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ABSTRACT

Context. High-resolution radio imaging of active galactic nuclei (AGN) has revealed that the jets of some sources present superlumi-
nal knots and transverse stratification. Recent observational projects, such as ALMA and γ-ray telescopes, such as HESS and HESS2
have provided new observational constraints on the central regions of rotating black holes in AGN, suggesting that there is an inner-
or spine-jet surrounded by a disk wind. This relativistic spine-jet is likely to be composed of electron-positron pairs extracting energy
from the black hole and will be explored by the future γ-ray telescope CTA.
Aims. In this article we present an extension to and generalization of relativistic jets in Kerr metric of the Newtonian meridional self-
similar mechanism. We aim at modeling the inner spine-jet of AGN as a relativistic light outflow emerging from a spherical corona
surrounding a Kerr black hole and its inner accretion disk.
Methods. The model is built by expanding the metric and the forces with colatitude to first order in the magnetic flux function. As
a result of the expansion, all colatitudinal variations of the physical quantities are quantified by a unique parameter. Unlike previous
models, effects of the light cylinder are not neglected.
Results. Solutions with high Lorentz factors are obtained and provide spine-jet models up to the polar axis. As in previous publi-
cations, we calculate the magnetic collimation efficiency parameter, which measures the variation of the available energy across the
field lines. This collimation efficiency is an integral part of the model, generalizing the classical magnetic rotator efficiency criterion
to Kerr metric. We study the variation of the magnetic efficiency and acceleration with the spin of the black hole and show their high
sensitivity to this integral.
Conclusions. These new solutions model collimated or radial, relativistic or ultra-relativistic outflows in AGN or γ-ray bursts. In
particular, we discuss the relevance of our solutions to modeling the M 87 spine-jet. We study the efficiency of the central black hole
spin to collimate a spine-jet and show that the jet power is of the same order as that determined by numerical simulations.

Key words. black hole physics – magnetohydrodynamics (MHD) – relativistic processes – galaxies: jets

1. Introduction

Active galactic nuclei (AGN) jets are now recognized as being
multi-component outflows related to accretion onto a supermas-
sive black hole (SMBH). The outer kiloparsec/megaparsec-scale
lobes are fed by a powerful hadronic plasma, which most likely
originates from the Keplerian accretion disk via the magneto-
centrifugal launching mechanism, Blandford & Payne (1982).
This hadronic population could be responsible for the second
component peaking in the γ-ray band of the spectral energy dis-
tribution (SED) of some blazars. As explained in Böttcher et al.
(2013), this is possible if a relativistic jet of protons contributes
significantly to the radiative output through proton synchrotron
emission or photo-pion production. However the purely hadronic
synchrotron models for blazars present a major problem due to
the requirement for having very high powers in the jets. Indeed,
hadronic processes are very inefficient (Sikora 2011). They are
only energetically favorable for high-frequency synchrotron peak
(HSP) blazars, where the jet is likely to be highly magnetized
(Petropoulou & Dermer 2016).

The alternative approach to explaining the origin of the
high-energy emission is to consider leptonic models. There,
the radiative output throughout the electromagnetic spectrum
is assumed to be dominated by leptons both at low and high
frequencies. Inverse Compton scattering of soft photons (IC)
by relativistic nonthermal electrons in the jet is supposed to
be the most probable mechanism for γ-ray production, at least
for strong-line and low-frequency synchrotron peak – LSP –
blazars. Until recently, leptonic models in quasi steady-state
were very successful in modeling the SED for almost all classes
of blazars (e.g., Celotti & Ghisellini 2008). However leptonic
models with a one-zone component where only one portion
of the jet dominates the emission are now questioned. Mostly,
they fail to produce the extremely high bulk Lorentz factors
in a very compact emission region required for ultra-fast vari-
ability of some TeV blazars (Begelman et al. 2008). Despite
several proposed mechanisms mostly based on small-scale inho-
mogeneities in the jet (see references in Vovk & Babić 2015),
it is not yet possible to know the location of the variable
γ-ray emission; it may be at the base of the jet or up to
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parsec-scale distances from the central black hole. Moreover
most of the sources in which ultra-rapid variability events have
been observed are BL Lac objects emitting very-high-energy
radiation.

For BL Lacs the application of the one-zone synchrotron-
self Compton model to the SED implies that the jet is weakly
magnetized and the emitting region is far from equipartition.
Both conditions are required if magnetic-reconnection-powered
emission is at the origin of the ultra-rapid variability (Tavecchio
2016). A most important constraint comes from the launching
and the acceleration processes, which should lead to almost
equipartition between the magnetic and the kinetic energy fluxes
as can be seen in other blazars. In order to unify the BL Lac
and radiogalaxy populations, Ghisellini et al. (2005) already pro-
posed a structured jet model with two components; a faster core
(the spine) surrounded by a slower sheath or layer. This two com-
ponent model is able to explain peculiar features of TeV-emitting
BL Lacs, such as the absence of fast superluminal components
and the presence of a limb-brightened radio structure (Giroletti
et al. 2004; Nagai et al. 2014). Tavecchio & Ghisellini (2016)
showed that this structured jet model gives an extra source of soft
photons intervening in the IC emission for BL Lacs. It is due to
the radiative interplay between the two components and allows
to reproduce the emission in equipartition conditions. This spine-
sheath jet structure has also been explored in Sikora et al. (2016)
for strong-line blazars in order to explain why γ-ray variations
are often observed to have much larger amplitudes than the cor-
responding optical variations, as well as other observed features
of γ-ray flares. For the nearby radiogalaxy M 87, a direct detec-
tion of different motions was possible and an extended mildly
relativistic flow is seen surrounding a relativistic central jet
(Mertens et al. 2016).

The possible seed photon population at the origin of IC
scattering in AGNs is questionable. The dominant seed source
depends critically on the location of the primary emitting region
in the jet (Finke 2016). Radio array observations of individual
blazars are used to localize the γ-ray emission site among the
superluminal components seen along the jet. However, they can-
not put strong constraints on localizing the emission regions of
the high-energy flares. More theoretical and numerical model-
ings and carefully analyzed polarization data are needed (see
Kravchenko et al. 2016 and references therein). We note also the
treatment used in Hada et al. (2011) for locating the central black
hole relatively close to the jet base-radio core in M 87 using the
dependence of the core position on frequency. There are cases
where the spine-sheath model should work. The leptons in super-
luminal components after leaving the black hole corona interact
with the sheath where IC scattering of photons occurs and pro-
duce the observed γ-ray activity (Marscher et al. 2010; Casadio
et al. 2015).

For AGN jets, two-component models have been theoreti-
cally studied in Sol et al. (1989) and further developed by several
authors (e.g., Fabian & Rees 1995). In those studies the spine jet
is the inner leptonic component (electron-positron pairs), which
is self collimated inside a hadronic disk wind, and should be sep-
arated from the wind by a force-free, empty region. On the other
hand, it has been shown numerically that the high collimation
efficiency of the outer-disk wind is sufficient to prevent decol-
limation from the inertia of the inner relativistic plasma, in the
case where the initial magnetic field lines going out from the
launching region, that is, the black hole corona, are radial (e.g.,
Gracia et al. 2009). Moreover synthetic synchrotron maps built
from such magnetohydrodynamic (MHD) models can reproduce
the opening angle of M 87 up to a large distance from the black

hole, and the change between center-brightening near the core to
limb-brightening further away.

The standard accretion-jet model includes an advection-
dominated accretion flow (ADAF) which takes place at least in
the inner part of the accretion disk in AGNs, except for very high
accretion efficiency (Narayan & Yi 1994). The presence of this
ADAF structure in the disk center does not prevent the launching
of the internal jet as can be seen from observations near the black
hole for radiogalaxies (see the Faraday rotation measures from
observations of M 87 in Feng et al. 2016). In the high-accretion
regime for AGNs, where a standard thin disk is found and pow-
erful outflows are observed, both an internal jet and an outer disk
wind coexist.

Numerical simulations in the framework of general rela-
tivity have been performed to model the inner jet formation
assuming a large-scale magnetic field right from the begin-
ning, mostly using monopolar configuration anchored in the
ergosphere. Komissarov (2007) was able to ensure the viabil-
ity of the Blandford–Znajek mechanism (Blandford & Znajek
1977) and the possibility of building a relativistic particle out-
flow. Similar relativistic simulations of jets were obtained by
McKinney & Blandford (2009) where the central Poynting-flux-
dominated force-free jet is self-consistently feeding the funnel of
the accretion-disk wind created along the axis by the very high
toroidal field in a magnetically arrested disk (MAD). McKinney
et al. (2012) and Tchekhovskoy et al. (2011) have also derived a
scaling law between the magnetic flux of the field threading the
black hole and the mass-accretion rate on the horizon. This has
been confirmed observationally by Zamaninasab et al. (2014). In
addition, the jet power, directly related to the magnetic flux on
the horizon, was calculated in their simulations, allowing for the
derivation of a net flow efficiency between the accretion and the
jet.

Beyond the launching region, the internal structure of mag-
netized and relativistic jets can be probed by relativistic MHD
(RMHD) simulations, as has been done by Martí et al. (2016).
They characterized the internal jet structure of overpressured,
steady jets in connection with the dominant energy (internal,
rest-mass, and magnetic). They showed that transverse equilib-
rium with a significant toroidal magnetic component implies a
structure with a central spine and a surrounding layer with lower
thermal and total pressures. Thus, we have strong clues, both
from observations and simulations, that relativistic jets have a
transverse structure. On the other hand, the jet launching mech-
anism associated with magnetic flux threading the black hole
seems to produce only very light spine jets with rarified gas such
that the inner outflow is force-free. The inner beam would be so
light that it would be invisible at large distances. An alternative
issue, in order to model the spine jet, is to extend the self-similar
solutions for jet outflows in young stellar objects to general rela-
tivity. This model can be derived analytically and used as initial
conditions in numerical simulations.

A self-similar model of the spine jet has been pro-
posed by Meliani et al. (2006) for nonrotating black holes
in Schwarzschild metric, extending the previous Newtonian
self-similar model of Sauty & Tsinganos (1994). The
Meliani et al. (2010) model aimed to explain the dichotomy
between FRI and FRII sources in terms of magnetic collima-
tion efficiency. Then, Globus et al. (2014), partially generalized
this model to a Kerr metric. However they fail to give an exact
generalization of the magnetic collimation criterion linked to the
efficiency of the magnetic rotator. In both cases, the authors
assume that the light cylinder is sufficiently far from the spine
jet to have its effects neglected. Physically, this means that
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both models cannot produce solutions consistent across the light
cylinder.

In the present paper, we present a new extension of the
nonrelativistic meridional self-similar solutions of Sauty &
Tsinganos (1994), both in Schwarzschild and Kerr metrics. This
model can produce solutions for relativistic jets emerging from
a spherical corona surrounding the central part of a Kerr black
hole and its inner accretion disk.

Unlike previous models in a Schwarzschild or a Kerr metric,
this new model for a nonrotating, as well as for a rotating black
hole includes a self-consistent crossing of the light cylinder in
the solution. The Alfvén Mach surfaces are not spherically sym-
metric. However, the Alfvén transition surface is spherical and
includes the light cylinder.

In Sect. 2 we summarize the ideal MHD equations in the
3+1 formalism and in Sect. 3 construct the model and derive
its equations. In Sect. 4 we describe how to solve the equa-
tions and illustrate this procedure with various new solutions
in a Schwarzschild metric. Then, four different solutions in a
Kerr metric are presented in Sect. 5 with high Lorentz fac-
tor and different geometries potentially applicable to AGNs and
γ-ray bursts (GRB). Some characteristics of those solutions of
the model are discussed as well as how the magnetic collimation
evolves with the rotation of the black hole.

2. Steady axisymmetric relativistic MHD outflows

2.1. Kerr metric

The first step in building self-similar solutions in relativistic
flows is to define the metric. In fact the central massive black
hole dominates the gravitational field in the near regions and
determines completely the metric field. Thus, in Kerr metric, the
geodesics are defined as follows.

ds2 = −

(
1 −

rsr
ρ2

)
c2dt2 −

2rsrca
ρ2 sin2 θ dt dφ

+
ρ2

∆
dr2 + ρ2dθ2 +

Σ2

ρ2 sin2 θ dφ2. (1)

We have the usual notations of the elements,

∆ = r2 + a2 − rsr, (2)

ρ2 = r2 + a2 cos2 θ, (3)

Σ2 = (r2 + a2)2 − a2∆ sin2 θ, (4)

where a =
J

Mc
and rs =

2GM
c2 .

We note thatJ is the angular momentum of the massive cen-
tral object,M is its mass, h is the lapse function, ω is the angular
velocity of zero angular momentum observers (ZAMO) and we
use a for the length-scale related to the angular momentum of the
black hole (Kerr scale). We can define the dimensionless spin of
the black hole aH in units of the gravitational radius rs/2 such
that, aH = 2a/rs. Furthermore, β is the shift vector.

The lapse function h, the angular velocity ω of zero angular
momentum observers (ZAMO) and the shift vector coordinates
can be written as:

h =

(
1 −

rsr
ρ2 + βφβφ

)1/2

=
ρ

Σ

√
∆, (5)

ω =
acrsr

Σ2 , βφ = −
ω

c
$2, βφ = −

ω

c
, (6)

with $ =
Σ

ρ
sin θ. The corresponding line elements for the Kerr

metric are given in Appendix A.

