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BOUNDARY EFFECTS ON THE MAGNETIC HAMILTONIAN
DYNAMICS IN TWO DIMENSIONS

THO. NGUYEN DUC, NICOLAS RAYMOND, SAN VŨ NGO. C

Abstract. We study the Hamiltonian dynamics of a charged particle submitted to a pure
magnetic field in a two-dimensional domain. We provide conditions on the magnetic field
in a neighbourhood of the boundary to ensure the confinement of the particle. We also
prove a formula for the scattering angle in the case of radial magnetic fields.

1. Introduction

1.1. Magnetic Hamiltonian dynamics. This article is concerned with the dynamics of a
charged particle in a smooth bounded domain Ω ⊂ R2 in the presence of a non homogeneous
magnetic field B. The motion of a particle of charge e and mass m under the action of the
Lorentz force can be expressed by Newton’s equation

mq̈ = eq̇ ×B , (1.1)
where q = (q1, q2, q3)T ∈ R3. To simplify our discussion, we assume that e = 1 and m = 1.
The vector field B, defined on Ω, is assumed to be smooth and to satisfy the Maxwell
equation ∇ · B = 0. For our target problem in two dimensions, we suppose that B is
perpendicular to the plane R2, i.e., B(q) = (0, 0, b(q)). This assumption forces particles
lying in the R2 plane and whose initial velocities are in the plane to stay in this same plane
for all time. Since a vector field in R3 can be identified with a 2-form, we write the magnetic
field as B = b(q)dq1∧dq2. Then, if there is a 1-form A = A1dq1 +A2dq2 such that dA = B,
we can write (1.1) in Hamiltonian form. Consider, for all (q, p) ∈ R2 × R2,

H(q, p) =
‖p−A(q)‖2

2
, (1.2)

where ‖.‖ denotes the Euclidean norm on R2. The matrix representing the right cross
product with B in the canonical basis is

MB = JTA − JA ,

where JA is the Jacobian matrix of A. Hence Newton’s equation (1.1) becomes
q̈ = MBq̇ ,

so that
d

dt
(q̇ + A(q)) = JTAq̇ .

By introducing the momentum variable p = q̇ + A(q), we see that H(q, p) = 1
2
‖q̇‖2 is the

kinetic energy of the system, and (q, p) evolves according to the Hamiltonian flow associated
with H: {

q̇ = ∂pH(q, p)

ṗ = −∂qH(q, p)
. (1.3)

We shall always assume that q 7→ b(q) is locally Lipschitz-continuous, ensuring that the
system (1.3) has a unique local maximal solution, thanks to the Cauchy-Lipschitz theorem.
Then, the vector potential A will always be chosen to be C1-smooth.
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1.2. Two questions. From now on, we call b the magnetic field and it is identified with
the 2-form

b(q1, q2)dq1 ∧ dq2 = d (A1dq1 + A2dq2) .

This article addresses two classical dynamical problems: confinement and scattering.
- (Confinement) Consider a charged particle in the magnetized region Ω. A natural question
is the following:

“Will the particle reach the boundary in finite time?”
We will provide a precise answer to this question, depending on the behaviour of the
magnetic field at the boundary and on the initial conditions. Our results will improve
recent results by Martins in [4]. In particular, we will see that, even if the magnetic field
is infinite at the boundary, some trajectories can escape from Ω. This kind of (open)
problems is mentioned in [2, Section 1.4].

- (Scattering) Consider a charged particle outside the magnetized region Ω. Before it reaches
the region Ω, the trajectory is a straight line. If it enters the region Ω, does the particle
escape from it in finite time? And, if it does so, what is the deviation angle between the
ingoing and outgoing directions? We will explicitly answer these questions in the case of
radial magnetic fields and when Ω is a disc. In this case, the angular momentum commutes
with the Hamiltonian and allows a reduction to a one degree of freedom system.

For both problems, we provide numerical illustrations of our results.
These questions have intrinsic physical motivations. Their answers allow a better under-

standing of the classical dynamics of charged particles in magnetic fields. The description
of the classical trajectories has also many applications, for instance, at the quantum level.
The quantum aspect of the trapped trajectories can be related to the essentially self-adjoint
character of the magnetic Laplacian (see [2, 5, 6, 8]). It is also a key point to describe
the spectrum/resonances of magnetic Laplacians. As far as the authors know, whereas the
description of the magnetic dynamics has allowed to estimate the spectrum of magnetic
Laplacians (see [7, 3]), no result seems to exist to estimate their resonances near the real
axis. Investigating the trapped trajectories is a necessary step in this direction.

