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ON THE LARGEST PRIME FACTORS OF CONSECUTIVE INTEGERS

Denote by P + (n) the largest prime factor of an integer n. One of Erdős-Turán's conjectures asserts that the asymptotic density of integers n satisfying P + (n) < P + (n + 1) is 1/2. In this paper, we prove that this density is larger than 0.2017, which improves the previous result "0.1356" of the second author.

Introduction

For each integer n ⩾ 1, let P + (n) denote the largest prime factor of n with the convention that P + (1) = 1. An integer n is called y-friable (or y-smooth) if P + (n) ⩽ y. In 1930, Dickman [START_REF] Dickman | On the frequency of numbers containing prime factors of a certain relative magnitude[END_REF] obtained the well-known result: the following asymptotic formula { n ⩽ x :

P + (n) ⩽ y } ∼ xρ(u) (u ⩾ 1) (1.1) 
holds for x → ∞ with u = log x/ log y fixed, where ρ(u) is the Dickman-de Bruijn function function. Later, the distribution of P + (•) has been studied by many mathematicians, for example the work of Dartyge [START_REF] Dartyge | Entiers friables : un tour d'horizon[END_REF], La Bretèche and Tenenbaum [START_REF] De La Bretèche | Propriétés statistiques des entiers friables[END_REF][START_REF] De La Bretèche | Une nouvelle approche dans la théorie des entiers friables[END_REF], Granville [START_REF] Granville | Smooth numbers: computational number theory and beyond[END_REF], Hildebrand [START_REF] Hildebrand | On the local behavior of ψ(x, y)[END_REF][START_REF] Hildebrand | On the number of positive integers ⩽ x and free of prime factors >[END_REF], Hildebrand and Tenenbaum [START_REF] Hildebrand | On integers free of large prime factors[END_REF][START_REF] Hildebrand | Integers without large prime factors[END_REF], Moree [START_REF] Moree | Integers without large prime factors: from Ramanujan to de Bruijn[END_REF]. In recent years, friable integers play an important role in number theory, for example, an extraordinary breakthrough of Zhang [START_REF] Zhang | Bounded gaps between primes[END_REF] towards solving the Twin Prime Conjecture, remarkable progress of Vaughan and Wooley [START_REF] Vaughan | A new iterative method in Waring's problem[END_REF][START_REF] Vaughan | Further improvements in Waring's problem, II: Sixth powers[END_REF][START_REF] Vaughan | Further improvements in Waring's problem[END_REF] in Waring's problem.

In this paper, we aim to study the simultaneous distribution of the function P + (•) at consecutive integers. In the 1930s, Erdős and Turán formulated the following conjecture in the correspondence.

Conjecture 1 (Erdős-Turán). For x → ∞, we have { n ⩽ x : P + (n) < P + (n + 1)

} ∼ 1 2 x. (1.2)
Conjecture 1 is a constant concern for Erdős even though he thought it might be intractable by any technique at our disposal (see [START_REF] Erdős | Some unconventional problems in number theory[END_REF] or [START_REF] Tenenbaum | Some of Erdős' unconventional problems in number theory, thirty-four years later[END_REF]). Later in 1978, Erdős and Pomerance conjectured that the largest prime factors of n and n + 1 are "independent events". Conjecture 3 (De Koninck-Doyon). Fix an arbitrary integer k ⩾ 2 and let n be a large number. Let a 1 , a 2 , . . . , a k be any permutation of the numbers 0, 1, . . . , k -1. Then,

Prob [ P + (n + a 1 ) < P + (n + a 2 ) < • • • < P + (n + a k ) ] = 1 k! .
There has been some progress towards these problems.

