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ABSTRACT

Most multi-mode parallel robots can change operation modes by passing through constraint singularities. This

paper deals with a comprehensive kinematic study of a 3-DOF multi-mode 3-PRPiR parallel robot developed at

Heriot-watt University. This robot is able to reach several operation modes without crossing any constraint singu-

larity by using lockable Pi and R joints . Here a Pi joint may act as a 1-DOF planar parallelogram if its lockable

P (prismatic) joint is locked or a 2-DOF RR serial chain if its lockable P joint is released. The operation modes of

the robot include a 3T operation mode and four 2T1R operation modes with two different directions of the rotation

axis of the moving platform. The inverse kinematics and forward kinematics of the robot in each operation mode

are dealt with in detail. The joint space and workspace analysis of the robot allow us to know the regions of the

workspace that the robot can reach in each operation mode. It is shown that the robot is able to change assembly

mode in one operation mode by passing through another operation mode.

1 Introduction

Reconfigurable Parallel Manipulators (PMs), such as multi-mode PMs [1–12], have received much attention from a

number of researchers in the past decade [13]. The main characteristics of multi-mode PMs include [7–9]: a) fewer actuators

are needed for the moving platform to realize several specified motion patterns; and b) less time is needed in reconfiguring

the PM since there is no need to disassemble the PM in the process of reconfiguration.

A number of interesting multi-mode PMs have been proposed, such as multi-mode PMs with a 3-DOF (degrees-of-

freedom) translational mode and a 3-DOF planar mode or a 4-DOF 3T1R mode [7, 8], PMs with two 3T1R (also Schönflies

motion) operation mode which has three translational DOF and one rotational DOF operation modes [4], PMs with two

2T1R operation modes [5, 6], and 2-DOF 3-4R PMs with both spherical translation mode and sphere-on-sphere rolling

mode [9]. References [14, 15] show 4-DOF 3T1R PMs that have an extra 2-DOF or 3-DOF motion mode in addition to the

required 4-DOF 3T1R motion mode. It is noted the metamorphic PMs based on reconfigurable U (universal) or S (spherical)

joints [16,17] and the multi-mode PMs with lockable joints [18,19] are in fact kinematically redundant PMs in nature and do

not belong to multi-mode PMs that this paper focuses on. In addition, several methods have been proposed [14, 15, 19–25]

to the reconfiguration analysis of multi-mode PMs for identifying all the operation modes and the transition configurations

of a PM.
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Computers and Information in Engineering Conference, DETC2017-67284, August 6–9, 2017, Cleveland, OH, USA
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2 DESCRIPTION OF A 3-PRPIR PARALLEL ROBOT

Table 1. Five operation modes of the multi-mode parallel robot.

Operation modes Conditions

No Translation Rotation Joints Joints

along about locked released

1 x, y, z −− P1, P2 R1, R2, R3

2 x, y z(α) R1, R2, P2 R3, P1

3 x, y x(β) R1, R2, P1 R3, P2

4 y, z x(β) R3, P1 R1, R2, P2

5 y, z z(α) R3, P2 R1, R2, P1

However, only a few multi-mode PMs, such as the PM with two 1T1R operation modes used as a novel swivel head for

machine tools [2], have been put into use in practice. As pointed out in [22, 23], one of the causes is the lack of practical

methods for switching a PM from one operation mode to another.

In [26], a multi-mode PM was proposed, which is a revised version of the multi-mode PM developed at Heriot-Watt

University as shown in Fig. 1 of [18]. This multi-mode PM can switch from one operation mode to another securely by

using reconfigurable planar parallelograms and lockable R (revolute) joints. Unlike robot architectures that cross a constraint

singularity to change operation mode, no external force or torque is required to change operation modes. This paper will

perform a systematic study on the inverse kinematics, forward kinematics, workspace and singularity analysis of this multi-

mode PM.

