
HAL Id: hal-01797957
https://hal.science/hal-01797957v1

Submitted on 23 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computation of 2D 8x8 DCT Based on the Loeffler
Factorization Using Algebraic Integer Encoding

Diego F. G. Coelho, Sushmabhargavi Nimmalapalli, Vassil Dimitrov, Arjuna
Madanayake, Renato J. Cintra, Arnaud Tisserand

To cite this version:
Diego F. G. Coelho, Sushmabhargavi Nimmalapalli, Vassil Dimitrov, Arjuna Madanayake, Re-
nato J. Cintra, et al.. Computation of 2D 8x8 DCT Based on the Loeffler Factorization Us-
ing Algebraic Integer Encoding. IEEE Transactions on Computers, 2018, 67 (12), pp.1692-1702.
�10.1109/TC.2018.2837755�. �hal-01797957�

https://hal.science/hal-01797957v1
https://hal.archives-ouvertes.fr

1

Computation of 2D 8×8 DCT Based on the
Loeffler Factorization Using Algebraic Integer

Encoding

Diego F. G. Coelho, Student Member, IEEE, Sushmabhargavi Nimmalapalli, Vassil S. Dimitrov,

Arjuna Madanayake, Member, IEEE, Renato J. Cintra, Senior Member, IEEE,

and Arnaud Tisserand, Senior Member, IEEE

Abstract—This paper proposes a computational method for 2D 8×8 DCT based on algebraic integers. The proposed algorithm is

based on the Loeffler 1D DCT algorithm, and is shown to operate with exact computation—i.e., error-free arithmetic—up to the final

reconstruction step (FRS). The proposed algebraic integer architecture maintains error-free computations until an entire block of DCT

coefficients having size 8×8 is computed, unlike algorithms in the literature which claim to be error-free but in fact introduce arithmetic

errors between the column- and row-wise 1D DCT stages in a 2D DCT operation. Fast algorithms are proposed for the final

reconstruction step employing two approaches, namely, the expansion factor and dyadic approximation. A digital architecture is also

proposed for a particular FRS algorithm, and is implemented on an FPGA platform for on-chip verification. The FPGA implementation

operates at 360 MHz, and is capable of a real-time throughput of 3.6 ·108 2D DCTs of size 8×8 every second, with corresponding pixel

rate of 2.3 ·1010 pixels per second. The digital architecture is synthesized using 180 nm CMOS standard cells and shows a chip area of

7.41 mm2. The CMOS design is predicted to operate at 893 MHz clock frequency, at a dynamic power consumption

13.22 mW/MHz · V2
sup.

Index Terms—Algebraic integers, Error-free computation, DCT, Multidimension

✦

1 INTRODUCTION

P ROPOSED in 1974 by Ahmed et al. [1], the discrete cosine

transform (DCT) is a pivotal tool in signal processing prob-

lems [2], [3], such as image compression [4], noise reduction [5],

and watermarking methods [6], [7]. Among the several existing

discrete transforms, the DCT has the distinctive characteristic of

optimally approximating the Karhunen-Loève transform (KLT) for

highly correlated stationary Markov signals of type I [3]. This is

relevant because images often follow such model [3].

• Authors thank CNPq and FACEPE, Brazil, and NSERC, Canada, for

partial support. The authors would like to thank the referees of the paper

for their numerous suggestions that greatly improved the quality of the

paper.

• D. F. G. Coelho was with the Graduate Program in Electrical and

Computer Engineering, University of Calgary. Now he is with Microsemi

Corporation, Calgary, Canada. E-mail: diegofgcoelho@gmail.com

• Sushmabhargavi Nimmalapalli is with the Graduate Program in Electrical

and Computer Engineering, University of Akron.

• V. S. Dimitrov is with the Department of Electrical and Computer

Engineering, University of Calgary. E-mail: vdvsd103@gmail.com

• A. Madanayake is with the Department of Electrical and Computer

Engineering, University of Akron. E-mail: arjuna@uakron.edu

• R. J. Cintra is with the Signal Processing Group, Departamento de

Estatı́stica, Universidade Federal de Pernambuco and the Department

of Electrical and Computer Engineering, University of Calgary. E-mail:

rjdsc@de.ufpe.br

• A. Tisserand is with CNRS (French National Center for Scientific Research)

and Lab-STICC laboratory in Lorient, France.

The 8-point DCT of type II, hereafter referred only as DCT [3],

has been employed in different image and video compression

standards [8], including JPEG [9], MPEG-1 [10], H.264 [11], and

HEVC [12]. Due to such wide acceptance, several fast algorithms

were proposed for the 8-point DCT [3]. A particularly relevant fast

algorithm is the one proposed by Loeffler et al. described in [13],

which is capable of computing the 8-point DCT with the minimum

possible number of multiplications [13]–[15]. Because of this, the

Loeffler factorization for the 8-point DCT is considered to be a

reference method for comparing DCT algorithms.

The theory of algebraic integers (AI) was first introduced in

the context of digital signal processing in 1985 by Cozzens and

Finkelstein [16], [17] aiming at the computation of the discrete

Fourier transform (DFT). The method included the use of residue

number systems in order to reduce the dynamic range of the

quantities involved in the DFT computation. In [17], it was

shown that it is possible to numerically evaluate the DFT in

exact format and without error propagation, achieving arbitrary

precision according to a final reconstruction step (FRS). The FRS

is responsible for mapping back the quantities from algebraic

integer representation into usual fixed-point representation. The

irrational quantities required in the FRS are approximated by

rational quantities that can be efficiently implemented in hardware.

Several fast algorithms based on algebraic integer theory have

been proposed for the computation of the 1D and 2D DCT [18]–

[21]. These architectures are able to compute the 1D DCT without

multipliers within an error-free structure.

Usual computation of the 2D DCT is accomplished by column-

and row-wise calls of the 1D DCT. However simply computing

the 1D DCT by means of AI-based algorithm does not result

in a bona fide AI-based 2D DCT computation. Indeed, from the

2

2D DCT point-of-view, the FRS blocks from AI-based 1D DCT

appear as an intermediate computation. Such intermediate recon-

struction precludes error-free computation and undermines one of

the purposes of employing algebraic integers. This drawback was

identified in [22], [23] where an error-free computation of 2D DCT

was proposed for the Arai algorithm [24]. Therefore, the output of

the algorithm used both in [22] and [23] is a non-uniform scaled

version of the 2D DCT spectrum.

The error-free characteristic of the methods proposed in [16]–

[23] is a by-product of the algebraic integer encoding, possibly

not the most important. Additional advantages of AI-based fast

algorithms include (i) parallelization and (ii) low latency due to

the accumulation of multiplicative complexity at the FRS.

This paper aims at introducing a 2D DCT algorithm based

on the AI representation that combines (i) high throughput; (ii)

low latency; (iii) parallelization; and (iv) error-free architecture.

This is achieved by means of the Loeffler fast algorithm for the

1D 8-point DCT using the encoding proposed in [25]. The error-

free architecture is possible only because we propose new fast

algorithms for the 1D DCT tailored for the inputs required by

the 2D architecture. The use of the proposed dedicated algorithms

allows the removal of the FRS at the end of each 1D DCT when

applied to the columns of the 8×8 blocks. A digital circuit capable

of computing the 2D DCT with the above properties becomes an

attractive tool according to several metrics [2].

This article unfolds as follows. Section 2 reviews the alge-

braic integer representation proposed in [25] and employed in

the present work. Section 2 summarizes the 1D DCT for real

quantized input sequences and the Loeffler DCT fast algorithm.

Section 3 reviews the 2D DCT and presents the fast algorithms

needed to compute the 2D DCT using algebraic integer theory

in a error-free fashion. A comparison between the introduced

scheme with previous works that propose AI-based error-free

2D DCT computation is supplied. Section 4 details the FRS for

the 2D DCT computation and introduces two different methods for

the efficient decoding of algebraic integer quantities. In Section 5,

an FPGA implementation for the proposed 2D DCT architecture

is proposed. Section 6 concludes the paper.