• For the Conjecture 1 (Erdős-Turán), in 1978 Erdős and Pomerance [START_REF] Erdős | On the largest prime factors of n and n + 1[END_REF] first proved that there exists a positive asymptotic density of integers n with P + (n) < P + (n + 1). More precisely, they proved that

{ n ⩽ x : P + (n) < P + (n + 1) } > 0.0099x (x → ∞). (1.3)
Later in 2005, the asymptotic density 0.0099 was improved to 0.05544 by La Bretèche, Pomerance and Tenenbaum [START_REF] De La Bretèche | Products of ratios of consecutive integers[END_REF], and to 0.5866 by Fouvry's arguments in "Further remarks" of the same paper [START_REF] De La Bretèche | Products of ratios of consecutive integers[END_REF]. Recently, the second author improved the asymptotic density to 0.1063 [START_REF] Wang | On the largest prime factors of consecutive integers in short intervals[END_REF], and then further to 0.1356 [START_REF] Wang | Sur les plus grands facteurs premiers d'entiers consécutifs[END_REF].

On the other hand, in 2001 Rivat [START_REF] Rivat | On pseudo-random properties of P (n) and P (n + 1)[END_REF] proved a P + y (n)-version of the Erdős-Turán conjecture for some small y. Here we just write a more concise version. Define P + y (n) = max{p | n : p ⩽ y} the greatest prime factor p of n which satisfies p ⩽ y. Then for 3 ⩽ y ⩽ exp( log x 100 log log x ), we have

{ n ⩽ x : P + y (n) < P + y (n + 1) } ∼ 1 2 x (x → ∞).
Very recently Teräväinen [START_REF] Teräväinen | A note on binary correlations of multiplicative functions[END_REF] proved a logarithmic version of the Conjecture 1.

δ ( {n ∈ N : P + (n) < P + (n + 1)} ) = 1 2
where the logarithmic density δ of the set A ⊂ N is defined by

δ(A) = lim x→∞ 1 log x ∑ n⩽x, n∈A
1 n whenever it exists. Besides, he also proved a logarithmic version of Conjecture 2.

• For the Conjecture 3 with k = 3, in 1978 Erdős and Pomerance [START_REF] Erdős | On the largest prime factors of n and n + 1[END_REF] observed that the patterns P + (n -1) > P + (n) < P + (n + 1) (1.4) and P + (n -1) < P + (n) > P + (n + 1) (1.5) both occur infinitely often and conjectured that these two patterns occur for a positive density of n. In addition, they proved that there are infinitely many integers n such that P + (n -1) < P + (n) < P + (n + 1)

by considering the integers n of the form n = p 2 k 0 with k 0 well defined. Finally, for the fourth pattern, in 2001 Balog [START_REF] Balog | On triplets with descending largest prime factors[END_REF] proved the following lower bound

{ n ⩽ x : P + (n -1) > P + (n) > P + (n + 1) } ≫ x 1/2 (x → ∞).
Recently, the second author [START_REF] Wang | Sur les plus grands facteurs premiers d'entiers consécutifs[END_REF] In addition, we can get a nontrivial upper bound for the above four patterns respectively by considering the distance between friable integers. Just after the second author's submission [START_REF] Wang | Sur les plus grands facteurs premiers d'entiers consécutifs[END_REF], Teräväinen [START_REF] Teräväinen | A note on binary correlations of multiplicative functions[END_REF] obtained a similar results to ( * ) et ( * * ) with an unspecified positive density by using another method. • For the Conjecture 3 with k ⩾ 4, little is known. In the same paper [START_REF] Wang | Sur les plus grands facteurs premiers d'entiers consécutifs[END_REF], the second author proved the existence of a positive density of integers n with the largest prime factors P + (n + j), j ⩽ k -1 in the following two certain patterns. More precisely, for any fixed integer k ⩾ 3 and j 0 ∈ {0, . . . , k -1}, there exist two positive constants

