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Border Avoidance: Necessary Regularity for Coefficients and Viscosity
Approach

Dan GOREAC∗

August 6, 2018

Abstract

Motivated by the result of invariance of regular-boundary open sets in [9] and multi-stability is-
sues in gene networks, our paper focuses on three closely related aims. First, we give a necessary local
Lipschitz-like condition in order to expect invariance of open sets (for deterministic systems). Comments
on optimality are provided via examples. Second, we provide a border avoidance (near-viability) coun-
terpart of [9] for controlled Brownian diffusions and piecewise deterministic switched Markov processes
(PDsMP). We equally discuss to which extent Lipschitz-continuity of the driving coefficients is needed.
Finally, by applying the theoretical result on PDsMP to Hasty’s model of bacteriophage ([24], [12]), we
show the necessity of explicit modeling for the environmental cue triggering lysis.

Keywords: Invariance; Near-Viability; Viscosity Solutions; Brownian Diffusion; PDMP; Gene Net-
works
MSC: 93E20; 49L25; 60J60; 60J75; 34H05; 92C42

1 Introduction
A special feature of controlled systems (either deterministic or presenting some randomness) is the ability
to keep trajectories within confined domains K (subsets of the state space). This property is known as
invariance when achieved with arbitrary control and viability when special construction of the control is
required. Since the pioneer work by Nagumo [29], both properties (invariance and viability) have been
extensively studied in either deterministic or stochastic settings (Brownian or jump diffusion, piecewise
deterministic Markov setting, etc.). The ensuing related literature is huge and we will only be able to
mention a few of the available results (and methods). Traditionally, for closed sets K, the problem can
be tackled either by contingent or quasi-tangency methods (e.g. [2], [1], [3], [20], [10], etc.) or by using
the theory of viscosity solutions (e.g. in [8], [4], [5], [31], [21], [30]). In [9], the authors consider the
invariance problem for Brownian diffusions for an open set K̊ when K has smooth border. They show
that, whenever K is a piecewise C2,1-smooth domain, invariance of K and invariance of K̊ are equivalent.
In other terms, a solution starting from x ∈ K̊ not only remains in K but it also avoids border ∂K. The
method employed in [9] relies on the regularity of the signed distance function (δK introduced in [15])
and a-priori estimates requiring Lipschitz-regularity of the driving coefficients. This direct method based
on the use of a test function of type − ln δK has also been used by the authors of [7].
For complex systems of interaction between several players or species, the notion of multi-stability plays
a central part. We have in mind the simplest example relevant to this framework in the hybrid modeling
of gene networks: the phage lambda. Roughly speaking, in order to survive, the bacteriophage relies on
the host (E-Coli). Two issues are then possible (for a temperate form of phage): either a cohabitation
(lysogeny resulting in moderate replication of prophage) or high speed replication ultimately leading to
excision (lysis). Following the simplified model introduced by [24], a piecewise deterministic model has
been introduced in [12] (and the averaging probabilistic techniques rigorously justified in [11]). In such
models, migrating from lysogenic to lytic cycle is indicated by a cro-repressor-related variable reaching
some threshold level. In other words, as the model trajectory reaches this threshold level (the boundary
of lysogenic region ∂Klysogeny), the dynamics are altered to induce stable attraction to the lytic 0-
concentration of cro-repressor.
The aim of the present paper is threefold.
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First, we try to investigate to which extent the Lipschitz-regularity of the driving coefficients for the
dynamics can be weakened in order to still envisage invariance of K̊ for compact domains K of class C2,1.
By reasoning with respect to deterministic (uncontrolled) systems

dXx
t = b (Xx

t ) dt, for all t ≥ 0; Xx
0 = x ∈ RN ,

we present a dychotomy-type necessary condition. This condition is motivated by the fact that what
matters for invariance is not b itself (see examples in Section 3) but the behavior locally around the
border ∂K of the outward velocity

b+(x) = 〈b(x), νK (π∂K(x))〉+ = max {〈b(x), νK (π∂K(x))〉 , 0} ,

where π∂K is the projection onto ∂K and νK designates the outward unit normal to K. When the driving
coefficient has a bad continuity modulus (the typical example being of Hölder type and the quality
being measured by some distribution’s inverse function being no worse that 1

‖x−y‖ log 1
‖x−y‖

), the necessary

condition for invariance of K̊ (in Proposition 3.6) is of local Lipschitz-type

lim inf
x∈K̊,δK(x)→0

|b+(x)− b+ (π∂K(x))|
‖x− π∂K(x)‖

<∞.

We present further examples concerning the optimality of the condition. In the necessary condition one
cannot (in general) replace lim inf with lim sup (cf. Example 3.8). This condition may fail to hold for
convenient continuity moduli (cf. Example 3.9). Finally, the condition cannot be strengthened to a point-
wise one (i.e. by replacing δK(x)→ 0 with x→ x̄ for all x̄ ∈ ∂K).

The second aim of the paper (Section 4) is to provide the near-viability counterpart of [9] for controlled
Brownian diffusions {

dXx,u
t = b (Xx,u

t , u(t)) dt+ σ (Xx,u
t , u(t)) dWt, for t ≥ 0,

Xx,u
0 = x ∈ RN .

driven by regular coefficients. We adopt a slightly different method than the one used in [9]. We note
that near-viability enforced with initial data close to ∂K is sufficient to imply near-viability of K̊. The
near-viability indicator value function

V (x) := inf
u

E

[∫
R+

e−λt1(K̊)
c (Xx,u

t dt)

]

is then approximated by regular subsolutions
(
V

1
n2
n

)
of (approximating) Hamilton-Jacobi-Bellman equa-

tions. By multiplying these functions with δK , one gets a family of smooth functions Wn := −δK × V
1
n2
n .

Finally, by "comparing" (at global minimum points) these functions with the 0-constant (subsolution)
and passing to the limit as n → ∞, it follows that, as soon as the closed set K is near-viable, V can-
not be strictly positive at any point x ∈ K̊. This comparison uses extensively the (closed-set) viability
characterization in [6] and some estimates for the infinitesimal operator Lu applied to the signed distance
δK locally close to ∂K. Our results are proven for bounded Lipschitz-continuous coefficients b and σ.

However, Lipschitz-regularity is only required to provide the smooth approximations V
1
n2
n (using Krylov’s

shaking of coefficients method cf. [26]). Alternatively, generalization of Gronwall’s inequality may be
envisaged for suitable continuity moduli (see Remark 4.2) and the remaining steps in the proof of the
main result (Theorem 4.6) apply with local Lipschitz-like condition (similar to the necessary ones).

Third, we show that the same program (explained for Brownian diffusions) works in the setting of con-
trolled piecewise continuous switched Markov processes. This is a particular class of piecewise determinis-
tic Markov processes (abreviated PDMP and introduced in [13],[14]) consisting of a couple mode/average
behavior (Γ, X). The switch changes the mode and the piecewise deterministic (mode-dependent) behav-
ior gives the flow for the averaged component. The main theoretical result of Section 5 (Theorem 5.2)
gives the necessary and sufficient condition in order to guarantee near-viability of PDMP of switch-type.
We discuss the implication on the simplified model of bacteriophage (cf. [24], [12]). To cope with the
fundamental bistability issues, the authors of [12] invoke the quasi-steady distribution heuristics (resulting
in some quartic equation cf. [12, Eq. (26)] susceptible to give the lysogenic "steady-state"). The authors
equally mention failure of such computations for nonlinear systems (cf. [28]). For the hybrid model of
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phage λ, our results on invariance (or near-viability) turn out to prove an even stronger dichotomy: no
(single) set of reaction speeds can guarantee the toggle between a lysogenic behavior (even when the latter
is not reduced to a single steady-state but to a whole invariant region) an a lytic one (leading as usual to
the attractor 0). Indeed, starting from a clear lysogenic-associated initial configuration x ∈ K̊lysogeny, the
system can never reach the lysis-triggering zone (∂Klysogeny). This reinforces the biological belief that
such toggle follows from an environmental (external) cue and should be explicitly taken into account in
the modeling approach.

Let us briefly explain how the paper is organized. Section 2 presents the main notations employed
throughout the paper as well as the invariance and near-viability notions. We also gather here some
useful tools for signed distances. Section 3 addresses the necessary local-Lipschitz condition for deter-
ministic systems in order to expect invariance of open sets. The main result (Proposition 3.6) is stated
and accompanied by examples commenting the optimality of the condition. The main results on the
near-viability of open sets with respect to Brownian-driven diffusions are stated in Section 4. The ideas
of proofs are outlined as well as some remarks concerning possible generalizations. Finally, the piecewise
deterministic switch framework is presented in Section 5. We begin with a presentation of Hasty’s model
for bacteriophage lambda. We continue with structure considerations on PDMP and the statement of the
theoretical result on near-viability (Theorem 5.2). Finally, we come back to the mathematical model in
[12] and ensuing comments. All the proofs of the previously stated results are gathered in Section 6.