In the regime of large magnetic field and small energy, a special treatment of the con-
finement problem can be done and takes advantage of the near-integrable structure of the
Hamiltonian dynamics, either via Birkhoff normal form [7], or KAM theorems [1]. On the
contrary, our results here will give more explicit initial conditions and allow regimes where
the guiding center motion is not necessarily meaningful.

1.3. Organization of the article. The article is organized as follows. In Section 2, we
state our main results about confinement and scattering. Section 3 is devoted to the proofs.

2. Statements

2.1. Confinement problem.

2.1.1. Tubular coordinates. In order to state our results, it is convenient to introduce tubular
coordinates near the boundary of Ω, following the analysis of [4].

We assume that the connected components of ∂Ω are C2-smooth closed curves without
self-intersections. Let C be a connected component of ∂Ω. It can be parametrized by its arc
length γ : R/LZ→ C where L is the length of C.

There exists δ > 0 such that

ψ :

{
(0, δ)× R/LZ→ ΩC(δ)

(n, s) 7→ γ(s) + nN(s) = q
(2.1)

is a smooth diffeomorphism. N(s) denotes the inward pointing normal at γ(s) and

ΩC(δ) = {q ∈ Ω : d (x, C) < δ} .
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Note that
B = b(q)dq1 ∧ dq2 = b(ψ(n, s))(1− nκ(s))ds ∧ dn , (2.2)

where κ(s) is the signed curvature of C at γ(s). In these coordinates, we can write

A = An(n, s)dn+ As(n, s)ds

with An, As defined on (0, δ)× R/LZ such that

∂As
∂n
− ∂An

∂s
=: B(n, s) = −b(ψ(n, s))(1− nκ(s)) . (2.3)

Via the tubular coordinates, we can define the symplectic change of coordinates

Ψ :

{
(0, δ)× R/LZ× R2 → ΩC(δ)× R2

(n, s, pn, ps) 7→ (ψ(n, s), ((dψ)−1
(n,s))

T(pn, ps)) = (q, p)
, (2.4)

where we have explicitly p = (1− nκ(s))−1psγ
′(s) + pnN(s).

The Hamiltonian takes the form (see Lemma A.1):

H(n, s, pn, ps) =
1

2
(pn − An(n, s))2 +

(ps − As(n, s))2

2(1− κ(s)n)2
. (2.5)

2.1.2. General confinement theorems. We can now state our confinement results. Our first
theorem provides a sufficient condition on B so that no trajectory can escape from Ω.

Theorem 2.1. For every connected component C of ∂Ω, we assume that

lim
n→0

∣∣∣∣∫ δC

n

∫ LC

0

B(η, ξ)dξdη
∣∣∣∣ = +∞ , (2.6)

and that there exists MC ≥ 0 such that, for all (n, s) ∈ (0, δC)× R/LCZ,∣∣∣∣B(n, s)− 1

LC

∫ LC

0

B(n, ξ)dξ
∣∣∣∣ ≤MC . (2.7)

Then the magnetic Hamiltonian dynamics is complete (i.e. no solution of (1.3), starting in
Ω, reaches ∂Ω in finite time).

Of course, given a starting point q ∈ Ω, only the components C that bound the connected
component of q in Ω need to be taken into account. Actually, there is a more quantitative
version of the previous theorem.

Theorem 2.2. Consider a connected component C of ∂Ω. Let

K = sup
s∈R/LZ

|κ(s)| , K ′ = sup
s∈R/LZ

|κ′(s)| .

We assume that, for some ε ∈ (0, 1), δ satisfies 0 < δ ≤ ε/K. We assume that there exists
M ≥ 0 such that, for all (n, s) ∈ (0, δ)× R/LZ,∣∣∣∣B(n, s)− 1

L

∫ L

0

B(n, ξ)dξ
∣∣∣∣ ≤M . (2.8)

Consider T > 0 and q(t) = ψ(n(t), s(t)) a trajectory contained in ΩC(δ) for t ∈ [0, T ] with
energy H0. Let

f(n) = − 1

L

∫ δ

n

∫ L

0

B(η, ξ)dξdη (2.9)

and assume that
lim inf
n→0

|f(n)| > C(T ) , (2.10)
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where

C(T ) =

∣∣∣∣ṡ(0)[1− κ(s(0))n(0)] +

∫ δ

n(0)

∫ L

0

B(η, ξ)dξdη
∣∣∣∣

+
√

2H0(1 + ε) +

(
M
√

2H0 +
2H0K

′N

1− ε

)
T .

