(

(ε, α), (η, β)
)

∈E
is equivalent to

(

(0, α), (0, β)
)

∈E.
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Proof. We may assume that η=1. Assume first that
(

(ε, α), (1, β)
)

∈E. As

(

(0, α), (1, α)
)

,
(

(0, β), (1, β)
)

∈E,

(

(0, α), (0, β)
)

∈E. Conversely, assume that
(

(0, α), (0, β)
)

∈E. Similarly,
(

(0, α), (1, β)
)

∈E and
(

(1, α), (1, β)
)

∈E. �

We now check a useful fact announced in the introduction.

Lemma 4.5 Let Γ be a non self-dual Borel class of rank at least two. Then there is C ∈ Γ̌(2ω)\Γ
such that C ∩Ns∈ Γ̌(Ns)\Γ for each s∈2<ω. In particular, C is dense and co-dense in 2ω.

Proof. We may assume that Γ = Π
0
ξ with ξ ≥ 2, passing to complements if Γ = Σ

0
ξ . We will

inductively construct Cξ∈Σ
0
ξ as required. As required in the introduction, we set

C2 :={α∈2ω | ∀∞n∈ω α(n)=0}.

Note that C2 is dense and co-dense in 2ω , and we are done for ξ = 2, by Baire’s theorem. Let

3≤ξ=supn∈ω (ξn+1), with 2≤ξn<ξ. We set

Cξ :={α∈2ω | ∃n∈ω (α)n /∈Cξ(n)0
}.

By 22.10 in [K1], it is enough to check that Cξ ∩ Ns reduces any Σ
0
ξ subset S of 2ω . Assume first

that s= ∅. Write S =
⋃

n∈ω ¬Sn, where Sn ∈Σ
0
ξn

. The induction assumption gives fn : 2
ω → 2ω

continuous with Sn = f−1
n (Cξn). We define f : 2ω → 2ω by

(

f(α)
)

n
:= f(n)0(α), so that f is

continuous. Then

α∈S ⇔ ∃n∈ω α /∈Sn ⇔ ∃n∈ω fn(α) /∈Cξn ⇔ ∃n∈ω f(n)0(α) /∈Cξ(n)0

⇔ ∃n∈ω
(

f(α)
)

n
/∈Cξ(n)0

⇔ f(α)∈Cξ.

If now s is arbitrary, then we define g :2ω→Ns by

(

g(α)
)

n
:=

{

(s)n0
∞ if (n)1≤|s|,

(α)<(n)0,(n)1−|s|−1> if (n)1> |s|,

so that g is continuous and reduces Cξ to Cξ ∩Ns since

α∈Cξ ⇔ ∃n∈ω (α)n /∈Cξ(n)0
⇔ ∃n, p∈ω (α)<n,p> /∈Cξn

⇔ ∃n∈ω ∃p> |s| (α)<n,p−|s|−1> /∈Cξn
⇔ ∃n, p∈ω

(

g(α)
)

<n,p>
/∈Cξn ⇔ ∃n∈ω

(

g(α)
)

n
/∈Cξ(n)0

⇔ g(α)∈Cξ ∩Ns.

This finishes the proof. �

Notation. If Γ is a non self-dual Borel class, then D2(Γ)={A\B | A,B∈Γ}, and

Γ
+ :={(A ∩ C) ∪ (B\C) | A∈Γ ∧B∈ Γ̌ ∧ C∈∆

0
1}

is the successor of Γ in the Wadge quasi-order.
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In order to state the next result, we extend our sets AΓ and BΓ. We set

AΓ :=















{(K,EΓ

0 )} if Γ=Π
0
1,

{(K,EΓ
n ) | n≤1} if Γ=Σ

0
1 or the rank of Γ is two,

{(K,EΓ
n ) | 1≤n≤2} if Γ∈{Σ0

ξ | ξ≥3},

{(K,EΓ

1 )} if Γ∈{Π0
ξ | ξ≥3},

BΓ :=AΓ ∪















∅ if Γ=Σ
0
1,

{(H,EΓ

3 )} if Γ=Π
0
1,

{(H,EΓ
n ) | 3≤n≤5} if the rank of Γ is two,

{(H,EΓ

8 )} if Γ∈{Π0
ξ | ξ≥3}.

Theorem 4.6 Let Γ be a non self-dual Borel class, K,C as above.

(a) The following properties of EΓ
n ∈BΓ hold:

n Γ Number of classes Complexity of the classes Complexity of the relation

0

2 if Γ=Π
0
1

ω if Γ∈{Σ0
1,Σ

0
2}

2ω if Γ⊇Π
0
2

Γ
+ if Γ=Π

0
1

Γ̌ if Γ 6=Π
0
1

Ď2(Γ)\D2(Γ) if Γ=Π
0
1

Γ̌\Γ if Γ 6=Π
0
1

1 2 Γ
+ Ď2(Γ)\D2(Γ) if Γ=Σ

0
1

Ď2(Γ)\(Γ ∪ Γ̌) if rk(Γ)≥2

2 Σ
0
ξ ω Π

0
ξ Ď2(Σ

0
ξ)\Σ

0
ξ

3
ω if Γ=Π

0
1

2ω if rk(Γ)≥2
Π

0
1

Γ
+\(Γ ∪ Γ̌) if Γ=Π

0
1

Γ̌\Γ if rk(Γ)≥2

4 2ω Γ Γ
+\(Γ ∪ Γ̌)

5
ω if Γ=Π

0
2

2ω if Γ⊇Σ
0
2

Γ Γ
+\(Γ ∪ Γ̌)

8 Π
0
ξ ω Π

0
ξ Ď2(Σ

0
ξ)\(Σ

0
ξ ∪Π

0
ξ)

(b) AΓ and BΓ are ≤c-antichains.
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Proof. (a).(0) Note that the equivalence classes of EΓ

0 are C, and {x} for x /∈ C. Note also that

EΣ
0
1

0 =∆(K). If Γ 6=Π
0
1, then EΓ

0 is in Γ̌\Γ, and its equivalence classes are not all in Γ, and all in Γ̌.

(1) Note that the equivalence classes of EΓ

1 are C and K\C. In particular, EΓ

1 is not in Γ, not in Γ̌,

and its equivalence classes are all in Γ
+, not all in Γ, and not all in Γ̌. However, it is in Ď2(Γ). If

Γ=Σ
0
1, as K\{0} is dense in K, EΣ

0
1

1 is not in D2(Σ
0
1). For Γ=Π

0
1, note that EΠ

0
1

1 =EΣ
0
1

1 .

(2) The equivalence classes of E
Σ

0
ξ

2 are C and the Cn’s.

(3) The equivalence classes of EΓ

3 are 2×{x} for x∈C, and {(ε, x)} for ε∈ 2 and x /∈C, and thus

closed. If Γ=Π
0
1, then EΓ

3 is Ď2(Γ). It is not closed since

EΓ

3 \E
Γ

3 =
{(

(0, 0), (1, 0)
)

,
{(

(1, 0), (0, 0)
)}

.

In particular, EΓ

3 is D2(Γ). It is not open since
(

(0, 0), (0, 0)
)

∈EΓ

3 ∩ ¬EΓ

3 . So the exact complexity

of EΓ

3 is Γ+.

(4) The equivalence classes of EΓ

4 are 2×{x} for x∈C, {(0, x)} for x /∈C, and {1}×(¬C), and thus

in Γ if Γ 6=Σ
0
1, Γ+ otherwise.

(5) Note that the equivalence classes of EΓ

5 are 2×{x} for x∈C, and {ε}×(¬C) for ε∈2, and thus

in Γ if Γ 6=Σ
0
1, Γ+ otherwise.

(8) The equivalence classes of E
Π

0
ξ

8 are 2×Cn for n∈ω, and {ε}×(¬C) for ε∈2.