C 3 (k) and C 4 (k) such that { n ⩽ x : P + (n + j 0 ) = min 0⩽j⩽k-1 P + (n + j) } ⩾ C 3 (k)x + o(x) and { n ⩽ x : P + (n + j 0 ) = max 0⩽j⩽k-1 P + (n + j) } ⩾ C 4 (k)x + o(x).
Besides consecutive integers, the second author recently studied the largest prime factors of consecutive integers with one of which without small prime factor. We refer the reader to [START_REF] Wang | Autour des plus grands facteurs premiers d'entiers consécutifs voisins d'un entier criblé[END_REF] for more details. Now we consider the pattern P + (n) < P + (n + 1), i.e. the conjecture of Erdős-Turán. In [START_REF] Wang | Sur les plus grands facteurs premiers d'entiers consécutifs[END_REF], the second author starts from the inclusion-exclusion principle

∑ n<x P + (n)<P + (n+1) 1 = ∑ n<x P + (n+1)>x 1-c 1 - ∑ n<x P + (n)>P + (n+1)>x 1-c 1 + ∑ n<x P + (n)<P + (n+1)⩽x 1-c 1 =: S A -S B + S C , (1.6)
where 0 < c ⩽ 1/2 is a parameter. Then the sum S A is estimated by a result of Hildebrand [START_REF] Hildebrand | On the number of positive integers ⩽ x and free of prime factors >[END_REF] and S B is estimated by the Rosser-Iwaniec sieve and a theorem of Bombieri-Vinogradov type. For the sum S C , the second author gives a nontrivial lower bound by introducing a well adapted system of weights ω(n; y, z) defined by

ω(n; y, z) := ∑ z<p⩽y p|n 1 ⩽ log x log z (1.7)
for n ⩽ x, z < y.

In this paper, we focus on the sum S C . In fact, in [START_REF] Wang | Sur les plus grands facteurs premiers d'entiers consécutifs[END_REF], the second author only sieves out the x 0.414 -friable integers n ⩽ x such that n + 1 has a prime factor in the interval (x 0.414 , x 1/2 /(log x) B ] with B > 0, due to a formidable obstacle: the level of distribution Q = x 1/2 /(log x) B for friable integers (see Lemma 2.2). Here by using a switch skill, we can sieve out some friable integers n such that n + 1 has a prime factor larger than x 1/2 . So that we can improve the previous lower bound 0.0118x of S C in [START_REF] Wang | Sur les plus grands facteurs premiers d'entiers consécutifs[END_REF], and then prove that the density of the pattern P + (n) < P + (n + 1) is larger than 1/5. More precisely, we have the following result.

Theorem 1. For x → ∞, we have { n < x : P + (n) < P + (n + 1) } > 0.2017x. (1.8)
The lower bound is also true for the pattern P + (n) > P + (n + 1).

Throughout this paper, we denote by ε an arbitrarily small positive constant, and p, p ′ primes.

Lemmas

Denote by

S(x, y)

:= { n ⩽ x : P + (n) ⩽ y } (2.1)
the set of y-friable integers not exceeding x and

Ψ(x, y) := |S(x, y)| (2.2)
the cardinality of S(x; y). Then we have the following lemma.

Lemma 2.1 (Hildebrand,[START_REF] Hildebrand | On the number of positive integers ⩽ x and free of prime factors >[END_REF]). For any ε > 0, we have

Ψ(x, y) = xρ(u) { 1 + O ε ( log(u + 1) log y )}
uniformly, for each ε > 0, in the domain

x ⩾ x 0 (ε), exp { (log log x) 5/3+ε } ⩽ y ⩽ x,
where u = log x/ log y and ρ(u) is the Dickman-de Bruijn function which is defined by differential equation

{ ρ(u) = 1, 0 ⩽ u ⩽ 1, uρ(u) ′ = -ρ(u -1), u > 1.
The second lemma concerns the distribution of friable integers in arithmetic progressions. Lemma 2.2. For any given positive constant A > 0, there exists a constant B = B(A) > 0 such that the estimate

∑ q⩽x 1/2 /(log x) B max t⩽x max (a,q)=1 ∑ n∈S(t, y) n≡a (mod q) 1 - 1 φ(q) ∑ n∈S(t, y) (n, q)=1 ≪ x (log x) A (2.3)
holds uniformly for 2 ⩽ y ⩽ x, where the constant implied by the symbol " ≪ " depends only on A.

