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Abstract

Surgery for brain cancer is a major problem in neurosurgery. The diffuse infiltration into the

surrounding normal brain by these tumors makes their accurate identification by the naked

eye difficult. Since surgery is the common treatment for brain cancer, an accurate radical

resection of the tumor leads to improved survival rates for patients. However, the identifica-

tion of the tumor boundaries during surgery is challenging. Hyperspectral imaging is a non-

contact, non-ionizing and non-invasive technique suitable for medical diagnosis. This study

presents the development of a novel classification method taking into account the spatial

and spectral characteristics of the hyperspectral images to help neurosurgeons to accu-

rately determine the tumor boundaries in surgical-time during the resection, avoiding exces-

sive excision of normal tissue or unintentionally leaving residual tumor. The algorithm

proposed in this study to approach an efficient solution consists of a hybrid framework that

combines both supervised and unsupervised machine learning methods. Firstly, a super-

vised pixel-wise classification using a Support Vector Machine classifier is performed. The

generated classification map is spatially homogenized using a one-band representation of

the HS cube, employing the Fixed Reference t-Stochastic Neighbors Embedding dimen-

sional reduction algorithm, and performing a K-Nearest Neighbors filtering. The information

generated by the supervised stage is combined with a segmentation map obtained via unsu-

pervised clustering employing a Hierarchical K-Means algorithm. The fusion is performed

using a majority voting approach that associates each cluster with a certain class. To
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evaluate the proposed approach, five hyperspectral images of surface of the brain affected

by glioblastoma tumor in vivo from five different patients have been used. The final classifi-

cation maps obtained have been analyzed and validated by specialists. These preliminary

results are promising, obtaining an accurate delineation of the tumor area.

Introduction

In addition to radiotherapy and chemotherapy, surgery is one of the major treatment options

for brain tumors [1]. However, because brain tumors infiltrate and diffuse into the surround-

ing normal brain, the surgeon’s naked eye is often unable to accurately distinguish between

the tumor and normal brain tissue. Inevitably, tumor tissue is either unintentionally left

behind during surgery or too much normal brain tissue is taken out. Studies have shown that

tumor tissue left behind during surgery is the most common cause of tumor recurrence and is

a major cause of morbidity and mortality [2–4]. On the other hand, over-resection of brain

tumor tissues has also been shown to cause permanent neurological deficits that affect patients’

quality of life [5]. Intra-operative neuro-navigation, intra-operative Magnetic Resonance

Imaging (iMRI) and fluorescent tumor markers such as 5-aminolevulinic acid (5-ALA) have

been developed as adjuncts to surgery to help with brain tumor delineation. Although these

adjuncts have improved the accuracy of brain tumor resections, they have a number of limita-

tions. Neuro-navigation is rendered inaccurate at locating tumor margins due to brain shift

and changes in tumor volume that occurs during resections [6,7]. Intra-operative Magnetic

Resonance Imaging was developed as a solution to intra-operative brain shift capable tumor

margin mapping intra-operatively. However, this has been found to have poor spatial resolu-

tion, to largely extend the surgery time and it is very expensive [8]. Due to the time to stop sur-

gery and obtain scans it is better regarded as providing at most a few images at certain

timepoints rather than a continuous real time image. Fluorescent tumor markers such as

5-aminolevulinic acid (5-ALA) are excellent at identifying tumors but can only be used for

high grade tumors, produce important knock-on effects and are poor at defining tumor mar-

gins mainly due to the diffuse nature of brain tumors [9,10].

Therefore, despite the improvement in surgery and technology, we are still unable to accu-

rately define brain tumor margins. Label free, non-ionizing imaging modalities that rely on

intrinsic properties of tumors or normal brain could be a potential solution to the above prob-

lem. Hyperspectral Imaging (HSI) is a form of imaging spectroscopy that captures spectral and

spatial data beyond the limited three electromagnetic bands of the human eye [11]. It produces

a three-dimensional image with each pixel containing spectral information of the captured

scene. The spectral information of each pixel correlates to the chemical composition of the

scene. This technology has relevance in the medical field because it has been proven that the

interaction between electronic radiation and tissue carries useful information for diagnosis

purposes [12]. In the field of early detection of tumor, HSI is shown as a promising technology

due to its non-invasive interaction with tissue and its capability to rapidly acquire and analyze

data, obtaining useful information for diagnosis purposes. In recent years, the number of stud-

ies using HSI analysis for cancer diagnosis has rapidly increased. The main differences be-

tween studies are in the acquisition system setup as in [13], the nature of the samples (in-vivo,

ex-vivo or in-vitro) the disease studied (prostate [14], ovaries [15], breast [16], tongue cancer

[17], skin and lung cancer [18] or oral cancer [19]), and the applied processing methods to

analyze the HS data (as in the application to larynx cancer [20]).

Hyperspectral brain cancer imaging classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0193721 March 19, 2018 2 / 27

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0193721


One of the most active research groups in biomedical applications of HSI is led by Professor

Baowei Fei, from the Department of Biomedical Engineer at Emory University. The main

characteristics of the HSI research performed by this group can be summarized as follows.

Their experiments explore cancer diseases in animal subjects. Until now, they have analyzed

prostate cancer [21] and head and neck cancer [22]. Moreover, they usually work using an

acquisition system based on LCTFs (Liquid Crystal Tunable Filters) in the VNIR spectral

range, from 400 nm to 1000 nm. Most of their experiments have been carried out in-vivo dur-

ing surgical procedures. Their research has exhaustively analyzed which pre-processing tech-

niques are more suitable to compensate the variations of the environmental conditions during

the acquisition inside an operating theatre [23,24]. The processing techniques employed by

this research group in order to extract useful information from the hyperspectral (HS) cubes,

vary depending on each research study, but each new publication presents novel and sophisti-

cated methods such as a Minimum-Spanning Forest classification [25].

In this pilot study, we investigate whether intra-operative hyperspectral imaging can iden-

tify and delineate brain tumors. This work is framed in a European collaborative project

funded by the Research Executive Agency (REA) called HELICoiD (HyperEspectraL Imaging

Cancer Detection) formed by four universities, two university hospitals and three leading

industry partners.

Materials and methods

Intra-operative hyperspectral acquisition system

The hyperspectral acquisition system employed in this work is called the HELICoiD demon-

strator [26]. The system is composed by a hyperspectral pushbroom camera manufactured by

HeadWall Photonics: the Hyperspec1 VNIR A-Series model. The VNIR camera covers the

spectral range from 400 nm to 1000 nm, with a spectral resolution of 2–3 nm, being able to

capture 826 spectral bands and 1004 spatial pixels. This device integrates a Silicon CCD detec-

tor array with a minimum frame rate of 90 fps, understanding in this context a frame as a line

of 1004 pixels and 826 spectral bands. The lens used in this camera is a Xenoplan 1.4 with 22.5

mm of focal length and a broadband coating for the spectral range of 400 nm to 1000 nm. The

camera is attached in a scanning platform composed by a stepper motor and a spindle capable

of covering an effective area of 230 mm. This scanning platform is required to acquire the sec-

ond spatial dimension as the pushbroom camera can only sample a single line. The setup uses

an illumination system composed by a Quartz-Tungsten-Halogen (QTH) lamp connected to a

cold light emitter via fiber optic that allows achieving cold illumination over the brain surface.