(b).(1) Assume that Γ 6=Π
0
1. Note that (K,EΓ

1 ) is not ≤c-below (K,EΓ

0 ) since EΓ

0 is in Γ̌ and EΓ

1

is not. Moreover, (K,EΓ

0 ) is not ≤c-below (K,EΓ

1 ) since EΓ

0 has infinitely many classes and EΓ

1 has

only two classes.

Assume now that n>1. Similarly, EΓ
n is not below EΓ

1 . Conversely, as the classes of EΓ
n ∈BΓ are

all in Γ or all in Γ̌, EΓ

1 is not below EΓ
n . Thus EΓ

1 is incomparable with the other relations in BΓ. In

particular, AΓ is a ≤c-antichain.

(0) EΓ

0 is not below the other relations in BΓ, because of the complexity of the classes.

Let us prove that EΓ

3 is not below EΓ

0 if Γ 6=Σ
0
1. We argue by contradiction, which gives f :H→K.

As Γ 6=Σ
0
1, C is dense in K. This gives α∈C with f(0, α) 6=f(1, α), since otherwise

f(0, β)=f(1, β)

for each β ∈ 2ω , and thus
(

(0, β), (1, β)
)

∈ EΓ

3 for some β /∈ C, which cannot be. In particular,

f(0, α), f(1, α) ∈C. Similarly, working in C ∩ N1−α(0) if necessary, we can find β ∈C\{α} with

f(0, β) 6= f(1, β) and f(0, β), f(1, β)∈C. As
(

f(0, α), f(1, β)
)

∈EΓ

0 ,
(

(0, α), (1, β)
)

∈EΓ

3 , which

is absurd.

Appealing to the number of classes or the complexity of the relations, we see that EΓ

0 is above

neither EΓ

4 , nor EΓ

5 .
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(2) EΓ

2 is not above the other relations in BΓ, because of the number of classes. Appealing to the

complexity of the classes, we see that EΓ

2 is not below the other relations in BΓ.

(3) EΓ

3 is not above the other relations, because of the complexity of the classes. Let us prove that EΓ

3

is not below EΓ

5 if the rank of Γ is at least two. We argue by contradiction, which gives

g=(g0, g1) :H→H.

Pick (ε, α) ∈ 2×C. If g(ε, α) = (ε0, γ) with γ /∈ C, then g(1−ε, α) = (ε0, δ) with δ /∈ C. The

continuity of g gives l ∈ ω such that g0(ε
′, β) = ε0 if (ε′, β) ∈ 2×Nα|l. Note that there is s in

2<ω such that g
(

0, (α|l)β
)

6= g
(

1, (α|l)β
)

if β ∈ Ns, since otherwise there is (α|l)β /∈ C with

g
(

0, (α|l)β
)

= g
(

1, (α|l)β
)

, which is absurd. Then the map δ 7→
(

g1(0, δ), g1(1, δ)
)

reduces C to

(¬C)2 on N(α|l)s, which contradicts Lemma 4.5. This shows that g1(ε, α) ∈ C. As the rank of Γ

is at least two, C is dense, so that we may assume that there are α ∈ C, ε0 ∈ 2 and γ ∈ C with

g(0, α) = (ε0, γ) and g(1, α) = (1− ε0, γ). The continuity of g gives l ∈ ω and G : Nα|l → 2ω

continuous with g(0, β)=
(

ε0, G(β)
)

and g(1, β) =
(

1−ε0, G(β)
)

if β ∈Nα|l. Note that G reduces

C ∩ Nα|l to C. As the set C ∩ Nα|l is not open, there are β, β′ ∈Nα|l\C with G(β) 6=G(β′). Note

that
(

(

ε0, G(β)
)

,
(

ε0, G(β
′)
)

)

∈EΓ

5 and
(

(0, β), (0, β′)
)

∈EΓ

3 , which is absurd.

This argument also shows that EΓ

3 is not below EΓ

4 if the rank of Γ is at least two.

(4)-(8) As in (3), EΓ

4 is not below EΓ

5 , and EΓ

5 is not below EΓ

4 since EΓ̌

0 is not below ∆(2ω). �

5 Non-Σ0
1 equivalence relations

A strong form of Theorem 1.2 holds.

Theorem Let X be a metrizable topological space, and E be an equivalence relation on X. Then

exactly one of the following holds:

(a) the equivalence classes of E are Σ
0
1 (exactly when E is a Σ

0
1 subset of X2),

(b) there is (X,E)∈AΣ
0
1 such that (X,E) ⊑c (X,E).

Moreover, AΣ
0
1 is a ≤c-antichain (and thus a ⊑c and a ≤c-antichain basis).

Proof. By Lemma 4.1.(a), the equivalence classes of E are Σ
0
1 if E is an open subset of X2. The

converse comes from the fact that E is the union of the square of its equivalence classes. By Theorem

4.6.(a), (a) and (b) cannot hold simultaneously. So assume that (a) does not hold, which gives x∈X
such that x∈¬[x]E .

Case 1 x /∈C if C is an E-class which does not contain x.

We inductively construct an injective sequence (xk)k∈ω of points of X\[x]E as follows. We first

choose x0 ∈X \ [x]E . As x /∈ [x0]E , we choose x1 ∈ B(x, 2−1)\([x]E ∪ [x0]E). Then we choose

x2 ∈ B(x, 2−2)\([x]E ∪ [x0]E ∪ [x1]E), and so on. Note that (xk)k∈ω converges to x. We define

f :K→X by setting f(0) := x and f(2−k) := xk. Note that f is injective continuous and reduces

EΣ
0
1

0 to E.
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Case 2 There is an E-class C with x∈C\C.

As X is metrizable, there is (xk)k∈ω injective in C converging to x. We define f : K → X by

setting f(0) :=x and f(2−k) :=xk. Note that f is injective continuous and reduces EΣ
0
1

1 to E. �

Remark. This result does not hold for arbitrary relations, not even for linear quasi-orders. Indeed,

assume that (K,EΣ
0
1

n ) ≤c (K, Q), where Q is a non-Σ0
1 linear quasi-order on K like

{(x, y)∈K2 | x≤y}.

Pick (x, y) ∈K2\EΣ
0
1

n . Then
(

f(x), f(y)
)

/∈Q, so that
(

f(y), f(x)
)

∈Q and (y, x) ∈ EΣ
0
1

n , which

contradicts the symmetry of EΣ
0
1

n .

6 Non-Π0
1 equivalence relations

A strong form of Theorem 1.2 holds.

Theorem 6.1 LetX be a metrizable topological space, andE be an equivalence relation onX. Then

exactly one of the following holds:

(a) the equivalence classes of E are Π
0
1,

(b) (K,EΠ
0
1

0 ) ⊑c (X,E).

Proof. By Lemma 4.1.(b), (a) and (b) cannot hold simultaneously since [1]
E
Π

0
1

0

= K \{0} is not

closed. So assume that (a) does not hold, which gives x ∈ X such that [x]E is not closed. Pick

y ∈ [x]E \[x]E . As X is metrizable, there is an injective sequence (xk)k∈ω in [x]E converging to y.

We define f :K→X by setting f(0) := y and f(2−k) :=xk. Note that f is injective continuous and

reduces EΠ
0
1

0 to E. �

A strong form of Theorem 1.3 holds.

Theorem 6.2 LetX be a metrizable topological space, andE be an equivalence relation onX. Then

exactly one of the following holds:

(a) E is a Π
0
1 subset of X2,

(b) there is (X,E)∈{(K,EΠ
0
1

0 ), (H,EΠ
0
1

3 )} such that (X,E) ⊑c (X,E).

