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ON THE LARGEST PRIME FACTORS OF CONSECUTIVE INTEGERS

Xiaodong Lü (Yangzhou–Nancy) and Zhiwei Wang∗ (Nancy)

Abstract. Denote by P+(n) the largest prime factor of an integer n. One of Erdős-Turán’s
conjectures asserts that the asymptotic density of integers n satisfying P+(n) < P+(n+ 1)
is 1/2. In this paper, we prove that this density is larger than 0.2017, which improves the
previous result “0.1356” of the second author.

1. Introduction

For each integer n ⩾ 1, let P+(n) denote the largest prime factor of n with the convention
that P+(1) = 1. An integer n is called y−friable (or y−smooth) if P+(n) ⩽ y. In 1930,
Dickman [6] obtained the well-known result: the following asymptotic formula∣∣{n ⩽ x : P+(n) ⩽ y

}∣∣ ∼ xρ(u) (u ⩾ 1) (1.1)
holds for x → ∞ with u = log x/ log y fixed, where ρ(u) is the Dickman−de Bruijn function
function. Later, the distribution of P+(·) has been studied by many mathematicians, for ex-
ample the work of Dartyge [2], La Bretèche and Tenenbaum [4, 5], Granville [12], Hildebrand
[14, 15], Hildebrand and Tenenbaum [16, 17], Moree [18]. In recent years, friable integers
play an important role in number theory, for example, an extraordinary breakthrough of
Zhang [30] towards solving the Twin Prime Conjecture, remarkable progress of Vaughan
and Wooley [23, 24, 25] in Waring’s problem.

In this paper, we aim to study the simultaneous distribution of the function P+(·) at
consecutive integers. In the 1930s, Erdős and Turán formulated the following conjecture in
the correspondence.

Conjecture 1 (Erdős-Turán). For x → ∞, we have∣∣{n ⩽ x : P+(n) < P+(n+ 1)
}∣∣ ∼ 1

2
x. (1.2)

Conjecture 1 is a constant concern for Erdős even though he thought it might be intractable
by any technique at our disposal (see [8] or [21]). Later in 1978, Erdős and Pomerance
conjectured that the largest prime factors of n and n+ 1 are “independent events”.

Conjecture 2 (Erdős-Pomerance). For any a, b ∈ [0, 1], denote by B(x; a, b) the number of
n ⩽ x with P+(n) ⩽ xa and P+(n) ⩽ xb,

B(x; a, b) :=
∣∣{n ⩽ x : P+(n) ⩽ xa, P+(n+ 1) ⩽ xb

}∣∣.
Then the asymptotic density

b(a, b) := lim
x→∞

B(x; a, b)

exists and equals ρ( 1
a
)ρ(1

b
).

In 2011, De Koninck and Doyon formulated a more general conjecture in order to study
the distance between friable integers.
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Conjecture 3 (De Koninck-Doyon). Fix an arbitrary integer k ⩾ 2 and let n be a large
number. Let a1, a2, . . . , ak be any permutation of the numbers 0, 1, . . . , k − 1. Then,

Prob
[
P+(n+ a1) < P+(n+ a2) < · · · < P+(n+ ak)

]
=

1

k!
.

There has been some progress towards these problems.
• For the Conjecture 1 (Erdős-Turán), in 1978 Erdős and Pomerance [9] first proved

that there exists a positive asymptotic density of integers n with P+(n) < P+(n+1).
More precisely, they proved that∣∣{n ⩽ x : P+(n) < P+(n+ 1)

}∣∣ > 0.0099x (x → ∞). (1.3)
Later in 2005, the asymptotic density 0.0099 was improved to 0.05544 by La Bretèche,
Pomerance and Tenenbaum [3], and to 0.5866 by Fouvry’s arguments in “Further
remarks” of the same paper [3]. Recently, the second author improved the asymptotic
density to 0.1063 [26], and then further to 0.1356 [28].

On the other hand, in 2001 Rivat [20] proved a P+
y (n)-version of the Erdős-Turán

conjecture for some small y. Here we just write a more concise version. Define
P+
y (n) = max{p | n : p ⩽ y} the greatest prime factor p of n which satisfies p ⩽ y.