Let g1 be a continuous and strictly decreasing function such that

lim
n→0

g(n) = lim inf
n→0

|f(n)| , g ≤ |f | on [0, δ] .

Then, g takes the value C(T ) and, for all t ∈ [0, T ),

n(t) > g−1(C(T )) . (2.11)

Remark 2.1. Theorems 2.1 and 2.2 are improvements of [4, Theorems 1&2]. They tell us
that a particle in Ω never reaches the boundary of Ω. In [4], it is assumed that ∂sB is
integrable:

sup
s∈C

∫ N

0

|∂sB(m, s)|dm < +∞ , (2.12)

and the question of removing this assumption was explicitly mentioned as important (op.
cit., section 3 ). Our theorems give a partially positive answer to this question, thus allowing
for magnetic fields having wilder tangential behaviors.
- Theorem 2.1 generalizes [4, Theorem 1] by replacing the integrability assumption by (2.7).
This allows in particular to consider a magnetic field (on the unit disc) of the form

B(n, s) =
1

n
+ sin

(
χ(s)

n

)
,

where χ is a smooth function supported in (−π, π) such that χ′(0) 6= 0 and χ(0) = 0.
For this magnetic field, it is easy to check that (2.12) is not satisfied. In fact, the C∞
smoothness is actually not required; in order to draw Figure 1, we took, for simplicity, a
small perturbation of χ(s) = arcsin(sin(s)).
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Figure 1. A trajectory obtained with a magnetic field on the unit disc that
is strong near the boundary with a non-integrable tangential derivative:

B(q) =
1

1−
√
q2

1 + q2
2

+ sin

(
arcsin(q2)

1−
√
q2

1 + q2
2

)
+ 5q3

1 − 7q2 .

1such a function g always exists.
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- An explicit lower bound for the escaping time of a magnetized region is given in [4, Theorem
2] in the case when

B(n, s) =
M

nα
+ h(n, s) , α ≥ 1 . (2.13)

where M 6= 0 and h is bounded and smooth in ΩC(δ), and so that (2.12) holds. Theorem
2.2 implies [4, Theorem 2], and also provides an explicit lower bound for magnetic fields
that are not in the form (2.13), see Figure 2 where the magnetic field changes sign infinitely
many times.
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Figure 2. A trajectory obtained with a magnetic field on the unit disc that
strongly oscillates near the boundary:

B(q) =

1
2
− sin

(
1

1−
√
q21+q22

)
(1−

√
q2

1 + q2
2)2

+ 10q1 − 2q2
1 − 10q2

2 .

2.1.3. Confinement results in the radial case. When Ω = D(0, 1) and when B is radial, the
dynamics is completely integrable, and hence can be entirely described by a one degree of
freedom Hamilonian; concerning the confinement problem, this of course leads to stronger
results.

Proposition 2.3. Let q(t) = (q1(t), q2(t)) be a solution to (1.3) starting at t = 0 from inside
the unit disc. If the initial data (q(0), q̇(0)) satisfies either H1 or H2 below:

H1:

lim inf
r→1−

∣∣∣∣ 1

2π

∫
‖q(0)‖≤‖q‖≤r

B(q)dq − det(q(0), q̇(0))

∣∣∣∣ > ‖q̇(0)‖ , (2.14)

H2:

lim inf
r→1−

∣∣∣∣ 1

2π

∫
‖q(0)‖≤‖q‖≤r

B(q)dq − det(q(0), q̇(0))

∣∣∣∣ = ‖q̇(0)‖ , (2.15)

and

lim sup
r→1−

∣∣∣ 1
2π

∫
‖q(0)‖≤‖q‖≤r B(q)dq − det(q(0), q̇(0))

∣∣∣− ‖q̇(0)‖

r − 1
< 0 , (2.16)

then the solution exists for all t ≥ 0, and there exists η ∈ [0, 1) such that

∀t ≥ 0 , ‖q(t)‖ < η . (2.17)
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Figure 3. B(r) = e−r − 2
r
.
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Figure 4. B(r) = ln2(1− r): the particle is confined or not.

One can find situations where none of the hypothesis of Proposition 2.3 hold and the
trajectory can be arbitrarily close to the boundary. (see Figure 3: this unusual behavior
can be explained by a critical point of the radial Hamiltonian at r = 1, see (2.20)).