Moreover, {(K,EΠ
0
1

0 ), (H,EΠ
0
1

3 )} is a ≤c-antichain (and thus a ⊑c and a ≤c-antichain basis).

Proof. By Theorem 4.6.(a), (a) and (b) cannot hold simultaneously. So assume that (a) does not hold,

which gives (x, y)∈E\E, and
(

(xk, yk)
)

k∈ω
∈Eω converging to (x, y). Note that x 6=y, so that we

may assume that {xk | k∈ω} ∩ {yk | k∈ω}= ∅. We may also assume that either xk = x for each

k∈ω, or (xk)k∈ω is injective and xk 6=x for each k∈ω. Moreover, we cannot have (xk, yk)=(x, y)
for each k∈ω.
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Case 1 xk=x and yk 6=y for each k∈ω, and (yk)k∈ω is injective.

We define f :K→X by setting f(0) :=y, f(1) :=x and f(2−k−1) :=yk. Note that f is injective

continuous and reduces EΠ
0
1

0 to E.

Case 2 yk=y and xk 6=x for each k∈ω, and (xk)k∈ω is injective.

We argue as in Case 1.

Case 3 xk 6=x and yk 6=y for each k∈ω, and (xk)k∈ω, (yk)k∈ω are injective.

Note that we may assume that either (x, xk)∈E for each k∈ω, or (x, xk) /∈E for each k∈ω.

Case 3.1 (x, xk)∈E for each k∈ω.

Note that x, xk, yl are in the same E-class, which does not contain y. We define f :K→X by

setting f(0) :=y and f(2−k) :=yk. Note that f is injective continuous and reduces EΠ
0
1

0 to E.

Case 3.2 (x, xk) /∈E for each k∈ω.

The previous discussion shows that we may assume that (x, yk), (y, xk), (y, yk) /∈ E for each

k ∈ ω. By Ramsey’s theorem (see 19.A in [K1]), we may assume that either (xk, xl) ∈ E for each

k 6= l, or (xk, xl) /∈E for each k 6= l.

Case 3.2.1 (xk, xl)∈E for each k 6= l.

We argue as in Case 3.1.

Case 3.2.2 (xk, xl) /∈E for each k 6= l.

The previous discussion shows that we may assume that (xk, yl), (yk, yl) /∈E for each k 6= l. We

define f :H→X by setting f(0, 0) :=x, f(1, 0) :=y, f(0, 2−k) :=xk and f(1, 2−k) :=yk. Note that

f is injective continuous and reduces EΠ
0
1

3 to E. �

7 Some facts about the rank two

Lemma 7.1 Let D be a non-nowhere dense subset of 2ω contained in Pf . Then there is f : 2ω→ 2ω

injective continuous such that f [Pf ]⊆D and f [P∞]⊆P∞.

Proof. Let s∈2<ω such that Ns⊆D. Note that Ns⊆Ns ∩D, so that Ns ∩D is dense and co-dense

in Ns. In particular, by Baire’s theorem, Ns∩D is not separable from Ns∩P∞ by a Π0
2 set. Theorem

1.8 gives f :2ω→2ω injective continuous such that f [Pf ]⊆Ns ∩D and f [P∞]⊆Ns ∩ P∞. �

Lemma 7.2 Let G be a non-meager subset of 2ω having the Baire property and contained in P∞.

Then there is f :2ω→2ω injective continuous such that f [P∞]⊆G and f [Pf ]⊆Pf .
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Proof. As G has the Baire property and is not meager, there is s∈2<ω such that Ns ∩G is comeager

in Ns. By Baire’s theorem, Ns ∩ Pf is not separable from Ns ∩ G by a Π
0
2 set. Theorem 1.8 gives

f :2ω→2ω injective continuous such that f [Pf ]⊆Ns ∩ Pf and f [P∞]⊆Ns ∩G. �

Convention. In the rest of Sections 7 to 9, we will perform a number of Cantor-like constructions. The

following will always hold. We fix s∈2<ω , and inductively construct a sequence (nt)t∈2<ω of natural

numbers, and a sequence (Ut)t∈2<ω of clopen subsets of 2ω satisfying the following conditions:

(1) Utε⊆Ut⊆Ns

(2) αnt ∈Ut
(3) diam(Ut)≤2−|t|

(4) Ut0 ∩ Ut1=∅
(5) nt0=nt

Assume that this is done. Using (1)-(3), we define f : 2ω →Ns by {f(β)} :=
⋂

n∈ω Uβ|n, and f is

injective continuous by (4). If t ∈O and α= t0∞, then f(α) =αnt by (5). For the first step of the

induction, we choose n∅ in such a way that αn∅
∈Ns and set U∅ :=Ns. Condition (5) defines nt0.

Lemma 7.3 Let b : P∞ → 2ω be a nowhere dense-to-one continuous map. Then there is f :2ω→2ω

injective continuous such that Pf=f−1(Pf ) and b
(

f(α)
)

6=b
(

f(β)
)

if α 6=β∈P∞.

Proof. We first prove the following.

Claim Let β∈Pf . Then there is a sequence (sβq )q∈ω of finite binary sequences such that

(a) |sβq |>q,

(b) sβq |q=β|q,

(c) sβq 6⊆β,

(d) ∀p 6=q b[N
sβp

∩ P∞] ∩ b[N
sβq

∩ P∞]=∅.

Indeed, we first construct a sequence (βn)n∈ω of elements of P∞ converging to β and such that
(

b(βn)
)

n∈ω
is injective. Assume that (βn)n≤l have been constructed. As b is nowhere dense-to-one,

we can find βl+1∈Nβ|(l+1) ∩ P∞\
(

⋃

n≤l b
−1

(

{b(βn)}
)

)

.

We can extract a subsequence if necessary to ensure that
(

b(βn)
)

n∈ω
converges to some γ ∈ 2ω,

which is compact. Extracting again if necessary, we may assume that b(βn) 6= γ for each n∈ω. As

b(β0) 6=γ and b is continuous, we can find n0∈ω and l0>0 such that b(β0)(n0) 6=γ(n0), β0|l0 6=β|l0
and b(α)|(n0+1)=b(β0)|(n0+1) if α∈Nβ0|l0 ∩ P∞. We set sβ0 :=β0|l0.

Extracting again if necessary, we may assume that βn|1 = β|1 and b(βn)|(n0+1) = γ|(n0+1)
for each n > 0. As b(β1) 6= γ and b is continuous, we can find n1 > n0 and l1 > l0 such that

b(β1)(n1) 6= γ(n1), β1|l1 6= β|l1 and b(α)|(n1+1) = b(β1)|(n1+1) if α ∈ Nβ1|l1 ∩ P∞. We set

sβ1 :=β1|l1. Note that b(α)(n0) 6=γ(n0) if α∈N
sβ0

∩ P∞, and b(α)(n0)=γ(n0) if α∈N
sβ1

∩ P∞, so

that b[N
sβ0

∩ P∞] ∩ b[N
sβ1

∩ P∞]=∅. We just have to continue like this to finish the construction of

the desired sβq ’s. ⋄
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We set s :=∅, and construct (nt)t∈2<ω , (Ut)t∈2<ω , (qum)u∈O,m∈ω satisfying (1)-(5) and

(6) qum<q
u
m+1

(7) Ut1 ∩ {αn | n≤|t|}=∅
(8) Uu0m1⊆Ns

αnu
qum

Assume that this is done. If β ∈P∞, then there is an infinite strictly increasing sequence (lk)k∈ω of

natural numbers with β|lk ∈O. Condition (7) implies that f(β)∈P∞. Let α 6=β ∈P∞, which gives

u∈O and m 6= p such that α∈Nu0m1 and β ∈Nu0p1. Conditions (8) and (d) in the claim imply that

b
(

f(α)
)

6=b
(

f(β)
)

. So we are done.