Then for 3 ⩽ y ⩽ exp( log x
100 log log x

), we have∣∣{n ⩽ x : P+
y (n) < P+

y (n+ 1)
}∣∣ ∼ 1

2
x (x → ∞).

Very recently Teräväinen [22] proved a logarithmic version of the Conjecture 1.

δ
(
{n ∈ N : P+(n) < P+(n+ 1)}

)
= 1

2

where the logarithmic density δ of the set A ⊂ N is defined by

δ(A) = lim
x→∞

1

log x

∑
n⩽x, n∈A

1

n

whenever it exists. Besides, he also proved a logarithmic version of Conjecture 2.
• For the Conjecture 3 with k = 3, in 1978 Erdős and Pomerance [9] observed that the

patterns
P+(n− 1) > P+(n) < P+(n+ 1) (1.4)

and
P+(n− 1) < P+(n) > P+(n+ 1) (1.5)

both occur infinitely often and conjectured that these two patterns occur for a positive
density of n. In addition, they proved that there are infinitely many integers n such
that

P+(n− 1) < P+(n) < P+(n+ 1)

by considering the integers n of the form n = p2
k0 with k0 well defined. Finally, for

the fourth pattern, in 2001 Balog [1] proved the following lower bound∣∣{n ⩽ x : P+(n− 1) > P+(n) > P+(n+ 1)
}∣∣ ≫ x1/2 (x → ∞).

Recently, the second author [28] made a progress towards proving that the patterns
(1.4) and (1.5) both occur for a positive density of n:

|{n ⩽ x : P+(n− 1) > P+(n) < P+(n+ 1)}| > 1.063× 10−7x (∗)
2



and

|{n ⩽ x : P+(n− 1) < P+(n) > P+(n+ 1)}| > 8.84× 10−4x (∗∗).

In addition, we can get a nontrivial upper bound for the above four patterns re-
spectively by considering the distance between friable integers. Just after the second
author’s submission [28], Teräväinen [22] obtained a similar results to (∗) et (∗∗) with
an unspecified positive density by using another method.

• For the Conjecture 3 with k ⩾ 4, little is known. In the same paper [28], the second
author proved the existence of a positive density of integers n with the largest prime
factors P+(n + j), j ⩽ k − 1 in the following two certain patterns. More precisely,
for any fixed integer k ⩾ 3 and j0 ∈ {0, . . . , k− 1}, there exist two positive constants
C3(k) and C4(k) such that∣∣{n ⩽ x : P+(n+ j0) = min

0⩽j⩽k−1
P+(n+ j)

}∣∣ ⩾ C3(k)x+ o(x)

and ∣∣{n ⩽ x : P+(n+ j0) = max
0⩽j⩽k−1

P+(n+ j)
}∣∣ ⩾ C4(k)x+ o(x).

Besides consecutive integers, the second author recently studied the largest prime factors
of consecutive integers with one of which without small prime factor. We refer the reader to
[27] for more details.

Now we consider the pattern P+(n) < P+(n + 1), i.e. the conjecture of Erdős-Turán. In
[28], the second author starts from the inclusion−exclusion principle∑

n<x
P+(n)<P+(n+1)

1 =
∑
n<x

P+(n+1)>x1−c

1−
∑
n<x

P+(n)>P+(n+1)>x1−c

1 +
∑
n<x

P+(n)<P+(n+1)⩽x1−c

1

=: SA − SB + SC ,

(1.6)

where 0 < c ⩽ 1/2 is a parameter. Then the sum SA is estimated by a result of Hildebrand
[15] and SB is estimated by the Rosser-Iwaniec sieve and a theorem of Bombieri-Vinogradov
type. For the sum SC , the second author gives a nontrivial lower bound by introducing a
well adapted system of weights ω(n; y, z) defined by