If the magnetic field is L1-integrable near the boundary of Ω, we can prove that there
exist trajectories escaping from Ω in finite time. In particular, even if the magnetic field is
infinite at the boundary, the confinement is not ensured.

Proposition 2.4. When

lim sup
r→1−

∣∣∣∣∫
D(0,r)

B(q)dq
∣∣∣∣ < +∞ , (2.18)

there exists a trajectory starting in Ω and reaching the boundary in finite time.

Of course, even under assumption (2.18), some trajectory may be confined, depending on
initial conditions (see Figure 4 where the simulations are performed with B(r) = ln2(1−r)).

2.2. Scattering in the radial case. Let us now describe our scattering result in the radial
case. We assume that B|Ω admits a locally Lipschitz extension in a neighbourhood of Ω.

In polar coordinates, we have

B = B(r)rdr ∧ dθ = d (G(r)dθ) ,

where
G(r) =

∫ r

0

τB(τ)dτ .

Via the symplectic change of coordinates

R∗+ × R/2πZ× R2 → (D \ {0})× R2

(r, θ, pr, pθ) 7→
(
r cos θ, r sin θ, cos θpr −

sin θ

r
pθ, sin θpr +

cos θ

r
pθ

)
= (q, p)

,
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the Hamiltonian becomes

H̃(r, θ, pr, pθ) =
p2
r

2
+

(pθ −G(r))2

2r2
, (2.19)

In particular, the angular momentum pθ is constant along the flow and we consider the
reduced one dimensional Hamiltonian on T ∗R∗+

H(r, pr) :=
p2
r

2
+ V (r) , V (r) :=

(pθ −G(r))2

2r2
, (2.20)

where V ∈ C1(R∗+). We notice that (see, for example, Lemma A.1)

vr = pr , vθ = r−1(pθ −G(r)) ,

where vr and vθ are the classical radial and tangential components of the velocity v.
We consider a charged particle with energy H0 arriving into the disk with velocity v1. In

particular, H0 = 1
2
‖v1‖2. If the particle escapes from the disc with velocity v2 (see Figure 5),

we have ‖v2‖ = ‖v1‖, and a natural question is to compute the (scattering) angle between
these two vectors. Let ω ∈ (−π, π] be the oriented angle between v1 and v2.

Theorem 2.5. Consider a trajectory starting on ∂Ω, with velocity v1 6= 0 and entering Ω.
This means that either vr < 0, or vr = 0 and B(1)

vθ
< −1. We define γ the angle between the

outward pointing normal and v1.
We also assume
i. either that the equation V (r) = H0 has a solution for r ∈ (0, 1) and that the closest
solution to 1, denoted by r∗, satisfies V ′(r∗) < 0.

ii. or, only when pθ = 0, that the equation V (r) = H0 has no solution.
Then the trajectory escapes from Ω in finite time with velocity v2, and we can compute

the scattering angle ω mod 2π:
i. either the trajectory does not pass through the origin and

ω = α + π − 2γ ,

where

α = 2

∫ 1

r∗

pθ −G(r)

r
√

2H0r2 − (pθ −G(r))2
dr , (2.21)

ii. or the trajectory passes through the origin (in this case pθ = 0) and

ω = α− 2γ ,

where

α = 2

∫ 1

0

−G(r)

r
√

2H0r2 −G(r)2
dr . (2.22)

3. Proofs

3.1. Proof of Theorems 2.1 and 2.2. To reach the boundary, the particle has to be close
to a connected component C of ∂Ω. Thus, we can assume that, for all t ∈ [0, T ),

q(t) ∈ ΩC(δ) .

Modifying the vector potential corresponds to a symplectic transformation of the form
(q, p) 7→ (q, p+dS(q)), for some smooth function S, and hence does not modify the trajectory
of the particle. Thus, we consider the function

α(n, s) =
s

L

∫ L

0

B(n, ξ)dξ −
∫ s

0

B(n, ξ)dξ .
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~v1

~v2

r∗

θ1

θ2

γ

α

Figure 5. The scattering arrows.

Notice that α(n, ·) is L-periodic. Recalling (2.9) and letting A = α(n, s)dn + f(n)ds, we
have B = dA. By (2.5), the corresponding Hamiltonian is

H(n, s, pn, ps) =
(pn − α(n, s))2

2
+

(ps − f(n))2

2(1− κ(s)n)2
.