Let us prove that the construction is possible. Assume that (nt)|t|≤l, (Ut)|t|≤l, (q
u
m)u∈O,|u|+m+1≤l

satisfying (1)-(8) have been constructed, which is the case for l=0.

Let t := u0m ∈ 2l, with u ∈ O. As αnt ∈ Ut, Nαnt |q
⊆ Ut if q is big enough, say q ≥ qt. We

choose qum>max(maxj<m quj , qt), and nt1 in such a way that αnt1 ∈Ns
αnt
qum

\{αn | n≤ l}. Note that

s
αnt
qum

|qum=αnt |q
u
m⊇αnt|qt, so that αnt1∈Ut and αnt1 6=αnt0 . We choose disjoint clopen sets Ut0, Ut1

with diameter at most 2−l−1 such that αntε ∈Utε⊆Ut and satisfying (7)-(8). �

8 Non-Σ0
2 equivalence relations

Notation. We set C :=P∞.

Proof of Theorem 1.2 when Γ = Σ
0
2. By Lemma 4.1.(b), (a) and (b) cannot hold simultaneously.

So assume that (a) does not hold. By Proposition 4.2, we may assume that X = 2ω and C is an

equivalence class of E.

Case 1 [α]E is nowhere dense for each α /∈C.

We inductively construct a sequence (nk)k∈ω of natural numbers as follows. Let (Ok)k∈ω be a

basis for the topology of 2ω made of nonempty sets. Pick n0 ∈ ω such that αn0 ∈O0. As [αn0 ]E is

nowhere dense, we can find n1∈ω such that αn1 ∈O1\[αn0 ]E . As [αn1 ]E is nowhere dense, we can

find n2 ∈ ω such that αn2 ∈ O2 \([αn0 ]E ∪ [αn1 ]E). And so on. Note that (αnk
)k∈ω is dense and

co-dense in C ∪ {αnk
| k ∈ ω} (which is co-countable in 2ω), so that {αnk

| k ∈ ω} is not Π0
2, by

Baire’s theorem. By Hurewicz’s theorem, there is f : 2ω →C ∪ {αnk
| k ∈ ω} injective continuous

such that C=f−1(C). Note that f reduces EΣ
0
2

0 to E.

Case 2 there is α /∈C such that [α]E is not nowhere dense.

Let s ∈ 2<ω such that Ns ⊆ [α]E . Note that the countable and thus Σ
0
2 set Ns ∩ [α]E is

dense and co-dense in Ns ∩ (C ∪ [α]E) (which is co-countable in Ns). As in the Case 1, we get

f :2ω→Ns ∩ (C ∪ [α]E) injective continuous such that C=f−1(C). Note that f reduces EΣ
0
2

1 to E.

This finishes the proof. �
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Proof of Theorem 1.3 when Γ=Σ
0
2. If (X,E)∈BΣ

0
2 , then E /∈Σ

0
2 by Theorem 4.6.(a), so that (a)

and (b) cannot hold simultaneously. Assume that (a) does not hold. By Theorem 1.2, we may assume

that the equivalence classes of E are Σ
0
2. By Theorem 4.3, we may assume that X=2×2ω,

∆(2×2ω) ∪
{(

(0, α), (1, α)
)

| α∈C
}

⊆E

and
{(

(0, α), (1, α)
)

| α /∈C
}

⊆¬E.

We will now prove that we may assume that
(

(ε, α), (1−ε, β)
)

/∈E if ε∈2 and α, β /∈C. Indeed,

assume first that (E(ε,α))1−ε \C is not nowhere dense in 2ω for some ε ∈ 2 and some α /∈C. Then
(

(1−ε, β), (1−ε, γ)
)

∈ E,
(

(0, β), (1, γ)
)

/∈ E and
(

(1, β), (0, γ)
)

/∈ E if β, γ ∈ (E(ε,α))1−ε \C.

Lemma 7.1 gives f :2ω→2ω injective continuous such that f [2ω\C]⊆(E(ε,α))1−ε\C and f [C]⊆C,

so we are done. Assume now that (E(ε,α))1−ε \C is nowhere dense in 2ω for each ε ∈ 2 and each

α /∈C. We set s :=∅, and construct (nt)t∈2<ω , (Ut)t∈2<ω satisfying (1)-(5) and the following:

(6) αnt1 /∈{αnt} ∪ {αn | n≤|t|} ∪
⋃

ε∈2,s∈2|t|

(E(ε,αns )
)1−ε ∪

⋃

ε∈2,s∈2|t|,s<lext

(E(ε,αns1 )
)1−ε

Assume that this is done. If β ∈ C, then there is an infinite strictly increasing sequence (lk)k∈ω
of natural numbers with β|lk ∈ O. Condition (6) implies that f(β) ∈ C. Now let β 6= β′ /∈ C.

Condition (6) implies that
(

(

ε, f(β)
)

,
(

1−ε, f(β′)
)

)

/∈ E for each ε ∈ 2. So we are done. Let us

prove that the construction is possible. Assume that (nt)|t|≤l and (Ut)|t|≤l satisfying (1)-(6) have been

constructed, which is the case for l=0. Let t∈2l. We define nt1 by induction on t with respect to the

lexicographical ordering. We choose it in such a way that

αnt1∈Ut\
(

{αnt} ∪ {αn | n≤ l} ∪
⋃

ε∈2,s∈2l

(E(ε,αns )
)1−ε\C ∪

⋃

ε∈2,s∈2l,s<lext

(E(ε,αns1 )
)1−ε\C

)

.

We do this for each t ∈ 2l, in the lexicographical ordering. Then we choose disjoint clopen subsets

Ut0, Ut1 of Ut with diameter at most 2−l−1 with αntε ∈Utε for each ε∈2.

Similarly, we may assume that either
(

(ε, α), (ε, β)
)

∈E for each α 6=β /∈C, or
(

(ε, α), (ε, β)
)

is

not in E for each α 6=β /∈C, for each ε∈2.

Let us prove that E has meager classes. We argue by contradiction, which gives (ε, α) ∈ 2×2ω

such that [(ε, α)]E is not meager. As [(ε, α)]E is in Γ = Σ
0
2, we get ε′ ∈ 2 and s ∈ 2<ω such that

{ε′}×Ns ⊆ [(ε, α)]E . Assume, for example, that ε′ = 0, so that {1}×(Ns ∩ C)⊆ [(ε, α)]E . Thus

({1}×Ns) ∩ [(ε, α)]E is comeager in {1}×Ns and Σ
0
2, which gives t∈2<ω such that

{1}×Nst⊆ [(ε, α)]E .

Thus (0, st0∞), (1, st0∞)∈ [(ε, α)]E and
(

(0, st0∞), (1, st0∞)
)

∈E, which is absurd.

The Sarbadhikari theorem gives an increasing sequence (Fl)l∈ω of Borel relations on 2×2ω with

closed nowhere dense vertical sections whose union contains E (see 5.12.11 in [Sr]).
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We will now prove that we may assume that
(

(ε, α), (ε′ , β)
)

/∈E if ε, ε′∈2, and either α∈C and

β /∈C, or α /∈C and β ∈C. We set s := ∅, and construct (nt)t∈2<ω , (Ut)t∈2<ω satisfying (1)-(5) and

the following:

(6) Ut1 ∩
(

{αnt} ∪ {αn | n≤|t|} ∪
⋃

ε,ε′∈2,s∈2|t|
(

(F|t|)(ε,αns )

)

ε′

)

=∅

Assume that this is done. If β ∈ C, then there is an infinite strictly increasing sequence (lk)k∈ω of

natural numbers with β|lk ∈O. Condition (6) implies that f(β)∈C. Condition (6) also implies that
(

(

ε, f(γ)
)

,
(

ε′, f(δ)
)

)

/∈E if ε, ε′ ∈ 2, and either γ ∈C and δ /∈C, or γ /∈C and δ ∈C. So we are

done. Let us prove that the construction is possible. Assume that (nt)|t|≤l and (Ut)|t|≤l satisfying

(1)-(6) have been constructed, which is the case for l=0. Let t∈ 2l. As (Fl)(ε,α) is closed nowhere

dense for each (ε, α)∈2×2ω ,
(

(Fl)(ε,α)
)

ε′
is a nowhere dense closed subset of 2ω for each (ε, ε′, α)

in 22×2ω. We choose nt1 in such a way that

αnt1 ∈Ut\
(

{αnt} ∪ {αn | n≤ l} ∪
⋃

ε,ε′∈2,s∈2l

(

(Fl)(ε,αns )

)

ε′

)

.