This is required in order to avoid high temperatures produced by the QTH lamp over the

brain surface. Fig 1 shows the intra-operative hyperspectral acquisition system being used dur-

ing a neurosurgical operation.

In-vivo human brain hyperspectral image database

A set of five in-vivo brain surface HS images, captured using the previously described acquisi-

tion system, has been used for this research. These images belong to adult patients undergoing

craniotomy for resection of intra-axial brain tumor. Images have been obtained at the Univer-

sity Hospital Doctor Negrin of Las Palmas de Gran Canaria (Spain) and at the University Hos-

pital of Southampton (United Kingdom) from five different patients with confirmed grade IV

glioblastoma tumor on histopathology. The study protocol and consent procedures were

approved by the Comité Ético de Investigación Clı́nica-Comité de Ética en la Investigación

(CEIC/CEI) for the University Hospital Doctor Negrin and the National Research Ethics Ser-

vice (NRES) Committee South Central—Oxford C for the University Hospital of Southampton.

Hyperspectral brain cancer imaging classification
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Written informed consent was obtained from all subjects. The individual that appears in Fig 1

in this manuscript has given written informed consent (as outlined in PLOS consent form) to

publish these case details.

The procedure to acquire the in-vivo data during neurosurgical operations has been

described elsewhere and in summary is as follows. First, after performing the craniotomy and

durotomy, the neurosurgeons place some rubber ring markers over the brain surface where

they are confident that the tissue inside the markers is tumor or normal based on its macro-

scopic appearance and taking into account the information provided by the neuronavigator

from an MRI scan (Magnetic Resonance Image). In case of patient 1, two markers were placed

in the tumor area and one marker was placed over the healthy tissue. In cases of patients 2, 3

and 4, two markers were use, one placed over the tumor area and another one placed over the

normal tissue. Finally, in case of patient 5, no markers were used since the tumor was in a

deeper layer with respect to the normal tissue and it was clearly identified. After that, the oper-

ator of the acquisition system captures a HS image. Depending on the location of the tumor,

the images are acquired at various stages of the operation. In cases of patients 1, 2, 3 and 4, one

image was obtained immediately after the dura was removed since the tumor was superficially

Fig 1. Intra-operative hyperspectral acquisition system used during a neurosurgical procedure at the University Hospital Doctor Negrin of Las Palmas de

Gran Canaria.

https://doi.org/10.1371/journal.pone.0193721.g001
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located. In case of patient 5, the image was captured in an advanced stage of the tumor resec-

tion since the tumor was deep seated. Once the HS image is taken, the operating surgeon per-

forms a biopsy of the tissue located within the tumor tissue marker/s (in case of patient 1, 2, 3

and 4) or within the clearly identified tumor area (in case of patient 5). The resected tissue is

sent to the pathologists in order to confirm the presence or absence of tumor, and obtain the

specific histopathological diagnosis (grade and type of tumor). Since this technology cannot

penetrate into the tissue (in case of near infrared it can be 1 mm at most), the average size of

the resected sample of the tumor for pathological analysis is 0.5x0.5 mm and 0.2 mm depth.

Normal tissue markers are only used as a reference for the labelling process performed after

the operation has finished. It is not ethic to perform a biopsy of the tissue that is known to

belong to normal brain (it can produce damages in the undergoing patient outcomes).

Employing the histopathological information (from the tumor tissue samples) and the knowl-

edge of the operating surgeon (from the normal tissue samples), the labeling of the HS cubes is

performed to generate a gold standard dataset for the supervised classification stage of the

brain cancer detection algorithm.

The manual labeling of the HS data consists of visual identification of each sample by a spe-

cialist, which is time-consuming task and can introduce errors due to human intervention.

For this reason, a methodology for extracting the gold standard information from the HS

cubes, based on the Spectral Angle Mapper (SAM) algorithm, has been developed. The tool

developed for sample labeling has been designed using Matlab1 GUIDE application and mea-

sures the angle between two high dimensional vectors. This SAM classification is an automated

method for comparing the spectra of the pixels of a HS image with a well-known spectrum

obtained from a reference pixel. The tool was used by the corresponding operating surgeon

after the operation conclusion in order to generate the gold standard map for each image.

Four different classes were employed in this study: normal tissue, tumor tissue, blood vessel and

background. The procedure to obtain the gold standard map is as follows. First, the user loads

a HS cube to be labeled and selects a reference pixel, looking the synthetic RGB representation

of the HS cube, at the location where a biopsy is done (where the tumor marker is placed) or at

a location far enough from the tumor margins where the surgeon can be quite confident that

the tissue is abnormal (in the case of tumor labeling). In case of normal tissue, blood vessel

and background classes, the labeling is performed by the operating surgeon by selecting a ref-

erence pixel by naked eye based on their knowledge and experience. Then, the most similar

pixels to the selected reference pixel are highlighted, based on the SAM measurement, and the

user configures the threshold that varies the tolerances on the pixels selected. Once the user

considers that only the pixels belonging to one class are highlighted, the selected pixels are

assigned to that class. Fig 2 shows a screenshot of the HELICoiD Labelling Tool where the

labeling procedure of the blood vessel class has been done. On the left side of the image (Fig

2A), the synthetic RGB representation of the HS cube is shown. In the center (Fig 2B), the

SAM representation is presented, where only the pixels that have a spectral angle less than

0.08˚ respect to the selected reference pixel are highlighted. In this case, the reference pixel and

its correspondent SAM representation belongs to the blood vessel class. Finally, on the right

side of the image (Fig 2C), the gold standard map generated for patient 2 is shown, where

tumor tissue, normal tissue, blood vessels and background are represented in red, green, blue

and black colors respectively. Some sliders controls are presented in the labeling tool so as to

adjust the gamma of the synthetic RGB image, the overlapping transparency of the SAM

image over the synthetic RGB image and the threshold value. Employing this labeling tool, a

total of 44,555 spectral signatures was labeled. Table 1 summarizes the total number of labeled

spectral signatures generated for each class, the number of tumor biopsies performed and the

number of images captured for each patient. Summarizing, the reliability of the gold standard

Hyperspectral brain cancer imaging classification
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is guaranteed by the use of the intraoperative MRI Neuronavigation for placing the rubber

ring markers; the operating surgeon knowledge and experience for the labelling of the normal

tissues, blood vessels and background samples; and finally, the pathological analysis of the

resected tissue for the tumor labeling.