Concerning Hamilton’s equations, we have in particular

ṅ = pn − α(n, s) , ṗs = B̃(n, s)ṅ− (ps − f(n))2

(1− κ(s)n)3
κ′(s)n ,

where

B̃(n, s) =
1

L

∫ L

0

B(n, ξ)dξ −B(n, s) .

We recall that, for all t ∈ [0, T ), H(n(t), s(t), pn(t), ps(t)) = H0. We get

|ṅ| ≤
√

2H0

|ps − f(n)| ≤
√

2H0(1 + ε)∣∣∣∣ (ps − f(n))2

(1− κ(s)n)3
κ′(s)n

∣∣∣∣ ≤ 2H0K
′δ

1− ε
,

(3.1)

where in the last estimates we have used the notation of Theorem 2.2 and in particular
|κ|n ≤ Kδ ≤ ε. With our assumption (2.8) on B̃(n, s), we find, for all t ∈ [0, T ),

|ps(t)| ≤ |ps(0)|+
(
M
√

2H0 +
2H0K

′δ

1− ε

)
T ,

and thus

|f(n(t))| ≤ |ps(t)|+ |ps(t)− f(n(t))| ≤ C(T ) , (3.2)
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with
C(T ) = |ps(0)|+

√
2H0(1 + ε) +

(
M
√

2H0 +
2H0K

′δ

1− ε

)
T .

If the trajectory reaches the boundary at t = T , then

lim
t→T

n(t) = 0 .

This, with (3.2) and (2.6), gives a contradiction. This proves Theorem 2.1.
Now, consider a function g as in Theorem 2.2. We have, for all t ∈ [0, T ),

g(n(t)) ≤ |f(n(t))| ≤ C(T ) .

From (2.10), we have limn→0 g(n) > C(T ); hence g must take the value C(T ) and the
conclusion follows.

3.2. Proof of Proposition 2.3. Let us recall (2.20). The assumptions of Proposition 2.3
can be written in terms of V .
(H1) If

lim inf
r→1−

V (r) > H0 , (3.3)

we consider η = sup{x ∈ (0, 1) : V (x) = H0} ∈ (0, 1). Consider a trajectory (q(t), p(t))
with q(0) ∈ D(0, 1). We can assume that q(0) 6= 0. Let T be the maximal time of
existence in D(0, 1). By energy conservation, we have, for all t ∈ [0, T ),

V (r(t)) ≤ H0 ,

so that r(t) ≤ η.
Note that (3.3) means

lim inf
r→1−

|G(r)− pθ| >
√

2H0 .

Using the usual complex coordinate in the plane R2, we can write q̇ =
(
ṙ + iθ̇r

)
eiθ

and thus
det(q(t), q̇(t)) = r2(t)θ̇(t) = pθ −G(r(t)) .

Finally, we notice that ‖q̇(0)‖ =
√

2H0 and write G(r)− pθ = G(r)−G(r(0))− [pθ −
G(r(0))], which gives (2.14).

(H2) If
lim inf
r→1−

V (r) = H0 , (3.4)

and

lim sup
r→1−

V (r)−H0

r − 1
< 0 ,

then we must again have

sup{x ∈ (0, 1) : V (x) = H0} < 1 ,

and we can proceed as above.

3.3. Proof of Proposition 2.4. Consider pθ = 0. Let |V |∞ := supr∈(0,1)|V (r)|. By
assumption, |V |∞ < +∞. Let r(0) ∈ (0, 1) and choose pr(0) > 0 such that p2

r(0) =
2 (|V |∞ − V (r(0))) + v2, with v > 0. Since, for all t ∈ [0, T ),

p2
r(t)

2
+ V (r(t)) =

p2
r(0)

2
+ V (r(0)) ,

we get ṙ(t) = pr(t) > v so that
r(t) > vt+ r(0) .

The particle escapes at t = 1−r(0)
v

.
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3.4. Proof of Theorem 2.5. We distinguish between the cases pθ = 0 and pθ 6= 0.

3.4.1. Case when pθ 6= 0. In this case, limr→0 V (r) = +∞; hence, due to energy conserva-
tion, the trajectory does not approach the origin.
i. Assume that pr(0) < 0. We have V (1) < H0 and we can consider the right most turning
point r∗ ∈ (0, 1). By definition V (r∗) = H0, and necessarily V ′(r∗) ≤ 0.

If V ′(r∗) < 0, it is easy to check that r reaches r∗ in finite time, say t = t∗. This time
is given by

t∗ =

∫ 1

r∗

dr√
2(H0 − V (r))

.