2 Preliminaries

2.1 Notation, Definitions
Throughout the paper we will make use of the following notations.
We denote by R+ the set of non-negative real numbers. For x ∈ R, we let x+ to be x if x ≤ 0 and 0
otherwise (i.e. x+ = max {x, 0}). The absolute value of x ∈ R is denoted by |x|.
The state space (for our systems) is assumed to be some Euclidean space RN , where N ≥ 1 is some
positive integer. We denote by 〈·, ·〉 the usual Euclidean scalar product and by ‖·‖ the induced Euclidean
norm.
Whenever O ⊂ RN ,

• we denote its characteristic (0/1-valued) function by 1O (this notation also applies to general sets
which are not subsets of an Euclidean space);

• we denote by Oc the complementary set i.e. RN \ O, by O̊ its interior and by Ō its closure (these
notation also apply to general subsets with an additional requirement of topology when necessary);

• we denote by dO the Euclidean distance function dO : RN −→ R+ given by dO(x) := infy∈O ‖y − x‖ ,
for all x ∈ RN , where inf stands for the infimum;

• whenever O is closed, the projection set of x ∈ RN (onto O) is given by

ΠO(x) := {y ∈ O : dO(x) = ‖y − x‖} .

Whenever this set reduces to a singleton, we denote by πO(x) its unique element;

• whenever O is closed with nonempty interior O̊ and boundary ∂O, the oriented distance from ∂O is
the function δO : RN −→ R given by

δO(x) := d∂O(x)1O(x)− d∂O(x)1Oc(x), for all x ∈ RN ;

• whenever O is open, we denote by
- C1(O) the set of real-valued differentiable functions on O and by Dφ the gradient of φ ∈ C1(O),
- C2(O) the set of real-valued twice differentiable functions on O and by D2φ the Hessian matrix of
φ ∈ C2(O),
- C2,1(O) the subset of C2(O) of functions having bounded Lipschitz-continuous second order deriva-
tive.

A set K ⊂ RN is said to be

• a closed domain on class C2,1 if it is closed, connected and, for all x ∈ ∂K, there exists a
positive radius r > 0 and a regular function φ :

{
y ∈ RN : ‖x− y‖ < r

}
−→ R belonging to

C2,1
({
y ∈ RN : ‖x− y‖ < r

})
such that

{y ∈ ∂K : ‖y − x‖ < r} =
{
y ∈ RN : φ(y) = 0

}
;
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• a compact domain of class C2,1 if it is a closed domain of class C2,1 and compact.

The space of matrix of type M × N (M lines and N columns for positive integers M,N) with real
entries is denoted by RM×N . For a square matrix A = (ai,j)1≤i,j≤N ∈ RN×N , its trace is given by
Tr [A] :=

∑
1≤i≤N ai,i. Finally, the space of symmetric matrix is denoted by SN .

Finally, in Section 4 we are going to work with Lipschitz-driven controlled stochastic systems. We let U
denote some compact metric space and refer to U as being the control space.
Following [26], we recall some notations. Given a bounded, Lipschitz-continuous function f : Rn×U −→ R,
we set

‖f‖0 := sup
x∈RN ,u∈U

|f(x, u)| , [f ]1 := sup
x∈RN ,y∈RN ,x 6=y,u∈U

|f(x, u)− f(y, u)|
‖x− y‖

, ‖f‖1 := ‖f‖0 + [f ]1 . (1)

When the function f is RN -valued, the notations remain the same but |·| is replaced with ‖·‖. If the
function f is matrix RN×M -valued, the norm is induced by

√
Tr [ff∗].

Let us now recall the concepts of viability and near- (or ε-)viability. To this purpose, we will consider
the controlled trajectories of our systems (deterministic, diffusive, piecewise deterministic switched, etc.)
denoted by Xx,u

t , starting (at time t = 0) from x ∈ RN and controlled by some (conveniently admissible)
U -valued control process u. The notion of admissibility will be addressed in the corresponding sections.
These processes will live on a probability space generically denoted by (Ω,F ,P).

DEFINITION 2.1. i. The set O ⊂ RN is said to be invariant if, for every initial datum x ∈ O and
every admissible control process u, the associated trajectory satisfies Xx,u

t ∈ O, dt×P−a.s. on R+×Ω.

ii. The set O is said to be (strongly) viable if, for every initial datum x ∈ O there exists an admissible
control process u such that the associated trajectory satisfies Xx,u

t ∈ O, dt× P− a.s. on R+ × Ω.

iii. The set O is said to be near-viable or ε-viable if, for every x ∈ O and every ε > 0, there exists
a control process uε such that the (exponential/discounted in time) probability of occupation of the
exterior of O is less than ε i.e.

(Exp(λ)× P)
({(

t,Xx,uε

t

)
: t ≥ 0, Xx,uε

t ∈ Oc
})

= λE

[∫
R+

e−λt1Oc
(
Xx,uε

t

)
dt

]
≤ ε.

REMARK 2.2. i. The property of near-viability is equivalent to the value function

vO(x) := inf
u

E

[∫
R+

e−λt1Oc
(
Xx,uε

t

)
dt

]

being 0 for all x ∈ O. Again,the infimum is taken over properly measurable U -valued process.

ii. The actual value of λ > 0 does not change the notion, since the resulting measures are equivalent.

iii. Viability and near-viability are equivalent under standard convexity assumptions on coefficients as
soon as O is closed (implying that the criterion 1Oc is lower semi-continuous). For further details,
the reader is invited to consult [17] for diffusions, respectively [16] for piecewise deterministic Markov
processes.

iv. If one wishes to express the invariance property through an optimal control problem, one only needs
to replace the infimum in the definition of vO with supremum.

2.2 Some Tools
Following [9], we recall some elements linked to regular-border closed sets K. We assume K ⊂ RN closed
set with nonempty interior K̊ and boundary ∂K. The following proposition gathers some useful properties
of compact domains of class C2,1 (cf. [9], [15]).

PROPOSITION 2.3. Let us assume K ⊂ RN to be a compact domain of class C2,1. Then there exists
some ε0 > 0 such that

i. For every x ∈ Kε0 := {x ∈ K : δK(x) ≤ ε0}, the projection set Π∂K(x) reduces to a unique element
denoted by π∂K(x) (i.e. ‖x− π∂K(x)‖ = δK(x));
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ii. the function δK is of class C2,1(O) for some open set O containing Kε0 and

DδK(x) = DδK (π∂K(x)) = −νK (π∂K(x)) ,

where, νK(·) stands for the outward unit normal to K.

Moreover, ε0 > 0 can be chosen such that

iii. there exists a function g ∈ C2,1
(
RN
)
satisfying 0 ≤ g(x) ≤ 1, for all x ∈ K, 0 < g(x), for all x ∈

K \Kε0 and g(x) = δK(x), for all x ∈ Kε0 .

REMARK 2.4. Although stated and proven under the assumption of K being a compact domain of class
C2,1, all our results of Sections 4 and 5 are entirely based on Proposition 2.3 (and not on K itself). They
can be extended, without any particular effort to piecewise C2,1-smooth domains (following [9]).

Unless stated otherwise, throughout the remaining of the paper, K ⊂ RN will always stand for a
compact domain of class C2,1.

3 On a Necessary Condition for the Invariance of Open Sets

A key element for guaranteeing the invariance of K̊ (for regular-boundary K) under stochastic (uncon-
trolled) dynamics in [9] is to give some a priori estimates on the infinitesimal operator applied to the
signed distance function. To this purpose, the authors of [9] deal with Lipschitz-continuous coefficients b
and σ. We will begin with discussing some examples of non-Lipschitz coefficients keeping the system in
an open set. (To keep the arguments simple, we will assume that σ vanishes.) This will show that the
only element of interest for invariance is the (positive part of the) projection onto the exiting normal (and
this locally close to the boundary).

3.1 Specific Examples
Let us now focus on the uncontrolled differential system

dXx
t = b (Xx

t ) dt, for all t ≥ 0; Xx
0 = x ∈ RN . (2)

If the Lipschitz condition on the coefficient function is dropped, then invariance of closed sets might not
imply invariance of their interior.

EXAMPLE 3.1. Let us consider the one-dimensional, deterministic, uncontrolled coefficient b : [0, 1] −→
R given by b(x) :=

√
|1− x|, for all x ∈ [0, 1]. It is obvious that the set [0, 1] is invariant. However, (0, 1)

is not invariant (no even locally in time i.e. up to some space-independent T > 0). Indeed, it is easy to
see that Xx

t = 1, for all t ≥ 2
√

1− x.

However, invariance of an open set may hold true even without b being Lipschitz continuous. In the
one-dimensional framework, this is the case, for instance, whenever the trajectories are systematically
pointing towards the interior of the set.

EXAMPLE 3.2. Let us consider the one-dimensional, deterministic, uncontrolled coefficient b : R −→ R
given by

b(x) := −
√
|1− x|1( 3

4 ,∞)(x) + (−2x+ 1)1[ 1
4 ,

3
4 ](x) +

√
|x|1(−∞, 14 )(x).

Even though the coefficient is not Lipschitz-continuous, it is clear that for any interval K := [α, β]
such that 0 ≤ α < 1

2 < β ≤ 1, the interior (α, β) is invariant. A simple computation yields that the
modified coefficient b+(x) := (b(x)νK (π∂K(x)))

+ is zero (thus being locally Lipschitz) on a neighborhood[
α,max

(
α+ ε, 1

4

))
∪
(
min

(
1
4 , β − ε

)
, β
]
. Again, we have employed the notations for projection π∂K and

outward unit normal νK .