Brain cancer detection algorithm

The classification framework developed in this study aims to exploit both the spatial and spec-

tral features of the HS images. Fig 3 illustrates the scheme of this classification framework

based on five main steps: data pre-processing, dimensional reduction, spatial-spectral super-

vised classification, unsupervised clustering segmentation and hybrid classification. After cap-

turing the in-vivo brain surface HS cube (Fig 3A), the raw image is pre-processed in order to

homogenize the spectral signatures of each pixel (Fig 3B). After the pre-processed stage, the

golden standard employed for building the supervised classifier model is extracted by the spe-

cialists (Fig 3C) using the previously described labeling tool and the SVM classifier is trained

(Fig 3D). Once the SVM model is generated, it is used to perform the supervised pixel-wise

classification over the pre-processed HS cube (Fig 3E). Then, a spatial-spectral homogeniza-

tion is accomplished [27] using a KNN (K-Nearest Neighbor) filtering (Fig 3G), where a one-

Fig 2. Screenshot of the HELICoiD Labeling Tool.

https://doi.org/10.1371/journal.pone.0193721.g002

Table 1. Gold standard dataset for the supervised training process.

Patient ID #Captured Images #Tumor Biopsies Tissue Type (#pixels) Total

(#pixels)Normal Tissue Tumor Tissue Blood Vessel Background

1 1 2 2,295 1,221 1,331 630 5,477

2 1 1 4,516 855 8,697 1,685 15,753

3 1 1 1,251 2,046 4,089 696 8,082

4 1 1 1,842 3,655 1,513 2,625 9,635

5 1 1 977 1,221 907 2,503 5,608

Total (#pixels) 10,881 8,998 16,537 8,139 44,555

https://doi.org/10.1371/journal.pone.0193721.t001

Hyperspectral brain cancer imaging classification
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band representation of the HS cube is employed. The dimensionality reduction algorithm

used to obtain the one-band representation of the HS cube is the FR-t-SNE algorithm (Fig 3F).

This algorithm has been selected because it provides the best score along different HS images

compared to other dimensionality reduction algorithms [28]. Once the spatial-spectral

homogenization has been performed, a filtered classification map is available. In order to

obtain the final classification map, the spatial-spectral supervised classification map is com-

bined with a segmentation map obtained via unsupervised hierarchical clustering (Fig 3H)

using a Majority Voting (MV) approach [29] (Fig 3I).

Data pre-processing. After the acquisition of the in-vivo brain surface HS cube (Fig 3A),

a pre-processing chain, already explained in [30], is applied to the HS cube to homogenize the

spectral signatures of each pixel (Fig 3B) and to reduce the dimensionality of the HS image

without losing the main spectral information contained on it. This pre-processing chain con-

sists of five steps. The first step performs a radiometric calibration of the raw spectral signature

of each pixel using the black and white reference images acquired by the acquisition system

inside the operating theatre with the same illumination conditions that the image that will be

captured. The white reference image is obtained using a standard white reference tile and the

dark reference image is acquired by keeping the camera shutter closed. Fig 4A and 4B show an

example of a single raw spectral signature and the calibrated spectral signature of a grade IV

glioblastoma tumor respectively. The second step applies noise filtering using the first stage of

the HySIME algorithm where a function called Hyperspectral Noise Estimation infers the

noise in the HS data, by assuming that the reflectance at a given band is well modeled by a lin-

ear regression on the remaining bands. Fig 4C plots the spectral signature after the HySIME

noise filtering application. In the third step, the spectral bands from the lowest and highest

bands are removed due to their low SNR because of the limited performance of the CCD sen-

sor in these ranges. Bands from 0 to 50 and from 750 to 826 are removed. After the extreme

noise band removing step, the spectral signatures are reduced in bands through spectral aver-

aging due to the information redundancy between contiguous bands. The reduced HS cube is

formed of 129 spectral bands. Finally, the last step of the pre-processing chain applies nor-

malization over the samples to avoid the different radiation intensities of each pixel produced

by the non-uniform surface of the brain. Fig 4D illustrates the final pre-processed spectral

signature.

Fig 3. Brain cancer detection and delimitation algorithm overview diagram. (A) HS cube of in-vivo brain surface. (B) Pre-processing stage of the algorithm. (C)

Database of labeling samples generation. (D) SVM model training process employing the labeled samples dataset. (E), (F) and (G) Algorithms that conform the spatial-

spectral supervised classification stage. (H) and (I) Algorithms that generate the unsupervised segmentation map and the final HELICoiD TMD map, respectively.

https://doi.org/10.1371/journal.pone.0193721.g003
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Dimensional reduction. From an information-processing point of view, the intrinsic

dimensionality of HS images can be significantly reduced before subsequent image characteri-

zation steps are applied. Dimensionality reduction maps high-dimensional data into a mean-

ingful representation of reduced dimensional space so that the observed properties of the

initial data are still preserved in the low dimensional space. Since the intrinsic dimension, as

well as the geometry of the initial data, is unknown, dimensionality reduction, in general, is an

ill-posed problem that can only be solved by assuming certain data properties.

Thus far, many algorithms for dimensionality reduction have been developed in literature

[31]. Principal Component Analysis (PCA) [32] is one of the most popular linear techniques

for dimensionality reduction. It maps the data preserving as much as possible their variance.

However, PCA has two important limitations: it is based on a global property–the variance of

the data–and it is a linear technique. Non-linear methods have the advantage that can deal bet-

ter with complex real world data. Techniques such as Isomap [33], Locally Linear Embedding

Fig 4. Spectral signature of a grade IV glioblastoma tumor tissue. (A) Raw spectral signature. (B) Calibrated spectral signature. (C) HySIME filtered spectral

signature. (D) Final pre-processed spectral signature.

https://doi.org/10.1371/journal.pone.0193721.g004
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(LLE) [34], Hessian [35] and Laplacian [36] are examples of non-linear methods. In this paper,

the Fixed Reference t-Distributed Stochastic Neighbors Embedding (FR-t-SNE) algorithm

proposed in [28] is used as dimensional reduction for the HS images.

FR-t-SNE is an extension of the t-Distributed Stochastic Neighbors Embedding (t-SNE)

[37] that is a nonlinear technique well suited for embedding high-dimensional data into a low

dimensional space. As stated in [28], embedding a HS image using t-SNE may not guarantee

consistent results since, at each dimensional reduction process of a new image, the random

nature of the t-SNE can create embedded representations that are not persistent. Therefore, it

can happen that similar tissues will be represented with different low dimensional representa-

tions across different images. This makes subsequent tissue characterization difficult. This

problem is mainly generated by the lack of a fixed coordinate system, which does not allow the

comparison of the embedded results across different tissue samples [38], FR-t-SNE tries to

overcome these limitations by using a learning process aimed at finding a fixed reference coor-

dinate system. FR-t-SNE is divided in three main steps: in Step 1, an optimal reference system

is fixed to maintain a consistent manifold embedding along with all the images and circumvent

the lack of a fixed coordinate system. In Step 2, the manifold is gradually tested on the training

set using the predefined fixed reference. Finally, in the last step, a HS image is embedded effi-

ciently. A KNN classification algorithm is used to obtain the low vector representation of each

high dimensional vector after all the training images are processed and the manifold discov-

ered. This KNN classifier will use a lookup table, containing the values of the learned reference

coordinates to predict the embedded value of each sample in each new HS image.