In [START_REF] Wolke | Über die mittlere verteilung der werte zahlentheoretischer funktionen auf restklassen[END_REF], Wolke proved a theorem of Bombieri-Vinogradov type for sifted numbers without small prime factors, and in the same paper he also announced the similar result for friable integers. Fouvry and Tenenbaum [START_REF] Fouvry | Entiers sans grand facteur premier en progressions arithmétiques[END_REF] proved a slightly weaker form of the formula (2.3). In addition, for Lemma 2.2 we can also see the work of Fouvry-Tenenbaum [START_REF] Fouvry | Répartition statistique des entiers sans grand facteur premier dans les progressions arithmétiques[END_REF], Harper [START_REF] Harper | Bombieri-Vinogradov and Barban-Davenport-Halberstam type theorems for smooth numbers[END_REF] and Drappeau [START_REF] Drappeau | Théorèmes de type Fouvry-Iwaniec pour les entiers friables[END_REF].

For q ∈ N and (a, q) = 1, define π(x; ℓ, a, q) = ∑ ℓp⩽x ℓp≡a (mod q)

1 and π ′ (x; ℓ, a, q) = ∑ p⩽x ℓp≡a (mod q) 1.

Lemma 2.3. For any given positive constant A > 0, there exists a constant B = B(A) > 0 such that the estimate

∑ q⩽x 1/2 /(log x) B max y⩽x max (a,q)=1 ∑ L 1 <ℓ⩽L 2 (ℓ, q)=1 f (ℓ) ( π(y; ℓ, a, q) - li(y/ℓ) φ(q) ) ≪ x (log x) A (2.4)
and

∑ q⩽x 1/2 /(log x) B max y⩽x max (a, q)=1 ∑ L 1 <ℓ⩽L 2 (ℓ, q)=1 f (ℓ) ( π ′ (y/L 2 ; ℓ, a, q) - li(y/L 2 ) φ(q) ) ≪ x (log x) A (2.5) hold for (log y) 2B < L 1 ⩽ L 2 < x 1-ε
, where |f (ℓ)| ⩽ 1 and the constant implied by the symbol " ≪ " depends only on ε and A.

Proof. For (2.4), it is the Theorem 2 in [START_REF] Pan | On the representation of every large even integer as a sum of a prime and an almost prime[END_REF]. To prove (2.5), we can follow step by step Pan-Ding-Wang's arguments of Theorem 2 in [START_REF] Pan | On the representation of every large even integer as a sum of a prime and an almost prime[END_REF], so we omit the proof. □

The fourth lemma is the estimation of S A and S B in (1.6).

Lemma 2.4. Taking c = 0.2056 in (1.6), one has

S A -S B ⩾ 0.1238x.
Proof. See section 10 in [START_REF] Wang | Sur les plus grands facteurs premiers d'entiers consécutifs[END_REF]. □

Estimation of S C

In this section, we mainly focus on the estimation of S C which is defined by (1.6) with c = 0.2056. The improvement in Theorem 1 comes from a switch skill to sieve out some shifted friable integers with a large prime factor and a modification of well adapted system of weights ω(n; y, z) with more delicate calculation of S C .