In the literature, trajectories for changing assembly modes has been investigated either by using dynamic proper trajec-

tories [27] or the properties of the cuspidal robots [28, 29]. In this paper, we will present a new way to change assembly

modes, which are associated with different solutions of the forward kinematics, by switching operation modes.

In Section 2, the description of a 3-PRPiR PM is given. Section 3 deals with the inverse and direct kinematic problem.

In Section 4, the singularity analysis is presented. Section 5 presents the workspace analysis to find out the connected regions

reachable for a given working mode, i.e. a given solution of the inverse kinematics [30], in each operation mode. Finally,

conclusions are drawn on the advantages of this robot.

2 Description of a 3-PRPiR parallel robot

The 3-DOF 3-PRPiR1 multi-mode parallel robot developed by the second author’s team at Heriot-Watt University [26] is

composed of a base and moving platform connected by three RPiR legs. Here R and Pi represent revolute and reconfigurable

parallelogram joint respectively (Fig. 1). The Pi joint may act as a 1-DOF planar parallelogram if its lockable P (prismatic)

joint is locked or a 2-DOF RR serial chain if its lockable P joint is released. In total, there are three lockable revolute joints

(R1, R2 and R3) and two lockable prismatic joints (P1 and P2) which can be locked/released to change the operation modes of

the robot. With this prototype, it was possible to validate the movements of the robot according to the operation mode. The

change of operating mode is carried out in the home pose shown in Fig. 1 or whenever the robot is under the xy or yz planes

passing through this pose with α = 0 and β = 0. A practical home configuration would be one does not encounter parallel

singularity. Currently, the change of operation mode is done by inserting pins manually to lock or unlock the joints. In the

future, magnetic devices will be used to make this change. Compared to the use of motors, this solution is simpler because a

logic output of the controller is used and there is no optical encoder and no drive.

In the home pose, the axes of all the revolute joints, including those within the Pi joint, are parallel to two directions.

The input joint variables are the three prismatic actuated joints ρ1, ρ2 and ρ3 along the y-axis. The motion of the moving

platform depends on the operation mode of the robot (Fig. 1). Table 1 describes the robot’s mobility in its five operation

modes.

In a fixed reference frame, the positions of the fixed points Ai (i = 1,2,3) as well as the points Bi controlled by the

1One of the Pi joint is replaced with an RR serial chain to simplify the structure without affecting the function of the robot.
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Fig. 1. A 3-PRPiR multi-mode parallel robot with the three actuators in red, the passive joints in white and the lockable joints in other colors

and its prototype

actuated prismatic joints are defined as

A1 = [−d1,0,0]
T

A2 = [d6,0,0]
T

A3 = [0,0,d2]
T

A4 = [d6 + d7,0,0]
T

A5 = [0,0,d2 + d5]
T

Points A2 and A3 are virtual points only to simplify the model.

B1 = [−d1,ρ1,0]
T

B2 = [d6,ρ2,0]
T

B3 = [0,ρ3,d2]
T

B4 = [d6 + d7,ρ2,0]
T

B5 = [0,ρ3,d2 + d5]
T

The motion of the end-effector P depends on the operation modes of the robot. The coordinates of point P will be given

in details in the next subsections on the constraint equations for each operation mode. The rotations around x-axis and z-axis

are denoted by β and α respectively.

Based on the prototype built at Heriot-Watt University, the design parameters are defined in millimeters as (Fig. 2):

d1 = 55, d2 = 113, d3 = 385/10, d4 = 95, d5 = 25, d6 = 33, d7 = 405/10, l1 = 124, l2 = 165, and l3 = 170. For all the

operation mode, the constraint equations are obtained by calculating the distances between the points Bi and Ci.

||Bi −Ci||= li for i = 1,2,3

In the following equations, we will introduce the position and orientation of the end-effector P as a function of the operation

modes of the robot.

Operation Mode 1

Operation mode 1 is a 3-DOF pure translation mode. That is to say the moving platform cannot rotate. This architecture is

identical to the linear Delta robot found in the Renault Automation UraneSX [31] or the IRCCyN Orthoglide [32, 33].