2.2. Maxwell’s equations

The next step is to define the electromagnetic field in this metric.
Using covariant derivatives, we can write Maxwell’s equations
in Kerr space, assuming stationarity and axisymmetry,

∇ · E = 4πρe, (7)
∇ · B = 0, (8)

∇ × (hE) =

(
B · ∇

ω

c

)
$εφ, (9)

∇ × (hB) =
4πh

c
J −

(
E · ∇

ω

c

)
$εφ, (10)

where (ε i)i=1...3 is the space orthonormal basis. We note that all
quantities in the above equations are given in the ZAMO frame.
We can split all vector fields in a poloidal component in the
meridional plane and a toroidal one along the azimuthal direc-
tion. The poloidal magnetic field Bp can be expressed in terms
of the magnetic flux function A,

Bp = ∇ ×

( A
$
εφ

)
, (11)

and using Faraday’s law, we get the electric field,

∇ ×

(
hE −

ω

c
∇A

)
= 0. (12)

We can introduce the electric potential, Φ, but the electric field
E is not directly proportional to the gradient of the electric
potential,

hE =
ω

c
∇A − ∇Φ. (13)

The condition of ideal MHD for infinite electrical conductivity
leads to

E +
V × B

c
= 0. (14)

We note that ∇ is the covariant derivative on a space hyper-
surface; see Appendix B for the expression of its coordinates.

2.3. Equations of motion

In the Kerr metric, the 3+1 formalism gives the equation for mass
conservation, the Euler equation, and the energy conservation,
respectively,

∇ · (ρ0γhV) = 0, (15)

ρ0γ (V · ∇) (γξV) + ρ0ξγ
2
c2∇ ln h +

$ωV φ̂

h
∇ lnω


+ ∇P = ρeE +

J × B
c

, (16)

γ2ρ0ξc
V · ∇ ln(γξh) +

ω$V φ̂

hc2 V · ∇ lnω
 =

J · E
c

. (17)

Here V φ̂ is the toroidal component of the bulk flow speed as
seen by the ZAMO. The factor γ is the bulk Lorentz factor, ρ0 is
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the mass density, and ξc2 the specific enthalpy measured in the
comoving frame of the outflow, that contains kinetic enthalpy of
perfect relativistic gas ξK and some heating term Q/c2.

ξ = ξK +
Q
c2 . (18)

For the kinetic enthalpy we use the Taub–Matthews approxi-
mation of ideal fluid equation of state; for more details see Taub
(1948), Meliani et al. (2004) and Mignone et al. (2005).

ξK =
5
2

(
P
ρ0c2

)
+

√
1 +

(
3P

2ρ0c2

)2

. (19)

The energy conservation has been derived in the frame of
the ZAMO and equivalently the first law of thermodynamics
can be obtained by projecting the conservation of the energy-
momentum tensor along the fluid 4-velocity but in the comoving
frame. Assuming infinite conductivity, the contribution of the
electromagnetic field is null and only the thermal energy affects
the variation of the enthalpy of the fluid, giving,

ρ0

(
Vp · ∇

)
(ξc2) =

(
Vp · ∇

)
P. (20)

2.4. Constants of motion

Under the assumptions of steadiness and axisymmetry, the MHD
equations in general relativity can be partially integrated to yield
several field/streamline constants (Beskin 2010). We already
deduced those constants including the magnetic field with the
same formalism in Cayatte et al. (2014). Here we present the
derivation of the equations, following the notations of Tsinganos
(1982), in order to compare with previous self-similar models,
for example, Meliani et al. (2006) and give the choice of the first
integrals.

Steady and axisymmetric flows are characterized by a func-
tion A that defines the geometry of the magnetic flux surfaces.
In the poloidal plane, field lines are lines of constant magnetic
flux A and first integrals will be functions of A, among which the
mass flux Ψ. The poloidal velocity can be expressed in terms of
Ψ,

4πρ0γhVp = ∇ ×

(
Ψ

$
εφ

)
. (21)

The frozen-in condition for ideal MHD flows, gives, in the
toroidal direction, combined with Eq. (11),

4πρ0γhVp = ΨABp,

where ΨA ≡ dΨ/dA is the magnetic to mass flux ratio.
The poloidal components of the law of flux freezing

(Eq. (14)) give in turn the iso-rotation law,

Ω − ω =
hV φ̂

$
−

ΨABφ̂

4πρ0γ$
, (22)

where Ω(A) ≡ cdΦ/dA, which is the isorotation frequency,
constant along each magnetic flux tube.

By integrating the Euler equation in the toroidal direction,
we get the conservation of the angular momentum flux L(A),

L = $

γξV φ̂ −
hBφ̂

ΨA

 . (23)

The last equation to integrate is the energy conservation. In
other words, we may take the Euler equation projected along the
time axis of the 3+1 decomposition, and integrate it under the
hypothesis of steadiness,

E − Lω = γξhc2 −
h$(Ω − ω)

ΨA
Bφ̂. (24)

2.5. Toroidal fields

Using the three last integrals of motion, we may express the
toroidal components of the velocity and the magnetic fields and
the enthalpy density as functions of these first integrals and the
poloidal components. Using the standard procedure of inversion
we get

$
hBφ̂

ΨA
=

L
[
h2c2 +$2ω(Ω − ω)

]
− E$2(Ω − ω)(

M2
Alf − h2

)
c2 +$2(Ω − ω)2

, (25)

$γξV φ̂ =
M2

Alf Lc2 − (E − LΩ)$2(Ω − ω)(
M2

Alf − h2
)

c2 +$2(Ω − ω)2
, (26)

γhξ =
M2

Alf(E − Lω) − h2(E − LΩ)(
M2

Alf − h2
)

c2 +$2(Ω − ω)2
, (27)

where we have defined the poloidal Alfvén Mach number,

M2
Alf = h2 Vp

2

V2
Alf

=
4πh2ρ0ξγ

2Vp
2

Bp
2 =

ξΨA
2

4πρ0
. (28)

This definition of the poloidal Alfvén Mach number is consistent
with the definition used by Meliani et al. (2006) and includes the
lapse function. This is also the definition taken by Breitmoser &
Camenzind (2000) because the velocity, hVp, calculated with the
universal time is continuous across the event horizon.

The numerator and denominator of Eq. (25) are zero at the
Alfvén transition surface, if the following two equations are
satisfied,

M2
Alf

∣∣∣
a = h2

a

[
1 −

$2
a(Ω − ωa)2

h2
ac2

]
, (29)

$2
a(Ω − ωa)2

h2
ac2

=
L(Ω − ωa)
(E − Lωa)

. (30)

The denominators of Eqs. (26) and (27) are identical to the one
of Eq. (25) and there numerators are a linear combination of
Eqs. (29) and (30). Hence, the numerators and the denomina-
tors of Eqs. (26) and (27) are also zero at the Alfvén transition
surface.

We can reformulate the above equations by changing vari-
ables. We rescale the cylindrical radius with ch/(Ω − ω) leading
to the dimensionless cylindrical radius x and introduce the
parameter xMR,

x =
$(Ω − ω)

hc
, x2

MR =
L(Ω − ω)
(E − Lω)

. (31)

Hence we can write,

Bφ̂ =
−(E − Lω)ΨA

cx
x2 − x2

MR

M2
Alf − h2 (

1 − x2) , (32)
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hγξ
V φ̂

c
=

(E − Lω)
c2x

M2
Alf x2

MR − (1 − x2
MR)h2x2

M2
Alf − h2 (

1 − x2) , (33)

γhξ =
(E − Lω)

c2

M2
Alf − h2(1 − x2

MR)

M2
Alf − h2 (

1 − x2) . (34)

The second condition, Eq. (30), at the Alfvén transition
surface becomes, keeping the first one unchanged,

x2
∣∣∣
a = x2

MR

∣∣∣
a . (35)

In Kerr metric, the parameter x2
MR is an extension of x2

A
defined by Meliani et al. (2006). It measures the amount of
energy carried by the electromagnetic field. This is the energy
flux of the magnetic rotator (MR) divided by the total energy flux
of the outflow in the co-rotating frame, E− Lω. This new param-
eter xMR, conversely to the previous xA, is not any more constant
along a field line, since ω is not an integral of the motion.

3. Model equations

3.1. Angular expansion

The MHD equations and the metric constitute a coupled set of
highly nonlinear equations that cannot be solved analytically.
The approach followed so far for Newtonian flows has been
to look for solutions with separable variables in the frame of
self-similarity. However, this technique cannot be applied in the
frame of general relativity due to the complexity of the metric
even for the simpler cases of a Schwarzschild or a Kerr metric.
Instead, we may model the jet close to its symmetry axis, that is,
to describe the spine jet, by expanding all variables with sin θ to
second order.

Along the polar axis where$ and θ go to zero, we may define
the spherical Alfvén radius to be the distance r? from the cen-
ter where the Alfvén transition surface condition, M2

Alf,θ=0 = h2
?,

applies. The subscript ? denotes the value of a physical quan-
tity at the Alfvén transition surface, along the polar axis. We
shall use this location to write all our quantities in dimensionless
form. Thus, the dimensionless spherical radius is

R =
r
r?
. (36)

At R = 1, the velocity is V?, the magnetic field B?, the den-
sity ρ?, the enthalpy ξ? and the lapse function h?. Because of
the Alfvén transition along the polar axis, we have,

B2
? = 4πγ?2ρ?ξ?V?

2. (37)

Thus the dimensionless magnetic flux function α is defined
as,

α =
2

r?2B?
A. (38)

Moreover we can expand to the second order the metric
of the system in dimensionless form using the characteristic
dimensions of the system defined in the previous Section. This
introduces the two following new parameters,

µ =
rs

r?
, l =

a
r?

=
J

Mcr?
⇒

2a
r?

=
2l
µ
, (39)

which are respectively the Schwarzschild radius in units of the
Alfvén radius and the dimensionless black hole spin.

Another dimensionless parameter is needed to describe the
gravitational potential, as in the classical model. This parameter
ν represents the escape speed at the Alfvén point along the polar
axis in units of V?. Then, the value of V? is fixed by the following
condition,

ν =
Vesc,?

V?
=

√
2GM
r?V2

?

⇒ V2
? =

µ

ν2 c2. (40)

Thus, to second order in sin θ the ZAMO angular velocity
and the lapse function are written as,

ω =
lcµR

r?(R2 + l2)2

(
1 +

l2hz
2

R2 + l2
sin2 θ

)
, (41)

h =

√
1 −

µR
R2 + l2

(
1 −

µl2R
2(R2 + l2)2 sin2 θ

)
. (42)

In order to simplify our notation, we define the lapse function
along the polar axis,

hz(R) = h(R, θ = 0) =

√
1 −

µR
R2 + l2

, (43)

and the polar shift of the metric,

ωz(R) = ω(R, θ = 0) =
lcµR

r?(R2 + l2)2 . (44)

See Appendix A for details.
It will be useful to introduce the dimensionless polar shift

function (see also Eq. (59)),

ωz(R) =
ωzr?
V?h?

=
l
√
µνR

h?(R2 + l2)2 . (45)

We also expand the magnetic flux function to second order in
sin θ. The magnetic flux is an even function which is zero along
the polar axis due to axisymmetry and because of the symmetry
around the equatorial plane. Thus all odd orders are zero and the
first nonvanishing even order is the second order in colatitude. If
we keep the lowest order in the expansion we get

α(R, θ) = f (R) sin2 θ, (46)

where f is the inverse of the classical expansion factor for
solar coronal holes (see Tsinganos & Sauty 1992). This expan-
sion, similarly to the classical self similar model of Sauty &
Tsinganos (1994), is equivalent to a hypothesis of separation of
the variables in the magnetic flux function.

Thus from Eq. (A.17), the cylindrical radius can also be seen
as an expansion in the magnetic flux. This is physically more
meaningful as the magnetic flux is constant on a given mass flux
tube. Moreover, several free integrals depend solely on this mag-
netic flux. We define the dimensionless cylindrical radius G in
units of the polar Alfvén radius as,

G(R) =

√
R2 + l2

f (R)
. (47)

The cylindrical radius can be written in the various following
forms,

$2 = r2
?(R2 + l2) sin2 θ = r?2G2α = G2$2

a. (48)
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We can also write the metric as an expansion in α (see also
Appendix A),

ω =
lcµR

r?(R2 + l2)2

(
1 +

l2hz
2G2

(R2 + l2)2α

)
, (49)

h =

√
1 −

µR
R2 + l2

(
1 −

µl2RG2

2(R2 + l2)3α

)
. (50)

Of course we can always reverse our point of view and go back
to the expansion in θ. This would be the case if we wanted to use
the steady analytical solution as initial conditions for numerical
simulations.

We can parametrize the geometry of the flux tubes with the
logarithm derivative of f denoted F,

F =
d ln f
d ln R

= 2
(

R2

R2 + l2
−

d ln G
d ln R

)
. (51)

The angle χ of the magnetic poloidal field line with the radial
direction (see Sauty et al. 1999) is given in our metric by,

tan χ =

√
R2 + l2 − µR

2R
F tan θ. (52)

3.2. Choice of the Alfvén surface and pressure

We can expand all physical quantities to the first order in α. Thus
the Alfvén number is given by,

MAlf = M(R) (1 + M1(R)α) . (53)

Contrary to previous self-similar models, the Alfvén number
cannot be spherically symmetric because of the presence of the
cylindrical radius in units of the “light cylinder” x, in the numer-
ator and the denominator of Eqs. (32)–(34). This is induced by
the regularity conditions, Eqs. (29) and (30), and the sphericity
of the Alfvén surface. The surface x = 1 is the so-called outer
“light cylinder”. Of course this surface may not be exactly cylin-
drical if x depends also on α, which may be the case for instance
close to the black hole where ω has a strong dependence on α
or if Ω is not constant with α. Therefore, this is rather a light
surface, but for the sake of simplicity we refer to it as a “light
cylinder” in the rest of the text.