2 THE ALGEBRAIC INTEGER REPRESENTATION

2.1 Review of 8-point DCT AI Basis

2.1.1 The AI Basis

The 8-point 1D DCT is a linear orthogonal transformation given

by [3], [4]:

Xk =
1

2

7

∑
n=0

βkxn cos

[

π(2n+1)k

16

]

, k = 0,1, . . . ,7, (1)

where β0 = 1/
√

2 and βk = 1, for k = 1,2, . . . ,7.

In [25], the authors characterized the ring spanned by the

set Z whose elements are 1 and ck , where ck = 2cos(kπ/16),
for k = 1,2, . . .,7. The vector space span(Z) generated by linear

combination of the elements of Z is suitable for the computation

of the 8-point DCT. This is due to the fact that the 8-point DCT

requires the quantities cos [πk(2n+1)/16], n,k = 0,1, . . . ,7 [3].

Hereafter, we denote ζ =
[

1 c1 c2 c3 c4 c5 c6 c7

]⊤

as the basis element vector.

2.1.2 Encoding and Decoding

The encoding of a given real number x over the con-

sidered AI basis is denoted by fenc(x;ζ) = x, where x =

[

a0 a1 a2 a3 a4 a5 a6 a7

]⊤
is the encoded integer

vector, ak ∈ Z, k = 0,1, . . . ,7, and ⊤ denotes transposition.

The decoding operation is given directly by the dot product

operation [22]:

fdec(x;ζ) = x⊤ ·ζ = a0 +
7

∑
k=1

ak · ck = x̂. (2)

In [25], it was shown that the above representation is dense

and can provide arbitrary precision, i.e., it is always possible to

determine a vector x such that |x− x̂|< ε , for any ε > 0. Authors

have also pointed out that in usual applications, such as in the

context of image compression, the input data are real, discrete, and

quantized [26] in the form of an integer [3]. In such conditions,

a real quantized input m, the AI-encoded data can be trivially

obtained according to fenc(m;ζ) =
[

m 0 0 0 0 0 0
]⊤

.

2.1.3 Arithmetic Operations

AI-based addition and multiplication operations over the consid-

ered basis were defined in [25], being the only elementary opera-

tions required by the Loeffler DCT algorithm. Since AI quantities

are represented by arrays of integers, the addition and subtraction

operations obey the usual vector addition and subtraction rule.

For the multiplication operation, the product of an arbitrary

algebraic integer in the proposed representation by one of the basis

elements obey the relations described in Table 1. Such multipli-

cations are trivial in the sense that only additions, subtractions,

and permutations of the input coefficients are needed. In hardware

implementation, these operations are performed by simple wiring

and adders/subtractors.

2.2 Loeffler 1D DCT Multiplicands

The Loeffler DCT algorithm has a signal flow graph (SFG) with

four stages (cf. Figure 1 in [25]) and it requires the following

multiplicands: {c1,
√

2c2,c3,c4,c5,
√

2c6,c7}. If the multiplicands

in Stage 2 to Stage 4 are combined, then only six resulting multi-

plicands are required: c4 ·c2, c4 ·c6, c4 ·c3, c4 ·c5, c4 ·c1, and c4 ·c7.

Employing trigonometric rules, we obtain that ci ·ck = ci+k +ci−k,

for any i,k ∈ Z and ci = −c16−i, for i = 8,9, . . . ,16. Therefore,

the quantities required by Loeffler DCT computation possess

simple and multiplierless representations over the representation

introduced in [25].

In [25], it was shown that the ring implied by the AI formalism

for the 1D DCT case is over-complete; and thus the coefficients

linked to the basis element c4 are not required. On the other hand,

the 2D DCT demands the coefficients associated to c4.

2.3 1D AI-based Fast Algorithm

The representation proposed in [25] when applied to the 1D 8-

point DCT furnishes a multiplierless algorithm that requires a total

of 20 additions (cf. Figure 3 in [25]). Indeed, due to Loeffler

DCT definition, the algorithm output is a scaled DCT with scaling

factor of 2. If required, the output can be re-scaled by a simple bit-

shifting or it can be inserted into the decoding stage. Therefore, the

scaling by 2 does not add to the increase of arithmetic complexity

when performing the processing.

3

TABLE 1
Quantities required by Loeffler algorithm for 8-point DCT and their respective products by an arbitrary algebraic integer

x fenc(x;ζ) ·u
1 [u0 u1 u2 u3 u4 u5 u6 u7]

⊤

c1 [2u1 u0 +u2 u1 +u3 u2 +u4 u3 +u5 u4 +u6 u5 +u7 u6]
⊤

c2 [2u2 u1 +u3 u0 +u4 u1 +u5 u2 +u6 u3 +u7 u4 u5 −u7]
⊤

c3 [2u3 u2 +u4 u1 +u5 u0 +u6 u1 +u7 u2 u3 −u7 u4 −u6]
⊤

c4 [2u4 u3 +u5 u2 +u6 u1 +u7 u0 u1 −u7 u2 −u6 u3 −u5]
⊤

c5 [2u5 u4 +u6 u3 +u7 u2 u1 −u7 u0 −u6 u1 −u5 u2 −u4]
⊤

c6 [2u6 u5 +u7 u4 u3 −u7 u2 −u6 u1 −u5 u0 −u4 u1 −u3]
⊤

c7 [2u7 u6 u5 −u7 u4 −u6 u3 −u5 u2 −u4 u1 −u3 u0 −u2]
⊤

3 THE 2D DCT AND THE AI BASIS REPRESENTA-

TION

3.1 The 2D DCT

Let xm,n be a 2D array for m,n = 0,1, . . . ,7. The 2D 8-point DCT

is a linear transformation defined as [3], [4]:

Xl,k =
1

4

7

∑
m=0

7

∑
n=0

αkβlxm,n cos

[

π(2n+1)l

16

]

cos

[

π(2m+1)k

16

]

,

(3)

where l,k = 0,1, . . . ,7, α0 = β0 = 1/
√

2 and αk = βl = 1, for l,k =
1,2, . . . ,7.

As adopted by several image encoding schemes [3], [27]–[29],

the 2D DCT computation is performed by successive calls of the

1D DCT applied to the columns of the input 2D data, then to the

rows of the resulting matrix. For blocks of size 8×8, sixteen calls

of the 1D DCTs are required to furnish the 2D DCT.

3.2 2D AI-based Fast Algorithm

When the 2D input array is real and quantized, several simplifi-

cations arises. These simplifications can be exploited to provide

efficient fast algorithms for the 2D DCT over the AI basis

representation proposed in [25] without the need of FRS for each

1D DCT between the computation over the columns and rows.

Considering the 2D DCT computation by means of column-

and row-wise calls of the 1D DCT, we notice the following

structure. If the 2D input data consists of integer elements, then

the AI-encoded quantities resulting from the column-wise calls of

the 1D DCT have the following configuration: (i) the elements

in the 0th and 4th rows have always non-null first coefficient in

its AI-based representation; (ii) the elements in 1st, 3rd, 5th, and

7th rows exhibit non-null odd-index coefficients; and (iii) the 2nd

and 6th rows have non-null coefficients only in the 3rd and 7th

coefficients on its respective AI-based representation. Such fixed

patterns are due to the algorithm for class A input (cf. Figure 3

in [25]).

In view of their patterns, we categorize the AI quantities into

the five classes as shown in Table 2, where non-null coefficients

locations are represented by the cross symbol. If we represent

the two-dimensional input sequence in graphical format as in

Figure 1(a), we have the configuration in Figure 1(b) after the

application of 1D DCT over the columns. Letters A, B, C, D, and

E represent the class to which the quantity belongs according to

Table 2.