Recall the definitions of S(x, y) and Ψ(x, y) in (2.1) and (2.2) respectively. Define

P (y, z) = ∏ z<p<y p, S + (x; y, z) = { n ⩽ x : z < P + (n) ⩽ y } .
Then we have

S C = ∑ n<x P + (n)<P + (n+1)⩽x 1-c 1 ⩾ ∑ n∈S(x, x δ 1 ) (n+1, P (x 1 2 /(log x) B , x δ 1 ))>1 1 + ∑ n∈S + (x; x δ 2 ,x δ 1 ) (n+1, P (x 1 2 /(log x) B , x δ 2 ))>1 1 + ∑ n∈S(x, x 1-η 1 ) (n+1, P (x 1-c , x 1-η 1 ))>1 1 + ∑ n∈S + (x; x 1-η 2 ,x 1-η 1 ) (n+1, P (x 1-c , x 1-η 2 ))>1 1 =:S C 1 + S C 2 + S C 3 + S C 4 , (3.1)
where η 1 , η 2 , δ 1 , δ 2 are four parameters satisfying

c < η 2 < η 1 < δ 1 < δ 2 < 1 2 . (3.2)
For the inequality in (3.1), it is obvious that the integers n counted in S C 1 and S C 2 (or in S C 3 and S C 4 ) are disjoint. Besides, noting that Next we will estimate the four sums respectively.

x δ 1 • x 1-η 1 > x, x δ 2 • x 1-η 2 > x by the choice of η 1 , η 2 , δ 1 , δ 2 in (3.2),

Estimation of S C 1 and S C 2

First we will follow the approach of [START_REF] Wang | Sur les plus grands facteurs premiers d'entiers consécutifs[END_REF] to estimate S C 1 and S C 2 . By the definition of ω(n; y, z) in (1.7), we have

ω ( n + 1; x 1/2 /(log x) B , x δ 1 ) { ⩽ 1 δ 1 , ( n + 1, P (x 1/2 /(log x) B , x δ 1 ) ) > 1, = 0, otherwise. (3.3)
Hence we detect the condition

(n + 1, P (x 1/2 /(log x) B , x δ 1 )) > 1 in S C 1 by (3.
3) and we obtain a lower bound of S C 1 :

S C 1 ⩾ δ 1 ∑ n∈S(x, x δ 1 ) ω(n + 1; x 1/2 /(log x) B , x δ 1 ) = δ 1 ∑ n∈S(x, x δ 1 ) ∑ p|(n+1) x δ 1 <p⩽x 1/2 /(log x) B 1 = δ 1 ∑ δ 1 <p⩽x 1/2 /(log x) B ∑ n∈S(x, x δ 1 ) n≡-1 (mod p) 1 = δ 1 ( S ( 1 
)
C 1 + S (2) C 1
) , (3.4) where S

(1)

C 1 = ∑ x δ 1 <p⩽x 1/2 /(log x) B 1 φ(p) ∑ n∈S(x, x δ 1 ) (n, p)=1
1,

S

(2)

C 1 = ∑ δ 1 <p⩽x 1/2 /(log x) B ( ∑ n∈S(x, x δ 1 ) n≡-1 (mod p) 1 - 1 φ(p) ∑ n∈S(x, x δ 1 ) (n, p)=1 1
) .

For S

(2)

C 1 , by Lemma 2.2, we have

S ( 2 
)
C 1 ≪ ∑ p⩽x 1/2 /(log x) B ∑ n∈S(x, x δ 1 ) n≡-1 (mod p) 1 - 1 φ(p) ∑ n∈S(x, x δ 1 ) (n, p)=1 1 ≪ x(log x) -A . (3.5)
for any A > 0, which is admissible. We use Lemma 2.1 to estimate S

(1)

C 1 , and have

S ( 1 
)
C 1 = ∑ x δ 1 <p⩽x 1/2 /(log x) B 1 p -1 Ψ(x, x δ 1 ) = xρ ( 1 δ 1 ) log 1 2δ 1 + o(x).
(3.6)

Therefore we have from (3.5) and (3.6) that

S C 1 ⩾ xρ ( 1 δ 1 ) δ 1 log 1 2δ 1 + o(x). ( 3.7) 
Since

S C 2 = ∑ n∈S(x, x δ 2 ) (n+1, P (x 1 2 /(log x) B , x δ 2 ))>1 1 - ∑ n∈S(x, x δ 1 ) (n+1,P (x 1 2 /(log x) B , x δ 2 ))>1 1 ⩾ δ 2 ( ∑ n∈S(x, δ 2 ) - ∑ n∈S(x, δ 1 ) ) ω ( n + 1; x 1/2 /(log x) B , x δ 2 ) ,
A similar manipulation allows us to deduce that