REMARK 3.3. i. Whenever b is Lipschitz continuous on K, this type of continuity is quantified by

[b]1,K := sup
K3x 6=y∈K

‖b(y)− b(x)‖
‖y − x‖

<∞.

Thus, the local Lipschitz condition on b (locally around ∂K) implies, in particular,

lim inf
K̊3x;δK(x)→0

‖b+(x)− b+ (π∂K(x))‖
‖x− π∂K(x)‖

= lim inf
K̊3x;δK(x)→0

‖b+(x)− b+ (π∂K(x))‖
δK(x)

<∞.

In this case, one can actually replace lim inf with lim sup.
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ii. It may be interesting to note that, although the previous system is driven by a non-Lipschitz coeffi-
cient, one can construct a system Xx,K driven by a Lipschitz coefficient bK such that K̊ is invariant
w.r.t. Xx,K and δ∂K

(
Xx,K
t

)
≤ δ∂K (Xx

t ) for all 0 ≤ t (thus providing some kind of dominating
behavior). A simple modification leading to this behavior is obtained by taking

b[α,β](x) := 0× 1{ 3
4<x}∪{ 1

4>x} + (4x− 3)× 1x∈[ 2
3 ,

3
4 ] + (−2x+ 1)× 1x∈( 1

3 ,
2
3 ) + (4x− 1)× 1x∈[ 1

4 ,
1
3 ].

If this kind of dominated modification can be constructed, the condition in i. only needs to be checked
on the modification (and not on the initial system).

3.2 A Local Lipschitz-like Necessary Condition
From now on, we assume b to be bounded and uniformly continuous. This guarantees the existence of
solution(s) to (2). Whenever the solution fails to be unique, invariance is to be understood as every (local)
solution to (2) starting from some (arbitrary) x ∈ O to stay in O (or for as long as it is defined in other
frameworks). Before proving the necessity of a local Lipschitz-like condition (similar to item i in Remark
3.3), we set, for every x ∈ K such that δK(x) ≤ ε0,

b+(x) = 〈b(x), νK (π∂K(x))〉+ = max {〈b(x), νK (π∂K(x))〉 , 0} . (3)

For every ε ∈ (0, ε0], we define

ζ (ε) = inf
x∈K̊,δK(x)≤ε

|b+(x)− b+ (π∂K(x))|
δK(x)

. (4)

PROPOSITION 3.4. The function ζ : (0, ε0] −→ R+ is a non-increasing, left-continuous function.

The proof is quite standard. For our readers’ sake, we provide it in Section 6.

REMARK 3.5. As careful look at the proof of the necessary condition (Proposition 3.6), these functions
ζ can either be defined globally or with respect to each connected component of ∂K.

Whenever limε→0 infx∈K̊,δK(x)≤ε
|b+(x)−b+(π∂K(x))|

δK(x) =∞, the function Fζ :
[

1
ε0
,∞
)
−→ [0, 1] given by

Fζ(r) = 1− ζ (ε0)

ζ
(

1
r

) , for all r ∈ [ 1

ε0
,∞
)
,

is the cumulative distribution function of some random variable (one may, eventually, want to extend Fζ
by asking it to be null for arguments not exceeding 1

ε0
). We let F−1

ζ denote the usual generalized inverse
i.e.

F−1
ζ : [0, 1] −→

[
1

ε0
,∞
)
, F−1

ζ (p) := inf

{
r : r ∈

[
1

ε0
,∞
)
, Fζ(r) ≥ p

}
, for all p ∈ [0, 1].

PROPOSITION 3.6. If b is continuous and K̊ is invariant with respect to 2 then either

1. the function ζ is bounded i.e.

lim inf
x∈K̊; δK(x)→0

|b+(x)− b+ (π∂K(x))|
|x− π∂K(x)|

<∞

(
or, equivalently, lim inf

x∈K̊; δK(x)→0

b+(x)

δK(x)
<∞

)
,

or

2. the inverse F−1
ζ grows very fastly to ∞ as its argument grows to 1 i.e.

inf
β>1

lim sup
δ→0

δ [− ln δ]
β

lnF−1
ζ (1− δ) =∞. (5)

We postpone the proof of this assertion to Section 6. The simple underlying idea is that if b+ fails to
be locally Lipschitz (i.e. ζ is unbounded) and provided the continuity modulus is smooth enough at 0+
((5) fails to hold), then, for any finite time horizon T > 0, by starting close enough to ∂K, the trajectory
reaches ∂K prior to T .
Let us comment on the qualitative interpretation of our result.

REMARK 3.7. i. If the coefficient function is Lipschitz continuous, ζ is bounded by the Lipschitz
constant and the result is trivial.
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ii. The condition 2. (or negation of) should be seen as a regularity assumption on the continuity modulus
of b+. For large continuity moduli the condition 2. is never satisfied. For such systems, invariance
of open sets implies the local Lipschitz-like condition in 1.
(a) Let us consider, as example, the case when b+ is (supra) Hölder-continuous function (say, with
Hölder coefficient κ < 1), i.e., locally (close to ∂K) |b+(x)− b+(y)| ≥ c ‖x− y‖κ. One easily
computes (assuming c = 1),

ζ(ε) ≥ εκ−1, Fζ(r) ≥ 1− ζ (ε0) rκ−1, F−1
ζ (p) ≤

(
1− p
ζ (ε0)

) 1
κ−1

lim sup
δ→0

δ [− ln δ]
β

ln
(
F−1
ζ (1− δ)

)
= lim sup

δ→0
δ [− ln δ]

β+1
= 0, for all β > 1.

(b) Another example is provided by functions of type b(x) = x
(
ln 1

x

)α × 1x>0 + 0× 1x=0, for some
α > 1. One computes

ζ(ε) =

(
ln

1

ε

)α
, Fζ(r) = 1− ζ (ε0)

(ln r)
α , F

−1
ζ (p) = e

(
ζ(ε0)
1−p

) 1
α

lim sup
δ→0

δ [− ln δ]
β

ln
(
F−1
ζ (1− δ)

)
= lim sup

δ→0
δ1− 1

α [− ln δ]
β
<∞, for all β > 1.

(6)

Finally, the condition (5) is valid as soon as α ≤ 1. Our local Lipschitz-condition can no longer be
guaranteed (at least with our proof !) for better continuity moduli (see also Example 3.9).

iii. Sharper dichotomy can be achieved by replacing, in the definition of ζ, the denominator δK(x) with
Φ (δK(x)). In this case, the estimates for 1

εj in the proof of Proposition 3.6 will no longer be based
on Gronwall-type inequality but on generalizations. The reader should get a good idea of conditions
on Φ by recalling Osgood-type uniqueness or taking a look at [27].

iv. In the Brownian diffusion case, the same proof holds true by replacing 〈b(x), νK (π∂K(x))〉 with
−LδK(x), where L is the infinitesimal generator associated to the diffusion. Of course, further as-
sumptions on the continuity moduli should be present in order to guarantee existence of a continuous
solution(e.g. [18]).

3.3 Some Further (Counter)Examples
In this subsection, we will give some comments (via explicit examples) on (quasi) optimality of our
conditions. First, we emphasize the fact that the local Lipschitz-like condition lim infε→0 ζ(ε) cannot (in
all generality) be replaced with lim supε→0. Second, we point out the (quasi) optimality of the regularity
assumption (i.e. in order for invariance to imply local Lipschitz-like condition, (5) should fail to hold).
We present an example for which the continuity modulus is very slow (translating into F−1

ζ (1−p) of type
1

p ln 1
p

, thus implying (5)) and invariance for an open set holds true in the absence of a local Lipschitz-like

condition (lim infε→0 ζ(ε) <∞). Finally, we present an example showing that the construction of ζ has to
be at least on some neighborhood of points x ∈ ∂K and it cannot be replaced with lim infx∈K̊;x→x̄

b+(x)
δK(x) .

EXAMPLE 3.8. Let us consider the following (one-dimensional) coefficient function

b(x) :=

−
∣∣∣∣√x sin

(
1

x

)∣∣∣∣ , if 0 < x ≤ 1,

0, if x = 0.

It is obvious that (0, 1) is invariant. Indeed, if x ∈ (0, 1), then there exists k ∈ N such that 1
(k+1)π ≤ x.

Then Xx
t ∈

[
1

(k+1)π , x
]
which implies invariance. However, lim supx→0+

b+(x)
|x| = lim supx→0+

|sin 1
x |√
x

=∞.

Therefore, the local Lipschitz-like condition lim infx→0+
b+(x)
|x| < ∞ holds but lim inf cannot be replaced

with lim sup.

Let us now show that this condition on the continuity modulus (with F−1
ζ (1 − p) of type 1

p ln 1
p

) is
nearly optimal in order to get local Lipschitz-like behavior.

EXAMPLE 3.9. We consider the set K = [0, 1] and the coefficient function b(y) = − y
b0(y) , if y > 0

(and b(0) = 0), where b0(y) is the unique solution of the equation(
b0(y

)
)b

0(y) = e
1

ln y .
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It is clear that b0 is increasing, limy→0b
0(y) = 0 and b is continuous. One notes that b is decreasing.