ω(n; y, z) :=
∑

z<p⩽y
p|n

1 ⩽ log x

log z
(1.7)

for n ⩽ x, z < y.
In this paper, we focus on the sum SC . In fact, in [28], the second author only sieves

out the x0.414−friable integers n ⩽ x such that n + 1 has a prime factor in the interval
(x0.414, x1/2/(log x)B] with B > 0, due to a formidable obstacle: the level of distribution
Q = x1/2/(log x)B for friable integers (see Lemma 2.2). Here by using a switch skill, we can
sieve out some friable integers n such that n+1 has a prime factor larger than x1/2. So that
we can improve the previous lower bound 0.0118x of SC in [28], and then prove that the
density of the pattern P+(n) < P+(n + 1) is larger than 1/5. More precisely, we have the
following result.
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Theorem 1. For x → ∞, we have∣∣{n < x : P+(n) < P+(n+ 1)
}∣∣ > 0.2017x. (1.8)

The lower bound is also true for the pattern P+(n) > P+(n+ 1).

Throughout this paper, we denote by ε an arbitrarily small positive constant, and p, p′

primes.

2. Lemmas

Denote by

S(x, y) :=
{
n ⩽ x : P+(n) ⩽ y

}
(2.1)

the set of y−friable integers not exceeding x and

Ψ(x, y) := |S(x, y)| (2.2)

the cardinality of S(x; y). Then we have the following lemma.

Lemma 2.1 (Hildebrand, [15]). For any ε > 0, we have

Ψ(x, y) = xρ(u)

{
1 +Oε

(
log(u+ 1)

log y

)}
uniformly, for each ε > 0, in the domain

x ⩾ x0(ε), exp
{
(log log x)5/3+ε

}
⩽ y ⩽ x,

where u = log x/ log y and ρ(u) is the Dickman−de Bruijn function which is defined by
differential equation {

ρ(u) = 1, 0 ⩽ u ⩽ 1,

uρ(u)′ = −ρ(u− 1), u > 1.

The second lemma concerns the distribution of friable integers in arithmetic progressions.

Lemma 2.2. For any given positive constant A > 0, there exists a constant B = B(A) > 0
such that the estimate∑

q⩽x1/2/(log x)B

max
t⩽x

max
(a,q)=1

∣∣∣∣∣ ∑
n∈S(t, y)

n≡a (mod q)

1− 1

φ(q)

∑
n∈S(t, y)
(n, q)=1

∣∣∣∣∣ ≪ x

(log x)A
(2.3)

holds uniformly for 2 ⩽ y ⩽ x, where the constant implied by the symbol “ ≪ ” depends only
on A.

In [29], Wolke proved a theorem of Bombieri-Vinogradov type for sifted numbers without
small prime factors, and in the same paper he also announced the similar result for friable
integers. Fouvry and Tenenbaum [10] proved a slightly weaker form of the formula (2.3). In
addition, for Lemma 2.2 we can also see the work of Fouvry-Tenenbaum [11], Harper [13]
and Drappeau [7].
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For q ∈ N and (a, q) = 1, define

π(x; ℓ, a, q) =
∑
ℓp⩽x

ℓp≡a (mod q)

1 and π′(x; ℓ, a, q) =
∑
p⩽x

ℓp≡a (mod q)

1.

Lemma 2.3. For any given positive constant A > 0, there exists a constant B = B(A) > 0
such that the estimate

∑
q⩽x1/2/(log x)B

max
y⩽x

max
(a,q)=1

∣∣∣∣∣ ∑
L1<ℓ⩽L2
(ℓ, q)=1

f(ℓ)
(
π(y; ℓ, a, q)− li(y/ℓ)

φ(q)

)∣∣∣∣∣ ≪ x

(log x)A
(2.4)

and

∑
q⩽x1/2/(log x)B

max
y⩽x

max
(a, q)=1

∣∣∣∣∣ ∑
L1<ℓ⩽L2
(ℓ, q)=1

f(ℓ)
(
π′(y/L2; ℓ, a, q)−

li(y/L2)

φ(q)

)∣∣∣∣∣ ≪ x

(log x)A
(2.5)

hold for (log y)2B < L1 ⩽ L2 < x1−ε, where |f(ℓ)| ⩽ 1 and the constant implied by the symbol
“ ≪ ” depends only on ε and A.