S C 2 ⩾ x ( ρ ( 1 
δ 2 ) -ρ ( 1 δ 1 ) ) δ 2 log 1 2δ 2 + o(x). (3.8)

Estimation of S C 3 and S C 4

We now turn to consider the sums S C 3 and S C 4 . Noting that x 1-η 1 > x 1/2 , x 1-η 2 > x 1/2 , so we can not use Lemme 2.2, i.e. the theorem of Bombieri-Vinogradov type for friable integers directly as we have done for S C 1 and S C 2 .

For S C 3 , it counts the number of x 1-η 1 -friable integers n such that n + 1 has at least one prime factor in the interval (x 1-η 1 , x 1-c ) with c < η 1 < 1/2. Then we have

S C 3 = ∑ n∈S(x, x 1-η 1 ) (n+1, P (x 1-c , x 1-η 1 ))>1 1 = ∑ x 1-η 1 <p<x 1-c ∑ dp⩽x P + (dp-1)⩽x 1-η 1 1 = ∑ x 1-η 1 <p<x 1-c ∑ dp⩽x 1 - ∑ x 1-η 1 <p ′ <x ∑ x 1-η 1 <p<x 1-c ∑ dp⩽x dp-1≡0 (mod p ′ ) 1.
(3.9)

For the sum S C 4 , it counts the number of (x 1-η 1 , x 1-η 2 ]-friable integers n, i.e. x 1-η 1 < P + (n) ⩽ x 1-η 2 , such that n + 1 has at least one prime factor in the interval

(x 1-η 2 , x 1-c ) with c < η 2 < η 1 < 1/2. So we have S C 4 = ∑ n∈S + (x; x 1-η 2 ,x 1-η 1 ) (n+1, P (x 1-c , x 1-η 2 ))>1 1 = ∑ x 1-η 2 <p<x 1-c ∑ dp⩽x x 1-η 1 <P + (dp-1)⩽x 1-η 2 1 = ∑ x 1-η 1 <p ′ ⩽x 1-η 2 ∑ x 1-η 2 <p<x 1-c ∑ dp⩽x dp-1≡0 (mod p ′ ) 1.
(3.10) Combing (3.9) and (3.10), we have

S C 3 + S C 4 = ∑ x 1-η 1 <p<x 1-c ∑ dp⩽x 1 - ∑ x 1-η 1 <p ′ <x ∑ x 1-η 1 <p<x 1-c ∑ dp⩽x dp-1≡0 (mod p ′ ) 1 + ∑ x 1-η 1 <p ′ <x 1-η 2 ∑ x 1-η 2 <p<x 1-c ∑ dp⩽x dp-1≡0 (mod p ′ ) 1 = S C 3 + S C 4 , (3.11)
where

S C 3 := ∑ x 1-η 1 <p⩽x 1-η 2 ∑ dp⩽x 1 - ∑ x 1-η 1 <p ′ <x ∑ x 1-η 1 <p⩽x 1-η 2 ∑ dp⩽x dp-1≡0 (mod p ′ ) 1 and S C 4 := ∑ x 1-η 2 <p<x 1-c ∑ dp⩽x 1 - ∑ x 1-η 2 <p ′ <x ∑ x 1-η 2 <p<x 1-c ∑ dp⩽x dp-1≡0 (mod p ′ ) 1.
Invoking the identity log(dp -1) = ∑ m|(dp-1)

Λ(m)

and prime number theory, we find

∑ x 1-α <p<x 1-β ∑ dp⩽x 1 = 1 log x ∑ x 1-α <p<x 1-β ∑ dp⩽x log(dp -1) + o(x) = 1 log x ∑ p ′ <x log p ′ ∑ x 1-α <p<x 1-β ∑ dp⩽x dp-1≡0 (mod p ′ ) 1 + 1 log x ∑ k⩾2 ∑ p ′k <x log p ′ ∑ x 1-α <p<x 1-β ∑ dp⩽x dp-1≡0 (mod p ′k ) 1 + o(x) ⩾ 1 log x ∑ p ′ <x log p ′ ∑ x 1-α <p<x 1-β ∑ dp⩽x dp-1≡0 (mod p ′ ) 1 + o(x).
(3.12) for 0 < β < α < 1.