Indeed, by changing the variable t := b0(y), one gets a function b̃(t) := − e
1

t ln t

t whose derivative is negative
(for t small enough). If x = n−1 (small enough) is the initial datum of our equation driven by b, then
Xx
t >

1
n+1 for all t < 1

n+1b
0
(

1
n

)
. Hence, the time tn0 to reach 0 starting from x = n−1 satisfies the lower

bound
tn0 ≥

∑
k≥n

1

k + 1
b0
(

1

k

)
>
∑
k≥n

1

(k + 1) ln k
,

where we have used b0(y) > −1
ln y which is obtained using the monotonicity of b0 and the fact that

−1

ln y
ln

(
−1

ln y

)
<

1

ln y
.

Therefore, since tn0 =∞, for every n ≥ 1, the set (0, 1) is invariant (Xx
t decreasing in time).

On the other hand, standard computations (around 0 for the quantities ζ, Fζ , F−1
ζ ) yield

ζ(ε) = inf
y≤ε

1

b0(y)
=

1

b0(ε)
, Fζ(r) = 1−

b0
(
r−1
)

b0 (ε0)
,

lnF−1
ζ (1− p) =

−1

b0 (ε0) p ln (b0 (ε0) p)
, lim
p→0

p (ln p)
β

lnF−1
ζ (1− p) =∞, ∀β > 1.

Finally, a careful look at the proof of Proposition 3.6 (see Section 6) shows that ζ does not need to
be constructed globally but only with respect to neighborhoods of connected components of ∂K. This is
obvious enough especially when one tries to apply the proof to a one-dimensional example K = [α1, α2].
Then one can reason either on a neighborhood of α1 or with respect to α2. Since K is compact, whenever
lim infK̊3x, δK(x)→0

b+(x)
δK(x) <∞, then there exists at least one x̄ ∈ ∂K such that lim infK̊3x→x̄

b+(x)
δK(x) <∞.

One might be tempted to ask for the stronger condition : for every x̄ ∈ ∂K, one has

lim inf
K̊3x→x̄

b+(x)

|x− x̄|
<∞.

However, one can construct an example in which the (open) unit ball in R2 is invariant and, yet, the
previous condition does not hold for some x̄ such that ‖x̄‖ = 1.

EXAMPLE 3.10. We describe the dynamics in polar coordinates (ρ, θ) such that
dρt =

√
1− ρt (θt)

+
(π

2
− θt

)+

dt

dθt =
1

1− ρt
(θt)

+
(π

2
− θt

)+

dt.

As usual, θ+ = max {θ, 0}. First, it is clear that b+ (ρ cos(θ), ρ sin(θ)) = ρ̇ =
√

1− ρ (θt)
+ (π

2 − θt
)+ and,

thus,

lim inf
(x,y)→

(√
2

2 ,
√

2
2

) b+ (x, y)

1−
√
x2 + y2

= lim inf
ρ→1

π2

16
√

1− ρ
=∞.

Second, starting from some point (ρ0, θ0) ∈ [0, 1) ×
(
0, π2

)
, let us assume that the trajectory reaches the

unitary circle at some time tmin. Prior to tmin, both ρ and θ are non decreasing. Let us assume that
θt <

π
2 for t < tmin. Then, we get the equality θ̇ = ρ̇

(1−ρ)
3
2
for 0 ≤ t < tmin which gives

π

2
> θt = θ0 − 2 (1− ρ0)

− 1
2 + 2 (1− ρt)−

1
2 .

This implies that ρt < 1−
(
π
4 + (1− ρ0)

− 1
2

)−2

and, thus, the viability of
{

(x, y) : x2 + y2 < 1
}
follows.

Finally, we wish to point out that, although b is not (globally) bounded (because of the presence of the
term 1

1−ρ as ρ is close to 1), the previous upper estimate on ρt shows that for each initial data (in{
(x, y) : x2 + y2 < 1

}
), one actually deals with a bounded coefficient.

8



4 Border Avoidance for Controlled Diffusions
We consider a probability space

(
Ω, (Ft)t≥0 ,P

)
endowed with a filtration satisfying the usual assumptions

on right-continuity and completeness. On this space, we consider the d-dimensional Brownian motion W .
We will deal with the near-viability of Brownian-driven systems{

dXx,u
t = b (Xx,u

t , u(t)) dt+ σ (Xx,u
t , u(t)) dWt, for t ≥ 0,

Xx,u
0 = x ∈ RN .

(7)

From now on, unless stated otherwise, we assume that the coefficients b and σ are uniformly continuous
on RN ×U and (with the notation (1), see also the following lines on vectorial notations) ‖b‖1 +‖σ‖1 <∞
(i.e. b and σ are bounded and Lipschitz-continuous in space). The space of admissible control processes
will be denoted by U and it consists of progressively measurable U -valued processes u. Under these
assumptions, existence and uniqueness of a (strong) controlled solution to (7) is standard.
For δ > 0 and progressively measurable controls e taking their values in unit ball of RN (space denoted
by E), respectively u ∈ U , we consider the augmented control system (appearing in Krylov’s method of
shaking the coefficients cf. [26]).

dXx,u,e,δ
t = b

(
Xx,u,e,δ
t + δ2et, ut

)
dt+ σ

(
Xx,u,e,δ
t + δ2et, ut

)
dWt, for t ≥ 0, Xx,u,e,δ

0 = x ∈ RN . (8)

We begin with recalling some standard estimates result (see [26, Page 11] for the second assertion).

PROPOSITION 4.1. There exists a constant λ0 depending only on ‖b‖1 and ‖σ‖1 such that

i. E

[
sup
t∈[0,T ]

‖Xx,u
t ‖

2
dt

]
≤ λ0e

λ0T
(

1 + ‖x‖2
)
,

ii. E

[
sup
t∈[0,T ]

∥∥∥Xx,u,e,δ
t −Xx,u

t

∥∥∥] ≤ λ0e
λ0T δ and

iii. E

[
sup
t∈[0,T ]

∥∥∥Xx,u,e,δ
t −Xy,u,e,δ

t

∥∥∥] ≤ λ0e
λ0T ‖x− y‖ ,

(9)

for all δ > 0, x ∈ RN , y ∈ RN and all control processes (u, e) ∈ U×E i.e progressively measurable processes
u taking their values in U and e taking their values in the unit ball of RN .

REMARK 4.2. These estimates essentially follow from Gronwall’s inequality (hence the Lipschitz-type
assumptions). Alternatively, one can hope to improve the assumptions by asking a Osgood-type condition
of (non-)ntegrability for the continuity moduli or generalizations (e.g. [27]), thus allowing use of non-
Lipschitz coefficients. In this framework, a careful look at [19, Proof of Theorem D] shows that near-
viability up to a fixed finite horizon T > 0 is more adequate.

Second, we introduce the notations
sup

u∈U,x∈K̊ s.t. δK(x)≤ε0

‖σ(x, u)− σ(π∂K(x), u)‖
δK(x)

=: cσ,

sup
u∈U,x∈K̊ s.t. δK(x)≤ε0

|LuδK(x)− LuδK (π∂K(x))|
δK(x)

=: cL,

(10)

where, as usual, Luϕ(x) := 1
2Tr

[
σ(x, u)σ∗(x, u)D2ϕ(x) + 〈b(x, u), Dϕ(x)〉

]
for all x ∈ RN , u ∈ U and

for regular twice differentiable functions ϕ ∈ C2
(
RN
)
.

REMARK 4.3. In our Lipschitz framework, both constants cσ and cL are upper-bounded by a (generic)
constant that only depends on ‖b‖1 and ‖σ‖1. However, most of our proofs can be generalized to non-
Lipschitz settings (provided further assumptions, see Remark 4.7). In this case, the conditions (10) are to
be regarded as a uniform-in-control upper limit condition much like the necessary one for invariance (cf.
Proposition 3.6 1.). One should ask for

lim sup
δK(x)→0

sup
u∈U

‖σ(x, u)− σ(π∂K(x), u)‖
δK(x)

<∞,

lim sup
δK(x)→0

sup
u∈U

|LuδK(x)− LuδK (π∂K(x))|
δK(x)

<∞,
(11)
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Furthermore, the second inequality is only needed to guarantee

LuδK(x)− LuδK (π∂K(x)) ≥ −cLδK(x)

and only when LuδK(x) ≤ 0. Hence, one can actually use only (−LuδK(x))
+ as in the necessary condition.

From now on, we will denote by λ a large enough constant such that

λ > 2λ0 + c2σ + cL. (12)

REMARK 4.4. For further developments, we will need further details on how large the constant λ
should be chosen. Since K is compact, its diameter diam(K) := sup {‖x− y‖ : (x, y) ∈ K ×K} is finite.
Classical estimates on solutions of SDEs yield (due to assumptions on coefficients), the existence of a
constant k such that, for all initial data x ∈ RN , any admissible control u and any t > 0,

E
[

sup
0≤s≤t

‖Xx,u
s − x‖2

]
≤ kt.

It follows that

P
(

sup
0≤s≤t

‖Xx,u
s − x‖ ≥ ε0

2

)
≤ 4k

ε2
0

t.

One then picks t∗ =
ε30

32k×diam(K) and λ > 0 such that
P
(

sup
0≤s≤t∗

‖Xx,u
s − x‖ ≥ ε0

2

)
≤ ε0

8diam(K)
;

e−λt
∗
≤ ε0

8diam(K)
.