C1 = [x− d3,y,z]
T

C2 = P = [x,y,z]T

C4 = [x+ d7,y,z]
T

C3 = [x,y,z+ d4]
T

C5 = [x,y,z+ d4 + d5]
T
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Fig. 2. Link parameters of the 3-PRPiR multi-mode parallel robot.

The constraint equations are







(x− d3 + d1)
2 +(y−ρ1)

2 + z2 = l1
2

(x− d6)
2 +(y−ρ2)

2 + z2 = l2
2

x2 +(y−ρ3)
2 +(z+ d4− d2)

2 = l3
2

(1)

Operation Mode 2

For this operation mode, the moving platform undergoes a 3-DOF planar motion along the O-XY plane: it translates in the

plane (x,y) and rotate around the z-axis. We can write the positions of Ci and P as

C1 = [x− d3 cosα, y− d3 sinα, 0]T

C2 = P = [x,y,0]T

C3 = [x,y,d4]
T

C4 = [x+ d7 cosα,y+ d7 sinα, 0]T

C5 = [x,y,d4 + d5]
T

The constraint equations are







(x− d3 cosα+ d1)
2 +(y− d3 sinα−ρ1)

2 = l2
1

(x− d6)
2 +(y−ρ2)

2 = l2
2

x2 +(y−ρ3)
2 +(d4 − d2)

2 = l2
3

(2)

Operation Mode 3

For this operation mode, the translations of the moving platform are in the plane (x,y) and the rotation around the x-axis.

Such motion is called PPR equivalent motion in [34]. We can write the positions of Ci and P as

C1 = [x− d3,y,0]
T

C2 = P = [x,y,0]T

C4 = [x+ d7,y,0]
T

C3 = [x, y+ d4 sinβ, d4 cosβ]T

C5 = [x, y+(d4 + d5)sin β, (d4 + d5)cosβ]T

The constraint equations are







(x− d3+ d1)
2 +(y−ρ1)

2 = l2
1

(x− d6)
2 +(y−ρ2)

2 = l2
2

x2 +(y+ d4 sinβ−ρ3)
2 +(d4 cosβ− d2)

2 = l2
3

(3)
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Operation Mode 4

For operation mode 4, the moving platform undergoes a 3-DOF planar motion along the O-YZ plane. The translations of the

moving platform are in the plane (y,z) and the rotation around the x-axis. The positions of Ci and P are

C1 = [0− d3,y,z]
T

C2 = P = [0,y,z]T

C4 = [0+ d7,y,z]
T

C3 = [0,y+ d4 sinβ,z+ d4 cosβ]T

C5 = [0, y+(d4+ d5)sinβ, z+(d4 + d5)cosβ]]T

The constraint equations are







(d1 − d3)
2 +(y−ρ1)

2 + z2 = l2
1

d2
6 +(y−ρ2)

2 + z2 = l2
2

(y+ d4 sinβ−ρ3)
2 +(z+ d4 cosβ− d2)

2 = l2
3

(4)

This operation mode was not presented in [35] because for the design parameters in [35], the robot was singular throughout

its workspace.

Operation Mode 5

For operation mode 5, the moving platform undergoes a 3-DOF planar motion along the O-YZ plane. The translations of the

moving platform are in the plane (y,z) and the rotation around the z-axis. The positions of Ci and P are

C1 = [0− d3 cosα, y− d3 sinα, z]T

C2 = P = [0,y,z]T

C4 = [0+ d7 cosα, y+ d7 sinα, z]T

C3 = [0,y,z+ d4]
T

C5 = [0,y,z+ d4 + d5]
T

The constraint equations are







(x− d3 + d1)
2 +(y−ρ1)

2 = l1
2

(x− d6)
2 +(y−ρ2)

2 = l2
2

x2 +(y+ d4 sinβ−ρ3)
2 +(d4 cosβ− d2)

2 = l3
2

(5)

3 Inverse and direct kinematic analysis of the parallel robot in different operation modes

3.1 Inverse kinematic analysis

For each of the five operation modes, there are 8 solutions to the inverse kinematic model or working modes [30].