Then we choose disjoint clopen sets Ut0, Ut1 with diameter at most 2−l−1 such that αntε ∈Utε⊆Ut
and satisfying (6).

We will now prove that we may assume that E ∩ (2×C)2=
{(

(ε, α), (ε′ , α)
)

| ε, ε′∈2∧ α∈C
}

.

By Proposition 4.4, we just have to prove that we may assume that

E ∩ ({0}×C)2=
{(

(0, α), (0, α)
)

| α∈C
}

.

We set E′ :=
{

(α, β) ∈ 2ω×2ω |
(

(0, α), (0, β)
)

∈ E
}

, so that we must see that we may assume

that E′ ∩ C2=∆(C). As E is a Borel equivalence relation on 2×2ω with Σ
0
2 classes, we can write

E′ =
⋃

q∈ω Kq, where Kq is a Borel relation on 2ω with nonempty closed vertical sections, by the

Saint Raymond theorem (see 35.45 in [K1]). By Theorem 3.6 in [Lo1], there is for each n∈ω a finer

Polish topology τq on 2ω such thatKq∈Π
0
1

(

(2ω, τq)×2
ω
)

. By 8.38 in [K1], there is a dense Gδ subset

Gq of 2ω on which τq coincides with the usual topology on 2ω , so that Kq ∩ (Gq×2ω)∈Π
0
1(Gq×2ω).

We equip the hyperspace F (2ω) of closed subsets of 2ω with the Effros Borel structure (see 12.C in

[K1]). The following maps are Borel.

(i) ψq :2
ω→F (2ω)\{∅} defined by ψq(γ) :=(Kq)γ .

Indeed, (Kq)γ ∩Ns 6=∅ ⇔ ∃β∈Ns (γ, β)∈Kq , so that {γ∈2ω | (Kq)γ ∩Ns 6=∅} is analytic.

Assume, for simplicity of the notation, that Kq is ∆
1
1. If γ ∈ 2ω , then (Kq)γ ∩ Ns is ∆

1
1(γ) and

compact. By 4F.11 in [Mos], (Kq)γ ∩Ns is not empty if and only if it contains a ∆
1
1(γ) point. This

shows that {γ∈2ω | (Kq)γ ∩Ns 6=∅} is also co-analytic, and thus Borel. Thus ψq is Borel.

(ii) φα :F (2
ω)\{∅}→R defined by φα(K) :=d(α,K).

By 12.13 in [K1], there is a sequence (dk)k∈ω of Borel functions from F (2ω) into 2ω such that
(

dk(K)
)

k∈ω
is dense in K if K∈F (2ω) is not empty. We get the following, for a, b∈R:

d(α,K)>a ⇔ ∃p∈ω ∀k∈ω d
(

α, dk(K)
)

>a+2−p,

d(α,K)<b⇔ ∃k∈ω d
(

α, dk(K)
)

<b,

showing that φα is Borel.

33



(iii) ϕq,α :2
ω→R defined by ϕq,α(γ) :=d

(

α, (Kq)γ
)

.

Indeed, ϕq,α=φα ◦ψq . Consequently, 8.38 in [K1] gives a dense Gδ subset Hq,α of 2ω on which

ϕq,α is continuous. We set H :=C ∩
⋂

q∈ω Gq ∩
⋂

q,n∈ω Hq,αn , so that H is also a dense Gδ subset

of 2ω . In particular, H=
⋂

l∈ω Ol, where (Ol)l∈ω is a decreasing sequence of dense open subsets of

2ω .

We set s :=∅, and construct (nt)t∈2<ω , (Ut)t∈2<ω satisfying (1)-(5) and the following:

(6) Ut1⊆O|t|\{αn | n≤|t|}
(7)

(
⋃

s∈2|t|,η∈2,sη 6=t1 (Usη ∩H)×(Ut1 ∩H)
)

∩ (
⋃

q≤|t|+1 Kq)=∅

Assume that this is done. If β ∈ C, then there is an infinite strictly increasing sequence (lk)k∈ω of

natural numbers with β|lk ∈O. Condition (6) implies that f(β) ∈C. Conditions (6)-(7) imply that
(

f(γ), f(δ)
)

/∈E′ if γ 6=δ∈C. So we are done. Let us prove that the construction is possible. Assume

that (nt)|t|≤l and (Ut)|t|≤l satisfying (1)-(7) have been constructed, which is the case for l=0. Note

first that E′ is a meager relation on 2ω since E has meager classes and is Borel. In particular, E′∩H2

is meager in H2 since H is a dense Gδ subset of 2ω . Moreover,
⋃

q≤l+1 Kq ∩H
2 is a closed relation

on H contained in E′, so that
⋃

q≤l+1 Kq ∩H
2 is nowhere dense in H2. Now let s 6= t∈2l (we have

s1 and t1 in mind). Note that (Us ∩H)×(Ut ∩H) 6⊆
⋃

q≤l+1 Kq . So we can find a nonempty clopen

subset Vs of Us ∩Ol\({αns} ∪ {αn | n≤ l}) such that
(

(Vs ∩H)×(Vt ∩H)
)

∩ (
⋃

q≤l+1 Kq)=∅ if

s 6= t∈ 2l. Now let s, t∈ 2l (we have s0 and t1 in mind). We choose γs,t∈Vt ∩H . If q≤ l+1, then

αns /∈(Kq)γs,t since αns /∈C and (Kq)γs,t ⊆ (E′)γs,t ⊆C. As (Kq)γs,t is closed in 2ω , it is compact.

This gives ps,t,q ∈ ω such that d(αns , (Kq)γs,t) > 2−ps,t,q . The continuity of ϕq,αns
on H gives

ls,t,q ∈ ω such that d(α, (Kq)γ)> 2−ps,t,q if α ∈Nαns |ls,t,q
and γ ∈H ∩ Nγs,t|ls,t,q , Nγs,t|ls,t,q ⊆ Vt,

Nαns |ls,t,q
⊆Us, Nγs,t|ls,t,q ∩Nαns |ls,t,q

=∅. We replace Vt with Nγs,t|ls,t,q and Us with Nαns |ls,t,q
for

the biggest ls,t,q with q≤ l+1, which gives V ′
t and U ′

s. We do this for all the possible s, t∈2l, which

lead to Ṽt’s and Ũs’s. We now choose αnt1 ∈ Ṽt. Then we choose disjoint clopen sets Ut0, Ut1 with

diameter at most 2−l−1 such that αntε ∈Utε⊆ Ũt and satisfying (6)-(7).

There are three cases to conclude.

Case 1
(

(ε, α), (ε, β)
)

/∈E for each α 6=β /∈C and each ε∈2.

Then E=EΣ
0
2

3 .

Case 2
(

(ε, α), (ε, β)
)

∈E and
(

(1−ε, α), (1−ε, β)
)

/∈E for each α 6=β /∈C and some ε∈2.