By symmetry, the escape time is 2t∗. Since θ̇ = pθ−G(r)
r2

, we have

θ(t∗)− θ(0) =

∫ t∗

0

pθ −G(r)

r2
dt =

∫ t∗

0

(pθ −G(r))ṙ

r2pr
dt =

∫ t∗

0

− (pθ −G(r))ṙ

r2
√

2(H0 − V (r))
dt ,

so that

θ(t∗)− θ(0) =

∫ 1

r∗

pθ −G(r)

r2
√

2(H0 − V (r))
dr .

By symmetry, we have

θ(2t∗)− θ(0) = 2

∫ 1

r∗

pθ −G(r)

r2
√

2(H0 − V (r))
dr .

If V ′(r∗) = 0, (r∗, 0) is a critical point of the Hamiltonian and we get that r reaches
r∗ in infinite time (see Figure 6).

ii. Assume that pr(0) = 0. Then V (1) = H0. By assumption (the trajectory enters
D(0, 1)), we have V ′(1) ≥ 0, i.e., (pθ−G(1))B(1) + (pθ−G(1))2 ≤ 0 . If V ′(1) = 0, the
particle sits at a fixed point of the Hamiltonian system, and hence r(t) ≡ 1 is constant.
If V ′(1) > 0, it enters D(0, 1) and the discussion is the same as previously.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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0.6

0.8

1

Figure 6. B(r) = e−r − 2
r
.

3.4.2. Case when pθ = 0. In this case, since G(0) = 0, V (r) = 1
2r2
G(r)2 admits a continuous

extension at r = 0.
i. Assume that pr(0) < 0. We have V (1) < H0. The existence of r∗ such that V (r∗) = H0

is not ensured. If V (r) < H0 on [0, 1], the particle reaches r = 0 in finite time t = t∗:

t∗ =

∫ 1

0

dr√
2(H0 − V (r))

.



BOUNDARY EFFECTS ON THE MAGNETIC HAMILTONIAN DYNAMICS 11

We get, by symmetry,

θ(2t∗)− θ(0) = 2

∫ 1

0

−G(r)

r2
√

2(H0 − V (r))
dr + π .

If there exists r∗ ∈ (0, 1) such that V (r∗) = H0, the trajectory does not reach the origin
and the discussion is the same as in the case pθ 6= 0.

ii. Assume that pr(0) = 0. The discussion is the same as when pθ 6= 0.

3.4.3. Scattering angle. We can now end the proof of Theorem 2.5. In terms of complex
numbers, we can write

v1 = (vr(0) + ivθ(0))eiθ1 , v2 = (−vr(0) + ivθ(0))eiθ2 .

The scattering angle is

θ2 − θ1 + Arg

(
−vr(0) + ivθ(0)

vr(0) + ivθ(0)

)
.

If γ denotes the argument of vr(0) + ivθ(0), the scattering angle is thus

θ2 − θ1 + π − 2γ .

Appendix A. Tubular coordinates

Lemma A.1. We write A = A1dq1 + A2dq2. With (2.1), we have

A = Andn+ Asds , Ã = (An, As)
T = (dψ)T(A1, A2)T .

We have

H(n, s, pn, ps) = H ◦Ψ(n, s, pn, ps) =
(pn − An(n, s))2

2
+

(ps − As(n, s))2

2(1− κ(s)n)2
. (A.1)

Moreover, vn = pn−An(n, s) and vs = (1−nκ(s))−1(ps−As) are the normal and tangential
component of v.

Proof. We write

2H(q, p) = ‖p− A‖2 = ‖(dψ−1)T(p̃− Ã)‖2 = 〈(dψ−1)(dψ−1)T(p̃− Ã), p̃− Ã〉 ,

with p̃ = (pn, ps)
T. Note that

(dψ−1)T = [N(s) , (1− nκ(s))γ′(s)] . (A.2)

We get

(dψ−1)(dψ−1)T =

(
1 0
0 (1− nκ(s))−2

)
.

Concerning the velocity v, we write

v = p− A = (dψ−1)T(p̃− Ã) ,

and we use (A.2). �
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References

[1] C. Castilho. The motion of a charged particle on a Riemannian surface under a non-zero magnetic field.
J. Differential Equations, 171(1):110–131, 2001.

[2] Y. Colin de Verdière and F. Truc. Confining quantum particles with a purely magnetic field. Ann. Inst.
Fourier (Grenoble), 60(7):2333–2356 (2011), 2010.
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