Similarly, the pressure can be expanded to first order,

P(R, α) = P0 +
γ?

2ρ0?ξ?V?
2

2
Π(R) (1 + K(R)α) , (54)

where P0 is a constant.
In order to simplify and as a first step, we assume for both
equations that the radial dependence of the nonpolar compo-
nent of the Alfvén number and the pressure are simply constant,
M1(R) = m1 = cst, K(R) = κ = cst. Thus,

MAlf = M(R) (1 + m1α) . (55)

We note that we have m1 = 0 in previous models; see
Meliani et al. (2006) and Globus et al. (2014).

3.3. Choice of the free integrals

Free integrals are also expanded to the first order in the magnetic
flux. The mass to magnetic flux ratio is similar to the one in the
classical case, expanded as,

ΨA
2(α) =

4πρ0?h2
?

ξ?
(1 + δα). (56)

where δ is a free parameter describing the deviations from
spherical symmetry of the ratio number density/enthalpy as in
Meliani et al. (2006) and not of the density itself, conversely to
Sauty & Tsinganos (1994).

The total angular momentum loss flux density is given by

J = γρ0LhVp =
LΨA

4π
Bp . (57)

Thus it is natural to expand the quantity LΨA rather than L itself.
LΨA is also the poloidal current density along the polar axis and
writes as

LΨA = λh?B?r?α. (58)

The isorotation law can be expanded to first order as well as the
total energy,

Ω = Ω?(1 + w1α), (59)

and

E = E?(1 + e1α), (60)

where we see from Eq. (24) that E? = h?γ?ξ?c2.
Although we have some freedom with the choice of w1 and

e1, we could choose e1 = 0 and w1 = −δ/2 to restrict ourselves to
the values of the previous models, in particular in Schwarzschild
metric; see Meliani et al. (2006) and Meliani et al. (2010). In fact,
the isorotation function Ω does not need to be expanded beyond
the zeroth-order term because Ω always appears multiplied by
another quantity as in (Ω − ω)$ or LΩ. Thus, the value of w1 is
free and does not affect the solution. Conversely, the value of e1
affects the whole dynamics and we shall study the effects of its
variation in a future publication. We already discussed the fact
that taking a weak dependence of Ω on α has the advantage of
minimizing the variation of the “light cylinder” near the base of
the jet. Thus for the sake of simplicity, we shall study here the
case where e1 = 0 and w1 = 0.

3.4. Constraints on the Alfvén Mach number, the isorotation
law, and the angular momentum flux

The value of m1 is, in fact, determined by the prescription to
cross the Alfvén transition surface. In order for the denomina-
tor in Eqs. (25)–(27) to vanish at the Alfvénic transition, the
two following relations given in Eqs. (29) and (30) must be ful-
filled. They can be expanded to first order. For the first regularity
condition we get,

MAlf |a = h?(1 + m1α) with m1 = −
µ

2

(
λ2

ν2 +
l2

(1 + l2)3

)
. (61)

The first term in the right part of Eq. (61) is due to the “light
cylinder”, and the second one to the nonsphericity of the grav-
itational field in Kerr metric. m1 is negligible whenever the
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rotational speed λV? is sub-relativistic and either the µ param-
eter or the angular momentum of the black hole are negligible
too. Since m1 < 0, there is a limiting field line where we have
MAlf = 0 since the magnetic flux increases going out from the
polar axis.

To apply the second regularity condition we use the numera-
tor of Eq. (25) and we get to the first order in α:

Ω? − ω? =
λV?h?

r?
. (62)

Thus we can write

$(Ω − ω) = G(R)
√
αλV?h?Λ(R), (63)

where,

Λ(R) =

[
1 +

√
µνl
λh∗

(
1

(1 + l2)2 −
R

(R2 + l2)2

)]
. (64)

The regularity conditions on the Alfvén surface fixes the
value of m1. Thus the critical Alfvén surface is a sphere, as in
previous meridional self-similar models. We warn, however, that
the Alfvén transition surface is a generalized or modified Alfvén
surface as it takes into account the modification by the “light
cylinder”.

Simultaneously, surfaces of constant Poloidal Alfvén Mach
Number, MAlf = const. (see Eq. (55)) are not spherical sur-
faces, conversely to the one defined by Meliani et al. (2006).
Two effects modify it; first the “light cylinder” effect, which was
neglected in Meliani et al. (2006) and Globus et al. (2014), and
second the frame-dragging effect (Lense-Thirring).

3.5. Expansion of the velocity and magnetic fields

The model is obtained using an expansion to the second order for
sin θ in the Euler equation. Due to axisymmetry, first-order terms
are zero along r and φ while the antisymmetry along θ gives the
zeroth and second orders as null along the colatitude.

Then, for the poloidal velocity field, this gives

V r̂ =
V?M2

h2
?G2

{
1 + sin2 θ

[
1
2

(
l2h2

z

R2 + l2
− 1

)
+

R2 + l2

G2

(
λ2µ

ν2

(
Λ2NB

D
+
ωz

λ

)
− e1 −

δ

2
+ 2m1

)]}
V θ̂ = −

V?hzM2
√

R2 + l2F
2h2

?RG2
sin θ. (65)

And for the poloidal magnetic field, we get

Br̂ =
B?
G2

[
1 +

1
2

(
l2h2

z

R2 + l2
− 1) sin2 θ

]
, (66)

Bθ̂ = −
B?hzF

√
R2 + l2

2G2R
sin θ. (67)

Now from Eqs. (25) and (26), we can calculate to the first order
in sin θ the toroidal components of fields

V φ̂ = −
λV?hzΛNV

h?G2D

√
R2 + l2 sin θ, (68)

Bφ̂ = −
λB?h?ΛNB

√
R2 + l2

hzDG2 sin θ, (69)

where the functions NV , NB , and D have been generalized,

NV =
M2

h2
?Λ
−G2, (70)

NB =
h2

z

h2
?Λ
−G2, (71)

D =
h2

z − M2

h2
?

. (72)

3.6. Expansion of the enthalpy, densities, and electric field

We used Eq. (27) to deduce the enthalpy,

γhξc2 = γ?h?ξ?c2
[
1 + α

(
e1 −

λ2µ

ν2

(
Λ2NB

D
+
ωz

λ

))]
, (73)

and the mass density is given by

γ2ρ0ξ = γ2
?ρ0?ξ?

h4
?

h2
z M2

[
1 + sin θ2

{
µl2R

(R2 + l2)2

+
R2 + l2

G2

(
2e1 − 2m1 + δ −

2λ2µ

ν2

(
Λ2NB

D
+
ωz

λ

))}]
. (74)

In GRMHD, we also need the expressions of the electric
field and the charge density. The electric field is a second-order
term for the radial component and a first-order term for the
θ-component,

E r̂ = −
λV?h?B?

2c
(R2 + l2)FΛ

RG2 sin2 θ, (75)

E θ̂ = −
λV?h?B?

c
Λ
√

R2 + l2

hzG2 sin θ. (76)

Using Maxwell–Gauss Eq. (7), we calculate the charge density
from the divergence of the above electric field, to zeroth order
only,

ρe = −
λV?B?h?

2πr?c
Λ

hzG2 . (77)

With all these quantities we are able to expand the Euler equa-
tion. The radial component is expanded to the second order and
the colatitude component to the first order. From the expansion of
poloidal components in the Euler equation (Eq. (16)) and using
Eq. (51), we can reverse the system to get the equations of the
model (see Appendix C for details).

3.7. “Light cylinder”

The rescaling value ch/(Ω −ω) for the cylindrical radius used in
Eqs. (32)–(34) has been defined by Meliani et al. (2006) as the
“light cylinder”. It is a surface of revolution ΣLC where,

x2 =
$2(Ω − ω)2

h2c2 = 1. (78)

On the “light cylinder”, the electric field |E| is equal to the
poloidal component of the magnetic field |Bp|. In the present
publication, ΣLC designed the external “light cylinder”, that is,
x = +1, though, strictly speaking, this is not a cylinder as
explained earlier, but a surface of revolution. This external “light
cylinder” is outside the Alfvén surface since the denominator of
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Eqs. (32)–(34) is equal to M2
Al f on the “light cylinder”, is nega-

tive before crossing the Alfvén transition surface, and is positive
after crossing it. At large distance in the jet, the lapse function h
goes to unity and Ω−ω tends to Ω, which is assumed constant in
our model. Thus, ΣLC is located on a constant cylindrical radius
along the z axis, becoming a real cylinder.

From the iso-rotation law, we get,

V φ̂

c
= x +

ΨABφ̂

4πρ0γhc
= x +

Vp

c
Bφ̂

Bp
. (79)

As in special relativity, the second term of Eq. (79) cannot
be neglected in the vicinity of the “light cylinder”. The sign of
Bφ̂ is such that V φ̂ always remains less than the speed of light
(Vlahakis 2015). Moreover after crossing the “light cylinder” one
of the two following conditions must be fulfilled. Either, we have
| Bφ̂ | » Bp or Vp » V φ̂, or both.

The term x was neglected in the equation of the previous rel-
ativistic meridional-self-similar models, Meliani et al. (2006);
Globus et al. (2014). Hence, these models could not produce jets
crossing the “light cylinder”. Conversely, in this model this quan-
tity is taken into account. We assume an expansion in sin(θ) of
this quantity.

Contrary to the two previous models we can choose the
dependence of the isorotation frequency with the magnetic flux
(see discussion on Eq. (59)) and this choice will not affect the
solution. Thus, if Ω does not depend strongly on the magnetic
flux A, even at the base of the jet, the ratio h/(Ω − ω) will be
nearly constant. The reason for this is that $ is larger than the
Alfvén radius, which is at least a few times the Schwarzschild
radius. As a consequence, the departure of ΣLC from a real
cylinder is unnoticeable.

3.8. Domain of validity

The equations of the model are the result of an inversion of the
expanded conservation equations. Therefore, it will be useful to
quantify the relative error of the expansion we made in order to
properly analyze our results and to obtain the domain of validity
of these results. To have an idea of the domain of validity, we
quantify the rest in the expansion of the momentum equation,
for each force Fi(R, sin θ),

Fi(R, sin θ) = Fi
0(R) + Fi

1(R) sin θ + Fi
2(R) sin2 θ

+Ri(R, sin θ) sin3 θ, (80)

where F is one of the following forces: gravitational, centrifugal,
inertial, electric or magnetic pressure, and so on. We define a
new function in order to map the relative error:

Ri(R, sin θ) ∼
θ→0

gi(R). (81)

For example, in the case of the electric force, in
Schwarzschild metric, we get, assuming solid rotation (w1 = 0),

| REl(R, sin θ) | =
B2
?

4πr?

λ2h2
?µ

ν2

R
h2

zG4

(
F2h2

z

2
+

Fh2
z

2
− 3 +

dF
dR

)

×

√
1 + sin2 θ

(
F2h2

z

4
− 1

)
. (82)

The relative error on the electric force which tends to zero in
the asymptotic regime of cylindrical jets is defined as

err =
| REl(R, sin θ) sin3 θ |

| FEl(R, sin θ) |
. (83)

Fig. 1. Relative error on the electric force for a recollimating oscillating
solution in Kerr metric (K1, see Sect. 5.1). Color isocontours corre-
spond to the relative error in the electric force. Field lines anchored into
the black hole magnetosphere and in the accretion disk are plotted in
black solid lines. The limiting field line between the inner jet coming
from black hole corona and the outflow outgoing from the accretion
disk is plotted in red. The “light cylinder” is indicated by a green solid
line. The cylindrical radius and the distance above the equatorial plane
are in units of Schwarzschild radius.

Even at the base of the jet this error can be reduced, as can
be seen in Fig. 1 for the solution in Kerr metric presented in
Sect. 5.1 when the co-latitude is less than 30◦. To get an estimate
of the error in the expanded forces, we should add all relative
error terms or take the largest one. This gives an estimate of the
domain of validity of the solutions for a given set of parameters.
We postpone the full error analysis for a future paper.