Proof. For (2.4), it is the Theorem 2 in [19]. To prove (2.5), we can follow step by step
Pan-Ding-Wang’s arguments of Theorem 2 in [19], so we omit the proof. □

The fourth lemma is the estimation of SA and SB in (1.6).

Lemma 2.4. Taking c = 0.2056 in (1.6), one has

SA − SB ⩾ 0.1238x.

Proof. See section 10 in [28]. □

3. Estimation of SC

In this section, we mainly focus on the estimation of SC which is defined by (1.6) with
c = 0.2056. The improvement in Theorem 1 comes from a switch skill to sieve out some
shifted friable integers with a large prime factor and a modification of well adapted system
of weights ω(n; y, z) with more delicate calculation of SC .

Recall the definitions of S(x, y) and Ψ(x, y) in (2.1) and (2.2) respectively. Define

P (y, z) =
∏

z<p<y

p, S+(x; y, z) =
{
n ⩽ x : z < P+(n) ⩽ y

}
.
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Then we have
SC =

∑
n<x

P+(n)<P+(n+1)⩽x1−c

1

⩾
∑

n∈S(x, xδ1 )

(n+1, P (x
1
2 /(log x)B , xδ1 ))>1

1 +
∑

n∈S+(x;xδ2 ,xδ1 )

(n+1, P (x
1
2 /(log x)B , xδ2 ))>1

1

+
∑

n∈S(x, x1−η1 )
(n+1, P (x1−c, x1−η1 ))>1

1 +
∑

n∈S+(x;x1−η2 ,x1−η1 )
(n+1, P (x1−c, x1−η2 ))>1

1

=:SC1 + SC2 + SC3 + SC4 ,

(3.1)

where η1, η2, δ1, δ2 are four parameters satisfying

c < η2 < η1 < δ1 < δ2 <
1

2
. (3.2)

For the inequality in (3.1), it is obvious that the integers n counted in SC1 and SC2 (or in
SC3 and SC4) are disjoint. Besides, noting that

xδ1 · x1−η1 > x, xδ2 · x1−η2 > x

by the choice of η1, η2, δ1, δ2 in (3.2), so the integers n counted in SC1 and SC3 (or in SC2

and SC4) are also disjoint. Then we deduce that the integers n counted in SC1 , SC2 , SC3

and SC4 are disjoint each other.
Next we will estimate the four sums respectively.

1. Estimation of SC1 and SC2

First we will follow the approach of [28] to estimate SC1 and SC2 . By the definition of
ω(n; y, z) in (1.7), we have

ω
(
n+ 1; x1/2/(log x)B, xδ1

){ ⩽ 1
δ1
,

(
n+ 1, P (x1/2/(log x)B, xδ1)

)
> 1,

= 0, otherwise.
(3.3)

Hence we detect the condition (n + 1, P (x1/2/(log x)B, xδ1)) > 1 in SC1 by (3.3) and we
obtain a lower bound of SC1 :

SC1 ⩾ δ1
∑

n∈S(x, xδ1 )

ω(n+ 1;x1/2/(log x)B, xδ1)

= δ1
∑

n∈S(x, xδ1 )

∑
p|(n+1)

xδ1<p⩽x1/2/(log x)B

1

= δ1
∑

δ1<p⩽x1/2/(log x)B

∑
n∈S(x, xδ1 )

n≡−1 (mod p)

1

= δ1
(
S (1)

C1
+ S (2)

C1

)
,

(3.4)
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where

S (1)
C1

=
∑

xδ1<p⩽x1/2/(log x)B

1

φ(p)

∑
n∈S(x, xδ1 )
(n, p)=1

1,

S (2)
C1

=
∑

δ1<p⩽x1/2/(log x)B

( ∑
n∈S(x, xδ1 )

n≡−1 (mod p)

1− 1

φ(p)

∑
n∈S(x, xδ1 )
(n, p)=1

1

)
.

For S (2)
C1

, by Lemma 2.2, we have

S (2)
C1

≪
∑

p⩽x1/2/(log x)B

∣∣∣∣ ∑
n∈S(x, xδ1 )

n≡−1 (mod p)

1− 1

φ(p)

∑
n∈S(x, xδ1 )
(n, p)=1

1

∣∣∣∣
≪ x(log x)−A.

