

Sidewall roughness characterization of a 20 nm half pitch resist-core spacer patterning process

<u>E. Dupuy</u>^a, M. Fouchier^a, E. Pargon^a, J. Pradelles^b, H. Grampeix^b, P. Pimenta-Barros^b, S. Barnola^b and O. Joubert^a

^aCNRS-LTM, Grenoble , France ^bCEA-Léti, Grenoble, France

Outline

Introduction

Development of a spacer patterning process for the 20 nm node

Characterization of the sidewall roughness

Sidewall Roughness issues

• Line Width Roughness

$$LWR = 3\sigma_{CD} = 3\sqrt{\frac{1}{N}\sum_{i=1}^{N}(W_i - \langle W \rangle_N)^2}$$

Line Edge Roughness

LER_{Left} =
$$3\sigma_{L} = 3\sqrt{\frac{1}{N}\sum_{i=1}^{N} (x_{L,i} - \langle x_{L} \rangle_{N})^{2}}$$

- Degradation of transistor electrical performances Source of device variability and yield
- □ ITRS specifications : LWR ~ 10% of CD_{target}
- □ For Sub-20nm nodes, <u>LWR and LER < 2 nm</u>
 - Critical process parameter => Roughness reduction issue
 - Resolution limit of measurement instruments => Metrology tool issue

→Need of an accurate and insightful characterization of the sidewall roughness

Self-Aligned Double Patterning : SADP

A Nanopatterning lithography technique

- > Dense array of Lines\Spaces structures by pitch division
- > Extension of the 193 nm optical lithography resolution limit
- > HVM for memory and logic applications

Candidate to the 10 nm node and beyond !

Problematic / Objectives

- Spacers are asymmetric by nature
- 2 populations of lines : L1 and L2
- > When they are used as an etch mask, it can result in asymmetric profiles or LER

□ Evaluate the LWR and LER of dense array of lines/spaces structures obtained with a spacer patterning process targeting a 20 nm half-pitch

Power Spectral Density method

- → Unbiased LWR and LER measurements
- → Spatial frequency analysis of the roughness

Outline

Introduction

Development of a spacer patterning process for the 20 nm node

Characterization of the sidewall roughness

Resist-core spacer patterning process flow

Spacer material is directly deposited on the resist lines

Challenge

- PR are thermally degradable
- CDV Spacers are not compatible

Solution : PEALD

- Low-temperature deposition technique
- Highly Conformal and uniform film
- No loading effect

Benefits of this integration

- Simplified stack
- Less steps than HM approach
- Improved cost of ownership

Key parameters of the SADP process

CD Spacer CD Core

To control the width of the final lines and spaces,

one can play with two parameters :

20nm HP Optimized Process

Outline

Introduction

Development of 20 nm HP spacer patterning process

Characterization of the sidewall roughness

Sidewall roughness Characterization

Unbiased LWR and LER measurements from CD-SEM images

 $\sigma^2_{\text{meas}} = \sigma^2_{\text{real}} + \sigma^2_{\text{real}}$

 \Box Power Spectral Density method \rightarrow Spatial frequency analysis of the roughness

LWR

Conclusion

Demonstrated a successful integration of the resist-core spacer patterning process for 20 nm HP silicon lines

□ Full description of the sidewall roughness evolution

- PSD method
- Unbiased LWR / LER measurements
- > Spectral analysis of the roughness

Achieved specifications

- ≻ L/S = 20/20 nm
- CDU < 2 nm</p>
- LWR = 2.5 nm
- > LER ~ 2.3 nm