For an error-free realization of the 2D DCT without FRS

blocks between the column- and row-wise 1D DCT calls, we

TABLE 2
AI representation classification. Cross symbols correspond to non-null

coefficients

Class AI representation

A u = [× 0 0 0 0 0 0 0]⊤

B u = [0 × 0 × 0 × 0 ×]⊤

C u = [0 0 × 0 0 0 × 0]⊤

D u = [× 0 × 0 × 0 × 0]⊤

E u = [× 0 0 0 × 0 0 0]⊤

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

m

n

(a) Input data

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

l

n

(b) Column-wise
1D DCT output

l

k

B

D

B

D

B

D

B

D

C

B

E

B

C

B

E

B

B

D

B

D

B

D

B

D

A

B

C

B

A

B

C

B

B

D

B

D

B

D

B

D

C

B

E

B

C

B

E

B

B

D

B

D

B

D

B

D

A

B

C

B

A

B

C

B

(c) 2D DCT output

Fig. 1. 2D representation of the input coefficient class before the trans-
formation (a), after the application of the 1D DCT over its columns (b)
and after the application of the 2D DCT (c).

need to derive tailored AI-based DCT algorithms considering

input data in Class B and C. For input in Class A, the DCT

algorithm collapses to the method detailed in [25]. For such,

we consider the multiplication rules in Table 1. The obtained

procedures are detailed in the algorithms in Figure 2, for Class B

data; and in Figure 3, for Class C data. The algorithm in Figure 2

requires 136 additions and 14 bit-shifting operations; whereas the

procedure in Figure 3 demands 74 additions and 8 bit-shifting

operations.

The outputs of the algorithms in Figures 2 and 3 also follow

a fixed pattern that determines the class of each output element

in the AI representation. The class of each element of the output

sequence is shown in Figure 1(c).

For a given 8 × 8 block x, let xm,· and let x·,n denote the

mth row and the nth column of x, respectively. Let also the

operators DCTA(·), DCTB(·), and DCTC(·) be instantiations of

the algorithms for Class A input (cf. Figure 3 in [25]), Class

B as in Figure 2, and Class C as in Figure 3, respectively. For

example, DCTA(x·,n) denotes the computation of the 1D DCT over

the nth column of the block x whose coefficients belong to Class A

in the AI-based representation. Let also ZX be the set of 8-point

4

Input: xn ∈ ZB for n = 0,1, . . . ,7
Output: Xk ∈ span(Z), for k = 0,1, . . . ,7

Stage 1 Outputs:
A0 = [0 x0(2)+x7(2) 0 x0(4)+x7(4) 0 x0(6)+x7(6) 0 x0(8)+x7(8)]

⊤

A1 = [0 x1(2)+x6(2) 0 x1(4)+x6(4) 0 x1(6)+x6(6) 0 x1(8)+x6(8)]
⊤

A2 = [0 x2(2)+x5(2) 0 x2(4)+x5(4) 0 x2(6)+x5(6) 0 x2(8)+x5(8)]
⊤

A3 = [0 x3(2)+x4(2) 0 x3(4)+x4(4) 0 x3(6)+x4(6) 0 x3(8)+x4(8)]
⊤

A4 = [0 x3(2)−x4(2) 0 x3(4)−x4(4) 0 x3(6)−x4(6) 0 x3(8)−x4(8)]
⊤

A5 = [0 x2(2)−x5(2) 0 x2(4)−x5(4) 0 x2(6)−x5(6) 0 x2(8)−x5(8)]
⊤

A6 = [0 x1(2)−x6(2) 0 x1(4)−x6(4) 0 x1(6)−x6(6) 0 x1(8)−x6(8)]
⊤

A7 = [0 x0(2)−x7(2) 0 x0(4)−x7(4) 0 x0(6)−x7(6) 0 x0(8)−x7(8)]
⊤

Auxiliary additions in Stage 2:
a0 = A4(2)+A7(8) a1 = A4(2)−A7(8) a2 = A4(8)+A7(2) a3 = A4(8)−A7(2)
a4 = A4(4)+A7(6) a5 = A4(4)−A7(6) a6 = A4(6)+A7(4) a7 = A4(6)−A7(4)
a8 = A5(2)+A6(8) a9 = A5(2)−A6(8) a10 = A5(8)+A6(2) a11 = A5(8)−A6(2)
a12 = A5(4)+A6(6) a13 = A5(4)−A6(6) a14 = A5(6)+A6(4) a15 = A5(6)−A6(4)

Stage 2 Outputs:
B0 = [0 A0(2)+A3(2) 0 A0(4)+A3(4) 0 A0(6)+A3(6) 0 A0(8)+A3(8)]

⊤

B1 = [0 A1(2)+A2(2) 0 A1(4)+A2(4) 0 A1(6)+A2(6) 0 A1(8)+A2(8)]
⊤

B2 = [0 A1(2)−A2(2) 0 A1(4)−A2(4) 0 A1(6)−A2(6) 0 A1(8)−A2(8)]
⊤

B3 = [0 A0(2)−A3(2) 0 A0(4)−A3(4) 0 A0(6)−A3(6) 0 A0(8)−A3(8)]
⊤

B4 = [2a4 0 a0 +a6 0 a1 +a2 0 a5 −a3 0]⊤

B5 = [2a8 0 a9 +a12 0 a13 +a14 0 a15 +a10 0]⊤

B6 = [−2a11 0 a10 −a15 0 −a13 +a14 0 a12 −a9 0]⊤

B7 = [−2a7 0 −a3 −a5 0 −a1 +a2 0 a6 −a0 0]⊤

Auxiliary additions in Stage 3:
b0 = B2(2)+B3(2) b1 = B2(2)−B3(2) b2 = B2(4)+B3(4) b3 = B2(4)−B3(4)
b4 = B2(6)+B3(6) b5 = B2(6)−B3(6) b6 = B2(8)+B3(8) b7 = B2(8)−B3(8)
b8 = b0 +b7 b9 = b0 −b7 b10 = b1 +b6 b11 = b1 −b6

b12 = b2 +b5 b13 = b2 −b5 b14 = b3 +b4 b15 = b3 −b4

Stage 3 Outputs:
C0 = [0 B0(2)+B1(2) 0 B0(4)+B1(4) 0 B0(6)+B1(6) 0 B0(8)+B1(8)]

⊤

C1 = [0 B0(2)−B1(2) 0 B0(4)−B1(4) 0 B0(6)−B1(6) 0 B0(8)−B1(8)]⊤

C2 = [0 b9 +b13 0 b8 −b15 0 −b11 +b12 0 −b10 +b14]
⊤

C3 = [0 −b10 −b14 0 −b11 −b12 0 −b15 −b8 0 b13 −b9]
⊤

C4 = [B4(1)+B6(1) 0 B4(3)+B6(3) 0 B4(5)+B6(5) 0 B4(7)+B6(7) 0]⊤

C5 = [−B5(1)+B7(1) 0 −B5(3)+B7(3) 0 −B5(5)+B7(5) 0 −B5(7)+B7(7) 0]⊤

C6 = [B4(1)−B6(1) 0 B4(3)−B6(3) 0 B4(5)−B6(5) 0 B4(7)−B6(7) 0]⊤

C7 = [B5(1)+B7(1) 0 B5(3)+B7(3) 0 B5(5)+B7(5) 0 B5(7)+B7(7) 0]⊤

Output:
X0 = [0 2C0(2) 0 2C0(4) 0 2C0(6) 0 2C0(8)]

⊤

X1 = [C4(1)+C7(1) 0 C4(3)+C7(3) 0 C4(5)+C7(5) 0 C4(7)+C7(7) 0]⊤

X2 = [0 C2(2) 0 C2(4) 0 C2(6) 0 C2(8)]
⊤

X3 = [2C5(5) 0 C5(3)+C5(7) 0 C5(1) 0 C5(3)−C5(7) 0]⊤

X4 = [0 2C1(2) 0 2C1(4) 0 2C1(6) 0 2C1(8)]
⊤

X5 = [2C6(5) 0 C6(3)+C6(7) 0 C6(1) 0 C6(3)−C6(7) 0]⊤

X6 = [0 C3(2) 0 C3(4) 0 C3(6) 0 C3(8)]
⊤

X7 = [−C4(1)+C7(1) 0 −C4(3)+C7(3) 0 −C4(5)+C7(5) 0 −C4(7)+C7(7) 0]⊤

Fig. 2. The 8-point DCT algorithm for input sequence in AI representation belonging to Class B.

integer vectors belonging to the Class X, where X ∈ {A,B,C}.