(3.5)

for any A > 0, which is admissible.
We use Lemma 2.1 to estimate S (1)

C1
, and have

S (1)
C1

=
∑

xδ1<p⩽x1/2/(log x)B

1

p− 1
Ψ(x, xδ1)

= xρ
( 1

δ1

)
log

1

2δ1
+ o(x).

(3.6)

Therefore we have from (3.5) and (3.6) that

SC1 ⩾ xρ
( 1

δ1

)
δ1 log

1

2δ1
+ o(x). (3.7)

Since

SC2 =
∑

n∈S(x, xδ2 )

(n+1, P (x
1
2 /(log x)B , xδ2 ))>1

1−
∑

n∈S(x, xδ1 )

(n+1,P (x
1
2 /(log x)B , xδ2 ))>1

1

⩾ δ2

( ∑
n∈S(x, δ2)

−
∑

n∈S(x, δ1)

)
ω
(
n+ 1;x1/2/(log x)B, xδ2

)
,

A similar manipulation allows us to deduce that

SC2 ⩾ x

(
ρ
( 1

δ2

)
− ρ

( 1

δ1

))
δ2 log

1

2δ2
+ o(x). (3.8)

2. Estimation of SC3 and SC4

We now turn to consider the sums SC3 and SC4 . Noting that x1−η1 > x1/2, x1−η2 > x1/2,
so we can not use Lemme 2.2, i.e. the theorem of Bombieri-Vinogradov type for friable
integers directly as we have done for SC1 and SC2 .
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For SC3 , it counts the number of x1−η1−friable integers n such that n+1 has at least one
prime factor in the interval (x1−η1 , x1−c) with c < η1 < 1/2. Then we have

SC3 =
∑

n∈S(x, x1−η1 )
(n+1, P (x1−c, x1−η1 ))>1

1

=
∑

x1−η1<p<x1−c

∑
dp⩽x

P+(dp−1)⩽x1−η1

1

=
∑

x1−η1<p<x1−c

∑
dp⩽x

1−
∑

x1−η1<p′<x

∑
x1−η1<p<x1−c

∑
dp⩽x

dp−1≡0 (mod p′)

1.

(3.9)

For the sum SC4 , it counts the number of (x1−η1 , x1−η2 ]−friable integers n, i.e. x1−η1 <
P+(n) ⩽ x1−η2 , such that n + 1 has at least one prime factor in the interval (x1−η2 , x1−c)
with c < η2 < η1 < 1/2. So we have

SC4 =
∑

n∈S+(x;x1−η2 ,x1−η1 )
(n+1, P (x1−c, x1−η2 ))>1

1

=
∑

x1−η2<p<x1−c

∑
dp⩽x

x1−η1<P+(dp−1)⩽x1−η2

1

=
∑

x1−η1<p′⩽x1−η2

∑
x1−η2<p<x1−c

∑
dp⩽x

dp−1≡0 (mod p′)

1.

(3.10)

Combing (3.9) and (3.10), we have

SC3 + SC4 =
∑

x1−η1<p<x1−c

∑
dp⩽x

1−
∑

x1−η1<p′<x

∑
x1−η1<p<x1−c

∑
dp⩽x

dp−1≡0 (mod p′)

1

+
∑

x1−η1<p′<x1−η2

∑
x1−η2<p<x1−c

∑
dp⩽x

dp−1≡0 (mod p′)

1

=S̃C3 + S̃C4 ,

(3.11)

where
S̃C3 :=

∑
x1−η1<p⩽x1−η2

∑
dp⩽x

1−
∑

x1−η1<p′<x

∑
x1−η1<p⩽x1−η2

∑
dp⩽x

dp−1≡0 (mod p′)

1

and
S̃C4 :=

∑
x1−η2<p<x1−c

∑
dp⩽x

1−
∑

x1−η2<p′<x

∑
x1−η2<p<x1−c

∑
dp⩽x

dp−1≡0 (mod p′)

1.