In the proposed brain cancer detection algorithm, FR-t-SNE is employed to obtain a one-

band representation of the pre-processed HS cube with 750 bands (without applying the band

averaging step in the pre-processing chain).

Spatial-spectral supervised classification. Support Vector Machines (SVMs) are kernel-

based supervised algorithms that have been extensively used for classification tasks. As a rele-

vant example, a variant of the SVM classifier, called Fuzzy SVM classifier, was employed in the

development of an emotion recognition system based on facial expression images, obtaining

overall accuracy results of 96.77±0.10% [39]. In the HSI field, SVMs provide good performance

for classifying this type of data when a limited number of training samples are available [40].

Due to its strong theoretical foundations, good generalization capabilities, low sensitivity to

the problem of dimensionality and the ability to find optimal solutions, SVMs are usually

selected by many researchers over other classification paradigms for classifying HS images

[12]. In the medical field, SVMs have been used to detect multiple sclerosis subjects employing

stationary wavelet entropy to extract features from magnetic resonance images used as input

of the SVM classifier [41]. Furthermore, the same technique combined with a directed acyclic

graph method has been used to diagnose unilateral hearing loss in structural MRI [42], dem-

onstrating that the SVM algorithm is a reliable candidate to work with medical images. In

medical HSI, SVMs have been already used to classify several types of cancer, including pros-

tate [14], lung tissue and lymph nodes [21] skin tumors [43,44], tongue [45] and colon [46].

On the other hand, during the development of this research project, some studies have been

carried out using SVMs to classify hyperspectral in-vivo images of human brain affected by

cancer [26,30]. For the research presented in this paper, LIBSVM [47] has been used for sup-

port vector classification.

SVM algorithm requires a confident labeled dataset in order to train the model that will be

used to classify the input data. In this work, the labeled dataset of in-vivo brain samples that is

used to train the SVMs has been created by combining the efforts of neurosurgeons and

pathologist, as it has been previously described. Before explaining the methodology employed

for performing a supervised classification over the available HS data, some considerations have
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to be taken into account. Due to the impossibility of having a way to extract the labeled infor-

mation from all the pixels in a HS cube of brain tissue, there are two ways of measuring the

performance of the generated supervised models. For the available labeled dataset, it is possible

to use standard metrics in order to measure the accuracy provided by the model when classify-

ing unseen data. Nevertheless, for evaluating a supervised model applied to a whole HS cube

(where not all pixels have been labeled) only the visual evaluation of an expert is possible. The

methodology for evaluating the supervised classifiers in a quantitative way is as follows: first,

we use the labeled information corresponding to the dataset, and then we apply a 10-fold cross

validation in order to measure the performance of the model. The quantitative evaluation met-

rics used for this purpose has been sensitivity, specificity and overall accuracy metrics, and will

be defined later in this paper.

Once the quantitative metrics have been obtained, the previously trained SVM classifier is

used to classify a whole HS cube, and then it is evaluated by neurosurgeons in order to analyze

the quality of the algorithm in distinguishing different types of tissues, materials or substances.

In order to include the spatial features of the HS images, a spatial homogenization is applied to

improve the supervised classification results by incorporating the neighborhood information

of each pixel into the classification chain. The algorithm proposed in [27], which refines the

pixel-wise classification probability map using a KNN filtering on non-local neighborhoods of

a pixel, has been used. The algorithm has shown competitive classification accuracy results

compared with other state-of-art spatial-spectral classification approaches [27]. The algorithm

requires two inputs: the probability maps or confidence scores obtained from the supervised

classifier (P) and the guidance image (I) (which is usually a one-band representation of the

input HS image). The spatial-spectral feature vector is defined in Eq 1, where I is the normal-

ized pixel value (spectrum) at location i and l(i), h(i) are the normalized longitude and latitude

of the pixel i. The output of the KNN-filtering is given by Eq 2, where Ni refers to the K-nearest

neighbors of the pixel i found in the feature space F(i). It can be seen that at λ = 0 there is no

spatial information, while when non-zero it captures the spatial information of pixel i given by

l(i) and h(i).

FðiÞ ¼ ðIðiÞ; llðiÞ; lhðiÞÞ ð1Þ

O ið Þ ¼
P

PðjÞ
K

; j 2 Ni ð2Þ

When λ is set to zero, the spatial coordinates are not considered in the KNN filtering pro-

cess, and when the value of λ increases, the classification results tend to be oversmoothed,

decreasing the accuracy of the classification results. The parameter K has a similar influence in

the classification results: when the K value is high, the filtering method oversmooths the classi-

fication results, worsening the accuracy of the classification results. In this approach, it is not

possible to provide a quantitative measure of the influence of K and λ parameters, due to the

absence of a complete golden standard map. Nevertheless, the influence of these parameters in

the generation of the classification maps has been studied. As mentioned before, large values

of K or λ tends to oversmooth the obtained classification maps. Several executions of the KNN

filtering were performed employing different values of K (5, 10, 20, 40 and 60) and λ (0, 1, 5,

10 and 100). Fig 5 shows the filtered classification maps of the patient 2 using different values

of K and λ. In both cases, small values of K and λ result in a mix of small classes that do not

represent the real distribution of the tissues. On the other hand, large values of K and λ tend to

oversmooth the classes. After a visual inspection of the results by the specialists (neurosur-

geons), the final values of K and λ chosen for this study were K = 40 and λ = 1. These values
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generate a filtered map where the different classes are homogenized enough without over-

smoothing the classification result (Fig 5D and 5G).

In this study, the probability maps are obtained from the confidence scores of the SVM clas-

sification result, while the guidance image is obtained by calculating the one band representa-

tion of the HS cube by performing a dimensionality reduction using the FR-t-SNE algorithm

[28].

Unsupervised clustering segmentation. Hierarchical clustering algorithms are able to

explore the different subspaces presented in a HS cube. Each cluster centroid represents a spec-

tra corresponding to a material in the scene, while the membership functions provide the

weights for these spectra. Some works based on hyperspectral analysis for medical applications

use unsupervised clustering as part of the classification algorithm, such as for colon tissue cell

classification [48] or laryngeal cancer detection [49]. Unsupervised clustering provides a hier-

archy of segmentations/clusters and its correspondent cluster centroid. Although it does not

provide any discriminant feature by itself, it could be used delineate the boundaries of the dif-

ferent spectral regions presented in the HS image.