Thus, a complete fast algorithm for the computation of the

2D DCT using AI representation can be expressed in terms of

DCTA(·), DCTB(·), and DCTC(·), as shown in Figure 4. Notice

that the output are in AI-based representation. The algorithm in

Figure 4 along with the FRS is graphically depicted in Figure 5.

The computational cost of the algorithm shown in Figure 4 can

be derived by noticing that it demands 10, 4, and 2 instantiations

of DCTA, DCTB, and DCTC, respectively. Considering the

number of additions and bit-shifting operations required by DCTA,

DCTB, and DCTC, the computation of the 2D DCT using AI-based

representation requires a total of 892 additions and 92 bit-shifting

operations. Arithmetic operation count and comparison are show

in Table 3.

3.3 Comparison with Previous Works

Different works [18], [30]–[32] proposed fast algorithms for the

AI-based 2D DCT computation claiming to provide error-free

computation. However, in previous works, the computation of

2D DCT was based in several instantiations of the 1D DCT with

its FRS blocks placed in-between the column- and row-wise DCT

computations. Such intermediate reconstruction step introduces

numerical inaccuracies, which makes the implementation inca-

pable of error-free computation [18], [30]–[32]. This also reflects

on deterioration of performance metrics such as throughput, maxi-

mum operating frequency, area, and latency as the FRS blocks are

computationally intensive and hardware demanding.

Nonetheless, there is one algorithm for full error-free com-

putation of the 2D DCT using the Arai factorization [24]. The

Arai algorithm over algebraic integers was employed in two

5

Input: xn ∈ ZC for n = 0,1, . . . ,7
Output: Xk ∈ span(Z), for k = 0,1, . . . ,7

Stage 1 Outputs:
A0 = [0 0 x0(3)+x7(3) 0 0 0 x0(7)+x7(7) 0]⊤

A1 = [0 0 x1(3)+x6(3) 0 0 0 x1(7)+x6(7) 0]⊤

A2 = [0 0 x2(3)+x5(3) 0 0 0 x2(7)+x5(7) 0]⊤

A3 = [0 0 x3(3)+x4(3) 0 0 0 x3(7)+x4(7) 0]⊤

A4 = [0 0 x3(3)−x4(3) 0 0 0 x3(7)−x4(7) 0]⊤

A5 = [0 0 x2(3)−x5(3) 0 0 0 x2(7)−x5(7) 0]⊤

A6 = [0 0 x1(3)−x6(3) 0 0 0 x1(7)−x6(7) 0]⊤

A7 = [0 0 x0(3)−x7(3) 0 0 0 x0(7)−x7(7) 0]⊤

Auxiliary additions in Stage 2:
a0 = A4(3)+A7(7) a1 = A4(7)+A7(3) a2 = A4(3)−A7(7) a3 =−A4(7)+A7(3)
a4 = A5(3)+A6(7) a5 = A5(3)−A6(7) a6 = A5(7)+A6(3) a7 = A5(7)−A6(3)

Stage 2 Outputs:
B0 = [0 0 A0(3)+A3(3) 0 0 0 A0(7)+A3(7) 0]⊤

B1 = [0 0 A1(3)+A2(3) 0 0 0 A1(7)+A2(7) 0]⊤

B2 = [0 0 A1(3)−A2(3) 0 0 0 A1(7)−A2(7) 0]⊤

B3 = [0 0 A0(3)−A3(3) 0 0 0 A0(7)−A3(7) 0]⊤

B4 = [0 a0 0 a1 0 a2 0 a3]
⊤

B5 = [0 a4 0 a5 0 a6 0 a7]
⊤

B6 = [0 −a7 0 a6 0 −a5 0 a4]
⊤

B7 = [0 a3 0 −a2 0 a1 0 −a0]
⊤

Auxiliary additions in Stage 3:
b0 = B2(3)+B3(7) b1 = B2(3)−B3(7) b2 = B2(7)+B3(3) b3 = B2(7)−B3(3)

Stage 3 Outputs:
C0 = [0 0 B0(3)+B1(3) 0 0 0 B0(7)+B1(7) 0]⊤

C1 = [0 0 B0(3)−B1(3) 0 0 0 B0(7)−B1(7) 0]⊤

C2 = [2(b0 −b3) 0 0 0 2b2 0 0 0]⊤

C3 = [−2(b0 +b3) 0 0 0 −2b1 0 0 0]⊤

C4 = [0 B4(2)+B6(2) 0 B4(4)+B6(4) 0 B4(6)+B6(6) 0 B4(8)+B6(8)]
⊤

C5 = [0 −B5(2)+B7(2) 0 −B5(4)+B7(4) 0 −B5(6)+B7(6) 0 −B5(8)+B7(8)]
⊤

C6 = [0 B4(2)−B6(2) 0 B4(4)−B6(4) 0 B4(6)−B6(6) 0 B4(8)−B6(8)]
⊤

C7 = [0 B5(2)+B7(2) 0 B5(4)+B7(4) 0 B5(6)+B7(6) 0 B5(8)+B7(8)]
⊤

Output:
X0 = [0 0 2C0(3) 0 0 0 2C0(7) 0]⊤

X4 = [0 0 2C1(3) 0 0 0 2C1(7) 0]⊤

X2 = [C2(1) 0 0 0 C2(5) 0 0 0]⊤

X6 = [C3(1) 0 0 0 C3(5) 0 0 0]⊤

X7 = [0 −C4(2)+C7(2) 0 −C4(4)+C7(4) 0 −C4(6)+C7(6) 0 −C4(8)+C7(8)]
⊤

X3 = [0 C5(4)+C5(6) 0 C5(2)+C5(8) 0 C5(2)−C5(8) 0 C5(4)−C5(6)]
⊤

X5 = [0 C6(4)+C6(6) 0 C6(2)+C6(8) 0 C6(2)−C6(8) 0 C6(4)−C6(6)]
⊤

X1 = [0 C4(2)+C7(2) 0 C4(4)+C7(4) 0 C4(6)+C7(6) 0 C4(8)+C7(8)]
⊤

Fig. 3. The 8-point DCT algorithm for input sequence in AI representation belonging to Class C.

Input: xm,n ∈ ZA for m,n = 0,1, . . .,7
Output: Xk,l ∈ span(Z), for k, l = 0,1, . . . ,7

Compute the 1D DCT over the columns of xm,n :

X·,l = DCTA(x·,l), l = 0,1, . . .,7

Compute the 1D DCT over the rows of xm,n :

Xk,· = DCTA(Xk,·), k = 0,4

Xk,· = DCTB(Xk,·), k = 1,3,5,7

Xk,· = DCTC(Xk,·), k = 2,6

Return Xk,l

Fig. 4. The 8-point 2D DCT AI-based fast algorithm.

different architectures: a row-parallel 8×8 2D DCT architecture

using algebraic integer-based exact computation [22] and a single-

channel architecture for algebraic integer-based 8×8 2D DCT

computation [23]. The work in [22] is a extension of the work

in [33], where the first error-free 2D DCT was proposed. Since

these architectures are based on the Arai algorithm [24], they are

capable of providing the non-uniformly scaled 2D DCT spectrum.

This is due to the fact that Arai 1D DCT is capable of only provide

a scaled spectrum, thus eliminating some multiplicands required

for the non-scaled 1D DCT. The implementations in [22] and [23]

can be modified in order to provide exact 2D DCT spectrum at the

cost of changes on the FRS.

However, our proposed architecture is error-free up to the FRS

after the application of the 1D DCT in both dimensions and does

not share the intricate details of non-uniform scale as in [22], [23].

Table 3 summarizes the comparison between the proposed method

and previous works.