From the constraint equations [Eqs. (1)–(5)], it is quite straightforward to solve quadratic equations to find the inputs of the

actuators. These solutions are given below without detailed derivation.

Figure 3 shows the 8 working modes of the robot for the home pose.

Operation Mode 1

ρ1 = y±
√

2(d3d1 + xd3 − xd1)− d2
1 − d2

3 + l2
1 − x2 − z2

ρ2 = y±
√

2xd6 − d2
6 + l2

2 − x2 − z2

ρ3 = y±
√

2(d4d2 + zd2 − zd4)− d2
2 − d2

4 + l2
3 − x2 − z2
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Fig. 3. The eight working modes of the robot associated with the home pose.

Operation Mode 2

ρ1 =−d3 sinα+ y±
√

d2
3 sin2 α+ 2(d3d1 + xd3)cosα− (d1 + x)2 − d2

3 + l2
1

ρ2 = y±
√

l2
2 − (d6 − x)2

ρ3 = y±
√

l2
3 − x2 − (d2 − d4)2

Operation Mode 3

ρ1 = y±
√

−d2
1 + 2d3d1 − 2xd1 − d2

3 + 2xd3 + l2
1 − x2

ρ2 = y±
√

−d2
6 + 2xd6 + l2

2 − x2

ρ3 = d4 sinβ+ y±
√

d2
4 sin2 β+ 2d4 cosβd2 − d2

2 − d2
4 + l2

3 − x2

Operation Mode 4

ρ1 = y+
√

l2
1 − z2 − (d3 − d1)2

ρ2 = y+
√

l2
2 − z2 − d2

6

ρ3 = d4 sinβ+ y+
√

d2
4 sin2 β+ 2d4 cosβ(d2 − z)− (d2− z)2 − d2

4 + l2
3
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Fig. 4. Joint space of operation mode 1 for ρ1 = 0.

Operation Mode 5

ρ1 =−d3 sinα+ y±
√

d2
3 sin2 α+ 2d3 cosαd1 − d2

1 − d2
3 + l2

1 − z2

ρ2 = y±
√

l2
2 − d2

6 − z2

ρ3 = y±
√

2zd2 − (d2 − d4)2 − 2d4 + l2
3 − z2

3.2 Direct kinematic analysis

Solving the constraint equations associated with each operation mode [Eqs. (1)–(5)], one can find the locations of the

moving platform for a given set of inputs.

For operation mode 1, the resolution of the direct kinematic analysis amounts to calculating the intersection of three

spheres. An efficient geometric method is presented by Pashkevich in [36]. For the other operation modes, we obtain two

values for the position according to x,y or z. For a given orientation of the moving platform, we obtain a quadratic equation

as a function of the position parameters. Therefore, we usually have four real solutions for the orientation of the moving

platform.

Since the equations for all the five operation modes are too large to be displayed in an article and the solutions are

well-documented in the literature, we will focus on the variation of the number of solutions to the direct kinematic model in

the joint space. For clarity, we make a slice in the joint space by setting ρ1 = 0. This is equivalent to the change of variable

ρ′
2 = ρ2 −ρ1 and ρ′

3 = ρ3 −ρ1. Figures 4–8 represent the joint space in blue, the regions where the direct kinematic model

admits two real solutions and in red, the regions where it admits four real solutions.

In operation mode 1, there is two separate regions where the direct kinematic problem admits two solutions (Fig. 4).

In operation mode 2, there are eight regions where the direct kinematic problem admits either two or four solutions

(Fig. 5) that we can merge in two connected regions. However, there is one hole in each one. This property can cause

problems if the robot is to be protected by introducing limits on the active joints.

In operation mode 3, there are three regions that we can merge in a single connected regions (Fig. 6). The region with

four direct kinematic solutions connects two regions where there are only two solutions.

In operation mode 4, there are two connected regions (Fig. 7). In each one, we have four regions with either two or four

solutions.