The unsupervised stage of the algorithm is based on a clustering method [50]. This method

provides a segmentation map where all the different tissues, materials or substances found in

the HS image are grouped forming clusters that have similar spectral characteristics. Three dif-

ferent clustering algorithms have been applied to the available HS images differentiating

between 24 clusters: Hierarchical rank-2 non-Negative Matrix Factorization (H2NMF) [50],

Hierarchical K-Means (HKM) and Hierarchical Spherical K-Means (HSKM) [51]. After a

visual evaluation of the resulting maps by the specialists, it was found that all clustering meth-

ods provided useful information about the different tissues, materials and substances that were

presented in the scene. Due to the fact that all three clustering methods provided similar infor-

mation, HKM was selected in this study since it had the lower computational cost providing

similar results. In the context of this work, the clustering process provides a good delimitation

of the different areas presented in the image that should be identified by a specialist or by an

automatic process, i.e., supervised classification. For this reason, a method to merge the results

from the supervised and unsupervised stages of the brain cancer algorithm is required to

obtain the final classification map.

Fig 5. KNN filtered maps obtained with different K and λ values. (A), (B), (C), (D) and (E) filtered maps obtained with K equal to 5, 10, 20, 40, and 60, while

keeping λ value fixed to 1. (F), (G), (H), (I) and (J) filtered maps obtained with λ equal to 0, 1, 5, 10, and 100, while keeping K value fixed to 40.

https://doi.org/10.1371/journal.pone.0193721.g005
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Hybrid classification. In the previous sections, the advantages of supervised and unsuper-

vised learning methods have been introduced. On the one hand, supervised learning can infer

the knowledge previously provided by neurosurgeons and pathologists, but it can poorly pro-

vide a good delimitation of the tumor area. On the other hand, the unsupervised clustering

results provide a good association of similar pixels, but each cluster is semantically meaning-

less. In order to solve this problem, an algorithm for merging these two sources of information

has been employed. This hybrid algorithm has been previously used in hyperspectral imaging

[29], and consists of a technique that merges the information from a supervised classification

map and an unsupervised segmentation map (Fig 6). In the first step of this algorithm, the seg-

mentation map and the supervised classification map are calculated independently from the

same pre-processed HS cube. Once both maps have been obtained, the information is merged

using the majority voting algorithm. For each cluster found by the clustering algorithm, all

Fig 6. Hybrid classification example based on a majority voting technique. The unsupervised segmentation map

and the supervised classification maps are merged using the majority voting method.

https://doi.org/10.1371/journal.pone.0193721.g006

Hyperspectral brain cancer imaging classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0193721 March 19, 2018 12 / 27

https://doi.org/10.1371/journal.pone.0193721.g006
https://doi.org/10.1371/journal.pone.0193721


pixels are assigned to the most frequent class in each region in the supervised classification

map. The combination of the supervised classification with the segmentation map provides

some advantages. On the one hand, the unsupervised segmentation maps obtained with the

clustering process have shown good capability in finding homogeneous spatial data structures

from the HS cube. However, it does not provide any identification of the tissue, material or

substance that the cluster belongs to. On the other hand, the supervised classification approach

employs the diagnosis information provided by medical doctors (neurosurgeons and patholo-

gists) to generate a classification map where each pixel of the image has been assigned to a cer-

tain class. However, the amount of labeled information is limited. Using the previously

described MV algorithm, the strengths of each method are exploited. As stated in [29], over-

segmentation (different clusters correspond to the same class) is not a crucial problem, but

undersegmentation is not desired. Fig 6 graphically represents the method of the hybrid algo-

rithm where an unsupervised map, composed by four different clusters that have no semantic

meaning, is merged with a supervised classification map, composed by four different classes

that have histological meaning. The final hybrid classification map represents each pixel within

a certain class (identified by the supervised classification algorithm) grouped taking into

account the clusters obtained by the unsupervised segmentation map (that delimitates the bor-

ders of each cluster region).

Brain cancer detection algorithm acceleration

As far as the actual system implementation concerns, a preliminary demonstrator has been

built using a modified version of the brain cancer detection algorithm [52]. To implement this

application, both a computer and a hardware accelerator–MPPA-256-N, an architecture that

gathers 256 processing units [53]–have been employed. On the one hand, the common stages

of the application–data pre-processing and hybrid classification–and the unsupervised classifi-

cation are executed on the computer that manages the hyperspectral cameras. On the other

hand, the spatial-spectral supervised classification is mapped to a hardware accelerator. The

rationale behind is the high computational load of the stage. For this preliminary demonstrator

[52], the spatial-spectral stage has been modified. Additionally, as the system aims at building

a generic classification model to assist neurosurgeons, without adding new samples, the classi-

fication model generation stage could be removed from the processing chain and consider it as

a configuration step. Therefore, the processing chain would be composed of four stages: 1) a

pre-processing of the HS cube; 2) a spatial-spectral supervised classification; 3) an unsuper-

vised classification; 4) a hybrid classification.

Evaluation metrics

The methodology for evaluating the supervised classifiers in a quantitative way is as follows:

firstly, the labeled information corresponding to a simulation was used, and then, a 10-fold

cross validation was applied in order to measure the performance of the model. The quantita-

tive evaluation metrics used for this purpose are sensitivity, specificity and overall accuracy

metrics. These are calculated from the following conditions:

• True Positive (TP): Correctly detected conditions. The result of the test is positive and the

actual value of the classification is positive.

• False Positive (FP): Incorrectly detected conditions. The result of the test is negative and the

actual value of the classification is positive.

• True Negative (TN): Correctly rejected conditions. The result of the test is negative and the

actual value of the classification is negative.
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• False Negative (FN): Incorrectly rejected conditions. The result of the test is positive and the

actual value of the classification is negative.

Sensitivity is the proportion of the actual positives that are correctly identified as positives

by the classifier (see Eq 3). Specificity is the proportion of the actual negatives that the classifier

successfully valuates as negative (see Eq 4). Overall Accuracy refers to the ability of the model

to correctly predict the class label of new or previously unseen data (see Eq 5).

Sensitivity ¼
TP

TPþ FN
ð3Þ

Specificity ¼
TN

TN þ FP
ð4Þ

Accuracy ¼
TPþ TN

TPþ FPþ TN þ FN
ð5Þ

Once the quantitative metrics have been obtained, the previously trained SVM classifier is

used to classify a whole HS cube, and the result is evaluated by neurosurgeons in order to ana-

lyze the quality of the algorithm in distinguishing different types of tissues, materials or

substances.