4 FINAL RECONSTRUCTION STEP

The final reconstruction step (FRS) block performs the AI de-

coding described in (2). It maps AI quantities back to fixed-

6

Input Block

Output Block

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

DCT

A

DCT

A

DCT

A

DCT

A

DCT

A

DCT

A

DCT

A

DCT

A

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

A

B

C

B

DCT

A

DCT

A

B

D

B

D

B

D

B

D

C

B

E

B

C

B

E

B

B

D

B

D

B

D

B

D

A

B

C

B

A

B

C

B

B

D

B

D

B

D

B

D

C

B

E

B

C

B

E

B

B

D

B

D

B

D

B

D

A

B

C

B

A

B

C

B

DCT

B

DCT

C

DCT

B

DCT

B

DCT

C

DCT

B

FRS

Fig. 5. Graphical representation of the whole 2D DCT parallel architecture using AI representation including FRS. The blocks DCTA, DCTB, and
DCTC represent the 1D DCT in AI-based representation for inputs in the classes A, B, and C, respectively, and are implemented by the algorithms
in Figure 3 in [25], Figure 2, and Figure 3.

TABLE 3
Comparison for fast algorithms for the computation of 2D 8-point DCT

with algebraic integer theory

Algorithm Error-free?
Complexity Uniform

Add Shift Scale?

Dimitrov et al. [18] No 384 0 No
Madanayake et al. [22] Yes 1064 32 No
Edirisuriya et al. [23] Yes 1064 32 No
Pradini et al. [30] No 304 0 Yes
Wahid et al. [31] No 384 64 Yes
Wahid et al. [32] No 384 64 No
Rajapaksha et al. [34] Yes 1064 32 No
Fu et al. [35] No 352 360 Yes
Proposed Yes 892 92 Yes

point representation. In the proposed design implementation of

the 2D DCT, the FRS is performed only at the very final stage

after all the computations required by the 2D DCT are completed

over the AI representation. No intermediate reconstructions are

required.

In this section, we consider two methods for AI decod-

ing: (i) dyadic approximation [3] and (ii) the expansion factor

method [3], [36] with a modified cost function for optimized

results. The dyadic approximation method is suitable for scenarios

where the exact spectrum is required, whereas the expansion factor

is applicable when a scaled version is acceptable.

In both cases, the FRS is reduced to the evaluation of the

product of a few integers by known integer constants. This

operation can be understood as an instance of the multiple

constant multiplication (MCM) problem with a small number of

constants—no more than four, as will be clear in the next sections.

Several methods for MCM evaluation with different constants have

been developed by means of optimization and graph theory [37]–

[40]. For solving the present MCM problems, we employ the

method described in [41], which is based on number recoding

and subexpression factorization and has not been applied to the

design of FRS block in previous works [18], [22], [23], [30]–[32],

[34], [35]. MCM evaluation can save up to 40% of area in FPGA

implementation and provide faster computation when compared to

routine methods [41].

4.1 Dyadic Approximation Method

The irrational quantities required by the FRS can be approximated

with arbitrary precision by dyadic integers [3]. Dyadic integers are

of the form p/2k, where p is an odd integer and k ∈N. Thus, they

can be efficiently implemented in hardware [2], [3], [42].

In order to implement the FRS with a minimum arithmetic

cost, we first approximate each of the involved irrational constants

by a dyadic integer. The accuracy of its approximation is deter-

mined by the wordlength employed, which can vary according to

specific applications. For the sake of clarity, adopting the 11-bit

wordlength, we have:

ζ ≈
[

1 4017
211

3784
211

3406
211

2896
211

2276
211

1567
211

799
211

]⊤
. (4)

For the decoding of 2D DCT output coefficients into fixed-

point representation, we need to consider the quantities in each

AI number class and design specific algorithms for each class.

Considering classes shown in Table 2, we have the algorithms

shown in Table 4 for the approximate ζ with 11-bit wordlength.

The operation x ≪ k denotes the left shift of k bits over the integer

quantity x (i.e., x ·2k); whereas x ≫ k denotes the right shift of k

bits.

4.2 Expansion Factor

The expansion factor method returns a scaled version of DCT

spectrum and is based on finding an appropriate real constant α∗>
1 such that α∗ · ζ is as close as possible to a vector of integers.

This provides means of performing the decoding operation with

multiplications by known integer constants that can be efficiently

performed with:

α∗ · fdec(x;ζ)≈ x⊤ · round(α∗ ·ζ), (5)

where round(·) operates over each component of its vector ar-

gument. Previous works have considered an expansion factor α∗

satisfying the following optimization problem:

α∗ = arg min
α>1

‖ α ·ζ− round(α ·ζ) ‖ . (6)

In this context, all the components of the basis vector ζ are taken

into account with the same weight. However, this is not suitable

for this problem. In fact, the required number of multiplications

by each of the components of ζ is not uniform. This can be seen

by the output pattern of the 2D DCT coefficients in Figure 1(c).

Therefore, in order to obtain a more precise estimation for α∗,

7

TABLE 4
Fast algorithms for FRS for dyadic approximation for 11-bit wordlength and its arithmetic cost

Class Algorithm Output fdec(x;ζ)
Arithmetic Cost

Additions Shifts

A fenc(x;ζ) = u0 u0 0 0

B

t1 = u1 −u3 ≪ 2

4017·u1+3406·u3+2276·u5+799·u7

211 13 12

t2 = u3 −u5 ≪ 1

t3 = t2 −u7 ≪ 4

t4 =−u7 +u1

t5 = u5 +u7 ≪ 2

t6 = u3 +u1

t7 = t4 − t1 ≪ 4

t8 = −t1 + t5 ≪ 2

t9 = −t2 + t6 ≪ 2

t10 =−t3 ≪ 1+ t7
t11 = t3 + t8 ≪ 2

t12 = t11 ≪ 4+ t10

fdec(x;ζ) = (t9 ≪ 10+ t12)≫ 11

C

t1 = u2 ≪ 3+u6

3784·u2+1567·u6

211 5 6

t2 = u6 ≪ 5−u2

t3 = t1 − t1 ≪ 5

t4 = t2 + t1 ≪ 3

fdec(x;ζ) = (t3 + t4 ≪ 6)≫ 11

D

t1 = u2 ≪ 3−u6

2048·u0+3784·u2+2896·u4+1567·u6

211 9 9

t2 = u4 ≪ 2−u4

t3 = t1 + t2 ≪ 1

t4 = u4 −u2 ≪ 2

t5 = t4 ≪ 4+ t1
t6 = t5 − t3 ≪ 5

t7 = t3 +u6 ≪ 2

fdec(x;ζ) = (t6 + t7 ≪ 9)≫ 11+u0

E

t1 =−u4 +u4 ≪ 4
2048·u0+2896·u4

211 4 5t2 = t1 ≪ 2+ t1
fdec(x;ζ) = (u4 ≪ 12− t2 ≪ 4)≫ 11+u0

we must take into account the relative frequency of occurrence

of multiplications of the coefficients of ζ. This results in the

following optimization problem:

α∗ = arg min
α>1

‖f⊤ · (α ·ζ− round(α ·ζ))‖, (7)

where f represents the vector with the relative frequency of the

occurrence of multiplications by each coefficient of ζ. Clearly,

f has the same dimension as ζ, and for this particular case of

2D DCT with the representation proposed in [25], we have that

f =
[

24
220

32
220

24
220

32
220

20
220

32
220

24
220

32
220

]⊤
. (8)

The problem in (7) is non-linear and has no closed solution

in terms of simple algebraic functions. In order to solve (7) we

employ exhaustive search methods. Although exhaustive search

methods are not considered to be efficient for solving optimiza-

tion problems in general, the search space for finding suitable

expansion factors can be made small enough without imposing

prohibitive limitations.

For instance, considering the search space [0,2048] (11-bit

wordlength) and a step size of 10−2, we obtain the optimal value

of α∗ = 1844.95, leading to

1844.95 ·ζ =

1844.95

3618.97 . . .
3409.00 . . .
3068.02 . . .
2609.13 . . .
2049.98 . . .
1412.05 . . .
719.85 . . .

≈

1845

3619

3409

3068

2609

2050

1412

720

. (9)

Table 5 shows the optimal expansion factors for some

wordlengths N for searches with steps of 10−2. Minimum and

maximum relative errors are also shown.