3.9. The magnetic collimation efficiency, ε

By writing the first law of thermodynamics in the frame of the
fluid along streamlines of an axisymmetric flow, we can con-
struct a constant of the motion, as in the classical case. The first
law of thermodynamics reduces to the adiabatic law if the heat-
ing is included in some effective enthalpy (see Eq. (20)). Thus
(ξc2) is an effective specific enthalpy, like for polytropic flows
where the enthalpy also hides the heating (cf. Sauty & Tsinganos
1994) but generalized for relativistic outflows (see Eq. (18)).
Using Eq. (28), we can rewrite the first law of thermodynamics
in the following form,

ξΨ2
Ac2 dξ

dR

∣∣∣∣∣
α=cst

= 4πM2
Al f

dP
dR

∣∣∣∣∣
α=cst

. (84)

As the magnetic-to-mass-flux ratio and the total energy flux are
constant along each streamline, this is equivalent to

d(Ψ2
Aξ

2c2)
dR

∣∣∣∣∣∣
α=cst

= 8πM2
Al f

dP
dR

∣∣∣∣∣
α=cst

. (85)

We note that ΨAξc2 is proportional to the thermal energy. If we
write

Ψ2
Aξ

2c2 = [Ψ2
Aξ

2c2]0(R) + α[Ψ2
Aξ

2c2]1(R), (86)

and using the expressions of the pressure and the Mach number,
we get an equation of the form

d[Ψ2
Aξ

2c2]0

dR
+ α

d[Ψ2
Aξ

2c2]1

dR
= B2

?M2 dΠ

dR
[1 + (κ + 2m1)α] . (87)
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We see, as in the classical case, that the second term of the
pressure is proportional to the first one such that,

d[Ψ2
Aξ

2c2]1

dR
− (κ + 2m1)

d[Ψ2
Aξ

2c2]0

dR
= 0. (88)

We deduce from the previous equation that the quantity ε , which
is defined by

ε(R)B2
? = [Ψ2

Aξ
2c2]1 − (κ + 2m1)[Ψ2

Aξ
2c2]0 = cst., (89)

is a dimensionless constant for all the field lines. To give
explicitly [Ψ2

Aξ
2c2]0 and [Ψ2

Aξ
2c2]1, it may be useful to write

Ψ2
Aξ

2c2 = Ψ2
A

(hγξc)2

h2

1 − (V φ̂)2

c2

 − M4
Al f B2

p

h2 .

Finally the calculation leads to

ε =
M4

h2
z h4

?G2(R2 + l2)

[
h2

z F2(R2 + l2)
4R2 −

R2

(R2 + l2)

− (κ − 2m1)
(R2 + l2)

G2

]
−
ν2(2e1 − 2m1 + δ − κ)R

h2
z (R2 + l2)

−
ν2l2RG2

h2
z (R2 + l2)3 +

2λ2

h2
z

(
Λ2NB

D
+
ωz

λ

)
+ λ2

(
ΛNV

h?GD

)2

. (90)

This equation is similar to Eq. (71) in Meliani et al. (2006)
and can be interpreted the same way. The parameter ε measures
the efficiency of the magnetic rotator to collimate the flow. At
the outflow base, ε is the relative difference of the transverse
variation of internal energy that is simply the exchange of work
done by the macroscopic forces. As this is perpendicular to the
flow axis, this means that ε really measures the transverse force
which collimates the flow and mainly its magnetic component.

We note that the quantity −2m1 appears twice in Eq. (90).
First, it is associated with κ, having a similar effect to the non-
spherically symmetric pressure in the term which is given as a
factor of M4. Second, it is associated with 2e1 in the term corre-
sponding to the excess or the deficit of the gravitational energy
not compensated by the thermal driving at the base of the jet.

To conclude we can also derive the magnetic collimation
efficiency in a different form; after some calculations, we can
write

ε = −
ν2h4

?

µγ2
z h2

z

∂

∂α
ln

(
P − P0

ρ0ξ

)∣∣∣∣∣∣
α=0

(91)

= h2
?

ν2

µ

(
1 −

µ

ν2

) ξ2
z

ξ2
?

(
∂

∂α
ln(ρ0ξ)

∣∣∣∣∣
α=0
− κ

)
.

This new relation brings a link between the total enthalpy on
the axis and its logarithmic variation with α. In particular, the
sign of ε seems to connect the balance between logarithmic vari-
ation of total enthalpy per unit of volume and the meridional
increase of the pressure. The factor indicates that |ε| proba-
bly tends to decrease for solutions which reach ultra-relativistic
speed.

4. Methodology for obtaining solutions

4.1. Numeral integration

Appendix C gives the coupled ordinary differential Eqs. (C.1),
(C.5), (C.6) for the four quantities of the Alfvén number, dimen-
sionless radius, expansion factor, and pressure, (M2,G2, F, Π).

Details on the method and numerical techniques for the integra-
tion of these differential equations of the model system can be
found in Sauty & Tsinganos (1994) and Meliani et al. (2006).
Briefly, by using a Runge–Kutta scheme we start integrating
from the Alfvén surface using the continuity relations. Integrat-
ing upwind by adjusting the value of the slope of the derivative
of the Alfvén number at the Alfvén transition, the unique value
of F? can be found that allows the crossing of the modified
slow magnetosonic surface, for a given value of the pressure
at the Alfvén transition Π?. Then, integrating downwind, the
value of Π? can be further adjusted. After several iterations of
upstream and downstream integrations, the program automati-
cally finds the solution that crosses all critical points, a proxy that
the asymptotic pressure converges towards the demanded value.
In particular, in the following Sections we have selected only
solutions with the minimum possible value of Π?, the so-called
limiting solutions (see Sauty et al. 2004). We either have a col-
limated jet where, at infinity, Π∞ is minimum, or a conical wind
where, at infinity, Π∞ is zero. If necessary, we can always add a
constant value to the pressure P0 to ensure that the pressure is
positive everywhere in the flow.

In the following, we only outline briefly the points which
differ from previous related studies for building our model in the
framework of general relativistic MHD in a Kerr metric. Some
interesting spine jet solutions, both for their properties close to
the black hole and at large distance, are presented in Sect. 5.
The presented solutions depend on a number of parameters and
a systematic parametric study of the model is postponed for a
following paper.

4.2. Alfvén regularity conditions

The regularity conditions at the Alfvén transition (R = 1) for
the azimuthal components and enthalpy have already been dis-
cussed in Sect. 2.5. In order for the field lines to not have a kink
at the Alfvén transition (i.e., F is a continuous function across
R = 1), we impose an extra regularity condition on the transfield
equation giving the four physical quantities (M2, G2, F, Π) at
R = 1 (Tsinganos & Trussoni 1991, Sauty & Tsinganos 1994). In
other words, similarly to the classical model Sauty & Tsinganos
(1994), we should take appropriately into account this regularity
condition at R = 1, which gives the ratio τ which is involved in
the magnetic toroidal component,

τ =
NB

D

∣∣∣∣
?

=

dNB

dR

∣∣∣∣
?

dD
dR

∣∣∣∣
?

=

h2
?

(
2

1 + l2
− F?

)
−
µ(1 − l2)
(1 + l2)2 −

h?l
√
µν

λ

l2 − 3
(1 + l2)3

p −
µ(1 − l2)
(1 + l2)2

, (92)

where p is the slope of the square of the Alfvén number at the
Alfvén transition, and

p ≡
dM2

dR

∣∣∣∣
?
. (93)

More specifically, the expansion factor F is determined by
Eqs. (C.1) and (C.3). Also in Eq. (C.3) are the ratios of NV and
NB with D. Furthermore, D appears in the denominator with
a power higher by one than the powers of NV and NB in the
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numerator. Hence, in order that dF/dR does not diverge and
the slope of F(R) is continuous across R = 1 we require that
NF · D |?= 0 such that dF/dR is finite at R = 1 wherein we
have 0/0. Thus, near the Alfvén transition, we may define the
function NF · D ∼ P(M2, G2, F, Π). Then, in order to avoid
a singularity at the Alfvén transition, a necessary condition is
to choose p, F?, Π? such that this function is zero, that is,
P(M2 = h2

?, G2 = 1, F?, Π?) = 0, and thus NF · D |?= 0. After
some algebra we finally get a second degree polynomial for F?,
namely,

A(p)F2
? + B(p)F? + C(p,Π?) = 0, (94)

with

A(p) = λ2h4
? +

h2
?

4

(
p −

µ(1 − l2)
(1 + l2)2

)2

(95)

B(p) =

1
2

(
µ(1 − l2)
(1 + l2)2 − p

)3

(96)

− 2λ2h2
?

(
p +

2
1 + l2

−
2µ(1 − l2)
(1 + l2)2

+
l
√
µνh?
λ

3 − l2

(1 + l2)3

)]
C(p, Π?) = λ2

(
p +

2h2
?

1 + l2
−

2µ(1 − l2)
(1 + l2)2 (97)

+
l
√
µνh?
λ

3 − l2

(1 + l2)3

)2

+

(
κΠ? −

1
(1 + l2)2 −

2λ2µ

ν2

− 2λ2 −
l2(2µ + ν2)
(1 + l2)3

) (
p −

µ(1 − l2)
(1 + l2)2

)2

.

In this way, the regularity condition at the Alfvén transition is
automatically satisfied and no more constraints are needed at
R = 1.

4.3. Effect of a nonspherical Alfvén number in a
Schwarzschild metric

To illustrate our model, we present the following two solutions,
which are built in the framework of the Schwarzschild metric.
The first one corresponds to a solution of a model presented in
Meliani et al. (2006), in which m1 = 0.

The chosen values of the other parameters are λ = 1.0,
κ = 0.2, δ = 1.2, ν = 0.8, ` = 0, µ = 0.1, e1 = 0. We compare
this solution to a solution with the same parameters but by keep-
ing the value of m1 given by Eq. (61), m1 = −0.078. In both
solutions, the value of Π? is the minimum value of the lim-
iting solution. Such solutions have the minimum amplitude of
oscillations in the jet.

In Fig. 2 the radial velocity on the polar axis is compared for
the two solutions, while field lines in the poloidal plane are plot-
ted in Fig. 3. We note that in Eqs. (C.1) and (C.4) and Eqs. (C.1)
and (C.3), giving the plasma acceleration and the variation of the
expansion factor with the radius R, respectively, there are several
terms proportional to the factor (κ − 2m1). As m1 is always neg-
ative, it is evident that −m1 effectively increases the transverse
pressure gradient, which is proportional to κ. In other words, the
effect of −m1 is similar to the effect of κ which enforces col-
limation for κ > 0. Hence, taking into account a nonspherical

Fig. 2. Evolution of the radial velocity along the polar axis for solutions
in a Schwarzschild metric, with m1 = 0 (blue) and m1 = −0.078 (red).
The second case has a smaller terminal velocity.

Fig. 3. Field lines for a solution in a Schwarzschild metric, with
parameters λ = 1.0, κ = 0.2, δ = 1.2, ν = 0.8, ` = 0, µ = 0.1, e1 = 0
and m1 = 0 (left) and m1 = −0.078 (right). We note that the case
m1 = −0.078 corresponds to a more tightly collimated jet. Lengths are
in units of the Schwarzschild radius. The red lines are connected to the
magnetosphere of the central object while the green lines are connected
to the disk. The separating line is in blue and the light cylinder in black.

Alfvén number (m1 , 0) introduces an extra collimation force
which explains why the second solution with a nonzero m1 is
more collimated. Indeed, the width of the jet at infinity over its
value at the base, G∞/G0, decreases from 13.74 to 9.42, which is
similar to an increase of κ and this fact can be checked directly
by looking at the poloidal field line’s shape shown in Fig. 3.

Since more tightly collimated solutions have a smaller
super-Alfvénic acceleration, the second solution reaches a lower
Lorentz factor asymptotically. Thus, similarly to κ, the intro-
duction of a negative m1 , 0 leads to a decrease of the
velocity because of the tighter collimation. The higher colli-
mation reduces the pressure gradient along the axis, which in
turn decreases the acceleration due to pressure driving on large
distances (see Sauty et al. 2004).

Additionally, m1 appears within the term (κ + 2m1 − δ −
2e1) which appears in the plasma acceleration function NM2

in Eqs. (C.1) and (C.4) and the function NF determining the
expansion factor F in Eqs. (C.1) and (C.3). The first three terms
(κ + 2m1 − δ) arise from the variation across the field lines of the
heat content P/ρ with α, that is, ∂/∂α{[Π(R)M2(R)](1 + κα)(1 +
m1α)2/(1 + δα]} ' [Π(R)M2(R)](κ + 2m1 − δ), while the fourth
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Table 1. Set of parameters used for the four selected solutions in the
Kerr metric.

λ κ δ ν µ l

K1 1.0 0.2 2.3 0.9 0.1 0.05
K2 1.0 0.2 1.35 0.46223 0.1 0.05
K3 1.2 0.005 2.3 0.42 0.08 0.024
K4 0.0143 1.451 3.14 0.8 0.41 0.15

Notes. K1 is the solution displayed in Figs. 4–6 (blue line). Solution K2
is displayed in Figs. 6 (red line) and 7, while solution K3 is displayed in
Figs. 12 and 13. Finally, solution K4 is shown in Figs. 14 and 15.

term e1 is proportional to the variation of the total energy E with
α. The bigger this term is, the larger the initial acceleration (see
Sauty & Tsinganos 1994), because it is linked with the distri-
bution of the heating which opposes gravity to accelerate the
outflow. As the weight of the plasma decreases with the latitude,
then the pressure gradient increases along the axis resulting in a
larger acceleration close to the base, as explained in Tsinganos &
Sauty (1992). This term decreases rapidly as the Alfvén surface
is reached. Thus, it is responsible only for the initial accelera-
tion. With the parameter m1 being negative, the second solution
is more accelerated between the base and the Alfvén surface.
The velocity of the second solution reaches the velocity of the
first one at the Alfvén surface. This effect disappears far from
the source.