Experimental results

Hyperspectral imaging can distinguish between tumor and normal tissue

pixels by their spectra

Fig 7A and 7B show the mean and variances of the pre-processed spectral signatures of the

tumor tissue, normal tissue and blood vessel labeled pixels obtained from the golden standard

database of patient 1 and 2, respectively. As it can be seen in this figure, the shape of the signa-

ture depends on the tissue heterogeneity, especially in the tumor class. There are some similar-

ities between the spectral signature of the blood vessel class and the tumor class that could

Fig 7. Mean and variances of the pre-processed spectral signatures of the tumor, normal and blood vessel classes of the labeled pixels from patient 1 (A) and patient 2

(B), represented in red, black and blue color respectively.

https://doi.org/10.1371/journal.pone.0193721.g007
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produce some misclassifications, as it will be explained later. However, it is possible to see that

the differences between the normal class and the tumor class are remarkable. These differences

will ensure a successful classification of the normal and tumor pixels by the supervised classi-

fier. In order to demonstrate that the use of a supervised classifier will achieve a reliable differ-

entiation between the labeled pixels that conforms the golden standard database, these pixels

have been spectrally analyzed employing an SVM classifier. Afterwards, the SVM model gener-

ated using the golden standard database for each patient was employed to classify the entire

HS cube of this patient. As it was previously mentioned, the golden standard information was

extracted from the HS data using a specific tool developed to this end.

In order to measure the supervised classifier performance and to select the optimal configu-

ration of the SVM model, a three-way cross validation has been employed. Linear, Radial Basis

Function (RBF), polynomial and Sigmoid kernels have been tested and compared. Fig 8A

shows the overall accuracy classification results obtained in the experiments comparing the

four SVM kernels with the default parameters, using the labeled dataset for each patient indi-

vidually and performing the three-way cross validation. S1–S4 Tables present the confusion

matrix results of the different classifications for each patient and type of kernel. Linear kernel

provides the best accuracy results for this type of sample having a lower computational cost

than the other kernels exceeding 99% of overall accuracy. This indicates that there is a strong

reliability on classifying the spectral samples of the brain surface using a supervised classifier.

Fig 8B and 8C illustrate the results of specificity and sensitivity metrics respectively with the

linear kernel for each patient and class using the One-vs-All method. As it can be seen in these

figures, the SVM classifier offers specificity and sensitivity results higher than 96%, reaching in

most cases 100% specificity and sensitivity.

Fig 9A, 9B, 9C, 9D and 9E show the synthetic RGB images generated from each HS cube

where the tumor area has been surrounded with a yellow line in each RGB image. Fig 9F, 9G,

9H, 9I and 9J show the golden standard maps generated using the labeling tool, where red,

green, blue and black colors represent the tumor tissue, normal tissue, blood vessels and back-
ground, respectively. The qualitative results generated by the supervised classifier are shown in

Fig 9K, 9L, 9M, 9N and 9O. These supervised classification maps have been obtained using the

SVM model generated from the golden standard. The color representation is the same as the

golden standard representation previously introduced, except for the blue color representing

the hypervascularized tissue presenting on the brain surface apart from the blood vessels. In

each supervised map, it is possible to identify the tumor area. Some false positives can be

found in the images. This result is produced due to the spectral similarities between the tumor

tissue and the main blood vessels or areas with extravasated blood in the surgical field as a

result of the resection. In Fig 9K, the supervised classification map of patient 1 is shown. In

this result, it can be seen that there are some false positives (delineated by an orange line)

where a main blood vessel is presented (red area in the center of the image) and near other

blood vessels far from the tumor area. Furthermore, there is another false positive in a small

region in the right bottom of the image where the bone of the skull is visible (outside of the

region where the parenchyma is exposed) due to the extravasated blood from the craniotomy.

The same effect is observed with patient 3 (Fig 9M) where there are some false positives outside

of the parenchymal area. Despite these false positives, the tumor area is clearly identifiable in

each image, and in any case blood vessels and extra-parenchymal tissue are very evident to the

surgeon during resection, so that no diagnostic confusion is likely to happen. This first step of

the cancer detection algorithm results in the approximate identification of the tumor and nor-

mal tissue areas using the SVM supervised classifier. The next step is to improve the classifica-

tion maps employing spatial information provided by the HS image.
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Improving the spatial coherence of the supervised classification maps

The supervised classification maps generated in the first step of the cancer detection algorithm

have been improved by combining these results with a one-band representation of the HS

cube using a KNN filtering method. The one-band representation of the HS image, where the

most significant information of the image is revealed, has been generated using the FR-t-SNE,

which offers a high contrast value compared to alternative dimensional reduction algorithms.

Fig 9P, 9Q, 9R, 9S and 9T present the FR-t-SNE one-band representation of each HS cube. In

these images, it is possible to identify the different areas presenting on the brain surface as

Fig 8. Quantitative results of the supervised classification performed with the SVM classifier applied to the

labeled data of each patient. (A) Overall accuracy results of supervised classification per SVM kernel type and patient.

(B) and (C) Specificity and sensitivity results obtained using the SVM classifier with linear kernel for each patient and

class employing the One-vs-All evaluation method.

https://doi.org/10.1371/journal.pone.0193721.g008
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Fig 9. Results of each step of the optimized spatial-spectral supervised classification of the five different patients. (A), (B), (C), (D) and (E) Synthetic RGB

images generated from the HS cubes. (F), (G), (H), (I) and (J) Golden standard maps used for the supervised classification training. (K), (L), (M), (N) and (O)

Supervised classification maps generated using the SVM algorithm. (P), (Q), (R), (S) and (T) FR-t-SNE one band representation of the HS cubes. (U), (V), (X), (Y)

and (Z) Spatially optimized classification maps obtained after the KNN filtering.

https://doi.org/10.1371/journal.pone.0193721.g009
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their borders are highlighted. In these one-band representations, it is possible to identify the

tumor area in each image. FR-t-SNE results together with the probability scores obtained from

the supervised classification maps are the inputs for the KNN filtering. This filtering process is

used to increase the spatial coherence of the supervised classification maps, providing the con-

textual information of each pixel in the classification scheme. Fig 9U, 9V, 9X, 9Y and 9Z illus-

trate the spatially optimized classification maps obtained after the KNN filtering process. It is

apparent that the region of each class in the images has been homogenized giving coherence to

the classification maps. Although the differences between the supervised classification maps

and the spatially optimized classification maps are not very noticeable when looking at the

resulting images by the naked eye (Fig 9K–9O and Fig 9U–9Z), this is a high important task

since this homogenization will improve the final stage of the cancer detection algorithm,

which will assign the classes to the otherwise meaningless clusters provided by the unsuper-

vised clustering algorithm. If the number of pixels that belongs to a certain class (tumor, nor-

mal, hypervascularized or background) increases or decreases in the spatially optimized

classification map, the final brain cancer classification map could be affected, showing differ-

ent densities of a certain class in a certain region delimited by the unsupervised clustering

algorithm.

Unsupervised clustering for accurate boundaries delineation of the brain

surface

Fig 10A, 10B, 10C, 10D and 10E show the segmentation maps generated for each patient

employing the HKM clustering algorithm. As it can be seen, structures such as blood vessels,

materials like the ring markers and different tissue regions are delineated by the clustering

algorithm. Furthermore, the region of interest that is formed by the parenchymal area of the

brain can be clearly differentiated. Inside this area, some different structures of tissue are

highlighted, delimiting with high accuracy the boundaries of each region. However, the infor-

mation provided by the segmentation maps is meaningless: the colors that represent each clus-

ter are randomly selected and there is no class associated for each cluster. For this reason, it is

necessary to combine the supervised identified classes with the unsupervised accurate clusters.