Exchanging the first coordinate if necessary, we may assume that ε=1. Then E=EΣ
0
2

4 .

Case 3
(

(ε, α), (ε, β)
)

∈E for each α 6=β /∈C and each ε∈2.

Then E=EΣ
0
2

5 . �

9 Non-Π0
2 equivalence relations

Notation. We set C :=Pf :={αn | n∈ω}.
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Proof of Theorem 1.2 when Γ=Π
0
2. By Lemma 4.1.(b), (a) and (b) cannot hold simultaneously. So

assume that (a) does not hold. By the proof of Proposition 4.2, we may assume that X =2ω and C
is an equivalence class of E. By the Harrington-Kechris-Louveau theorem (see Theorem 13 in [M]),

either there is b : 2ω → 2ω Borel with E = (b×b)−1
(

∆(2ω)
)

, or (2ω,E0) ⊑c (2ω , E). In the latter

case, the map φ :2<ω→2<ω defined inductively by φ(∅) :=∅, φ(s1):=φ(s)1φ(s) and

φ(s0):=φ(s)01+|φ(s)|

induces f : 2ω → 2ω injective continuous reducing EΠ
0
2

0 to E0, showing that EΠ
0
2

0 is below E. We

apply Lemma 7.2 to a dense Gδ subset G of 2ω contained in ¬C on which b is continuous, so that we

may assume that there is b :¬C→2ω continuous such that (α, β)∈E ⇔ b(α)=b(β) if α, β /∈C.

Case 1 [α]E is meager for each α∈2ω (i.e., b is nowhere dense-to-one).

Lemma 7.3 gives f :2ω→2ω injective continuous such that C= f−1(C) and b
(

f(α)
)

6= b
(

f(β)
)

if α 6=β /∈C. It remains to note that f reduces EΠ
0
2

0 to E.

Case 2 there is α∈2ω such that [α]E is not meager.

We apply Lemma 7.2 to G :=[α]E , which gives f :2ω→2ω injective continuous reducing EΠ
0
2

1 to

E. �

Proof of Theorem 1.3 when Γ=Π
0
2. If (X,E)∈BΠ

0
2 , then E /∈Π

0
2, so that (a) and (b) cannot hold

simultaneously. Assume that (a) does not hold. By Theorem 1.2, we may assume that the equivalence

classes of E are Π
0
2. By Theorem 4.3, we may assume that X=2×2ω ,

∆(2×2ω) ∪
{(

(0, α), (1, α)
)

| α∈C
}

⊆E

and
{(

(0, α), (1, α)
)

| α /∈C
}

⊆¬E.

Claim (E(ε,γ))ε′ ∩ C is nowhere dense in 2ω for each γ∈2ω and each ε, ε′∈2.

Indeed, we argue by contradiction, which gives s∈2<ω such that Ns⊆ (E(ε,γ))ε′ ∩C. As E(ε,γ)

is Π0
2, (E(ε,γ))ε′ ∩Ns\C is comeager in Ns. Moreover, (E(ε,γ))ε′ ∩ C⊆(E(ε,γ))1−ε′ since

{(

(0, α), (1, α)
)

| α∈C
}

⊆E.

This implies that (E(ε,γ))1−ε′ ∩Ns is a dense Π0
2 subset ofNs, and is therefore comeager in Ns. Thus

(E(ε,γ))0 ∩ (E(ε,γ))1 ∩Ns\C is comeager in Ns and contains some β. Therefore
(

(0, β), (1, β)
)

is in

E, which is absurd. ⋄

The Sarbadhikari theorem gives an increasing sequence (Fl)l∈ω of Borel relations on 2ω with

closed nowhere dense vertical sections whose union contains E ∩
(

(2×2ω)×(2×C)
)

.

We will now prove that we may assume that

E⊆∆(2×2ω) ∪
{(

(ε, α), (1−ε, α)
)

| ε∈2 ∧ α∈C
}

∪
{(

(ε, α), (ε′ , β)
)

| ε, ε′∈2 ∧ α 6=β /∈C
}

.
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We set s :=∅, and construct (nt)t∈2<ω , (Ut)t∈2<ω satisfying (1)-(5) and the following:

(6) Ut1 ∩
(

{αnt} ∪ {αn | n≤|t|} ∪
⋃

ε,ε′,η∈2,s∈2l,η=0∨s<lext
(E(ε,αnsη )

)ε′ ∩ C

∪
⋃

ε,ε′∈2,s∈2l
(

(Fl)(ε,αns )

)

ε′

)

=∅

Assume that this is done. If β /∈C, then there is an infinite strictly increasing sequence (lk)k∈ω of nat-

ural numbers with β|lk∈O, so that f(β) /∈C by Condition (6). Note that
(

(

ε, f(α)
)

,
(

ε′, f(α′)
)

)

/∈E

if α 6=α′∈C, by Condition (6). Moreover,
(

(

ε, f(α)
)

,
(

ε′, f(β)
)

)

/∈E if α∈C and β /∈C, by Condi-

tion (6). Thus we are done. Let us prove that the construction is possible. Assume that (nt)|t|≤l and

(Ut)|t|≤l satisfying (1)-(6) have been constructed, which is the case for l=0. Let t∈2l. We define nt1
by induction on t with respect to the lexicographical ordering. As (Fl)(ε,α) is closed nowhere dense

for each (ε, α) ∈ 2×2ω ,
(

(Fl)(ε,α)
)

ε′
is a closed nowhere dense subset of 2ω for each (ε, ε′, α) in

22×2ω . We choose nt1 in such a way that

αnt1 ∈Ut\
(

{αnt} ∪ {αn | n≤ l} ∪
⋃

ε,ε′∈2,s∈2l (E(ε,αns )
)ε′ ∩ C ∪

(

(Fl)(ε,αns )

)

ε′
∪

⋃

ε,ε′∈2,s∈2l,s<lext
(E(ε,αns1 )

)ε′ ∩ C
)

,

We do this for each t ∈ 2l, in the lexicographical ordering. Then we choose disjoint clopen sets

Ut0, Ut1 with diameter at most 2−l−1 such that αntε ∈Utε⊆Ut and satisfying (6).

We now prove that we may assume that

E⊆∆(2×2ω) ∪
{(

(ε, α), (1−ε, α)
)

| ε∈2 ∧ α∈C
}

∪
{(

(ε, α), (ε, β)
)

| ε∈2 ∧ α 6=β /∈C
}

.

Theorem 3.6 in [Lo1] gives a finer Polish topology σ on 2×2ω such that E∈Π
0
2

(

(2×2ω , σ)2
)

since

the equivalence classes of E are Π
0
2. Corollary 1.2 in [Ha-K-Lo] gives another Polish topology τ on

2×2ω, finer than σ, such that E∈Π
0
1

(

(2×2ω, τ)2
)

. By 8.38 in [K1], there is a dense Gδ subset of ¬C

on which τ and the usual topology coincide. This shows that we may assume that E ∩
(

2×(¬C)
)2

is

closed in
(

2×(¬C)
)2

, which gives a closed relation F on 2×2ω with

E ∩
(

2×(¬C)
)2

=F ∩
(

2×(¬C)
)2
.

Fix ε∈2. Note that F ∩
{(

(ε, α), (1−ε, α)
)

| α∈C
}

is nowhere dense in

{(

(ε, α), (1−ε, α)
)

| α∈2ω
}

.

Indeed, we argue by contradiction, which gives s∈2<ω such that

{(

(ε, α), (1−ε, α)
)

| α∈Ns

}

⊆F ∩
{(

(ε, α), (1−ε, α)
)

| α∈C
}

⊆F ,

and α /∈C such that
(

(ε, α), (1−ε, α)
)

is in F , and thus in E, which cannot be. This gives t∈O such

that
(

(ε, t0∞), (1−ε, t0∞)
)

/∈F , and l∈ω with
(

({ε}×Nt0l )×({1−ε}×Nt0l )
)

∩ F =∅. So we are

done.