8



Invoking the identity

log(dp− 1) =
∑

m|(dp−1)

Λ(m)

and prime number theory, we find

∑
x1−α<p<x1−β

∑
dp⩽x

1 =
1

log x

∑
x1−α<p<x1−β

∑
dp⩽x

log(dp− 1) + o(x)

=
1

log x

∑
p′<x

log p′
∑

x1−α<p<x1−β

∑
dp⩽x

dp−1≡0 (mod p′)

1

+
1

log x

∑
k⩾2

∑
p′k<x

log p′
∑

x1−α<p<x1−β

∑
dp⩽x

dp−1≡0 (mod p′k)

1 + o(x)

⩾ 1

log x

∑
p′<x

log p′
∑

x1−α<p<x1−β

∑
dp⩽x

dp−1≡0 (mod p′)

1 + o(x).

(3.12)

for 0 < β < α < 1.

Now for S̃C3 , we have

S̃C3 =
∑

x1−η1<p⩽x1−η2

∑
dp⩽x

1−
∑

x1−η1<p′<x

∑
x1−η1<p⩽x1−η2

∑
dp⩽x

dp−1≡0 (mod p′)

1

⩾ 1

1− η1

1

log x

∑
p′<x

log p′
∑

x1−η1<p⩽x1−η2

∑
dp⩽x

dp−1≡0 (mod p′)

1

+
(
1− 1

1− η1

) ∑
x1−η1<p⩽x1−η2

∑
dp⩽x

1

−
∑

x1−η1<p′<x

∑
x1−η1<p⩽x1−η2

∑
dp⩽x

dp−1≡0 (mod p′)

1 + o(x)

(3.13)

where we have used the estimation (3.12) with (α, β) = (η1, η2). For the second term on the
right-hand side of (3.13), we use Mertens’ formula. And for the the first term on the right-
hand side of (3.13), we split it into two sums according to whether p′ > x1−η1 or p′ ⩽ x1−η1 .
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So we obtain

S̃C3 =
1

1− η1

1

log x

∑
p′⩽x1−η1

log p′
∑

x1−η1<p⩽x1−η2

∑
dp⩽x

dp−1≡0 (mod p′)

1

+
1

log x

∑
x1−η1<p′<x

( 1

1− η1
log p′ − log x

) ∑
x1−η1<p⩽x1−η2

∑
dp⩽x

dp−1≡0 (mod p′)

1

− η1
1− η1

log
1− η2
1− η1

x+ o(x)

=
1

log x

( 1

1− η1
SA + SB

)
− η1

1− η1
log

1− η2
1− η1

x+ o(x),

(3.14)

where

SA : =
∑

p′⩽x1−η1

log p′
∑

x1−η1<p⩽x1−η2

∑
dp⩽x

dp−1≡0 (mod p′)

1,

SB : =
∑

x1−η1<p′<x

( 1

1− η1
log p′ − log x

) ∑
x1−η1<p⩽x1−η2

∑
dp⩽x

dp−1≡0 (mod p′)

1.

For SA, we have lower bound

SA ⩾
∑

p′⩽x1−η1

log p′
∑

xη2<d<xη1

(d, p′)=1

∑
x1−η1<p⩽x/d

dp−1≡0 (mod p′)

1

⩾SA1 + SA2 − SA3 ,

(3.15)

where

SA1 : =
∑

p′<x1/2/(log x)B

log p′

φ(p′)

∑
xη2<d<xη1

(d, p′)=1

∑
x1−η1<p⩽x/d

1,

SA2 : =
∑

p′<x1/2/(log x)B

log p′
∑

xη2<d<xη1

(d, p′)=1

( ∑
dp⩽x

dp−1≡0 (mod p′)

1− 1

φ(p′)

∑
dp⩽x

1
)
,

SA3 : =
∑

p′<x1/2/(log x)B

log p′
∑

xη2<d<xη1

(d, p′)=1

( ∑
p<x1−η1

dp−1≡0 (mod p′)

1− 1

φ(p′)

∑
p<x1−η1

1
)
.