Delimiting and identifying the human brain area affected by cancer

The final stage of the cancer detection algorithm has the goal of combining the segmentation

map, obtained by the clustering algorithm, and the spatially homogenized classification maps,

generated after the KNN filtering process, to build the final classification map employing the

MV algorithm. Fig 10F, 10G, 10H, 10I and 10J show the MV classification map results. These

results have been generated applying the maximum majority class of the supervised classifica-

tion map to each cluster of the segmentation map. These MV maps provide more accurate

results than the spatially optimized supervised classification maps. The boundaries of each

class region are better delineated. In some cases, the tumor area is reduced, having mixed tis-

sue (normal and tumor) in the area where only tumor class was presented in the supervised

classification map (see patient 2, Fig 10G). The same effect is observed in patient 3, where

small islands of normal tissue are found to be mixed in the tumor region (see patient 3, Fig

10H). Although this MV classification map provides better delineation of the areas affected by

cancer on the brain surface, it is possible to have additional hidden information in these maps.

For example, if a cluster that represents a certain class includes a zone with a high percentage

(but not the maximum) of another class, this information is not revealed in the resulting

image. For this reason, another visualization of the MV classification map was developed, the

One Maximum Density (OMD) map. In this case, only the maximum probability results
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Fig 10. Results of each step of the proposed cancer detection algorithm applied to the five different patients. (A), (B), (C), (D) and (E)

Segmentation maps generated using the HKM algorithm. (F), (G), (H), (I) and (J) MV classification maps. (K), (L), (M), (N) and (O) OMD maps
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obtained by the MV algorithm for each cluster are used to determine the color map, and the

color of each class is then degraded using the percentage of the probability. For example, if the

probability of the tumor class for a certain cluster is 80%, the cluster color is degraded 20% (the

cluster RGB color will be R = 0.8, G = 0, B = 0). The color gradient is performed only for the

tumor tissue, normal tissue and blood vessel/hypervascularized tissue classes. The background

class is not degraded. Fig 10K, 10L, 10M, 10N and 10O show the OMD maps for each capture,

with areas of degraded color. This observation indicates that the MV result probability was

somewhat lower than for undegraded areas, and may point to the presence of different tissue

classes merged in this cluster. In order to represent the classes that are mixed in a certain cluster,

a third map is based on the three maximum probability values of the MV results in each cluster.

This representation, the Three Maximum Density (TMD) map, offers more information from

the MV results, mixing the color of each class using the percentage of the three maximum MV

probability values. For instance, if the probability of tumor class for a certain cluster is 60%, the

probability of normal tissue is 10% and the probability of blood vessel/hypervascularized tissue

is 30%, the RGB color of the cluster will be R = 0.6, G = 0.1 and B = 0.3. By employing this tech-

nique, it is possible to visualize the clusters where their respective mixed classes are hidden. Fig

10P, 10Q, 10R, 10S and 10T show the TMD maps of each capture, where clusters that are par-

tially mixed between the classes present darker colors. Patient 3 is a good example that contains

hidden information in the MV map (Fig 10H). After the generation of the TMD map (Fig 10R),

it is possible to visualize a new area surrounding the main tumor region represented in purple

color, which corresponds with hypervascularized tissue with tumor infiltration. In this case, the

system can estimate the proportion of malignant tissue that is mixed with the normal hypervas-

cularized tissue. When the tissue is classified as normal (green color), there is no mixture

between malignant and normal tissue. When there is some minimum amount of malignant tis-

sue, the proportion of malignant tissue is showed in the TMD map with a gradient of red color

and thus is marked for being resected in order to avoid tumor recurrence.

Accelerating the brain cancer detection maps generation

In order to assess the application in terms of the processing time required to analyze the HS

images during surgical procedures, Table 2 shows the results obtained from the five patient

images employed in this research. This table presents the sequential time results obtained in a

CPU implementation (using a computer with an Intel1 Core™ i7-4770k 3.5GHz) and the time

results obtained using the hardware acceleration in the spatial-spectral supervised classifica-

tion stage. Due to the connection between the computer and the hardware accelerator, a time

for the transmission is required in the accelerated version of the algorithm. However, the parti-

tion of the algorithm in both platforms allows executing the unsupervised clustering in the

CPU and the spatial-spectral supervised classification in the hardware. The total time required

for the processing in the accelerated version is computed taking into account the maximum

time obtained between the spatial-spectral supervised classification and the unsupervised clus-

tering. Specifically, when the hardware accelerator is not employed, the spatial-spectral super-

vised classification is the most time consuming stage. In contrast, an average speedup factor of

26.83x is achieved on the spatial-spectral supervised classification stage when the hardware

accelerator is used. These results show that the proposed system provides a classification map

of the captured scene during the surgery to neurosurgeons in approximately 1 minute,

depending on the size of the captured image.

that take into account only the major probability per class obtained from the MV algorithm. (P), (Q), (R), (S) and (T) TMD maps that take into

account the first three major probabilities per class obtained from the MV algorithm.

https://doi.org/10.1371/journal.pone.0193721.g010
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Discussion

The task to identify the boundary between the tumor tissue and the normal tissue that sur-

rounds is difficult for neurosurgeons by only using the naked eye, as brain tumors are

extremely infiltrative. The current tools employed to this end have many limitations to assist

in the delineation of the tumor boundaries. MRI-based neuronavigation accuracy is affected

by the brain shift during resection and depends on a questionable correlation between the

extent of enhancement on MRI and cellular infiltration. Other techniques, like 5-ALA fluores-

cence, do not work in low-grade lesions despite being highly invasive and is not recommended

for use in children. For these reasons, there is a need to develop new techniques for tumor

margin delineation in real-time, maximizing the resection of the tumor and minimizing the

resection of the adjacent normal brain. HSI offers a new possibility to address these issues,

being a non-contact, non-ionizing and non-invasive technique.

In this research work, a methodology to develop a surgical tool for identifying and delineat-

ing the boundaries of the tumor tissue using HS images has been described. For processing

these data, an active interaction between medical doctors and engineers was required. On the

one hand, medical doctors generated the HS image database and the selection of the images

where tumor tissue was present. They were also involved in the identification of certain types

of tissues, materials and substances that appear in the captured HS cubes. On the other hand,

engineers performed the digital processing of the images, developing a brain cancer detection

algorithm that exploits the spatial and spectral features of the HS images.

The preliminary results obtained in the supervised classification of the tissues that have

been previously labeled by the specialists, demonstrate that it is possible to accurately discrimi-

nate between normal tissue, tumor tissue, blood vessels and background with an overall accu-

racy higher than 99%. Using the supervised models generated with the labeled data, the entire

HS images were classified and qualitatively evaluated. Five SVM classification maps obtained

from five different patients affected by a grade IV glioblastoma tumor were generated. These

Table 2. Processing time results comparison for each patient.