For the decoding of 2D DCT output coefficient into fixed-point

representation, we need to consider the different number classes

shown in Table 2 and design specific algorithms for them. We

adopted the MCM method described in [41]. We derived the al-

gorithms shown in Table 6 for the optimal constant α∗ = 1844.95

with 11-bit wordlength.

8

TABLE 5
Scale factors and maximum/minimum relative errors

N α∗ ζ− round(α∗·ζ)
α∗

min(·) max(·)
5 25.99 5.22 ·10−4 9.41 ·10−3

6 43.28 5.18 ·10−3 6.47 ·10−3

7 69.26 1.81 ·10−4 3.75 ·10−3

8 253.83 1.96 ·10−4 1.08 ·10−3

9 341.01 1.8 ·10−11 7.65 ·10−4

10 341.01 1.8 ·10−11 7.65 ·10−4

11 1844.95 5.03 ·10−4 8.31 ·10−5

12 1844.95 5.03 ·10−4 8.31 ·10−5

5 DIGITAL IMPLEMENTATION

5.1 FPGA Implementation

A fully-parallel architecture for the real-time implementation of

the proposed 2D DCT using AI encoding has been designed,

simulated and implemented using field programmable gate array

(FPGA) technology. The architecture assumes 64 parallel input

channels pertaining to the 64 locations of an 8×8 matrix of pixel

values, which are assumed to be of 8-bit signed values using twos

complement format. The inputs are assumed to be normalized in

the range −1 to 127/128. The AI encoded architectures corre-

sponding to DCTA, DCTB, and DCTC are realized in parallelized

digital hardware.

The 64 output coefficients are maintained in the AI-encoded

infinite precision format up to the FRS block for conversion to

fixed-point representation for subsequent processing. The algo-

rithms for multiple constant multiplication described in Table 4

and 6 were used in the FRS design. The FRS was also made fully-

parallel. Both the AI-encoded DCT architecture as well as the FRS

are fine-grain pipelined for low critical path delay.

The resulting digital design was simulated using bit-true and

cycle accurate models using 1.5 · 104 number of randomly gener-

ated 8× 8 input vectors to verify correct operation. The verified

design was thereafter targeted to a Xilinx Virtex-6 XC6VLX240T-

1FFG1156 FPGA device installed on a Xilinx ML605 evaluation

platform. The design was subjected to physical implementation

and test using 1.5 · 104 test matrices provided to the implementa-

tion using stepped hardware co-simulation on the JTAG port. The

FPGA resources consumption and metrics are shown in Table 7

along with competitors designs available metrics in Table 31. The

throughput is calculated as the number of output coefficients in

each cycle and the designs in the works in Table 7 are classified

into fully parallel 64 coefficients per clock cycle (FPar64); row

parallel 8 coefficients per clock cycle (RPar8); fully serial 1

coefficient per clock cycle (FSer1).

The block and pixel rate represent the number of 8×8 blocks

and pixels processed per second. The maximum clock frequency

for potential real-time operation is 360 MHz. This implies a

throughput of 360 million 2D DCT computations of size 8× 8

every second, if this core is used as part of a larger image/video

processing system designed on the same FPGA technology. This

throughput is equivalent to a pixel rate of 23,040 billion pix-

els/second, and a sustained data processing rate of 184.32 Gbps

1. Note, however, that we do not include the work [18] in Table 7. This is
because the work in [18] does not present any FPGA implementation metric.

(internal to the core). Getting such a high data rate into the

processing core is a challenging problem itself. The intention here

is to give the reader a sense of the capabilities of the FPGA

realization, if a suitable data source and algorithm is in fact

available to feed it. Given that the proposed core is expected to

be part of a larger ultra-high definition video processing system,

the obtained throughput from the FPGA implementation is quite

sufficient for today’s most challenging UHD video applications.

Note that the proposed design achieves the highest maximum

frequency among all the competitors designs. The work in [31]

proposes a 2D DCT algorithms, but only the FPGA implemen-

tations results for 1D DCT are presented and therefore used in

Table 7. The only works containing complete error-free implemen-

tation of 2D DCT are [22], [23] and [34]. The proposed design

demands a total of 26,000 registers and 30,200 look-up tables

(LUTs) used for logic against 10,282 registers and 12,007 LUTs

required by the design in [22]. Although the number of registers

and LUTs used are around three times larger, the proposed design

offers 100 times higher block processing rate and 1000 times

higher pixel rate compared to [22].

5.2 ASIC Synthesis

Apart from the FPGA implementation, the design is subjected to

the application specific integrated circuit (ASIC) synthesis. The

employed ASIC technology is the AMS 180 nm with the software

Genus version 15.23. The supply voltage (Vsup) for the ASIC

synthesis is 1.8 V. Table 8 results shows the ASIC metrics.

Note that because the proposed architecture is capable of

computing the DCT coefficients in a parallel fashion reducing

the critical path, the maximum operating frequency achieved is

very high compared to its competitors. The proposed scheme

requires around 3–4 times the area in the design in [35]. However,

this area requirement is translated into a thousandfold pixel rate

improvement.

6 CONCLUSIONS

In this paper we proposed a new error-free fast algorithm for

the computation of the 2D DCT. The algorithm is based on

algebraic integer representation proposed in [25]. The proposed

fast algorithm does not require any intermediate FRS between the

the column- and row-wise 1D DCT calls.

This work provided FPGA and ASIC implementation results.

The FPGA results shows that the proposed fast algorithm pro-

vided higher maximum operating frequency when compared to

competitors. This is important in applications requiring high data

throughput and real time processing of images or videos. Future

works may include the design of 3D DCT algorithms using the

algebraic integer based numerical representation employed in this

work.

REFERENCES

[1] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform,”
IEEE Transactions on Computers, vol. C-23, no. 1, pp. 90–93, Jan. 1974.

[2] A. V. Oppenheim, R. W. Schafer, M. T. Yoder, and W. T. Padgett, Discrete

Time Signal Processing, 3rd ed., A. V. Oppenheim, Ed. Upper Saddle
River, NJ: Prentice-Hall, Inc., Aug. 2009, vol. 1.

[3] V. Britanak, P. Yip, and K. R. Rao, Discrete Cosine and Sine Transforms.
Academic Press, 2007.

[4] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed.
Prentice-Hall, Inc., 2001.

9

TABLE 6
Fast algorithms for FRS for expansion factor method for 11-bit wordlength (α∗ = 1844.95) and its arithmetic cost

Class Algorithm Output fdec(x;ζ)
Arithmetic Cost

Additions Shifts

A

t1 =−u0 +u0 ≪ 2

1845 ·u0 4 4
t2 = u0 ≪ 11+u0

t3 = t1 ≪ 4+ t1
fenc(x;ζ) = t2 − t3 ≪ 2

B

t1 = t2 + t3 ≪ 8

3619 ·u1+3068 ·u3+2050 ·u5+720 ·u7 10 10

t2 =−u7 ≪ 4+u1

t3 = u3 ≪ 2+u7

t4 = u5 −u3 ≪ 1

t5 =−u1 ≪ 4+u1

t6 = u1 ≪ 1+u5

t7 = t4 + t5 ≪ 4

t8 = t7 ≪ 1− t1
t9 = t6 ≪ 9+ t1

fdec(x;ζ) = t8 + t9 ≪ 2

C

t1 = u2 −u6 ≪ 1

3409 ·u2+1412 ·u6 7 7

t2 = u6 ≪ 2+u2

t3 = u2 +u2 ≪ 8

t4 = t2 + t1 ≪ 6

t5 = t1 − t1 ≪ 2

t6 = t5 ≪ 8+ t4
fdec(x;ζ) = t3 ≪ 4+ t6

D

t1 =−t5 ≪ 7+ t6

1845 ·u0+3049 ·u2+2609 ·u4+1412 ·u6 13 12

t2 = u0 +u4

t3 = u2 ≪ 1+u0

t4 = u0 ≪ 2−u4

t5 = u6 +u2 ≪ 1

t6 = t3 + t4 ≪ 2

t7 = u6 ≪ 2+u2

t8 = u4 ≪ 2−u6

t9 = t7 + t2
t10 = t2 ≪ 4+ t8

t11 = t10 ≪ 7+ t9
t12 =−t1 ≪ 2+ t1

fdec(x;ζ) = t11 + t12 ≪ 2

E

t1 = u0 ≪ 4+ t3

1845 ·u0+2609 ·u4 7 6

t2 = u0 +u4

t3 =−u4 ≪ 2+u0

t4 = u4 ≪ 9+ t2
t5 = t1 − t1 ≪ 2

t6 = t4 + t2 ≪ 11

fdec(x;ζ) = t5 ≪ 2+ t6

10

TABLE 7
Comparison of FPGA implementation metrics. The FPar64 means fully parallel 64 coefficients per clock cycle, RPar8 means row parallel 8

coefficients per clock cycle, and FSer1 means fully serial 1 coefficient per clock cycle