5. Solutions in a Kerr metric

In the following, we discuss four different solutions in a Kerr
metric to illustrate the present model. A more detailed paramet-
ric study is postponed to a following paper. For the purposes of
the present paper, we show three cylindrically collimated solu-
tions with high asymptotic Lorentz factor, typical of AGNs and
GRBs. Those solutions cross the “light cylinder” and are sorted
with increasing magnetic collimation efficiency parameter ε.
We also exhibit a conical solution crossing the “light cylin-
der” with high Lorentz factor and strongly negative ε, something
that was not possible with the previous relativistic meridionally
self-similar solutions.

In order to get a Lorentz factor as high as possible in the
asymptotic part of the collimated part of the jet, we know from
the study of the classical solutions that among all cylindrical
solutions, the limiting solutions with the lowest value of Π?

reach the highest terminal velocity. These solutions are the so
called limiting solutions in Sauty et al. (2002). As Π∞ is nega-
tive for the limiting solutions, we have to add a positive P0 value
to the pressure. Of course, it is always possible for those cylin-
drical solutions to have a higher pressure P0, but by doing so
it also increases the effective temperature, in particular in the
asymptotic part. For the same set of parameters, it is also possi-
ble to get cylindrical solutions by increasing Π?. However, such
solutions usually have a strong initial decollimation associated
with a peak in both the Lorentz factor and temperature, while the
asymptotic jet is decelerated to lower Lorentz factors and smaller
radii, a result that we used to interpret the FRI/FRII dichotomy
[cf. Meliani et al. (2010)].

Solutions K1 and K2 have been obtained for maximally
rotating black holes, that is, aH close to 1 (a ' rs/2). In solu-
tion K4 the value of aH has been fixed to 0.73 (a = 0.73rs/2).
We do not expect all black holes to be maximally rotating. For

Table 2. Output parameters for the four solutions in the Kerr metric.

ε m1 Π?,lim r0/rs

K1 −1.76 −0.062 0.826 5.72
K2 −0.04 −0.234 0.216 1.57
K3 0.55 −0.326 0.189 2.55
K4 −5.84 −0.004 0.255 1.39

Notes. Those parameters result from the integration of the equations.

Fig. 4. Three-dimensional (3D) representation of the field lines and
streamlines for the thermally collimated solution K1 at the base of the
jet and for two flux tubes. The blue lines correspond to streamlines, the
red lines to magnetic field lines. The length is in units of the Alfvén
radius, that is, ten times the Schwarzschild radius.

example, in M 87, the dimensionless spin should be above 0.65
(i.e., a > 0.65rs/2), (Li et al. 2009) but not too close to one.
Other examples can be found and for K3 we will use the value
aH = 0.6 (a = 0.6rs/2) adopted in Mertens et al. (2016) for M 87.

5.1. A mildly relativistic collimated solution with oscillations
(K1)

The collimated solution K1 corresponds to an over-pressured
outflow (κ ≥ 0) in a Kerr metric. As ε ≤ 0, the collimation of the
jet is not fully magnetic but it has a significant contribution by
the gas pressure, at least during the phase of strong acceleration
up to '30rs. In this solution, field lines are strongly oscillating
compared to the two previous solutions in the Schwarzschild
metric. The outflow undergoes a series of strong oscillations
connected to the balance between the toroidal magnetic tension
and the decollimation forces (centrifugal and electric forces and
transverse pressure gradient) of the plasma.

The significant contribution of the transverse pressure gradi-
ent also explains these strong oscillations in the flow, as is also
shown in the classical solutions. The parameters of this solu-
tion are displayed in the first row K1 of Table 1 and the output
values of m1 and ε in Table 2. We note that m1 = −0.062 is a
relatively small value, which clearly indicates that the Alfvén
surface is almost spherically symmetric in this case. As a conse-
quence, the light cylinder is relatively far from the jet axis. Most
of the central field lines (see the inner 5 to 7 central red lines
in Fig. 5) remain within the “light cylinder”, which means that
despite the important role of the magnetic field in the collima-
tion, the jet is pressure or enthalpy driven in the relativistic case.
However, unlike in the classical solutions, the electric field is the
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Fig. 5. Poloidal field lines and “light cylinder” for the thermally col-
limated solution K1, for λ = 1.0, κ = 0.2, δ = 2.3, ν = 0.9, µ = 0.1,
` = 0.05, e1 = 0. The length unit is the Schwarzschild radius.

dominant decollimating force for the lines that cross the “light
cylinder”. This decollimation and expansion after the Alfvén
surface is associated with a strong pressure gradient yielding
a strong acceleration of the jet in the super-Alfvénic regime.
More details on this will be given in the following solution.
The pressure gradient is the gas pressure gradient close to the
axis but assisted by the toroidal magnetic pressure outside the
“light cylinder”. This is similar to superfast flows in radially self-
similar models for disk winds (see Vlahakis & Königl 2003a and
Vlahakis & Königl 2003b). Moreover, in the relativistic regime
the inertia increases faster when the flow is accelerated such
that the collimation from the magnetic field is delayed to larger
distances.

In Fig. 5 we see that the expansion after the Alfvén surface
is strong and leads to a late acceleration of the flow. After the
large expansion, the jet recollimates smoothly and consequently
decelerates slightly because of the compression.

In Fig. 4, we clearly see that there is a strong azimuthal mag-
netic field, although the scale of the figure tends to exaggerate
this phenomenon.

The Lorentz factor γ of this solution reaches a relatively
small value around 3.7, typical of less powerful AGN jets like
some of the FRI radio-galaxies.

5.2. A highly relativistic collimated solution with oscillations
(K2)

The solution K2 is collimated and has an extremely high Lorentz
factor, which may be typical of GRBs. This K2 model corre-
sponds to the values of the parameters given in the second line
of Table 1, that is, λ = 1.0, κ = 0.2, δ = 1.35, ν = 0.46223,
` = 0.5, µ = 0.1, e1 = 0 and the second line of Table 2 for the
output parameters, m1 = −0.234 and ε = −0.04.

For this model, the outflow starts very close to the black hole
horizon at r0 = 1.57 rs, (see Fig. 7), and thus at the base of the jet
the effects of general relativity play an important role. The final
velocity is highly relativistic, as is shown in Fig. 6.

The parameter ν of the K2 solution is accurately adjusted (to
the fifth digit), so as to obtain a rather high Lorentz factor (larger
than 100). This proves the versatility of the model which handles
any magnitude of Lorentz factors. In order to obtain such high
Lorentz factors, we must carefully tune the parameter directly
linked to gravitation, ν, as mentioned above. The same parameter

Fig. 6. Lorentz factor γ for the K1 (blue line) and K2 (red line)
solutions. Distances are given in Schwarzschild radius units.

Fig. 7. Poloidal field lines and “light cylinder” for the K2 solution, that
is, for λ = 1.0, κ = 0.2, δ = 1.35, ν = 0.46223, µ = 0.1, ` = 0.05,
e1 = 0. Distances are given in Schwarzschild radius units.

is also responsible for the thermal acceleration in the classical
model (Sauty & Tsinganos 1994).

In Figs. 8 and 9 we plot the forces along and perpendicular to
a field line defined by α = 0.01αlim where αlim is the dimension-
less magnetic flux between the inner jet and an external accretion
disk wind.

The strong decollimation associated with the slow accelera-
tion enhances the electric force as in the previous solution K1.
This can be seen in Fig. 9. However due to the higher rotation
here, more field lines cross the light cylinder, which is very close
to the axis, such that the decollimation from the electric field is
much stronger in this solution.

The feedback of this strong electric field is to further increase
the decollimation beyond the Alfvén surface at large distances.
Again, the large expansion increases the pressure and enthalpy
gradient as seen in Fig. 8. Thus, the pressure force increases,
resulting in a very long acceleration phase up to 106rs. Thus,
the thermal acceleration becomes very efficient and the plasma
asymptotically reaches an extremely high Lorentz factor. Indeed,
the jet radius increase of this solution is also very high with an
expansion factor G∞/G0 ' 1300, as can be seen in Fig. 7.

The value of ε is still negative but very close to zero
(ε = −0.04). As in the classical case, this means the magnetic
efficiency to collimate the flow is higher in this model at larges
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Fig. 8. Longitudinal forces, that is, along the field line, for the K2 solu-
tion, along the line α = 0.01αlim. Distances are given in Schwarzschild
radius units.

Fig. 9. Transverse forces, that is, perpendicular to the field line, for the
K2 solution, along the line α = 0.01αlim. We see that the Lorentz force
is collimating and is balanced by the electric force that decollimates.
Distances are given in Schwarzschild radius units.

distances. However the decollimating force that ensures the equi-
librium is no longer the centrifugal force or the pressure gradient
but the electric force on the lines that cross the “light cylinder”.
This is a specific feature of relativistic jets.

To further analyze the jet acceleration we may calculate the
contribution of the different components of the total energy and
the conversion of the magnitude of each component to another
form along the streamlines. First, we want to obtain a physically
acceptable heating term which goes to zero at infinity along the
axis of the flow. By defining the enthalpy in Eqs. (18) and (19)
and its analytical expression in our model in Eq. (34), we may
fix a streamline limiting the zone where the pressure is positive.
Once this field line has been chosen, for example, at α = 0.4αlim,
the dimensionless pressure P0/ρ?c2 can be calculated. In the par-
ticular case presented here, we have taken P0/ρ?c2 = 4.3 × 10−7

. The pressure P0 in Eq. (54) is chosen such that the gas pres-
sure is equal to zero, when Π(R) reaches its minimum value. For
some value of α, the term P0 = P0(α) = −[B2

?/8π]Πmin(1 + κα)
will be too large to ensure that Q goes to zero at infinity along
the axis. Indeed, α can take any value below a maximum αmax.
We can consider that the solution can be valid only in the region

Fig. 10. Relative normalized contribution to the total energy of the
kinetic enthalpy hγξk and the external heating distribution hγQ/c2 along
the axis.

Fig. 11. Relative normalized contribution to the total energy of the
kinetic enthalpy hγξk and the external heating distribution hγQ/c2 along
the streamline α = 0.05αlim

wherein the pressure is positive. When α is fixed and P0/ρ?c2

is deduced, we are able to calculate ξ?. In this particular case, a
value ξ? ' 78 is chosen.

Figure 10 shows the normalized total energy on the axis
E/c2 = hγξ, the kinetic component hγξK and the external heat-
ing hγQ/c2. We find a decrease of the external heating and a
related increase of the kinetic part. Thus, the kinetic enthalpy
represents the major component up to r = 102rs.

Figure 11 shows the same energetic distribution, but on a
streamline with α = 0.05αlim. Out of the polar axis, there are
extra energetic components, such as the frame-dragging and
the Poynting fluxes. Both these energetic contributions are very
small on this field line, as compared to the total energy. Hence,
the jet is enthalpy-driven from the axis right up to the limiting
line. We also note that at the base of the jet, the frame-dragging
energy is of the same order as the Poynting flux. Contrary to the
energetic distribution along the axis, the external heating consti-
tutes the larger part of energy at infinity. While along the axis a
high value of γ∞ ' 100 is obtained, the Lorentz factor at infinity
on this particular line is γ∞ ' 3.6. Hence, since the acceleration
of the plasma and the resulting final flow speed at infinity on this
particular field line are small, the external heating is not con-
sumed when accelerating the flow and therefore it is left unused
at infinity, contrary to what happens along the axis; Fig. 10.
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5.3. A mildly relativistic collimated solution without
oscillations (K3)

From VLBI imaging, Mertens et al. (2016) recovered a detailed
two-dimensional velocity field in the jet of M 87 at sub-parsec
scales. They confirmed the stratification of the flow from the very
beginning of the jet and identified a relativistic sheath, that is, an
accelerating layer, which is launched from the inner part of the
accretion disk at a cylindrical distance of around 5rs. Mertens
et al. (2016) interpret this outer sheath layer as the internal part
of an external disk wind. They also interpret the inner spine jet
as a component coming from the internal accretion disk. How-
ever, it is not clear that the inner spine necessarily has to be
one of the disk wind components. Instead we propose that the
inner spine jet originates from the black hole corona and has a
higher Lorentz factor. The authors note that this fast inner spine
jet cannot be detected in their data because of its lower emissiv-
ity compared to that of the sheath layer or because its speed is
too high.

We propose here, as an alternative scenario, that the spine
beam may originate from the magnetosphere of the black hole,
either connected to the black hole itself, as in the Blandford–
Znajek–Penrose mechanism, or connected to the inner part of the
accretion disk. In the first case, the spine jet would be a leptonic
plasma, and in the second it would be a hadronic one. In such
a case, we can model the spine jet with our meridionally self-
similar solutions. We note that unlike Poynting-flux-dominated
models, our model is valid on the jet axis.

The Lorentz factor profile inferred by Mertens et al. (2016,
see their Fig. 19) supposes that the velocity structure observed
in the 43 GHz VLBA maps at a deprojected distance of
z ' 10 mas ' 1300rs is due to the sheath layer. The Lorentz
factor of the sheath has a value γ ' 2.4 at R ' 1000rs.

From the curve deduced for the spine jet with an approx-
imated MHD disk wind solution, those authors, following
Anderson et al. (2003), model the acceleration and collimation
of the flow with a Lorentz factor γ ≈ 7. We propose that it is pos-
sible to construct a MHD solution along the lines of the model
analysed in this paper, by choosing a positive value of ε ≈ 0.5
and a similar velocity profile. The solution K3 presented here
has a Lorentz factor γ ' 5 at R ' 1000rs. By appropriately tun-
ing the parameters, we could obtain even higher Lorentz factors
from 7 to 10, as is observed at the distance of the knot HST-
1, where this velocity is observed in the optical band. However,
the spine jet is deboosted relative to the sheath and a precise
measurement of its Lorentz factor is difficult.