Patient

ID

# Pixels Processing

Type

Pre-

processing

Transmission Spatial-Spectral Supervised

Classification

Unsupervised

Clustering

Hybrid

Classification

Total

1 251,532 Sequential (s) 14.53 0.00 482.64 45.44 0.010 542.62

Accelerated (s) 15.10 16.91 75.08�

Speedup factor 1.00 0.00 28.54 1.00 1.00 7.23

2 219,232 Sequential (s) 11.34 0.00 467.47 38.97 0.008 517.79

Accelerated (s) 12.02 13.92 62.33�

Speedup factor 1.00 0.00 33.57 1.00 1.00 8.31

3 185,368 Sequential (s) 10.28 0.00 321.26 33.52 0.008 365.01

Accelerated (s) 11.60 11.98 55.35�

Speedup factor 1.00 0.00 26.82 1.00 1.00 6.59

4 124,691 Sequential (s) 7.22 0.00 146.63 22.26 0.005 176.11

Accelerated (s) 8.53 7.12 38.01�

Speedup factor 1.00 0.00 20.58 1.00 1.00 4.63

5 189,744 Sequential (s) 14.27 0.00 268.98 33.93 0.006 317.18

Accelerated (s) 10.53 10.92 58.73�

Speedup factor 1.00 0.00 24.62 1.00 1.00 5.40

�The total time produced in the accelerated version is computed taking into account the maximum time obtained between the spatial-spectral supervised classification

and the unsupervised clustering.

https://doi.org/10.1371/journal.pone.0193721.t002
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maps can identify the regions where the tumor is located. Employing a spatial-spectral optimi-

zation method based on a KNN filtering and a FR-t-SNE dimensional reduction, the SVM

classification maps were spatially homogenized. A clear identification of the tumor regions

using this spatial-spectral supervised classification maps is provided. However, these maps do

not offer accurate delineation of the boundaries. The unsupervised stage of the algorithm

based on a HKM clustering method provides a segmentation map where the boundaries of 24

different regions with similar spectral characteristics are delineated. The fusion of the spatial-

spectral supervised classification map and the unsupervised segmentation map through the

MV algorithm generates the final classification map, where the boundaries of the different tis-

sues materials or substances presented in the image are identified with a certain class. In sum-

mary, the spatial-spectral classification maps allow assigning each cluster in the segmentation

map to an identifiable tissue class.

Employing the information provided by the MV algorithm, three different ways to repre-

sent the final results were analyzed. The MV map assigns the maximum probability of each

class to each cluster and represent the cluster with the correspondent color: red for tumor tis-

sue, green for normal tissue, blue for blood vessel/hypervascularized tissue and black for back-

ground. On the other hand, the OMD map displays the color of each class degraded according

to the value of the first major probability. By using this technique is possible to identify the

clusters that conform only slightly to their assigned class. Finally, the TMD map represents

each color as a combination between the different classes mixed in a certain cluster. This map

is of the most value to the operating neurosurgeon, since it offers the possibility to assess the

degree of tumor infiltration into the surrounded normal brain. This assessment is key for judg-

ing the desired extent of resection.

Finally, this complex algorithm was accelerated in order to obtain the results of the classifi-

cation in surgical-time during the neurosurgical operation. As a preliminary system, these

results are highly promising since this acceleration allows obtaining the classification results in

~1 minute depending on the size of the image, which represents an average speedup factor of

6.43x, with respect to a sequential implementation in a CPU. Compared with the intraopera-

tive pathological analysis or the intra-surgical magnetic resonance, that can take more than 30

minutes, we provide the classification result in ~1 minute, indicating the precise location of

the tumor to the operating surgeon in surgical time.

Limitations

The following relevant limitations have been found during this research: a) some false positives

have been found on the results; b) there is a need of a clinical validation of the system; c) some

misclassifications have been found between different tissues; and d) there is a need of an accel-

eration of the entire algorithm. Next, these limitations are detailed together with some possible

solutions.

False positives have been encountered in the obtained results that could be solved with fur-

ther investigations. For instance, there are some misclassifications between blood or blood ves-

sels and tumor tissue due to the high intra-class variability between the vascularized tissues,

although these false positives do not affect the area of identified tumor so that the margins of

the tumor remain clearly evident. The use of an increased database to generate the supervised

classification model, where the inter-patient variability is taken into account, is expected to

produce better classification results. The inclusions of more labeled samples of normal tissue

will reduce the occurrence of false positives in the results.

Furthermore, an extensive clinical validation is required to validate if the boundaries of the

tumor area represented in the TMD map are accurately identified. Several biopsies of the
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boundaries of tumor area must be obtained and analyzed by the pathologists to certify the

brain cancer algorithm results.

On the other hand, there are some misclassifications between different tissues with high

vascularization. In some cases, extravasated blood and normal tissue affected by edema were

classified as blood vessel/hypervascularized tissue (blue color). This misclassification is pro-

duced due to the similar spectral characteristics of the blood vessels and the tissue affected by

edema. Further investigations where these spectral differences are included in the training of

the brain cancer algorithm could alleviate this problem, or perhaps a new class could be cre-

ated to identify the normal brain with high vascularization.

Finally, further investigations in the algorithm acceleration could provide the final TMD

map in less than one second by using heterogeneous high performance computing system,

thus obtaining real-time results. The future of this intraoperative HSI system is envisioned

employing snapshot HS cameras, which can capture about ten images per second, allowing

even tracking dynamic changes of the tissues.

Conclusions

This study develops a brain cancer detection algorithm to classify HS images of brain tumor in

surgical-time during neurosurgical operations. It has been demonstrated that the use of HSI as

a new non-invasive surgical-time visualization tool can improve the outcomes of the undergo-

ing patient, assisting neurosurgeons in the resection of the brain tumor. The identification of

the tumor boundaries and the tumor infiltration into normal brain is highly relevant in order

to avoid excessive resection of normal brain and to avoid unintentionally leaving residual

tumor. Currently, further investigations are being carried out by the research team in order to

generalize the results obtained, to optimize the algorithms and validate their findings, as well

as to increase the image database and optimize the acquisition system. Furthermore, the use of

other hardware acceleration platforms (such us GPUs or FPGAs) are currently under consid-

eration to implement the full brain cancer detection algorithm. Such implementation must

explore the design space to achieve the best tradeoff between real-time execution, memory

usage and power dissipation using heterogeneous platforms. This next generation of medical

HSI systems could offer neurosurgeons a real-time visualization tool to assist them during the

entire process of the tumor resection providing several TMD maps per second.
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Piñeiro, Guang-Zhong Yang, Bogdan Stanciulescu, Rubén Salvador, Eduardo Juárez,
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