In operation mode 5, there are four connected regions with two holes (Fig. 8). The regions with four direct kinematic

solutions are inside a region with two solutions.

It is noted that except operation mode 3, the regions in the joint space are not connected. Figures 9–13 shows several

postures of the robot when we have the two or four solutions for the direct kinematics in these five operation modes.

4 Singularity analysis of the parallel robot in different operation modes

The singularity analysis of conventional parallel robots has been well-documented in the literature. The singularity

analysis of a multi-operation mode parallel robot involves the singularity analysis of the robot in each operation mode. In each

operation mode, we first find the parallel and serial Jacobian matrix, named A and B respectively [37, 38], by differentiating

the constraint equations [Eqs. (1)–(5)] with respect to time. Then we obtain the parallel and serial singularities by studying
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Fig. 5. Joint space of operation mode 2 for ρ1 = 0. Fig. 6. Joint space of operation mode 3 for ρ1 = 0.

Fig. 7. Joint space of operation mode 4 for ρ1 = 0. Fig. 8. Joint space of operation mode 5 for ρ1 = 0.

Fig. 9. Example of joint configuration with two direct kinematic solutions in operation mode 1 with ρ1 =−50,ρ2 = 0, and ρ3 = 0.

det(A) and det(B) respectively [30]. In each operation mode, the serial singularities are located at the boundaries of the

workspace while the parallel singularities divide it.

As the robots studied have several solutions to the direct and inverse kinematic problem, the singularity conditions

are defined in the cross product of the joint space and workspace. Their projections into the workspace are not requested

because we cannot distinguish the curves associated with a given working mode. The equations of the singularities are

written according to the design parameters of the prototype because it is not possible to write these conditions in this paper

without affecting their values. However, the Siropa library makes it possible to do all the calculations in the general case with

all the design parameters (di for i = 1..7 and li for i = 1,2,3 [39]. For example, for the operation mode 1, without assigning

the design parameters, the number of operands of the parallel singularity locus in the Cartesian space is 2929 and the degree

of the polynomial is 12.
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Fig. 10. Example of joint configuration with four direct kinematic solutions in operation mode 2 with ρ1 = 0,ρ2 = 272, and ρ3 =−53.

Fig. 11. Example of joint configuration with four direct kinematic solutions in operation mode 3 with ρ1 = 0,ρ2 = 200, and ρ3 = 200.

Fig. 12. Example of joint configuration with four direct kinematic solutions in operation mode 4 with ρ1 = 0,ρ2 = 200, and ρ3 = 200.

Fig. 13. Example of joint configuration with four direct kinematic solutions in operation mode 5 with ρ1 = 0,ρ2 = 100, and ρ3 =−200.

4.1 Operation mode 1

The singular configurations in operation mode 1 of this robot are the same as the conventional parallel robot presented

in [40]. We have the serial singularities when the legs are orthogonal to the actuators and the parallel singularities when the
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legs are in the same plane (flat position) or all parallel (bar position).

Serial singularities occur if and only if

ρ3 − y = 0, ρ2 − y = 0 or ρ1 − y = 0

Parallel Singularities occur if and only if

(−12x− 22z+ 396)ρ1 +(12x− 11z+ 198)ρ2 + 33zρ3 − 594y = 0

In this operation mode, the determinant of the matrix A cannot be factorized. In a single equation, we have the singularity

locus associated with the eight working modes.

4.2 Operation mode 2

Serial singularities occur if and only if

77sinα− 2y+ 2ρ1 = 0, ρ2 − y = 0 or ρ3 − y = 0

Only the serial singularities associated with the first leg ρ1 depend on the orientation of the moving platform.

Parallel Singularities occur if and only if

xsin α+ cosαρ1 − ycosα+ 55 sin α = 0 or xρ2 −ρ3 x+ 33ρ3− 33y = 0

The determinant of the matrix A is factorized into two components. This properties means that the workspace is divided into

at least four regions. We notice that the first component does not depend on the orientation of the moving platform.