(13)

We recall the viability indicator value function V : RN −→ R+, given by

V (x) := inf
u∈U

Ex
[∫ ∞

0

e−λt1(K̊)
c (Xx,u

t ) dt

]
, for all x ∈ RN . (14)

To prove the equivalence between the near-viability of the closed set K and the near-viability property
for K̊, one proceeds in three steps. First, we consider the Lipschitz-continuous sup-convoluted approxi-
mations of 1(K̊)

c (denoted by fn for n ≥ 1) and the (Lipschitz-continuous, infinite-horizon, λ-discounted)
associated value functions Vn. The first result (Proposition 4.5) gives the pointwise convergence of the
approximating functions.
Second, we prove (in Lemma 4.8) that, in order for V to be null on K̊, one only needs to focus on (arbi-
trarily small) neighborhoods of the boundary ∂K. In particular, the study can be reduced to a set where
the signed distance δK is smooth.

Third, we use Krylov’s shaking of coefficients method to construct regular subsolutions (V
1
n2
n ) of the

Hamilton-Jacobi-Bellman equation satisfied (in a viscosity sense) by Vn. By multiplying these functions

with δK , one gets a family of smooth functions Wn := −δK × V
1
n2
n . By "comparing" (at global minimum

points) these functions with the 0-constant (subsolution) and passing to the limit as n → ∞, it follows
that V cannot be strictly positive at any point x ∈ K̊. This comparison uses extensively the (closed-set)
viability characterization in [6] and the inequality

LuδK(x)− LuδK (π∂K(x)) ≥ −cLδK(x). (15)

Let us now consider the (approximating) functions

fn(x) :=
(

1− nd(K̊)
c(x)

)+

.

These functions form a non-increasing sequence of Lipschitz-continuous applications that converges to
f(x) = 1(K̊)

c(x). Therefore, for every λ > 0, the value functions

Vn(x) := inf
u∈U

Ex
[∫ ∞

0

e−λtfn (Xx,u
t ) dt

]
, for all x ∈ RN (16)

satisfy Vn ≥ V . In fact, we prove the following convergence.
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PROPOSITION 4.5. The approximating functions Vn converge (pointwise) to the (viability indicator)
function V .

The proof is rather standard and postponed to Section 6. The main result of the section gives the
equivalence between the near-viability of K and the near-viability of its interior K̊.

THEOREM 4.6. For every controlled diffusion driven by bounded, Lipschitz-continuous coefficients b, σ,
the set K is near-viable if and only if K̊ enjoys this property.

The proof (postponed to Section 6) relies on the following program. Using Krylov’s shaking of coeffi-

cients method (cf. [26]), we exhibit a family of regular functions V
1
n2
n such that

• V
1
n2
n − Vn converges to 0 (uniformly in space),

• V
1
n2
n satisfy, in classical subsolution sense the HJB equation associated to Vn.

Second, the function Wn defined as Wn(x) := −V
1
n2
n δK(x) is shown to satisfy a certain super-solution

condition (at local minimum points). This step strongly relies on the regularity of δK (to which the results
on closed-sets viability of [6] apply) and the constants cσ and cL being finite (but not on the Lipschitz
continuity itself). Finally, basically by comparing (at the limit as n → ∞) this supersolution with 0, it
is shown that the global minimum (of −V δK) cannot be other than 0, thus proving that V is zero (i.e.
near-viability of the open set K̊).

REMARK 4.7. Provided such functions V
1
n2
n can be constructed, the Lipschitz assumptions on

b, σ can be dropped and the conclusion (cf. Steps 2,3 in the proof of Theorem 4.6) still holds true.

Finally, to guarantee that the global minimum points we have talked about before are not very far
from the boundary, we need the following result.

Lemma 4.8. Let us assume that the set K is near-viable.
i. If x ∈ K \K ε0

2
, then

Vn(x) ≤ max
y∈K

ε0
2

Vn(y)

and the equality holds true only if the right-hand member is 0.
ii. Whenever the restriction of V to K ε0

2
\ ∂K is null, V is constantly equal to 0 on K̊.

As for the other results, the proof is postponed to Section 6. The proof of the first assertion uses the
dynamic programming principle (for the approximations Vn). The second one follows from the first and
needs some kind of uniform convergence to 0.

5 An Application to Switched Models of Gene Networks

5.1 Hasty’s Model of Bacteriophage
For complex systems of interaction between several players or species, the notion of multi-stability plays
a central part. We have in mind the simplest example relevant to this framework in the hybrid modeling
of gene networks: the phage lambda. Roughly speaking, in order to survive, the bacteriophage relies on
the host (E-Coli). Two issues are then possible (for a temperate form of phage): either a cohabitation
(lysogeny resulting in moderate replication of prophage) or high speed replication ultimately leading
to excision (lysis). Following the simplified model introduced by [24], a piecewise deterministic model
has been introduced in [12] (and the averaging probabilistic techniques rigorously justified in [11]). To
cope with the fundamental bistability issues, the authors invoke the quasi-steady distribution heuristics
(resulting in some quartic equation cf. of [12, Eq. (26)] susceptible to give the lysogenic "steady-state").
The authors equally mention failure of such computations for nonlinear systems (cf. [28]). For the
hybrid model of phage λ, our results on invariance (or near-viability) turn out to prove an even stronger
dichotomy: no (single) set of reaction speeds can guarantee the toggle between a lysogenic behavior (even
when the latter is not reduced to a single steady-state but to a whole invariant region) an a lytic one
(leading as usual to the attractor 0). This reinforces the biological belief that such toggle follows from an
environmental (external) cue.
The reactions system corresponding to the model reduction in [24] is the following.

D + cI2 �k2

k−2
DcI2, D + cI2 �k3

k−3
DcI∗2 , DcI2 + cI2 �k4

k−4
DcI2cI2,

2cI �k1

k−1
cI2, DcI2 →k5 DcI2 + n cI, cI →k6 ∅.

(17)
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Let us now give some brief explanations on these equations. The first line in (17) corresponds to DNA (D)
bindings along promoter, repressor or both sites. These will only indicate a functioning mode Γ (whose
values are the standard basis of R4 denoted by E and corresponding respectively to unoccupied DNA
e1 = (1, 0, 0, 0), promoter occupation e2, and so on). The second line in (17) gives the averaged dynamics
for the cro-repressor cI and its dimer cI2. The first reaction describes (reversible) dimerization. The
reaction DcI2 →k5 DcI2 + n cI describes transcription. When the site is occupied in promoter position,
n copies of cI are produced. Finally, cI is degraded. A coherent model (of driver b (γ, x1, x2)) should
satisfy the following.

1. cI and cI2 are averaged (such that the corresponding variables x1, x2 obey to x2
1 + x2

2 ≤ 1);

2. It is constructed around the law of mass action (to cope with the steady-state behavior);

3. It satisfies bistability :

3i. Lysis is triggered by a threshold level of cI-type repressor (i.e. low level of repressor and repressor
dimer, say x2

1 + x2
2 ≤ r, for some r > 0 and it is irreversible (i.e. 0 is a stable attractor).

3ii. Lysogeny is a stable behavior. Any trajectory starting from a "clear" concentration x ∈ Klysogeny \
∂Klysogeny (where Klysogeny :=

{
x ∈ R2 : r ≤ ‖x‖2 ≤ 1

}
) stays in Klysogeny until it reaches the

threshold level (and lysis is triggered by modifying the coefficient).

5.2 Some Elements of Structure and Border Avoidance Result
From now on, we consider a piecewise-continuous switched model (a particular case of piecewise deter-
ministic processes PDMP introduced in [13, 14]) as follows. The process consisting of a couple mode/state
is defined on some space Ω and takes its values in the space E × RN . For simplicity (and to avoid some
assumptions on infinite activity and uniform tightness of transition measures), E is considered to be a
compact subset of some Euclidean space. (For further details on the construction on the Hilbert cube,
the reader is referred to [25]). The family of Borel subsets of E (considered to inherit the topology of the
corresponding Euclidean space) will be denoted by B(E).
The process encoding a couple mode/continuous state will be denoted by (Γ, X) and described by the
characteristic triplet (b, θ,Q) consisting of:

i. a bounded, uniformly continuous family b : E × RN × U −→ RN such that

sup
γ∈E
‖b (γ, ·, ·)‖1 <∞.

By abuse of notation, we will denote this supremum by ‖b‖1.
ii. a bounded, uniformly continuous jump intensity θ : E × RN × U −→ R+ such that

‖θ‖1 := sup
γ∈E
‖θ (γ, ·, ·)‖1 <∞.

iii. a transition measure Q : E× −→ P(E), with P(E) standing for the probability measures on E such
that Q(γ, {γ}) = 0, for all γ ∈ E.

Let us fix the initial mode γ0 ∈ E, the initial position x0 ∈ RN and some sequence of measurable controls
un ∈ L0

(
E × RN × R+;U

)
. For (t, γ, y) ∈ R+ × E × RN and a measurable v ∈ L0

(
E × RN × R+;U

)
,

we define the deterministic flow

dΦt,γ,y,vs = b
(
γ,Φt,γ,y,vs , v(γ, y, s− t)

)
ds, for s ≥ t,Φt,γ,y,vt = y.