Now for S C 3 , we have

S C 3 = ∑ x 1-η 1 <p⩽x 1-η 2 ∑ dp⩽x 1 - ∑ x 1-η 1 <p ′ <x ∑ x 1-η 1 <p⩽x 1-η 2 ∑ dp⩽x dp-1≡0 (mod p ′ ) 1 ⩾ 1 1 -η 1 1 log x ∑ p ′ <x log p ′ ∑ x 1-η 1 <p⩽x 1-η 2 ∑ dp⩽x dp-1≡0 (mod p ′ ) 1 + ( 1 - 1 1 -η 1 ) ∑ x 1-η 1 <p⩽x 1-η 2 ∑ dp⩽x 1 - ∑ x 1-η 1 <p ′ <x ∑ x 1-η 1 <p⩽x 1-η 2 ∑ dp⩽x dp-1≡0 (mod p ′ ) 1 + o(x) (3.13)
where we have used the estimation (3.12) with (α, β) = (η 1 , η 2 ). For the second term on the right-hand side of (3.13), we use Mertens' formula. And for the the first term on the righthand side of (3.13), we split it into two sums according to whether p ′ > x 1-η 1 or p ′ ⩽ x 1-η 1 .

So we obtain

S C 3 = 1 1 -η 1 1 log x ∑ p ′ ⩽x 1-η 1 log p ′ ∑ x 1-η 1 <p⩽x 1-η 2 ∑ dp⩽x dp-1≡0 (mod p ′ ) 1 + 1 log x ∑ x 1-η 1 <p ′ <x ( 1 1 -η 1 log p ′ -log x ) ∑ x 1-η 1 <p⩽x 1-η 2 ∑ dp⩽x dp-1≡0 (mod p ′ ) 1 - η 1 1 -η 1 log 1 -η 2 1 -η 1 x + o(x) = 1 log x ( 1 1 -η 1 S A + S B ) - η 1 1 -η 1 log 1 -η 2 1 -η 1 x + o(x), (3.14) 
where

S A : = ∑ p ′ ⩽x 1-η 1 log p ′ ∑ x 1-η 1 <p⩽x 1-η 2 ∑ dp⩽x dp-1≡0 (mod p ′ ) 1, S B : = ∑ x 1-η 1 <p ′ <x ( 1 1 -η 1 log p ′ -log x ) ∑ x 1-η 1 <p⩽x 1-η 2 ∑ dp⩽x dp-1≡0 (mod p ′ ) 1.
For S A , we have lower bound

S A ⩾ ∑ p ′ ⩽x 1-η 1 log p ′ ∑ x η 2 <d<x η 1 (d, p ′ )=1 ∑ x 1-η 1 <p⩽x/d dp-1≡0 (mod p ′ ) 1 ⩾S A 1 + S A 2 -S A 3 , (3.15) 
where )

S A 1 : = ∑ p ′ <x 1/2 /(log x) B log p ′ φ(p ′ ) ∑ x η 2 <d<x η 1 (d, p ′ )=1 ∑ x 1-η 1 <p⩽x/d 1, S A 2 : = ∑ p ′ <x 1/2 /(log x) B log p ′ ∑ x η 2 <d<x η 1 (d, p ′ )=1 ( ∑ dp⩽x dp-1≡0 (mod p ′ ) 1 - 1 φ(p ′ ) ∑ dp⩽x 1 ) , S A 3 : = ∑ p ′ <x 1/2 /(log x) B log p ′ ∑ x η 2 <d<x η 1 (d, p ′ )=1 ( ∑ p<x 1-η 1 dp-1≡0 (mod p ′ ) 1 - 1 φ(p ′ ) ∑ p<x 1-η 1
.

for some B > 0.