Method Max. Freq. Board Throughput
Block Pixel No. of No. of
Rate Rate Slice LUT’S Slice registers

Madanayake et al. [22] 307 MHz
Xilinx Virtex-6

RPar8 4.78 ·106 3.83 ·107 12,007 10,282
(XC6VLX240T)

Edirisuriya et al. [23] 316 MHz
Xilinx Virtex-6

FSer1 4.93 ·106 4.93 ·106 – –
(XC6VLX240T)

Wahid et al. [31] (1D DCT) 36.7 MHz
Actel A500K

– – – – –
(A500K050)

Wahid et al. [32] 101 MHz
Xilinx Virtex-E

– – – – –
(XCV200E-8)

Rajapaksha et al. [34] 302 MHz Achronix SPD60 RPar8 4.71 ·106 3.77 ·107 – –

Proposed 360 MHz
Xilinx Virtex-6

FPar64 3.6 ·108 2.30 ·1010 30,200 26,000
(XC6VLX240T)

TABLE 8
Comparison of ASIC implementation metrics. The FPar64 means fully parallel 64 coefficients per clock cycle, RPar8 means row parallel 8

coefficients per clock cycle, and FSer1 means fully serial 1 coefficient per clock cycle

Method Max. Freq. Technology Throughput
Block Pixel Area Dynamic Norm. Dyn. Power

Rate Rate (mm2) Power (W) (mW/MHz·V2
sup)

Pradini et al. [30] 210 MHz 0.18 µm CMOS FPar64 4.20 ·107 2.68 ·109 – – –

Fu et al. [35] 75 MHz 0.18 µm CMOS FSer1 1.71 ·106 7.50 ·107 2.16 – –

Proposed 893 MHz 0.18 µm CMOS FPar64 8.93 ·108 5.71 ·1010 7.22 11.85 13.269

[5] S. K. Gupta, J. Jain, and R. Pachauri, “Improved noise cancellation
in discrete cosine transform domain using adaptive block LMS filter,”
International Journal of Engineering Science and Advanced Technology,
vol. 2, no. 3, pp. 498–502, Jun. 2012.

[6] Q. C. S. An and C. Wang, “A computation structure for 2-D DCT
watermarking,” in 52nd IEEE International Midwest Symposium on

Circuits and Systems, 2009, pp. 577–580.

[7] J. Xiao and Y. Wang, “Toward a better understanding of DCT coef-
ficients in watermarking,” in Pacific-Asia Workshop on Computational

Intelligence and Industrial Application, vol. 2, 2008, pp. 206–209.

[8] V. Bhaskaran and K. Konstantinides, Image and Video Compression

Standards. Kluwer Academic Publishers, Jun. 1997.

[9] G. K. Wallace, “The JPEG still picture compression standard,” IEEE

Transactions on Consumer Electronics, vol. 38, no. 1, pp. xviii–xxxiv,
Feb. 1992.

[10] N. Roma and L. Sousa, “Efficient hybrid DCT-domain algorithm for
video spatial downscaling,” EURASIP Journal on Advances in Signal

Processing, vol. 2007, no. 57291, Jun. 2007.

[11] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of
the H.264/AVC video coding standard,” IEEE Transactions on Circuits

and Systems for Video Technology, vol. 13, no. 7, pp. 560–576, Jul. 2003.

[12] M. T. Pourazad, C. Doutre, M. Azimi, and P. Nasiopoulos, “HEVC: The
new gold standard for video compression: How does HEVC compare
with H.264/AVC?” IEEE Consumer Electronics Magazine, vol. 1, no. 3,
pp. 36–46, Jul. 2012.

[13] C. Loeffler, A. Ligtenberg, and G. S. Moschytz, “A practical fast 1-D
DCT algorithms with 11 multiplications,” in International Conference

on Acoustics, Speech, and Signal Processing, vol. 2, May 1989, pp. 988–
991.

[14] M. T. Heideman and C. S. Burrus, Multiplicative complexity, convolution,

and the DFT. New York: Springer-Verlag, 1988, originally presented as
the author’s thesis (Ph. D.–Rice University) under title: Applications of
multiplicative complexity theory to convolution and the discrete Fourier

transform.

[15] P. Duhamel and H. H’Mida, “New 2n DCT algorithms suitable for
VLSI implementation,” in IEEE International Conference on Acoustics,

Speech, and Signal Processing, vol. 12, 1987, pp. 1805–1808.

[16] J. H. Cozzens and L. A. Finkelstein, “Computing the discrete Fourier
transform using residue number systems in a ring of algebraic integers,”
IEEE Transactions on Information Theory, vol. 31, no. 5, pp. 580–588,
Sep. 1985.

[17] ——, “Range and error analysis for a fast Fourier transform computed
over Z[ω],” IEEE Transactions on Information Theory, vol. 33, no. 4,
p. 9, Jul. 1987.

[18] V. Dimitrov, K. A. Wahid, and G. Jullien, “Multiplication-free 8× 8 2D
DCT architecture using algebraic integer encoding,” Electronics Letters,
vol. 40, no. 20, pp. 1310–1311, Sep. 2004.

[19] V. Dimitrov and K. A. Wahid, “On the error-free computation of fast
cosine transform,” Information Theories and Applications, vol. 12, no. 4,
pp. 321–327, 2005.

[20] K. A. Wahid, V. S. Dimitrov, and G. A. Jullien, “On the error-free
realization of a scaled DCT algorithm and its VLSI implementation,”
IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 54,
no. 8, pp. 700–704, Jul. 2007.

[21] K. Wahid, Error-free Implementation of the Discrete Cosine Transform:

Algorithms and Architectures using Multidimensional Algebraic Integer

Quantization. University of Saskatchewan: Lambert Academic Publish-
ing, Nov. 2010.

[22] A. Madanayake, R. J. Cintra, D. Onen, V. S. Dimitrov, N. T. Rajapaksha,
L. T. Bruton, and A. Edirisuriya, “A row parallel 8×8 2D DCT architec-
ture using algebraic integer based exact arithmetic,” IEEE Transactions

on Circuits and Systems for Video Technology, vol. 22, no. 6, pp. 915–
929, Jun. 2012.

[23] A. Edirisuriya, A. Madanayake, R. J. Cintra, V. S. Dimitrov, and N. Ra-
japaksha, “A single-channel architecture for algebraic integer-based 8×8
2-D DCT computation,” IEEE Transactions on Circuits and Systems for

11

Video Technology, vol. 23, no. 12, pp. 2083–2089, Jun. 2013.
[24] Y. Arai, T. Agui, and M. Nakajima, “A fast DCT-SQ scheme for images,”

IEICE Transactions, vol. E71, no. 11, pp. 1095–1097, Nov. 1988.
[25] D. F. G. Coelho, R. J. Cintra, S. Kulasekera, A. Madanayake, and V. S.

Dimitrov, “Error-free computation of 8-point discrete cosine transform
based on the Loeffler factorisation and algebraic integers,” IET Signal

Processing, vol. 10, no. 2, Mar. 2016.
[26] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-time signal

processing, 2nd ed., A. V. Oppenheim, Ed. Upper Saddle River, NJ:
Prentice-Hall, Inc., 1999, vol. 1.