for some B > 0.
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For SA2 , taking (L1, L2, ℓ) = (xη2 , xη1 , d) and f(ℓ) ≡ 1 in (2.4) of Lemma 2.3, one has
upper bound

SA2 ⩽
∑

q< x1/2

(log x)B

log q

∣∣∣∣∣ ∑
xη2<d<xη1

(d, q)=1

∑
dp⩽x

dp≡1 (mod q)

1− 1

φ(q)

∑
xη2<d<xη1

(d,q)=1

∑
dp⩽x

1

∣∣∣∣∣
≪ x

(log x)A

(3.16)

for any A > 0, which is admissible. Similarly, for SA3 , taking (L1, L2, ℓ) = (xη2 , xη1 , d) and
f(ℓ) ≡ 1 in (2.5) of Lemma 2.3, one has upper bound

SA3 ⩽
∑

q< x1/2

(log x)B

log q

∣∣∣∣∣ ∑
xη2<d<xη1

(d, q)=1

∑
p<x1−η1

dp≡1 (mod q)

1− 1

φ(q)

∑
xη2<d<xη1

(d,q)=1

∑
p<x1−η1

1

∣∣∣∣∣
≪ x

(log x)A

(3.17)

for any A > 0, which is also admissible. Then for SA1 , it follows from partial summation
and prime number theorem that

SA1 =
∑

p′<x1/2/(log x)B

log p′

φ(p′)

∑
xη2<d<xη1

(d, p′)=1

∑
x1−η1<p<x/d

1,

=
(1
2
log

1− η2
1− η1

+ o(1)
)
x log x.

(3.18)

For the sum SB, we have trivially

SB ⩾ 0. (3.19)

So from (3.14)–(3.19) we obtain a lower bound of S̃C3 :

S̃C3 ⩾ x
1− 2η1
2(1− η1)

log
1− η2
1− η1

+ o(x). (3.20)

By the same method of estimation of (3.20), we can get a lower bound of S̃C4 :

S̃C4 ⩾ x
1− 2η2
2(1− η2)

log
1− c

1− η2
+ o(x). (3.21)

Hence from (3.11), (3.20) and (3.21), we have

SC3 + SC4 ⩾ S̃C3 + S̃C4

⩾
(

1− 2η1
2(1− η1)

log
1− η2
1− η1

+
1− 2η2
2(1− η2)

log
1− c

1− η2
+ o(1)

)
x.

(3.22)

11



Finally, combing (3.7), (3.8) and (3.22), we get

SC ⩾
(

1− 2η1
2(1− η1)

log
1− η2
1− η1

+
1− 2η2
2(1− η2)

log
1− c

1− η2

+ δ1ρ
( 1

δ1

)
log

1

2δ1
+ δ2ρ

( 1

δ2

)
log

1

2δ2
− δ2ρ

( 1

δ1

)
log

1

2δ2

)
x+ o(x)

(3.23)

with η2, η1, δ1, δ2 satisfying the condition (3.2).

4. Proof of Theorem 1

We conclude from Lemma 2.4 and (3.23) that∑
n<x

P+(n)<P+(n+1)

1 ⩾ C(η2, η1, δ1, δ2)x+ o(x) (4.1)

where

C(η2, η1, δ1, δ2) :=0.1238 +
1− 2η1
2(1− η1)

log
1− η2
1− η1

+
1− 2η2
2(1− η2)

log
1− c

1− η2

+ δ1ρ
( 1

δ1

)
log

1

2δ1
+ δ2ρ

( 1

δ2

)
log

1

2δ2
− δ2ρ

( 1

δ1

)
log

1

2δ2

(4.2)

with η2, η1, δ1, δ2 satisfying

0.2056 < η2 < η1 < δ1 < δ2 <
1

2
. (4.3)

With the help of Mathematica 8.0, we find

C := max
η2, η1, δ1, δ2 satisfy (4.3)

C(η2, η1, δ1, δ2) ⩾ 0.2017 (4.4)

by taking η2 = 0.3190, η1 = 0.4098, δ1 = 0.4099 and δ2 = 0.4576. Now Theorem 1 comes
from (4.1), (4.2) and (4.4).
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