The first jump time T1 has θ as jump rate i.e.

P (T1 ≥ t) = exp

(
−
∫ t

0

θ
(
γ,Φ0,γ0,x0,u0

s , u0 (γ0, x0, s)
)
ds

)
.

We define (Γγ0,x0,u
t , Xγ0,x0,u

t ) :=
(
γ0,Φ

0,γ0,x0,u0

t

)
on t < T1.

The post-jump position γ1 := Γγ0,x0,u
T1

has Q (γ0) as distribution conditionally to {T1 = τ} and we set
x1 := Φ0,γ0,x0,u0

T1
. Next, the inter-jump time is generated according to the conditional distribution

P (T2 − T1 ≥ t | T1, γ1, x1) = exp

(
−
∫ T1+t

T1

θ
(
γ1,Φ

T1,γ1,x1,u1
s , u1 (γ1, x1, s− T1)

)
ds

)
,
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the process is defined as (Γγ0,x0,u
t , Xγ0,x0,u

t ) :=
(
γ1,Φ

T1,γ1,x1,u1

t

)
on T1 ≤ t < T2 while the post-jump

position γ2 satisfies
P (γ2 ∈ A | T2, T1, γ1, x1) = Q (γ1, A)

and so on.

REMARK 5.1. i. For our readers who prefer an operatorial approach, the infinitesimal operator
associated to such processes is

Luϕ(γ, x) = 〈b(x, u), Dxϕ(γ, x)〉+ θ(γ, x, u)

∫
E

(ϕ(γ′, x)− ϕ(γ, x))Q (γ, dγ′)

for continuous functions ϕ that are continuously differentiable with respect to x (hence the notation
Dx ).

ii. Further generalization to switched diffusions(
XΓ0,x,u
t

ΓΓ0,x,u
t

)
=

(
x
Γ0

)
+

∫ t

0

(
b
(
ΓΓ0,x,u
s , XΓ0,x,u

s , u(s)
)

0

)
ds+

(
σ
(
ΓΓ0,x,u
s , XΓ0,x,u

s , u(s)
)

0

)
dWs

+

∫ t

0

∫
E

(
0

z − ΓΓ0,x,u
s−

)
1
ξ≤θ

(
Γ

Γ0,x,u
s− ,X

Γ0,x,u
s− ,z

)Nµ (ds, dz, dξ) , for t ≥ 0.

could be treated with similar arguments. In this case, the measurable space (E,B(E)) is endowed with
a finite measure µ and the system is driven by an (N -dimensional) Brownian motion W and an in-
dependent Poisson point measure Nµ defined on E×R+ and having as compensator N̂µ (ds, dz, dξ) =
dsµ(dz)dξ. For further details, the reader is referred to [25]. As in the PDMP case, one should con-
sider (predictable) open-loop control processes of type

∑
n≥0 u

n
(

ΓΓ0,x0,u
Tn

XΓ0,x0,u
Tn

, s− Tn,
)
1Tn<s≤Tn+1

,
where Tn denote the (fictive) jump-times of Nµ.

iii. Our results stand without modification if Q is assumed to further depend on γ, x provided a further
assumption of weak continuity of Q (see [21, A3]).

For controlled PDMP, one gets the following simple characterization.

THEOREM 5.2. The set E × K̊ is viable with respect to the switched piecewise deterministic system
(Γ, X) driven by (b, θ,Q) if and only if, for every γ ∈ E and every x ∈ ∂K,

inf
u∈U
〈b(x, u), νK(x)〉 ≤ 0. (18)

We will only sketch the proof since it is quasi-identical to the diffusion case. As for the other results,
this is postponed to Section 6.

5.3 A Mathematical Model
We begin with the description of the mode component Γ (using Line 1 in (17)). The state space E =
{e1, e2, e3, e4} the canonical basis of R4. The jump intensity is computed as the total propensity(-type)
function by setting

θ̂ (γ) = k21e1 (γ) + k−21e2 (γ) + k31e1 (γ) + k−31e3 (γ) + k41e2 (γ) + k−41e4 (γ)

and constructing a regular θ (γ, x1, x2) such that

θ (γ, x1, x2) = θ̂ (γ) , for x2
1 + x2

2 ≥ 2r and θ (γ, x1, x2) = 0 for x2
1 + x2

2 ≤ r.

To construct the post-jump measure (under matrix form), we set Q̂ =


0 k2 k3 0
k−2 0 0 k4

k−3 0 0 0
0 k−4 0 0

 and

Q (γ, γ′) :=
Q̂(γ,γ′)
θ̂(γ)

, for all γ, γ′ ∈ E.

REMARK 5.3. If one allows the measures Q to depend on x, one can base the construction on the
actual propensity function

θ̂ (γ, x1, x2) = k2x21e1 (γ) + k−21e2 (γ) + k3x21e1 (γ) + k−31e3 (γ) + k41e2 (γ) + k−41e4 (γ) .
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To construct the switched flow, we introduce (according to the law of large masses), bsteady : E×R2 −→
R2 given by

bsteady (γ, x1, x2) =

(
−k1x

2
1 − k6x1 + 2k−1x2 + n1e2(γ)

k1x
2
1 − k−1x2

)
To guarantee lysogeny, we construct a Lipschitz function χ : R2 −→ R+ such that χ (x1, x2) = 1 on
2r ≤ x2

1 + x2
2 ≤ 1− r and χ (x1, x2) = 0 for r ≥ x2

1 + x2
2 or 1 ≤ x2

1 + x2
2 . Morover, to cope with lysis, only

degradation is considered

blysis (γ, x1, x2) =

(
−k6x1

−k−1x2

)
.

Finally, we set

b (γ, x1, x2) = blysis (γ, x1, x2)1x2
1+x2

2≤r + bsteady (γ, x1, x2)× χ(x1, x2)1x2
1+x2

2>r
. (19)

The set of interest is
Klysogeny :=

{
(x1, x2) ∈ R2 : r ≤ x2

1 + x2
2 ≤ 1

}
.

Owing to the choice of χ (null on ∂Klysogeny) and Theorem 5.2, whenever the system starts from
x ∈ K̊lysogeny, it never reaches ∂Klysogeny. In particular, lysis (triggered by the trajectory reaching{

(x1, x2) ∈ R2 : r = x2
1 + x2

2

}
) can never occur. Thus, no such PDMP model (based solely on averaging

and the law of mass action) can accurately account for the bistability of bacteriophage λ. A further state
(cemetery) has to be introduced in Q and jumps to this state should be triggered by external control
(environmental cue).

6 Proofs of the Results

6.1 Proof for Section 3
We begin with the proof of the regularity of the function ζ.

Proof of Proposition 3.4. We only prove the continuity property. To this purpose, let us fix ε ∈ (0, ε0] and
some increasing sequence (εn)n≥1 ⊂ (0, ε0] converging to ε. Let us reason by contradiction and assume
that ζ is not left-continuous at ε. Then, there exists some δ > 0 such that ζ (εn) > ζ (ε) + δ, for all n ≥ 1.
In particular, reasoning for an arbitrary n ≥ 1, it follows that

ζ (ε) = inf
x∈K̊,εn≤δK(x)≤ε

|b+(x)− b+ (π∂K(x))|
δK(x)

.

Using the compactness of K, it follows that

ζ (ε) =
|b+ (xopt)− b+ (π∂K(xopt))|

ε
,

for some xopt ∈ K such that δK (xopt) = ε (thus being away from ∂K). Since xopt ∈ K̊, one exhibits, for
n large enough (such that (ε− εn) be smaller than the radius of some ball centered at xopt and included
in K̊), the points xn := xopt −

(
1− εn

ε

)
(xopt − π∂K (xopt)) ∈ K̊ such that

δK (xn) ≤ εn and lim
n→∞

xn = xopt.

Using the continuity of x 7→ |b
+(x)−b+(π∂K(x))|

δK(x) (away from ∂K), one deduces that

inf
n≥1

ζ (εn) ≤ lim
n→∞

|b+ (xn)− b+ (π∂K (xn))|
δK (xn)

=
|b+ (xopt)− b+ (π∂K (xopt))|

δK (xopt)
= ζ (ε) ,

thus providing us with a contradiction.

Let us now provide the proof of the necessary local Lipshitz-like criterion stated in Proposition 3.6

Proof of Proposition 3.6. First, one notes that the invariance of K̊ (on [0, T ]) implies b+ (π∂K(x)) =
0, for x ∈ K s.t. δK(x) ≤ ε0. Indeed, if one sets x̄ := π∂K(x) and assumes that b+(x̄) > δ0 > 0, then,
on some neighborhood of x̄ (that can be taken of type {y ∈ K : ‖y − x̄‖ < r} for some r > 0) one has
b+(x) > δ0. By writing down the differential dδK (Xx

t ) = −〈νK (π∂K (Xx
t )) , b (Xx

t )〉 dt, it follows that Xx
t

reaches ∂K in time t ≤ ‖x−x̄‖δ0
as long is does not leave the neighborhood of x̄ and this can be guaranteed
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by taking x such that ‖x− x̄‖ ≤ r

2+2
‖b‖0
δ0

. This is in contradiction with the invariance of K̊.