[27] S. An and C. Wang, “A computation structure for 2-D DCT watermark-
ing,” in 52nd IEEE International Midwest Symposium on Circuits and

Systems, Ag 2009, pp. 577–580.
[28] F. M. Bayer and R. J. Cintra, “Image compression via a fast DCT

approximation,” IEEE Latin America Transactions, vol. 8, no. 6, pp.
708–713, Jan. 2011.

[29] J. Goebel, G. Paim, L. Agostini, B. Zatt, and M. Porto, “An HEVC multi-
size DCT hardware with constant throughput and supporting heteroge-
neous CUs,” in IEEE International Symposium on Circuits and Systems

(ISCAS), May 2016, pp. 2202–2205.
[30] A. Pradini, T. M. Roffi, R. Dirza, and T. Adiono, “VLSI design of a high-

throughput discrete cosine transform for image compression systems,”
in International Conference on Electrical Engineering and Informatics

(ICEEI), Jul. 2011, pp. 1–6.
[31] K. Wahid, V. Dimitrov, and G. Jullien, “Error-free computation of 8× 8

2D DCT and IDCT using two-dimensional algebraic integer quantiza-
tion,” in 17th IEEE Symposium on Computer Arithmetic (ARITH’05),
Jun. 2005, pp. 214–221.

[32] ——, “New encoding of 8× 8 DCT to make H.264 lossless,” in IEEE

Asia Pacific Conference on Circuits and Systems, 2006, pp. 780–783.
[33] H. L. P. A. Madanayake, R. J. Cintra, D. Onen, V. S. Dimitrov, and

L. T. Bruton, “Algebraic integer based 8×8 2-D DCT architecture for
digital video processing,” in IEEE International Symposium of Circuits

and Systems (ISCAS), May 2011, pp. 1247–1250.
[34] N. Rajapaksha, A. Edirisuriya, A. Madanayake, R. J. Cintra, D. Onen,

I. Amer, and V. S. Dimitrov, “Asynchronous realization of algebraic
integer-based 2D DCT using achronix speedster SPD60 FPGA,” Journal

of Electrical and Computer Engineering, Feb. 2013, article ID 834793.
[35] M. Fu, G. A. Jullien, V. S. Dimitrov, and M. Ahmadi, “A low-power DCT

IP core based on 2D algebraic integer encoding,” in IEEE International

Symposium on Circuits and Systems (ISCAS), vol. 2, May 2004, pp. II–
765–8 Vol.2.

[36] G. Plonka, “A global method for invertible integer DCT and integer
wavelet algorithms,” Applied and Computational Harmonic Analysis,
vol. 16, no. 2, pp. 90–110, Mar. 2003.

[37] S. Athar and O. Gustafsson, “Optimization of AIQ representations for
low complexity wavelet transforms,” in 20th European Conference on

Circuit Theory and Design (ECCTD), Aug. 2011, pp. 314–317.
[38] O. Gustafsson and L. Wanhammar, “A novel approach to multiple

constant multiplication using minimum spanning trees,” in The 45th

Midwest Symposium on Circuits and Systems (MWSCAS), vol. 3, Aug.
2002, pp. 652–655.

[39] O. Gustafsson, H. Ohlsson, and L. Wanhammar, “Improved multiple
constant multiplication using a minimum spanning tree,” in Thirty-Eighth

Asilomar Conference on Signals, Systems and Computers, vol. 1, no. 1,
Nov. 2004, pp. 63–66.

[40] O. Gustafsson, “Towards optimal multiple constant multiplication: A
hypergraph approach,” in The 42nd Asilomar Conference on Signals,

Systems and Computers, 2008, pp. 1805–1809.
[41] N. Boullis and A. Tisserand, “Some optimizations of hardware multipli-

cation by constant matrices,” IEEE Transactions on Computers, vol. 54,
no. 10, pp. 1271–1282, Oct. 2005.

[42] R. E. Blahut, Fast Algorithms for Digital Signal Processing. Cambridge
University Press, Jun. 2010.

Diego F. G. Coelho received the B.Sc. degree
in Electronics Engineering and M.Sc degree in
Statistics from the Universidade Federal de Per-
nambuco (UFPE), Recife, Brazil, in 2012 and
2015, respectively, and the Ph.D. degree from
University of Calgary, Calgary, Canada, in 2018.
His interests include digital signal and image
processing, information theory, optimization, ma-
trix computation, numerical analysis, high perfor-
mance computing, and 3D image reconstruction.
Dr. Coelho is currently with Microsemi Corpora-

tion, Calgary, Canada.

Sushmabhargavi Nimmalapalli was born in
Hyderabad, India, in 1995. She received the
B.Tech.Eng. degree in Electronics and Commu-
nication Engineering (First Division with Distinc-
tion) from Kakatiya Institute of Technology and
Science, Warangal, India, in 2016. She is cur-
rently working towards the M.S degree in Elec-
trical and Computer Engineering at the Univer-
sity of Akron, in the area of signal processing.
From 2015 to 2016, she worked as a project
team leader at the Department of Electronics

and Communication Engineering, Kakatiya Institute of Technology and
Science, for a project based on image processing. During her tenure
as an undergraduate student, she was awarded best academic student
award in the Department of Electronics and Communication Engineer-
ing. Her current research interests include signal & image processing
and VLSI.

Vassil S. Dimitrov is a professor at the Depart-
ment of Electrical and Computer Engineering,
University of Calgary, Canada, and member of
the Management Board of the Centre for Infor-
mation Security and Cryptography. He has vast
experience in the domain of cryptography and
efficient implementation of cryptographic proto-
cols. Dr. Dimitrov has published three books,
more than 100 papers in peer-reviewed jour-
nals and holds three patents. He has exten-
sively taught courses on digital signal process-

ing, cryptography, information theory and computational complexity.
Since 1997 he is a member of the New York Academy of Sciences.
Prior to his professorship at the University of Calgary, he held academic
position at the University of Windsor, Canada and Helsinki University
of Technology, Finland. He is doing extensive consulting work in the
domains of cryptography, big data analysis, and high performance com-
puting.

Arjuna Madanayake (M’03) is an Associate Pro-
fessor at the Department of Electrical and Com-
puter Engineering at the University of Akron. He
completed both M.Sc. (2004) and PhD (2008)
Degrees, in Electrical Engineering, from the Uni-
versity of Calgary, Canada. Dr. Madanayake
obtained a BSc in Electronic and Telecommu-
nication Engineering (with First Class Honors)
from the University of Moratuwa in Sri Lanka,
in 2002. His research interests include multidi-
mensional signal processing, analog/digital and

mixed-signal electronics, FPGA systems, and VLSI for fast algorithms.

12

Renato J. Cintra (SM’2010) received the B.Sc.,

Arnaud Tisserand , PhD 1997, is senior re-
searcher at CNRS (French National Center for
Scientific Research) in computer science in Lab-
STICC laboratory. His research interests include
computer arithmetic, computer architecture, dig-
ital security, VLSI and FPGA design, design au-
tomation, low-power design and applications in
applied cryptography, scientific computing, digi-
tal signal processing. He is Associate Editor of
the IEEE Transactions on Computers and senior
member of the IEEE (SSCS, CAS).

M.Sc., and D.Sc. degrees in electrical engineer-
ing from the Universidade Federal de Pernam-
buco (UFPE), Recife, Brazil, in 1999, 2001, and
2005, respectively. He is an associate profes-
sor at the Department of Statistics, UFPE. He
was a visiting researcher at the INSA, Lyon,
France, during 2015 and currently is a visiting
professor at the University of Calgary, Canada.
He serves as an Associate Editor for the IEEE
Geoscience and Remote Sensing Letters; the

Circuits, Systems, and Signal Processing journal; the IET Circuits, De-
vices & Systems; and the Journal of Communication and Information
Systems. His long-term topics of research include theory and methods
for digital signal and image processing, numerical analysis, and applied
mathematics.