36



The previous point shows that we may assume that E ∩
(

{ε}×(¬C)
)2

is a closed equivalence

relation on {ε}×(¬C) for each ε∈2. By 18.D in [K1], there is a σ(Σ1
1)-measurable map

S :{ε}×(¬C)→{ε}×(¬C)

such that S(ε, α) = S(ε, β) E (ε, α) if
(

(ε, α), (ε, β)
)

∈ E ∩
(

{ε}×(¬C)
)2

. By 8.38 and 29.D in

[K1], there is a dense Gδ subset G of ¬C such that the restriction of S to {ε}×G is continuous. So we

may assume that there is bε :¬C→ 2ω continuous such that
(

(ε, α), (ε, β)
)

∈E ⇔ bε(α)= bε(β) if

α, β /∈C. Assume first that bε is nowhere dense-to-one. By Lemma 7.3, there is f :2ω→2ω injective

continuous such that C=f−1(C) and bε
(

f(α)
)

6=bε
(

f(β)
)

if α 6=β /∈C. This implies that f reduces

EΠ
0
2

3 to E if both b0 and b1 are nowhere dense-to-one. If b0 is not nowhere dense-to-one and b1 is

nowhere dense-to-one, then using Lemma 7.2 we see that EΠ
0
2

4 is reducible to E. This is also the case

if b1 is not nowhere dense-to-one and b0 is nowhere dense-to-one, since we can exchange the first

coordinate. If neither b0, nor b1 is nowhere dense-to-one, then EΠ
0
2

5 is reducible to E, similarly. �

10 Equivalence relations with countably many classes

10.1 Non-Σ0
ξ equivalence relations with countably many classes

If ξ≥2 is a countable ordinal, then Lemma 4.5 provides C∈Π
0
ξ(2

ω)\Σ0
ξ . Subsection 2.3 provides

a partition (Cn)n∈ω of ¬C into ∆
0
ξ subsets of 2ω , which allows to define an equivalence relation on

2ω by E
Σ

0
ξ

2 :=C2 ∪
⋃

n∈ω C2
n, as in the introduction.

Proof of Theorem 1.6. By Lemma 4.1.(a), the equivalence classes of E are Σ0
ξ if E is a Σ0

ξ subset of

X2. The converse comes from the fact that E is the countable union of the square of its equivalence

classes. By Lemma 4.1, (a) and (b) cannot hold simultaneously. By Theorem 1.2, we may assume

that ξ≥3.

By Proposition 4.2, we may assume that X = 2ω and C is an equivalence class of the Borel

relation E. As E has countably many classes, we can write ¬C =
⋃

n∈I Dn, where the Dn are

distinct E-classes and I is countable and nonempty.

If there is n such that the Borel set Dn is not separable from the Borel set C by a Π
0
ξ set, then

Theorem 1.8 gives j : 2ω →X injective continuous such that C⊆ j−1(C) and ¬C⊆ j−1(Dn). This

implies that (2ω,E
Σ

0
ξ

1 ) ⊑c (X,E).

If the Dn’s are separable from C by a Π
0
ξ set, then they are separable from C by a ∆

0
ξ set. In

particular, I is infinite and we may assume that I=ω. Theorem 1.10 provides φ :ω→ω injective and

f : 2ω →X injective continuous such that C⊆ f−1(C) and Cn ⊆ f−1(Dφ(n)) for each n∈ ω. Note

that f reduces E
Σ

0
ξ

2 to E as desired. �
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10.2 Non-Π0
ξ equivalence relations with countably many classes

Proof of Theorem 1.5. By Theorem 4.6, (a) and (b) cannot hold simultaneously. By Proposition

4.2, we may assume that X = K and C is an equivalence class of the Borel relation E. As E has

countably many classes, we can write ¬C=
⋃

n∈I Cn, where the Cn are distinct E-classes and I is

countable and nonempty. As C /∈Π
0
ξ , there is n such that Cn is not separable from C by a Σ

0
ξ set.

As C and Cn are Borel, Theorem 1.8 gives j :K→X injective continuous such that C⊆ j−1(C) and

¬C⊆j−1(Cn). This implies that (K,E
Π

0
ξ

1 ) ⊑c (X,E) as desired. �

In order to finish the study of Borel equivalence relations with countably many classes, it remains

to characterize those which are not Π0
ξ if ξ ≥ 3. Lemma 4.5 provides C∈Σ

0
ξ(2

ω)\Π0
ξ . Subsection

2.3 provides a partition (Cn)n∈ω of C into ∆
0
ξ subsets of 2ω , which allows to define an equivalence

relation E
Π

0
ξ

8 on 2×2ω as in the introduction.

Notation. Let E be an equivalence relation on 2×2ω . We set, for ε, η∈2,

Eε,η :=
{

(α, β)∈2ω×2ω |
(

(ε, α), (η, β)
)

∈E
}

.

Note that Eε,ε is an equivalence relation on 2ω .

Proof of Theorem 1.7. By Theorem 1.3, we may assume that ξ≥3. If n∈{1, 8}, then E
Π

0
ξ

n /∈Π
0
ξ , so

that (a) and (b) cannot hold simultaneously. Assume that (a) does not hold. By Theorem 1.5, we may

assume that E has Π0
ξ classes. By Theorem 4.3, in order to prove that (2×2ω ,E

Π
0
ξ

8 ) ⊑c (X,E), we

may assume that X=2×2ω ,
{(

(0, α), (1, α)
)

| α∈C
}

⊆E and
{(

(0, α), (1, α)
)

| α /∈C
}

⊆¬E.

Note that Eε,ε has countably many Π
0
ξ classes, for each ε∈ 2, since the map α 7→ (ε, α) reduces

Eε,ε to E. Consequently, we can write ¬C =
⋃

n∈ω Dε
n, where the Dε

n’s are Π
0
ξ and contained in

distinct Eε,ε-classes. Note that there is n ∈ ω such that Dε
n is not separable from C by a Σ

0
ξ set.

Theorem 1.8 gives g : 2ω → 2ω injective continuous such that ¬C⊆ g−1(Dε
n) and C⊆ g−1(C). So,

replacing E with
(

(Id2×g)×(Id2×g)
)−1

(E) if necessary, we may assume that ¬C is contained in a

single Eε,ε-class Kε, for each ε∈2.

Let us prove that ¬C is separable from K0 ∩ C by a Σ
0
ξ set, say S. We argue by contradiction.

Theorem 1.8 gives h : 2ω→2ω injective continuous such that ¬C⊆h−1(¬C) and C⊆h−1(K0 ∩ C).

We set E′ :=
(

(Id2×h)×(Id2×h)
)−1

(E), so that E′ is a Borel equivalence relation on 2×2ω with

countably many Π
0
ξ classes. Moreover, C2 ⊆ E′

0,0 ∩ C2 = E′
1,1 ∩ C2, by Proposition 4.4. So C is

contained in an E′
1,1-class C ′, which has to be Π

0
ξ as above. So let β ∈ C ′ \C, and α ∈ C. Then

(α, β)∈E′
1,1, (β, α)∈E′

0,0, and (α,α)∈E′
0,1, so that (β, β)∈E′

0,1, which is absurd.

Let us prove that ¬C is not separable from ¬K0 by a Σ
0
ξ set. We argue by contradiction, which

gives S′∈Σ
0
ξ . Note that 2ω=C ∪ S′ is a covering into Σ

0
ξ sets. The reduction property of Σ0

ξ gives

∆∈∆
0
ξ with ∆⊆S′ and ¬∆⊆C (see 22.16 in [K1]). Then ¬C⊆∆⊆K0, so that ¬C=∆ ∩ S∈Σ

0
ξ ,

which is absurd.
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Theorem 1.8 gives k :2ω→2ω injective continuous such that C⊆k−1(¬K0) and ¬C⊆k−1(¬C).