Solution K3 with a maximum Lorentz factor on the axis
γ ' 5.5 has an asymptotic spine jet radius G∞ ' 20rs. At this
distance from the axis, the Lorentz factor has dropped to a value
γ ' 2.4 consistent with the radius and the Lorentz factor at the
inner observed distance of the outer sheath jet of Mertens et al.
(2016). Thus, our solution may model the initial spine jet inside
the sheath layer. However, to confirm that, we need to use this
initial solution in simulations similar to those in Hervet et al.
(2017). The spine jet/sheath jet interaction will probably pro-
duce shocks and rarefaction waves that may further accelerate
the jet.

Therefore, although we can obtain such a type of collimated
solution for different sets of the parameters, we focus here on
the specific solution K3, where λ = 1.2, κ = 0.005, δ = 2.3,
ν = 0.409, ` = 0.024 and µ = 0.08. Compared to the other Kerr
solutions studied in this paper, λ is higher and κ is very small,
leading to a solution with a positive value of the magnetic colli-
mation efficiency, ε = 0.55. Another advantage of this solution

is the fact that the pressure depends only very weakly on the
magnetic flux function, that is, on a particular field line.

Interestingly, in Mertens et al. (2016), the radius of the base
of this spine jet is equal to r0 = 2.4rs, which is consistent with
their model of a disk wind solution, by fixing the jet shape and
solving the Bernoulli equation. In our self-similar solution, we
have a similar radius for the magnetospheric polar cup, where
our jet solution starts. Clearly, this is an alternative scenario.

Moreover, the angular velocity of the field lines anchored in
this polar cup above the black hole can be calculated from our
parameters,

Ω? =
cµ
rs

[ √
µλ

ν

√
1 −

µ

(1 + l2)
+

lµ
(1 + l2)2

]
' 6.2 × 10−2 c

rs
. (98)

By taking the value of the M 87 distance and the black hole mass,
as in Mertens et al. (2016), we can calculate Ω? in the context of
this K3 solution. This value may directly be compared to the
values they deduced in two jet regions from the conservation of
total energy and angular momentum fluxes in the approximation
of special relativity.

Hence, we find Ω? ' 1.03× 10−6s−1, a value which is for the
spine jet almost the same value as the isorotation frequency of a
Keplerian speed at the launching location of the sheath layer. It
also corresponds to the initial toroidal velocity of the Blandford
& Payne (1982) mechanism.

Our model corresponds to an alternative configuration,
because the spine jet may either originate from the Keplerian
disk, in which case it would be hadronic, or form via the gen-
eralized Penrose–Blandford–Znajek mechanism. In this second
alternative, the jet would be a leptonic beam with an angular fre-
quency proportional to the spin of the central black hole. The
Blandford–Znajek mechanism allows us to extract energy from
the black hole when 0 ≤ Ω ≤ ωBH, with a maximum value for
0.5ωBH. We note that ωBH is, by definition, the angular velocity
of ZAMO at the location of the outer event horizon and is given
by,

ωBH =
aHc

rs

(
1 +

√
1 − a2

H

) , (99)

where aH is the dimensionless spin of the black hole in units
of the gravitational radius rs/2. Indeed simulations of such
Poynting-dominated and force-free jets (Tchekhovskoy 2015)
have shown that the angular speed of a field line anchored
in the magnetosphere is about half the black hole angu-
lar speed ωBH. Our value of Ω? is one third of 0.5ωBH
((Nathanail & Contopoulos 2014)). In order to determine if the
spine jet of our solutions originates from a Keplerian disk or
from a black hole via a generalized Penrose–Blandford–Znajek
mechanism, we need to solve the MHD equations up stream up
to the black hole horizon. Moreover, in order to model the full jet
of M 87, a complete MHD simulation including a disk wind and
a spine jet must be developed. Something that should be done in
the future.

We note that as is already known, at the interface of the spine
jet and the sheath layer, a re-collimation shock may occur, pro-
ducing compression and rarefaction waves which may accelerate
the flow (Hervet et al. 2017). For those reasons we have chosen
here to adjust the value of ν to ν = 0.42, in order to get the solu-
tion K3, with a lower Lorentz factor but suppressing completely
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Fig. 12. Lorentz factor for the nonoscillating collimated solution K3.

Fig. 13. Poloidal field lines and “light cylinder” for the nonoscil-
lating collimated solution K3, that is, for λ = 1.2, κ = 0.005,
δ = 2.3, ν = 0.42, µ = 0.08, ` = 0.024, e1 = 0. Distances are given in
Schwarzschild radius units.

the oscillations of the field lines. The value calculated above for
Ω? is not changed, but radio emission maps, which are obtained
for the M 87 jet, will be produced by re-collimation shocks due
to the interaction between the fast spine jet and the sheath layer.

As can be seen in Fig. 12 for the K3 model, the Lorentz
factor reaches a nearly constant value at the distance of the B
structure observed in the 43 GHz VLBA maps and γ is larger
than that deduced for the sheath layer by Mertens et al. (2016).
As explained above, the interaction between the sheath layer and
the spine jet can induce a bulk flow acceleration. However, as
we mention, the Lorentz factor γ is maximum along the axis and
decreases with latitude such that at its outer boundary it matches
the sheath layer value.

The values of the parameters of the K3 model are given in the
third line of Tables 1 and 2. The radius at the base of this spine jet
is equal to r0 = 2.55rs and the magnetic efficiency to collimate
the flow is larger compared to the other two Kerr solutions dis-
cussed in this paper, as ε is now positive, which means that the
jet is fully magnetically collimated. The field lines displayed for
K3 in Fig. 13 are nearly cylindrical above the equatorial plane, at
distances 104rs, with a smooth flaring occurring after the Alfvén
surface.

Fig. 14. Poloidal field lines and “light cylinder” for the conical solution
K4, that is, for λ = 0.0143, κ = 1.451, δ = 3.14, ν = 0.8, µ = 0.41,
` = 0.15, e1 = 0. Distances are given in Schwarzschild radius units.

5.4. Conical solution

The parameters of the conical solution K4 are given in Tables 1
and 2. Such radial solutions could be useful to describe rela-
tivistic noncollimated outflows, such as those seen in association
with radio-quiet galaxies, such as Seyfert galaxies. Conical solu-
tions could also be useful to model GRBs, wherein an unstable
noncollimated relativistic wind may fragment into small pieces
under some instabilities. In such cases, the apparent collima-
tion of the GRB would be due to fragmentation – see Meliani
& Keppens (2010); van Eerten et al. (2011).

A conical solution is a solution in which the limiting value
of F at infinity is 0. In this solution, the spherical part of the
Mach number diverges, M → ∞. The same effect occurs for the
cylindrical radius of the flow, G. To obtain this conical solution,
we started with the parameters used for modeling the solar wind,
as in Sauty et al. (2005). The magnetic collimation parameter
must be strongly negative, ε/(2λ2) ≤ 0. We adjust the solution to
the relativistic case and increase the velocity by taking a larger
value for δ. For the radial solution K4, the parameters λ and κ are
adjusted as well in order to obtain a terminal Lorentz factor larger
than 8. Thus, we find a conical solution K4 for the following
set of parameters: λ = 0.0143, κ = 1.451, δ = 3.14, ν = 0.8,
` = 0.15, µ = 0.41, m1 = −0.004 and e1 = 0.

For this set of parameters we get a much more negative value
for the magnetic collimation efficiency parameter, ε = −5.68.
The solution quickly reaches the conical regime (see Fig. 14),
and most of the field lines cross the “light cylinder” plotted as
a black solid line. The axial radial velocity profile is plotted in
Fig. 15. As can be seen, high Lorentz factors are obtained.

5.5. Magnetic collimation efficiency versus black hole spin

As already mentioned, the constant ε is a measure of the effi-
ciency of the magnetorotational forces to collimate the flow. We
have studied how ε relates to the black hole spin aH = 2l/µ,
keeping unchanged all the other parameters: λ, κ, δ, ν, and µ.

In Fig. 16, we plot ε versus the black hole spin aH , for several
cases studied in the context of our model. First we note that for
solutions with parameters similar to the K3 solution, referred to
here as K3-type solutions, the value of ε is positive, it increases
with the black hole spin aH and shows the largest variation in
relative magnitude with an absolute total variation equal to 0.05.
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Fig. 15. Lorentz factor for the conical solution K4. Distances are given
in Schwarzschild radius units.

Fig. 16. Variation of the magnetic collimation efficiency parameter ε
vs. the black hole spin parameter aH for K1-type, K3-type, and K4-
type solutions. The value of ε has been normalized by |ε(0)| when it is
negative and by ε(0) when it is positive.

On the other hand, for K1-type and K4-type solutions, the values
of epsilon are negative. The total variation for K1-type solutions
is equal to 0.10 and for the K4-type solutions is equal to 0.25. We
see that ε is increasing with the black hole spin aH for K1-type
and K3-type solutions. It also presents a minimum value for K4
at a black hole spin slightly smaller than aH = 0. This means that
the magnetic collimation efficiency is lower for counter-rotating
black holes in relation to their accretion disk for K1-type and
K3-type solutions and depends weakly on the spin direction for
K4-type ones. However, K4-type solutions are conical, contrary
to all other solutions, which are cylindrically collimated. In all
cases ε does not vary linearly with the black hole spin aH .

This nonlinear variation of epsilon with the black hole spin
aH is explained if we try to derive it at the base of the jet where
the Alfvénic number is equal to 0, since some terms of the
second order in l cannot be neglected in the following equation.

ε =
2λ2

h2
z

(
Λ2NB

D
+
ωz

λ

)
+ λ2

(
ΛNV

h∗G0D

)2

−
ν2(2e1 − 2m1 + δ − κ)R0

h2
z (R2

0 + l2)
−

ν2l2R0G0
2

h2
z (R2

0 + l2)3
. (100)

Fig. 17. Cylindrical jet radius normalized to its value at the Alfvén
surface, G, for K1-type solutions, as a function of the distance along
the polar axis, for five different values of the black hole spin aH . The
function G is equal to 1 at the Alfvén distance r = 10rs.

Fig. 18. Lorentz factor γ for K4-type solutions when the black hole spin
parameter aH varies between −0.99 and 0.99.

An increase in ε coincides with a decrease in the maximal
Lorentz factor for the collimating Kerr solutions, as we will see
for K1-type and K3-type solutions. This explains why it was not
possible to obtain physical solutions by decreasing l for K2-type
solutions. For this second Kerr solution, we performed a fine
tuning of the parameters to obtain the largest possible Lorentz
factor at large distances from the maximally rotating black hole.
Then, decreasing l leads automatically to exceed the value of the
speed of light, c, for the polar velocity at some distance in the jet.
The acceleration phase does not vary for K1-type and K3-type
solutions with l except immediately before R = 500 where the
Lorentz factor reaches a plateau. The value of the maximum γ
increases when l decreases.

For the two collimated solutions K1 and K3, there is a clear
effect of collimation induced by the rotation of the black hole. In
Fig. 17 we plot for five values of the black hole spin the evolution
of the factor G along the jet, that is„ the ratio of the jet cylindrical
radius divided by its value at the Alfvén surface. From this plot it
can be seen that the maximum of the radius of the jet is reached
at different distances, as the spin varies, and decreases when aH
increases. The same trend is observed for the terminal jet radius
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Fig. 19. Ratio of the cylindrical radius to the spherical radius for the
conical K4-type solutions with a spin parameter aH varying between
−0.99 and 0.99 vs. the distance z above the equatorial plane in units of
the Schwarzschild radius.

but the ratio of G∞/G0 decreases only by a factor of 0.96 between
a nonrotating and a maximally rotating black hole (aH = 0.99).
Hence, the faster the black hole rotates, the smaller the maxi-
mal jet radius. This result is expected because for a fast black
hole rotation, the magnetic collimation efficiency parameter (ε)
is higher.

The case of K3-type solutions is simple, as the factor G
increases with distance until it reaches a constant value. The ratio
G∞/G0 gives directly the expansion factor which is decreasing
when aH increases from −0.99 up to 0.99.

As can be seen from Fig. 18, the Lorentz factor maximum
follows the opposite trend to ε for the conical K4-type solutions:
the minimum value of ε is obtained for aH ' 0 and for a non-
rotating black hole the Lorentz factor curve reaches a maximum
before decreasing up to a plateau at large distances. This type
of curve is no longer observed when the absolute value of aH
goes above some threshold. The increase of the plateau value
for the Lorentz factor is much more pronounced for aH > 0 but
can be seen also for negative values of the spin. At a distance of
r = 1000rs γ increases from a value of the order of 6 for aH = 0
up to 14 for aH = 0.99.

For the conical solutions wherein the asymptotic geometry is
fixed, their geometry is less affected. The effect of varying ε is
different in this case, as compared to this effect for the cylindri-
cally collimated solutions. To analyze the effect of collimation
induced by the black hole spin, we plot the ratio of the cylin-
drical to spherical radius of the field lines for K4-type solutions
and five different values of the black hole spin. We note that the
ratio of the cylindrical to spherical radius of the field lines gives
their opening angle with respect to the axis. The field lines start
at the base of the jet with an opening angle which increases with
the radial distance and expands away from the polar axis more
rapidly for higher black hole rotation. The effect is more pro-
nounced for negative spin parameters. At some distances above
the equatorial plane (z ' 100rs) the opening angle becomes con-
stant as the field lines are finally becoming radial. It is found
that for a given ratio of α/αlim, where αlim is the last open field
line, the asymptotic opening angle is constant for all K4-type
solutions, regardless of the spin of the black hole.