To prove the bound on the lower limit, we proceed (again) by contradiction. Let us assume that the
interior K̊ is invariant, yet supε>0 ζ (ε) = ∞. Furthermore, we assume (5) fails to hold. For simplicity
reasons, let us denote

εn := sup {ε ∈ (0, ε0] , ζ (ε) ≥ max {n, nζ (ε0)}} , for n ≥ 1.

The reader will easily note that, by left-continuity, ζ (εn) ≥ nζ (ε0), hence Fζ
(

1
εn

)
≥ 1− 1

n and, thus,

1

εn
≤ F−1

ζ

(
1− 1

n

)
. (20)

For every x ∈ K such that δK(x) ≤ εn, one has b+(x) = |b+(x)− b+ (π∂K(x))| ≥ ζ (εn) δK(x) ≥ nδK(x).
Then, starting from some xn ∈ K̊ such that δK (xn) ≤ εn, one has

dδK (Xxn
t ) = −

〈
νK
(
X̄xn
t

)
, b (Xxn

t )
〉
dt ≤ −nδK (Xxn

t ) dt.

It follows that xn+1 := Xxn
tn satisfies δK (xn+1) ≤ εn+1 for tn := ln εn−ln εn+1

n . Arguing by recurrence, for
k ≥ n, xk := Xxn

tk
satisfies δK (xk) ≤ εk for tk :=

∑k
j=n

ln εj−ln εj+1

j . In particular, for every

t > t∞ :=

∞∑
j=n

ln εj − ln εj+1

j
,

one has Xxn
t ∈ ∂K. Owing to (5) not holding true, there exists some β > 1 and some constant C > 0

such that, for n large enough (and using (20)),

− ln εk+1

k(k + 1)
≤ 1

k (ln k)
β

1

k + 1
(ln (k + 1))

β
ln

(
F−1
ζ

(
1− 1

k + 1

))
≤ C 1

k (ln k)
β
. (21)

Finally, one notes that t∞ ≤
∑∞
j=n

− ln εj+1

j(j+1) . Since, owing to (21), the last quantity corresponds to the
general term of the convergent Bertrand series (with α = 1, β > 1), it follows that, for every T > 0, by
picking n large enough, one has Xxn

t exits K̊ prior to t∞ < T . This provides us with a contradiction and
the proof is complete.

6.2 Krylov’s Shaking the Coefficients and Linear Formulations
Owing to the assertion i. in Proposition 4.1, one gets the existence of a constant c0 such that

E
[∫ ∞

0

e−λt ‖Xx,u
t ‖

2
dt

]
≤ c0

(
1 + ‖x‖2

)
,

for all admissible control processes u. We recall some elements taken from [23]. To any control trajectory
Xx,u one associates an occupation measure defined by

γx,u(A) = λE

[∫
R+

e−λt1A (t,Xx,u
t , u(t)) dt

]
,

for all Borel sets A ⊂ R+ × R × U . Whenever convenient, by abuse of notation, the marginal of γx,u ∈
P (R+ × R× U) i.e. γx,u (R+, dy, du) ∈ P (R× U) will still be denoted by γx,u. The set of all occupation
measures is denoted by Γ(x) ⊂ P (R× U). One shows (cf. [23, Corollary 2.1]) that the closed convex hull
of Γ(x) satisfies

Θ(x) := c̄o (Γ(x)) =

{
γ ∈ P (R× U) : ∀ϕ ∈ C2

(
RN
)
,

∫
RN×U

[λ (ϕ(x)− ϕ(x)) + Lvϕ(y)] γ (dy, dv) = 0

}
.

This implies that Θ(x) ⊂
{
γ ∈ P

(
RN × U

)
:
∫
RN×U ‖y‖

2
γ(dy, du) ≤ c0

}
thus being compact.

Moreover, since fn and 1(K̊)
c are upper semi-continuous (u.s.c.), one gets

V (x) = inf
γ∈Θ(x)

∫
RN

1(K̊)
c(y)γ(dy, U), Vn(x) = inf

γ∈Θ(x)

∫
RN

fn(y)γ(dy, U),

for all x ∈ RN .

15



6.3 Proofs for Section 4
First, let us prove the convergence of approximating functions Vn to the viability indicator V .

Proof of Proposition 4.5. Let us fix x ∈ RN . For every γ ∈ Θ(x), the convergence

lim
n→∞

∫
RN

fn(y)γ(dy, du) =

∫
RN

1(K̊)
c(y)γ(dy, du)

follows from point-wise (non-increasing) convergence of fn to f by applying the dominated convergence
theorem. To prove our proposition, we reason by contradiction. To this purpose, let us assume that, for
some δ > 0, one has limn→∞ Vn(x) > V (x) + δ. Due to our assumption and the definition of Vn, for every
n large enough and every γ ∈ Θ(x),∫

RN
fn(y)γ(dy, U) ≥ Vn(x) > V (x) + δ.

Passing to the limit as n→∞ and using the first part of the proof, one gets∫
RN

f(y)γ(dy, U) ≥ V (x) + δ.

Taking the infimum over γ ∈ Θ(x) provides us with a contradiction. The proof is now complete.

Next, we give the proof of Lemma 4.8 connecting the behavior of V on K̊ to the behavior close to the
border.

Proof of Lemma 4.8. We make the notations K
ε0
2 :=

{
y ∈ K : d∂K(y) = ε0

2

}
and

ηn := sup
y∈K

ε0
2

Vn (y) .

Let us fix, for the time being, n ≥ 2
ε . In particular, one gets

fn(y) = 0, for all y ∈ K \K ε0
2
. (22)

We begin with fixing the initial datum x ∈
(
K̊ \K ε0

2

)
and pick some admissible control process u0. We

introduce the stopping time
τ := inf

{
t > 0 : d∂K

(
Xx,u0

t

)
≤ ε0

2

}
.

One easily notes, owing to the continuity properties of our solution, that, on the set {τ <∞}, one has
Xx,u0

τ ∈ K
ε0
2 and, thus, E

[
Vn

(
Xx,u0

τ

)
| Xx,u0

0 = x
]
≤ ηn. Then our first assertion follows from this last

inequality, the dynamic programming principle and (22). Strict inequality is a consequence of the fact
that, due to bounded coefficients, P (τ > 0) > 0.
To prove the second assertion, we begin with proving that

lim
n→∞

ηn = 0, (23)

whenever the restriction of V to K ε0
2
\ ∂K is null. Indeed, if one assumes the contrary, then, for some

δ > 0 and for every n ≥ 1 (or, at least, every, n large enough), there exists some yn ∈ K
ε0
2 such that

Vn (yn) ≥ δ.
Since K

ε0
2 is compact, some sub-sequence of (yn)n≥1 converges to some ȳ ∈ K

ε0
2 . Moreover, due to the

monotonicity of (fn)n≥1, one has, for every 1 ≤ n ≤ m,

Vn(ym) ≥ Vm(ym) ≥ δ.

Fixing n and passing to the limit as m → ∞ (along the sub-sequence mentioned before), it follows
that Vn (ȳ) ≥ δ. Owing to the convergence limn→∞ Vn (ȳ) = V (ȳ) (cf. Proposition 4.5), one gets a
contradiction. It follows that (23) holds true. To conclude the proof of our assertion, one allows n→∞
in the first assertion of our proposition and uses (23) and the (point-wise) convergence of Vn to V .
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We conclude the subsection with the proof of the main result for Brownian diffusions. We consider,
on Kε0 , the application Kε0 3 x 7→ π∂K(x) ∈ ∂K associating to every x its projection on ∂K i.e. the
unique π∂K(x) ∈ ∂K such that δK(x) = ‖x− π∂K(x)‖. Moreover, we define the Hamiltonian

H (x, r, p, A) =
(
λ− cL − c2σ

)
r + sup

u∈U :σ∗(π∂K(x),u)νK(π∂K(x))

(
−1

2
Tr [σσ∗ (x, u)A]− 〈b(x, u), p〉

)
, (24)

for all x, r, p, A ∈ Kε0 × R× RN × SN .

Proof. We begin with the proof of the "only if" part. Using the inequality 1Kc ≤ 1(K̊)
c , the viability

indicator function (for the closed set K) i.e.

VK(y) := inf
u∈U

E
[∫ ∞

0

e−λt1Kc (Xy,u
t ) dt

]
, for all y ∈ K

satisfies VK ≤ V . As a consequence, whenever K̊ is near-viable, it follows that VK(x) = 0, for all x ∈ K̊.
Standards arguments yield the lower semi-continuity of VK and, owing to the regularity assumptions
guaranteeing K =

¯̊
K, it follows that VK (x̄) = 0, for all x̄ ∈ ∂K.

Let us now turn to the proof of the "if" part.
Step 1. (The elements of this step follow closely Krylov’s method in [26] adapted to our elliptic framework).
We begin with defining, for δ > 0, the δ-shaken coefficients value function(s)

Vn,δ(x) := inf
(u,e)∈U×E

E
[∫ ∞

0

e−λtfn

(
Xx,u,e,δ
t

)
dt

]
, x ∈ RN .

Using the n-Lipschitz properties of fn together with Proposition 4.1 (assertions ii. and iii.) and owing to
the choice of λ ≥ 2λ0, one deduces that Vn, Vn,δ are n-Lipschitz and

‖Vn,δ − Vn‖∞ ≤ nδ.