For S A 2 , taking (L 1 , L 2 , ℓ) = (x η 2 , x η 1 , d) and f (ℓ) ≡ 1 in (2.4) of Lemma 2.3, one has upper bound

S A 2 ⩽ ∑ q< x 1/2 (log x) B log q ∑ x η 2 <d<x η 1 (d, q)=1 ∑ dp⩽x dp≡1 (mod q) 1 - 1 φ(q) ∑ x η 2 <d<x η 1 (d,q)=1 ∑ dp⩽x 1 ≪ x (log x) A (3.16)
for any A > 0, which is admissible. Similarly, for S A 3 , taking (L 1 , L 2 , ℓ) = (x η 2 , x η 1 , d) and f (ℓ) ≡ 1 in (2.5) of Lemma 2.3, one has upper bound

S A 3 ⩽ ∑ q< x 1/2 (log x) B log q ∑ x η 2 <d<x η 1 (d, q)=1 ∑ p<x 1-η 1 dp≡1 (mod q) 1 - 1 φ(q) ∑ x η 2 <d<x η 1 (d,q)=1 ∑ p<x 1-η 1 1 ≪ x (log x) A (3.17)
for any A > 0, which is also admissible. Then for S A 1 , it follows from partial summation and prime number theorem that

S A 1 = ∑ p ′ <x 1/2 /(log x) B log p ′ φ(p ′ ) ∑ x η 2 <d<x η 1 (d, p ′ )=1 ∑ x 1-η 1 <p<x/d 1, = ( 1 
2 log 1 -η 2 1 -η 1 + o(1)
)

x log x.

(3.18)

For the sum S B , we have trivially 

S B ⩾ 0. ( 3 

Conjecture 2 (

 2 Erdős-Pomerance). For any a, b ∈ [0, 1], denote by B(x; a, b) the number of n ⩽ x with P + (n) ⩽ x a and P + (n) ⩽ x b , B(x; a, b) := { n ⩽ x : P + (n) ⩽ x a , P + (n + 1) ⩽ x b } . Then the asymptotic density b(a, b) := lim x→∞ B(x; a, b) exists and equals ρ( 1 a )ρ( 1 b ). In 2011, De Koninck and Doyon formulated a more general conjecture in order to study the distance between friable integers.

1

 1 

  .19) So from (3.14)-(3.19) we obtain a lower bound of S C 3 : By the same method of estimation of (3.20), we can get a lower bound of S C 4 : Hence from (3.11), (3.20) and (3.21), we have S C 3 + S C 4 ⩾ S C 3 + S C 4

			S C 3 ⩾ x	1 -2η 1 2(1 -η 1 )	log	1 -η 2 1 -η 1	+ o(x).	(3.20)
			S C 4 ⩾ x	1 -2η 2 2(1 -η 2 )	log	1 -c 1 -η 2	+ o(x).	(3.21)
	⩾	(	1 -2η 1 2(1 -η 1 )	log	1 -η 2 1 -η 1	+	1 -2η 2 2(1 -η 2 )	log	1 -η 2 1 -c	+ o(1) )	x.	(3.22)
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Finally, combing (3.7), (3.8) and (3.22), we get

with η 2 , η 1 , δ 1 , δ 2 satisfying the condition (3.2).

Proof of Theorem 1

We conclude from Lemma 2.4 and (3.23) that

where

With the help of Mathematica 8.0, we find

by taking η 2 = 0.3190, η 1 = 0.4098, δ 1 = 0.4099 and δ 2 = 0.4576. Now Theorem 1 comes from (4.1), (4.2) and (4.4).

Xiaodong Lü