As seen in Fig. 19, the collimation of the jet increases with
| aH | which is consistent with the increase of ε. We note also

that the base of the jet becomes slightly closer to the black hole
horizon as | aH | increases.

Globally we see that the total geometry of the solution, and in
particular the expansion of the jet radius, is extremely sensitive
to the black hole speed.

5.6. The magnetic flux and power of the jets

Intuitively, by physical arguments of magnetic flux conservation,
it is expected that magnetic fields not only play a dominant role
in collimating large-scale AGN jets, but also critically affect the
origin of the jets in accretion disks of black hole systems, which
are accordingly termed magnetically arrested disks (Narayan et
al. 2003). Indeed, theoretical modeling concludes that magnetic
fields at the base of AGN jets are related to the corresponding
accretion rate (Tchekhovskoy & McKinney 2012). Zamaninasab
et al. (2014) reported that the measured magnetic flux of the
jet and the accretion disk luminosity are tightly correlated over
several orders of magnitude for a sample of many radio-loud
AGN, concluding thus that the jet-launching region is threaded
by a dynamically important magnetic field. The magnetic fields
of AGN can be measured either by the effect of a frequency-
dependent shift of the VLBI core position (known as the core-
shift effect), or by Faraday rotation (e.g., Martí-Vidal et al. 2015,
who reported magnetic fields of at least tens of Gauss on scales
of the order of several light days – 0.01 parsecs – from the
black hole). Furthermore, MHD simulations in the frame of
general relativity allow us to calculate the saturation or equi-
librium value for the poloidal magnetic flux ΦBH threading
the black hole (McKinney 2005, Tchekhovskoy et al. 2011,
McKinney et al. 2012).
In Zamaninasab et al. (2014) this poloidal flux ΦBH is calculated
as a function of the mass-accretion rate Ṁ as,

ΦBH ' 50

√
Ṁc

( rs

2

)2
. (101)

We consider that since such a strong magnetic flux can thread the
black hole, we can use this formula to link our value of poloidal
magnetic field at the Alfvén point B? with the mass-accretion
rate Ṁ. In our model the magnetic flux from each hemisphere
is given by ΦBH = π$2

aB? = πr2
?B?αlim. Then, the magnitude of

the magnetic field is calculated from the expression

B? ' 25rs

√
Ṁc

πr2
?αlim

= 25µ
Ṁ1/2c1/2

πr?αlim
. (102)

In order to compare the jet power for the K2 and K3 solutions
with the one obtained by general relativistic MHD simulations,
we calculate this power in terms of the parameters of our model.
Similarly to the way we deduced the angular momentum flux
density in Eqs. (57) and (58), we may calculate the jet+counterjet
power by substituting ΨA from Eq. (56) and E = E?(1 + e1α)
with E? from Eq. (60), and with the help of Eq. (40), we obtain,
in terms of the constants of our model,

Pjet =

∫ Alim

0
ΨAEdA

=
νh2

?c
2
√
µ

(B?r?)2
∫ αlim

0
(1 + e1α)

√
1 + δαdα . (103)

Hence, we finally get

Pjet ' 625
νµ3/2h2

?

2π2α2
lim

Ṁc2
∫ αlim

0
(1 + e1α)

√
1 + δαdα . (104)
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Therefore, for the efficiency ηjet ≡ Pjet/Ṁc2 for our K2
model we obtain a value ηjet ' 0.52, while for our K3 model
we obtain ηjet ' 0.40. On the other hand, McKinney (2005)
determined self-consistently the jet power in Blandford–Znajek
numerical models and deduced an efficiency ηjet between 0.01
and 0.1 for ultra-relativistic Poynting-dominated jets with aH
larger than 0.8. Later, Tchekhovskoy et al. (2011) and McKinney
et al. (2012) increased the magnetic flux which can be pushed
near the black hole leading to magnetically arrested accretion
and obtained values of the net flow efficiency larger than 1
for rapidly spinning black holes with aH larger than 0.9. Their
models that develop a highly non-axisymmetric magnetically
choked accretion flow, initially have the poloidal component
of the magnetic field dominant and the wind has an efficiency
always smaller than that of the jet. We note that the net flow
efficiency for the jet is equal to (Pjet − ṀHc2)/[ṀHc2]t where
ṀH is the black hole mass-accretion rate and [ṀHc2]t is the
time-averaged value of accretion power. This black hole mass-
accretion rate could be smaller than the mass-accretion rate
measured by Zamaninasab et al. (2014). In fact, they deduced
the accretion power by dividing the bolometric luminosity with
a radiative efficiency of 0.4. Larger values of the inflow rates
Ṁin,i and Ṁin,o have been obtained by McKinney et al. (2012)
at radii 5rs and 25rs, respectively. Zdziarski et al. (2015) found
also that the jet power moderately exceeds the accretion power
Ṁc2 for blazars estimating the magnetic flux from the radio-jet
core-shift effect and the self-absorbed flux evaluation. How-
ever, there is a large scatter around the mean value for blazars
ηjet ' 1.3 and the jet power for radio galaxies is smaller, espe-
cially for M 87. Therefore, our estimations of jet power from
our K2 and K3 solutions with mass loading could perfectly
match that for less-efficient blazars and radio galaxies. More-
over, they do not overly depend on the spin parameter aH , since
αlim keeps a value slightly smaller than 1 when the spin param-
eter varies for the K3-type solutions, even for retrograde black
holes.
At this point, we prefer to postpone a further discussion of the jet
power, until we have completed our study, which also includes
inflow solutions and leads to a spin-energy extraction or addition
from the black hole (work in progress).

6. Summary and conclusions

As was pointed already in 1957 by Parker (see also Parker
1963), for the driving of the solar wind and similar enthalpy-
driven astrophysical outflows, some energy/momentum addi-
tion is required. The original isothermal and polytropic mod-
els with a heat conduction, have shown that effectively
energy and/or momentum are necessary for producing super-
sonic/superAlfvenic outflows at large distances, to also meet the
respective causality requirements. Quasi-radial wind-type astro-
physical outflows with shock transitions (Habal & Tsinganos
1983) have been applied to explain the appearance of emission
knots in galactic (Silvestro et al. 1987) and extragalactic objects
(Ferrari et al. 1984, Ferrari et al. 1986), also in the framework of
special relativity (Ferrari et al. 1985).
When deviations of the outflow geometry from radial expansion
exist and the problem is fully two-dimensional, these outflows
can be collimated in the form of jets (Sauty & Tsinganos 1994)
mainly by magnetic fields with a suitable external gas pressure
distribution. Along these lines, in Vlahakis & Tsinganos (1998),
the original Parker model was extended to include general MHD
effects, in the context of meridional self-similarity. The present

paper takes the extra step of using the framework of a Kerr met-
ric to explore analogous enthalpy- or generalized pressure-driven
outflows from the environment of a rotating black hole.

Specifically, in this paper we present an exact MHD solution
for an outflow in a Kerr metric, constructed by using the assump-
tion of self similarity and the mechanism for driving the outflow
which is developed in Sauty & Tsinganos (1994). Additionally,
the model is based on a first-order expansion of the govern-
ing general relativistic equations in the magnetic flux function
around the symmetry axis of the system. It yields four nonlinear
and coupled differential equations as a function of the radius,
for the Alfvén number, the gas pressure, the expansion function
and the radius of the jet. The model depends on seven parame-
ters. Two of them are the meridional increase of the gas pressure
and the mass to magnetic flux ratio, κ and δ, respectively. There
is also the meridional increase of the total energy with the mag-
netic flux function, e1, the poloidal current density flowing along
the system axis, λ, the escape speed in units of the Alfvén speed,
ν, the Schwarzschild radius in units of the Alfvén radius, µ, and
the dimensionless black hole spin l. In addition to those seven
parameters, we have to adjust the pressure at the Alfvénic tran-
sition. We chose to adjust it such as to minimize the oscillations
of the magnitude of the flow speed along the axis and taking the
limiting solution. We also fix the magnetic field at the Alfvén
transition, B?, and a uniform pressure constant P0 to ensure a
zero external heating at infinity along the axis where the Lorentz
factor is maximum.

The model takes into account the light cylinder effects and
the meridional increase of the Alfvén number with the magnetic
flux function, m1. This parameter is deduced from the regularity
conditions at the Alfvén transition surface.

The classical energetic criterion for the transition from con-
ical winds to cylindrical jets is generalized in general relativity
and it amounts to say that if the total available energy along a
nonpolar streamline exceeds the corresponding energy along the
axis, then the outflow collimates in a jet.

In the framework of a Kerr metric, we illustrate the model
with four different enthalpy-driven solutions wherein the
contribution of the Poynting flux is rather small. The first
three solutions are cylindrically collimated, while the fourth
represents a conical outflow at infinity. The flow collimation is
induced by electromagnetic forces. In all four models, relativistic
speeds are obtained, while in one of them the Lorentz factor
γ obtains ultra-relativistic values. A preliminary application of
one of our Kerr solutions (K3) was explored to model the spine
jet in M 87, yielding encouraging results. A more complete
modeling for the M 87 jet including an external disk-wind
component will be explored in another study.

Our analytical solutions of the full general relativistic MHD
equations in a Kerr metric may contribute to a better understand-
ing of relativistic AGN jets and are complementary to sophisti-
cated numerical simulations of such jets (e.g., McKinney 2005,
Tchekhovskoy et al. 2011, McKinney et al. 2012). In both the
analytical and the numerical approach, the outflows are electro-
magnetically confined. However, while in the above numerical
simulations the outflow is driven electromagnetically (e.g., via
the Blandford–Znajek mechanism), in the present analytical
solutions the outflow from the hot corona surrounding the black
hole is enthalpy- or generalized pressure-driven (e.g., via the
Sauty–Tsinganos mechanism). Nevertheless, it is interesting to
note that the jet powers for the two representative analytical solu-
tions we present in this paper are similar to those determined by
the numerical simulations.
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The present model can also serve to construct an inflow solu-
tion, in order to link it with an outflow solution and the physical
creation of leptonic pairs to determine the energy balance of the
black hole, via a generalized Penrose process as compared to the
Blandford–Znajek mechanism. This undertaking is in progress
and will be presented in another publication.
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Vovk, I., & Babić, A. 2015, A&A, 578, A92
Zamaninasab, M., Clausen-Brown, E., Savolainen, T., & Tchekhovskoy, A. 2014,

Nature, 510, 126
Zdziarski, A. A., Sikora, M., Pjanka, P., & Tchekhovskoy A. 2015, MNRAS, 451,