By considering a sequence of standard mollifiers ϕδ and owing to the n-Lipschitz property of Vn, one gets
that the convoluted function V δn := Vn,δ ∗ ϕδ satisfies∣∣V δn (x)− Vn(x)

∣∣ ≤ nδ, for all x ∈ RN .

Moreover, V δn will be a regular subsolution to the Hamilton-Jacobi-Bellman equation

λϕ+ sup
u∈U

(−Luϕ(x))− fn(x) = 0,

on RN i.e., for every (x, u) ∈ RN × U , one has

−λV δn (x) +
1

2
Tr
[
σσ∗ (x, u)D2V δn (x)

]
+
〈
b (x, u) , DV δn (x)

〉
+ fn(x) ≥ 0. (25)

Step 2. The reader is invited to recall the construction of the function g ∈ C2,1
(
RN
)
given in Proposition

2.3. If the closed set K is near-viable, then, according to [BCQ, Theorem A.1. iii], for every x ∈ ∂K one
has

sup
u∈U s.t. σ∗(x,u)νK(x)=0

(Lu (δK(x))) ≥ 0. (26)

Let us now consider, for n ≥ 1 and δ > 0 (arbitrary for the time being), the function

W δ
n := −gV δn .

ThenW δ
n belongs to C2,1

(
RN). We claim that, whenever x ∈ (Kε0 \Kε0)∩Argmaxloc,K

(
−W δ

n

)
is a local

maximum with respect to K, the function W δ
n satisfies (at x),

H
(
x, ϕ,Dϕ,D2ϕ

)
+ fn(x)δK(x) ≥ 0,

where the Hamiltonian is given by (24).
Case 1. We begin with proving this assertion whenever x ∈ ∂K. At such points, W δ

n(x) = fn(x)g(x) = 0.
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Moreover, DW δ
n(x) = −V δn (x)DδK(x) = V δn (x)νK(x) and D2W δ

n(x) = 2DV δn (x)⊗νK(x)−V δn (x)D2δK(x).
Here, ⊗ denotes the usual tensor product on RN . Then, using (26), one gets

H
(
x, 0, DW δ

n(x), D2W δ
n(x)

)
= sup
σ∗(x,u)νK(x)=0

(
−1

2
Tr
[
σσ∗ (x, u)

(
2DV δn (x)⊗ νK(x)− V δn (x)D2δK(x)

)]
−
〈
b(x, u), V δn (x)νK(x)

〉)
=V δn (x) sup

σ∗(x,u)νK(x)=0

(
1

2
Tr
[
σσ∗ (x, u)D2δK(x)

]
+ 〈b(x, u), DδK(x)〉

)
≥ 0.

(27)

Case 2. Let us now focus on x ∈ Kε0 \ (∂K ∪Kε0). In this case, using the classical maximum principle
(and recalling that W δ

n belongs to C2,1 (R)
N ), one has

0 = DW δ
n(x) = −V δn (x)DδK (x)− δK(x)DV δn (x) = V δn (x)νK (π∂K(x))− δK(x)DV δn (x),

0 ≤ D2W δ
n(x) = −V δn (x)D2δK(x) + 2DV δn (x)⊗ νK (π∂K(x))− δK(x)D2V δn (x).

Therefore, by computing the Hamiltonian one has(
λ− cL − c2σ

)
W δ
n(x) + fn(x)δK(x)

≥H
(
x,W δ

n(x), DW δ
n(x), D2W δ

n(x)
)

+ fn(x)δK(x)

= sup
σ∗(π∂K(x),u)νK(π∂K(x))=0


V δn (x)

[
cLδK(x) +

1

2
Tr
[
σσ∗ (x, u)D2δK(x)

]
+ 〈b(x, u), DδK(x)〉

]
+δK(x)

[
−λV δn (x) +

1

2
Tr
[
σσ∗ (x, u)D2V δn (x)

]
+
〈
b(x, u), DV δn (x)

〉
+ fn(x)

]
−c2σW δ

n(x)− Tr
[
σσ∗ (x, u)DV δn (x)⊗ νK (π∂K(x))

]


=H

(
x,W δ

n(x), DW δ
n(x), D2W δ

n(x)
)

+ fn(x)δK(x)

= sup
σ∗(π∂K(x),u)νK(π∂K(x))=0


V δn (x) [cLδK(x) + LuδK(x)]

+δK(x)

[
−λV δn (x) +

1

2
Tr
[
σσ∗ (x, u)D2V δn (x)

]
+
〈
b(x, u), DV δn (x)

〉
+ fn(x)

]
−c2σW δ

n(x)− V δn (x)

δK(x)
‖σ∗ (x, u) νK (π∂K(x))‖2


Recalling the notations (10) (see also (15)), it follows from this last inequality that(

λ− cL − c2σ
)
W δ
n(x) + fn(x)δK(x)

≥ sup
σ∗(π∂K(x),u)νK(π∂K(x))=0


V δn (x)LuδK (π∂K(x))

+δK(x)

[
−λV δn (x) +

1

2
Tr
[
σσ∗ (x, u)D2V δn (x)

]
+
〈
b(x, u), DV δn (x)

〉
+ fn(x)

]
−c2σW δ

n(x)− c2σδK(x)V δn (x)


Owing to (25) and (26), one deduces that(

λ− cL − c2σ
)
W δ
n(x) + fn(x)δK(x) ≥ 0. (28)

Step 3. In order to prove the near-viability of the open set K̊, we proceed by contradiction. Let us assume
the existence of some α > 0 and some xα ∈ K ε0

2
such that δK(xα)V (xα) ≥ 2α. Recalling that Vn ≥ V

(in fact, point-wise convergence of Vn to V suffices) and
∣∣∣V n−2

n (x)− Vn(x)
∣∣∣ ≤ 1

n (for x ∈ RN , see Step

1), it follows that maxx∈Kε0

(
−Wn−2

n (x)
)
≥ α for all n large enough. Let us now denote by xn ∈ K the

global maximum of −Wn−2

n with respect to K.
Step 3.1. Owing to Lemma 4.8 (and to the fact that Wn−2

n (x) = 0 as soon as x ∈ ∂K), it follows that
xn ∈ Kε0 \ (∂K ∪Kε0) (at least for n large enough).
Indeed, for points y ∈ K \Kε0∪Kε0 , one has, using the estimates in Step 1 and the dynamic programming
principle (with τu, as before, the time of Xy,u hitting K ε0

2
with admissible control u),

δK(y)V
1
n2
n (y) ≤ diam(K)

n
+ δK(y)Vn(y) ≤ diam(K)

n
+ δK(y) inf

u∈U
E
[
e−λτ

u

Vn (Xy,u
τu )

]
≤ diam(K)

n
+

2

ε0
δK(y)

[
P (τu < t∗) + e−λt

∗
]

sup
y′∈K

ε0
2

δK(y′)Vn (y′) .
(29)
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One recalls that t∗ has been introduced in (13) and notes that, since y is at least ε0
2 -far from K

ε0
2 ,

P (τu < t∗) ≤ P
(

sup
0≤t≤t∗

‖Xy,u
t − y‖ ≥ ε0

2

)
≤ ε0

8diam(K)
.

Using the choice of λ (again by (13)) in (29), we get

δK(y)V
1
n2
n (y) ≤ diam(K)

n
+

1

2
sup

y′∈K
ε0
2

δK(y′)Vn (y′) <
2diam(K)

n
+

1

2
sup

y′∈K
ε0
2

δK(y′)V
1
n2
n (y′) . (30)

For n large enough (s.t. 2diam(K)
n < α

2 ), it follows, as announced, that xn ∈ Kε0 \ (∂K ∪Kε0).
Step 3.2. Since xn is a global maximum, using Step 2, one gets

1

4n
= max
x∈K ε0

2

fn(x)δK(x) ≥ fn(xn)δK(xn) ≥ −
(
λ− cL − c2σ

)
Wn−2

n (x) ≥
(
λ− cL − c2σ

)
α.

Letting n→∞ leads to a contradiction.

6.4 Sketch of the Proof(s) for Section 5
(Sketch of the) Proof of Theorem 5.2. To prove the necessity of the condition (18), one simply notes that
near-viability of E × K̊ implies the same property for E ×K (as it was the case for diffusions). Finally,
the condition (18) follows from [21].
Let us now give some elements for the sufficiency. Lemma 4.8 needs no modification (if not quoting
the dynamic programming principle in [32]; see also [21]). Concerning the modifications to the proof of
Theorem 4.6 one proceeds as follows. The estimates in Step 1 are no longer of type nδ but given by some
modulus of continuity taken from [22, Section 6.1] (see also [21, Theorem 3.6]). Step 2 does not need any
changes. Indeed, among the three terms on the right-side in Case 2 (the only one of real interest) one
notes the following. The first term applies to δK and the integral term in the infinitesimal operator is
0. The second term is lower-bounded by 0 as consequence of the construction of the regular subsolution.
Finally, all the terms in which σ appears are null. For Step 3, one no longer picks δ = 1

n2 , but some
δn (according to Step 1), such that

∣∣V δnn (γα, xα)− Vn (γα, xα))
∣∣ ≤ 1

n . (In this case, the reasoning by
contradiction would provide some (γα, xα) for which δK (xα)V (γα, xα) ≥ 2α).
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