So, replacing E with
(

(Id2×k)×(Id2×k)
)−1

(E) if necessary, we may assume that ¬C is anE0,0-class.

As E0,0 has countably many Π
0
ξ classes, we can write C=

⋃

n∈ω Dn, where the Dn’s are distinct

Π
0
ξ classes for E0,0. Theorem 1.10 provides φ :ω→ω injective and k : 2ω→2ω injective continuous

such that ¬C⊆k−1(¬C) and Cn⊆k−1(Dφ(n)) for each n∈ω. Replacing E with

(

(Id2×k)×(Id2×k)
)−1

(E)

if necessary, we consequently may assume that

- E0,0=(¬C)2 ∪
⋃

n∈ω C2
n,

-
{(

(0, α), (1, α)
)

| α∈C
}

⊆E,

-
{(

(0, α), (1, α)
)

| α /∈C
}

⊆¬E,

- ¬C is contained in an E1,1-class.

Proposition 4.4 shows that if ε, η∈2 and α, β∈C, then (α, β)∈Eε,η is equivalent to (α, β)∈E0,0

(and (α, β)∈
⋃

n∈ω C2
n).

Note that Eε,1−ε ∩ (¬C)2=∅. Indeed, we argue by contradiction and we may assume that ε=0,

which gives α, β /∈C such that (α, β)∈E0,1. As (α, β)∈E0,0, (β, β)∈E0,1, which is absurd.

We set, for p∈ω, Bp+1 :={β /∈C | ∃α∈Cp (α, β)∈E0,1}. Note that Bp+1 is analytic. In fact, if

β∈Bp+1 with witness α and γ∈Cp, then (γ, α)∈E0,0, so that (γ, β)∈E0,1 and

Bp+1 :={β /∈C | ∀γ∈Cp (γ, β)∈E0,1}

is also co-analytic and thus Borel. Moreover, the Bp+1’s are pairwise disjoint since two different Cp’s

are not E0,0-related. We set B0 :=(¬C)\(
⋃

p∈ω Bp+1). Then (Bp)p∈ω is a partition of ¬C into Borel

sets. Note that there is p such that Bp is not separable from C by a Σ
0
ξ set. Theorem 1.10 provides

ψ :ω→ω injective and l :2ω→2ω injective continuous such that ¬C⊆ l−1(Bp) and Cn⊆ l−1(Cψ(n))

for each n ∈ ω. So, replacing E with
(

(Id2× l)×(Id2× l)
)−1

(E) if necessary, we may assume that

(α, β) /∈E0,1 if β /∈C, α∈Cn and n 6=p. As ¬C is not separable from
⋃

n 6=p Cn by a Σ
0
ξ set, we can

apply again Theorem 1.10 to see that we may assume that (α, β) /∈E0,1 if β /∈C, α∈Cn and n∈ω.

By symmetry, (α, β) /∈E1,0 if α /∈C, β∈Cn and n∈ω. Similarly, we may assume that (α, β) /∈E1,0

if β /∈C, α∈Cn and n∈ω. By symmetry, (α, β) /∈E0,1 if α /∈C, β∈Cn and n∈ω. Similarly again,

we may assume that (α, β) /∈E1,1 if α /∈C, β ∈Cn and n∈ω. By symmetry, (α, β) /∈E1,1 if β /∈C,

α∈Cn and n∈ω. So we proved that we may assume that E=E
Π

0
ξ

8 , i.e., (H,E
Π

0
ξ

8 ) ⊑c (X,E). �

11 Borel equivalence relations with Fσ classes

Proof of Theorem 1.4. By Theorem 4.6, (a) and (b) cannot hold simultaneously. So assume that (a)

does not hold. As E has Fσ classes, its sections are in Γ. By Theorem 4.3, we may assume that

X=H,
{(

(0, α), (1, α)
)

| α∈C
}

⊆E, and
{(

(0, α), (1, α)
)

| α /∈C
}

⊆¬E.
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Recall that Eε,ε is a Borel equivalence relation on 2ω with Fσ classes. In order to simplify the

notation, we may assume by relativization that ξ := rk(Γ)<ωCK
1 and C, E ∈∆

1
1. We partly follow

the proof of Silver’s theorem (see [S]) given in [G]. So we set

W :={α∈2ω | ∃U ∈∆
1
1(2

ω) α∈U⊆ [α]E0,0},

and V :=2ω\W . The proof of Theorem 5.3.5 in [G] shows that V ∈Σ
1
1 , and that E0,0 ∩ V

2 is Σ 2
2ω -

meager in V 2. Note also that W contains ∆1
1 ∩ 2ω. As ∆1

1(2
ω) is countable, we can find a countable

set I and a sequence (Ui)i∈I of nonempty ∆
1
1 sets each contained in a single E0,0-class such that W

is contained in the Fσ set S :=
⋃

i∈I [Ui]E0,0 , where [Ui]E0,0 := {α∈ 2ω | ∃β ∈Ui (α, β)∈E0,0} is

Σ
1
1 . Pick αi∈Ui for each i∈I , so that [Ui]E0,0 =[αi]E0,0 and S is the disjoint union of the [αi]E0,0’s.

Let us prove that V ∩C is not separable from V\C by a set in Γ. We argue by contradiction, so that

C\S is also separable from ¬(S ∪C) by a set in Γ. As C /∈Γ and S∈Fσ⊆Γ, S ∩C is not separable

from S\C by a set in Γ. This gives i∈ I such that [αi]E0,0 ∩ C is not separable from [αi]E0,0 \C by

a set in Γ. In particular, there is α∈ [αi]E0,0 ∩ C. If β∈ [α]E0,0 ∩ C, then
(

(0, β), (1, β)
)

∈E. Thus

{1}×([α]E0,0 ∩ C) is contained in the Fσ set [(0, α)]E ∩ ({1}× [α]E0,0). This gives γ ∈ [α]E0,0 \C
such that

(

(0, α), (1, γ)
)

∈E. As
(

(0, α), (0, γ)
)

∈E,
(

(0, γ), (1, γ)
)

∈E, which is absurd.

Theorem 3.2 provides f : 2ω → 2ω injective continuous such that C= f−1(C) and
(

f(α), f(β)
)

is not in E0,0 if α 6=β. This shows that we may assume that E coincides with EΓ

3 on ({0}×2ω)2.

Similarly, we may assume that E coincides with EΓ

3 on ({1}× 2ω)2. By Proposition 4.4, E
coincides with EΓ

3 on ({ε}×C)×({η}×C) for each ε, η∈2. Pick α, β, γ∈2ω . If both
(

(0, α), (1, β)
)

and
(

(0, α), (1, γ)
)

are inE, then β=γ. Similarly, if
(

(0, β), (1, α)
)

,
(

(0, γ), (1, α)
)

∈E, then β=γ.

This shows that E coincides with EΓ

3 on ({ε}×C)×
(

{1−ε}×(¬C)
)

and
(

{ε}×(¬C)
)

×({1−ε}×C)

for each ε∈2, and also that E ∩
(

(

{ε}×(¬C)
)

×
(

{1−ε}×(¬C)
)

)

is the graph of a Borel injection.

In particular, E is countable. We set R :=
⋃

ε,η∈2 Eε,η. Note that R′ is a locally countable relation on

2ω . Corollary 3.3 provides l :2ω→2ω injective continuous such that C= l−1(C) and
(

l(α), l(β)
)

/∈R′

if α 6=β. So we may assume that E coincides with EΓ

3 . �
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