927

A63, page 19 of 22

http://linker.aanda.org/10.1051/0004-6361/201731793/1
http://linker.aanda.org/10.1051/0004-6361/201731793/1
http://linker.aanda.org/10.1051/0004-6361/201731793/2
http://linker.aanda.org/10.1051/0004-6361/201731793/3
http://linker.aanda.org/10.1051/0004-6361/201731793/3
http://linker.aanda.org/10.1051/0004-6361/201731793/4
http://linker.aanda.org/10.1051/0004-6361/201731793/5
http://linker.aanda.org/10.1051/0004-6361/201731793/6
http://linker.aanda.org/10.1051/0004-6361/201731793/7
http://linker.aanda.org/10.1051/0004-6361/201731793/8
http://linker.aanda.org/10.1051/0004-6361/201731793/9
http://linker.aanda.org/10.1051/0004-6361/201731793/10
http://linker.aanda.org/10.1051/0004-6361/201731793/11
http://linker.aanda.org/10.1051/0004-6361/201731793/12
http://linker.aanda.org/10.1051/0004-6361/201731793/13
http://linker.aanda.org/10.1051/0004-6361/201731793/14
http://linker.aanda.org/10.1051/0004-6361/201731793/15
http://linker.aanda.org/10.1051/0004-6361/201731793/16
http://linker.aanda.org/10.1051/0004-6361/201731793/17
http://linker.aanda.org/10.1051/0004-6361/201731793/18
http://linker.aanda.org/10.1051/0004-6361/201731793/19
http://linker.aanda.org/10.1051/0004-6361/201731793/19
http://linker.aanda.org/10.1051/0004-6361/201731793/20
http://linker.aanda.org/10.1051/0004-6361/201731793/20
http://linker.aanda.org/10.1051/0004-6361/201731793/21
http://linker.aanda.org/10.1051/0004-6361/201731793/22
http://linker.aanda.org/10.1051/0004-6361/201731793/23
http://linker.aanda.org/10.1051/0004-6361/201731793/24
http://linker.aanda.org/10.1051/0004-6361/201731793/25
http://linker.aanda.org/10.1051/0004-6361/201731793/26
http://linker.aanda.org/10.1051/0004-6361/201731793/26
http://linker.aanda.org/10.1051/0004-6361/201731793/27
http://linker.aanda.org/10.1051/0004-6361/201731793/28
http://linker.aanda.org/10.1051/0004-6361/201731793/29
http://linker.aanda.org/10.1051/0004-6361/201731793/30
http://linker.aanda.org/10.1051/0004-6361/201731793/31
http://linker.aanda.org/10.1051/0004-6361/201731793/32
http://linker.aanda.org/10.1051/0004-6361/201731793/32
http://linker.aanda.org/10.1051/0004-6361/201731793/33
http://linker.aanda.org/10.1051/0004-6361/201731793/34
http://linker.aanda.org/10.1051/0004-6361/201731793/35
http://linker.aanda.org/10.1051/0004-6361/201731793/35
http://linker.aanda.org/10.1051/0004-6361/201731793/36
http://linker.aanda.org/10.1051/0004-6361/201731793/36
http://linker.aanda.org/10.1051/0004-6361/201731793/37
http://linker.aanda.org/10.1051/0004-6361/201731793/37
http://linker.aanda.org/10.1051/0004-6361/201731793/38
http://linker.aanda.org/10.1051/0004-6361/201731793/39
http://linker.aanda.org/10.1051/0004-6361/201731793/40
http://linker.aanda.org/10.1051/0004-6361/201731793/41
http://linker.aanda.org/10.1051/0004-6361/201731793/42
http://linker.aanda.org/10.1051/0004-6361/201731793/43
http://linker.aanda.org/10.1051/0004-6361/201731793/44
http://linker.aanda.org/10.1051/0004-6361/201731793/45
http://linker.aanda.org/10.1051/0004-6361/201731793/46
http://linker.aanda.org/10.1051/0004-6361/201731793/47
http://linker.aanda.org/10.1051/0004-6361/201731793/48
http://linker.aanda.org/10.1051/0004-6361/201731793/49
http://linker.aanda.org/10.1051/0004-6361/201731793/50
http://linker.aanda.org/10.1051/0004-6361/201731793/51
http://linker.aanda.org/10.1051/0004-6361/201731793/52
http://linker.aanda.org/10.1051/0004-6361/201731793/53
http://linker.aanda.org/10.1051/0004-6361/201731793/54
http://linker.aanda.org/10.1051/0004-6361/201731793/55
http://linker.aanda.org/10.1051/0004-6361/201731793/56
http://linker.aanda.org/10.1051/0004-6361/201731793/57
http://linker.aanda.org/10.1051/0004-6361/201731793/58
http://linker.aanda.org/10.1051/0004-6361/201731793/59
http://linker.aanda.org/10.1051/0004-6361/201731793/59
http://linker.aanda.org/10.1051/0004-6361/201731793/60
http://linker.aanda.org/10.1051/0004-6361/201731793/61
http://linker.aanda.org/10.1051/0004-6361/201731793/62
http://linker.aanda.org/10.1051/0004-6361/201731793/63
http://linker.aanda.org/10.1051/0004-6361/201731793/64
http://linker.aanda.org/10.1051/0004-6361/201731793/65
http://linker.aanda.org/10.1051/0004-6361/201731793/66
http://linker.aanda.org/10.1051/0004-6361/201731793/66
http://linker.aanda.org/10.1051/0004-6361/201731793/67
http://linker.aanda.org/10.1051/0004-6361/201731793/68
http://linker.aanda.org/10.1051/0004-6361/201731793/69
http://linker.aanda.org/10.1051/0004-6361/201731793/70
http://linker.aanda.org/10.1051/0004-6361/201731793/71
http://linker.aanda.org/10.1051/0004-6361/201731793/72
http://linker.aanda.org/10.1051/0004-6361/201731793/73
http://linker.aanda.org/10.1051/0004-6361/201731793/74
http://linker.aanda.org/10.1051/0004-6361/201731793/74


A&A 612, A63 (2018)

Appendix A: Kerr metric elements

We can rewrite the Kerr-metric in a simpler form:

ds2 = −h2c2dt2 + hr
2dr2 + hθ2dθ2 + hφ2

(
dφ + βφcdt

)2
. (A.1)

The Kerr metric elements are defined as

hr =
ρ
√

∆
, hθ = ρ, (A.2)

hφ = $ =
Σ

ρ
sin θ, ω =

carsr
Σ2 , (A.3)

βφ = −
ω

c
$2, βφ = −

ω

c
, (A.4)

h =

(
1 −

rsr
ρ2 + βφβφ

)1/2

=
ρ

Σ

√
∆ (A.5)

Thus, to second order in sin θ the metric is

ω =
lcµR

r?(R2 + l2)2

(
1 +

l2hz
2

R2 + l2
sin2 θ

)
, (A.6)

h =

√
1 −

µR
R2 + l2

(
1 −

µl2R
2(R2 + l2)2 sin2 θ

)
, (A.7)

hr =
1√

1 −
µR

R2 + l2

(
1 −

l2

2(R2 + l2)
sin2 θ

)
, (A.8)

hθ = r?
√

R2 + l2
(
1 −

l2

2(R2 + l2)
sin2 θ

)
, (A.9)

hφ = $ = r?
√

R2 + l2 sin θ. (A.10)

In order to simplify our notation, we define along the polar axis, the axial lapse function,

hz(R) = h−1
r (R, θ = 0) = h(R, θ = 0) =

√
1 −

µR
R2 + l2

, (A.11)

and the axial shift of the metric,

ωz(R) = ω(R, θ = 0) =
lcµR

r?(R2 + l2)2 . (A.12)

We can also write the metric as an expansion in α:

ω =
lcµR

r?(R2 + l2)2

(
1 +

l2hz
2G2

(R2 + l2)2α

)
, (A.13)

h =

√
1 −

µR
R2 + l2

(
1 −

µl2RG2

2(R2 + l2)3α

)
, (A.14)

hr =
1√

1 −
µR

R2 + l2

(
1 −

l2G2

2(R2 + l2)2α

)
, (A.15)

hθ = r?
√

R2 + l2
(
1 −

l2G2

2(R2 + l2)2α

)
, (A.16)

hφ = $ = r?G
√
α. (A.17)
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Appendix B: Vectorial operators in Boyer–Lindquist coordinates of the Kerr metric.

In this Appendix we summarize the expressions of the vectorial operators under the assumption of axisymmetry (∂φ = 0).

1. The gradient vector ∇ in the ZAMO orthonormal bases,

∇ =

3∑
i=1

ε i

hi
∂i. (B.1)

2. The divergence of a vector V,

∇ · V =
1

hrhθ$

[
∂r(hθ$V r̂) + ∂θ(hr$V θ̂)

]
. (B.2)

3. The scalar Laplace operator,

∇2A = ∇ · ∇A

=
1

hrhθ$

[
1
r2
?

∂R

(
hθ$
hr

∂RA
)

+ ∂θ

(
hr$

hθ
∂θA

)]
.

4. The curvature operator on a vector V,

∇ × V =
hk

hrhθhφ
ε i jk∂i(h jV ĵ)εk,

∇ × V =


1

hθ$
∂θ($V φ̂)

− 1
hr$r?

∂R($V φ̂)
1

hrhθ

(
1
r?
∂R(hθV θ̂) − ∂θ(hrV r̂)

)
 . (B.3)

5. The advection term,

(V · ∇)V = VαDαVβeβ.

After some algebra we get for the poloidal component of the advection term:

[(V · ∇)V]p =

 V r̂

r?hr
∂RV r̂ + V θ̂

hθ
∂θV r̂ + V r̂V θ̂

hθ
∂θln(hr) −

(V θ̂)2

hr
∂rln(hθ) −

(V φ̂)2

hr
∂rln(hφ)

V r̂

r?hr
∂RV θ̂ + V θ̂

hθ
∂θV θ̂ + V r̂V θ̂

r?hr
∂Rln(hθ) −

(V r̂)2

hθ
∂θln(hr) −

(V φ̂)2

hθ
∂θln(hφ)

 . (B.4)

It can be useful to get the non-symmetric advection term,

[(B · ∇)C] =


Br̂

r?hr
∂RC r̂ + Bθ̂

hθ
∂θC r̂ + Br̂Cθ̂

hθ
∂θln(hr) − Bθ̂C θ̂

hr
∂rln(hθ) − Bφ̂Cφ̂

hr
∂rln(hφ)

Br̂

r?hr
∂RC θ̂ + Bθ̂

hθ
∂θC θ̂ + C r̂ Bθ̂

r?hr
∂Rln(hθ) − Br̂C r̂

hθ
∂θln(hr) − Bφ̂Cφ̂

hθ
∂θln(hφ)

Br̂

hrr?
∂RCφ̂ + Bθ̂

hθ
∂θCφ̂ + C r̂ Bφ̂

r?hr
∂Rln(hφ) + Cθ̂Bφ̂

hθ
∂Rln(hφ)

 . (B.5)

Appendix C: Final differential equations of the MHD problem

The final ordinary differential equations of our model can be written as :

R
d

dR

(
M2

F

)
=

1
D(M2,G2, F,R)

(
NM2

NF

)
, (C.1)

where

D(m2,G2, F,R) =
h2
?

R

[
−D

(
1 + (κ − 2m1)

R2 + l2

G2 −
l2

R2 + l2

)
+
λ2Λ2N2

B(R2 + l2)
D2 +

h4
z F2(R2 + l2)

4h2
?R2

 , (C.2)
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and

NF =
FM2

h2
?

F
2

(
h2

z F
2
− 1

)
+

(F
2
− 1

) 1 + (κ − 2m1)
X+

G2 −
l2

X+

+
λ2Λ2N2

BX+

D3


+

R2h2
z

X+h2
?

[
X+

R2 F(F − 1) −
2
h2

z
−

4λ2µh2
?Λ2X+

ν2h4
z

−
4l2µR
h2

z X2
+

] 1 + (κ − 2m1)
X+

G2 −
l2

X+

−
λ2Λ2N2

BX+

D3 −
h2

z F2X+

4R2


+

(
2κΠG2R2

h2
?

+
µFRX−
h2
?X2

+

) [
1 + (κ − 2m1)

X+

G2 −
l2

X+

−
λ2Λ2N2

BX+

D3 −
h2

z F2X+

4R2

]

+
ν2h2

?FG2R
2h2

z M2

X−
X+

(κ − 2e1 + 2m1 − δ) −
µFM2RX−
2h2

?h2
z X2

+

[
1 + (κ − 2m1)

X+

G2 −
l2

X+

]

+
λ2µΛ2NBNV FR

h2
?D3

X−
X+

−
λ2ΛNBh2

z FX+

h2
?D2

(
F −

2R2

X+

)
+
λ2µh2

?FG2

h2
z M2

RX−
X+

(
Λ2NB

D
+
ω̄z

λ

)

+
4λ2Λ2R2

h2
z

N2
B

D2 −
h2

z

2M2

N2
V

D2

 1 + (κ − 2m1)
X+

G2 −
l2

X+

−
λ2Λ2N2

BX+

D3 −
h2

z F
2


+λ
√
µνlh?

ΛG2FR
D

(3R2 − l2)
X2

+

(
NB

h2
?D
−

NV

M2

)

−
2ν2l2h2

?G4

h2
z M2

R3

X3
+

1 − l2

X+

+ (κ − 2m1)
X+

G2 −
λ2Λ2N2

BX+

D3 +

(
X−
4R2 +

h2
z

2

)
F


+
2M2l2R2

h2
?h2

z X2
+

1 + (κ − 2m1)
X+

G2 −
l2

X+

−
λ2Λ2N2

BX+

D3 +
h2

z FX+

R2

(
3R2

2X+

+ (κ − 2m1)
X+

G2

) ,

(C.3)

where X+ = R2 + `2 X− = R2 − `2.

NM2 =
M4

4h2
?

[
−h2

z F2 + 2F −
4R2l2

X2
+

− 4
(
F − 2

R2

X+

) (
1 + (κ − 2m1)

X+

G2 −
l2

X+

)]

+
h2

z M2

h2
?

[
h2

z X+F3

8R2 +
h2

z F2

4

(
1+

µX−
h2

z RX+

)
+(κ − 2m1)

X+F
G2 − F

λ2µ

ν2 X+Λ2 h2
?

h2
z
−2

R2

X+

−(κ − 2m1)
2R2

G2 +
3R2l2

X2
+

−
Fl2

X+

(
3
2
− h2

z

)]

+
ν2h4

?DRG2

2h2
z M2

X−
X+

(κ − δ + 2m1 − 2e1) + κ
X+

2
h2

z

h2
?

FΠG2M2 −
DM2µRX−

2h2
z X2

+

[
1 + (κ − 2m1)

X+

G2 −
l2

X+

]
+
λ2µRΛ2NBNV

D2

X−
X+

+λ2Λ2X+

N2
B

D2 −
h2

z

2M2

N2
V

D2

 (2M2 R2

X+

+ h2
z

(
F − 2

R2

X+

))
−
λ2ΛNBh2

z X+

D

(
F − 2

R2

X+

)
+
λ2µh4

?RG2

h2
z M2

X−
X+

(
Λ2NB +

Dr?ωz

λV?h?

)

−
l2ν2RG4h2

?

2M2X3
+

[
h2
?D

(
3R2 − l2 +

µRX−
h2

z X+

)
+ h2

z FX+

]
+ λ
√
µνlh?RG2Λ

l2 − 3R2

X2
+

(
NVh2

?

M2 −
NB

D

)
,

(C.4)

dΠ

dR
= −

2
h2

zG4

[
d

dR
M2 +

M2

R

(
F −

2R2

R2 + l2

)]
−

1
h4

z M2

R2 − l2

(R2 + l2)2

(
ν2h4

? −
µM4

G4

)
, (C.5)

dG2

dR
=

G2

R

(
2R2

R2 + l2
− F

)
. (C.6)
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