4.3 Operation mode 3

Serial singularities occur if and only if

ρ1 − y = 0 or ρ2 − y = 0 or y+ 95 sinβ−ρ3 = 0

As the axis of rotation of the moving platform is parallel to the x-axis, only the serial singularities related to the third leg

depend on the orientation of the moving platform.

Parallel Singularities occur if and only if

cosβ(ρ3 − y)− 113sinβ = 0 or 2x(ρ1x−ρ2)− 66ρ1− 33ρ2+ 99y = 0

4.4 Operation mode 4

Serial singularities occur if and only if

ρ1 − y = 0 or ρ2 − y = 0 or y+ 95sinβ−ρ3 = 0

As the axis of rotation of the moving platform is parallel to the x-axis, only the serial singularities related to the first leg

depend on the orientation of the moving platform.

Parallel Singularities occur if and only if

cosβρ3 − ycosβ+ zsinβ− 113sinβ = 0 or z = 0 or ρ1 −ρ2 = 0

This operation mode is singular in the home pose.
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4.5 Operation mode 5

Serial singularities occur if and only if

77sinα+ 2(ρ1 − y) = 0 or ρ2 − y = 0 or ρ3 − y = 0

As the axis of rotation of the moving platform is parallel to the z-axis, only the serial singularities related to the first leg

depend on the orientation of the moving platform.

Parallel Singularities occur if and only if

cosαρ1 − ycosα+ 55sinα or ρ2z− zρ3 − 18ρ2+ 18y = 0

5 Workspace analysis of the parallel robot in different operation modes

5.1 Definition of the aspects

The workspace analysis of a multi-mode parallel robot requires analyzing the workspace of the robot in each operation

mode. In each operation mode, one needs to separate the postures of the robot according to the current working modes. An

aspect was defined in [30] as the maximal sets in the product of the workspace, W , by the joint space, Q. However, we can

only represent its projection in the workspace that we will call parallel aspects, for a given working mode.

Since that it is impossible to change the working modes without disassembling this multi-mode parallel robot, we will

study only the working modes depicted in Fig. 1 for simplicity reasons. With the Siropa library, we can make an algebraic

cylindrical decomposition (CAD) [41,42] in the space which includes the joint space and the workspace taking into account

the serial and parallel singularities. In this paper, we assume there is no limitation on the range of motion of the joints.

Therefore, we can study the workspace by considering only its section at y = 0.

In each cross-section of the workspace, we have represented the parallel aspects [30], i.e., the largest regions without

singularity in the Cartesian space. The boundaries of these regions are the parallel singularities. Curves may exist that do

not divide the workspace. These curves are associated with the other operation modes. These curves are obtained by the

discriminant varieties of the constraint equations with the serial and parallel singularities [43].

5.2 Workspace analysis

In operation mode 1, the workspace is a divided in two regions due to the parallel singularities. In Fig. 14, the curves

correspond to the parallel singularities associated with the 8 working modes and only a part of these curves divides the

workspace in to two regions for the working mode under study. Unlike parallel robots with equal lengths and three parallel

actuators [35], one singularity curve is associated to the working mode of the Fig. 1. In operation mode 2, the workspace is

divided in two regions (Fig. 15). Please note the continuity of certain regions due to the cyclicity of the angles.

Fig. 14. Workspace in operation mode 1 for y = 0.

The workspace in operation mode 3 consists of only two regions (Fig. 16). The workspace in operation mode 4 has four

aspects (Fig. 17). The brown region is connected due to the cyclicity of the angles. For z = 0, and for any orientation, the

robot is in singularity.

The workspace in operation mode 5 has two aspects (Fig. 18). The green region is connected due to the cyclicity of the

angles.
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Fig. 15. Workspace in operation mode 2 for y = 0. Fig. 16. Workspace in operation mode 3 for y = 0.

Fig. 17. Workspace in operation mode 4 for y = 0. Fig. 18. Workspace in operation mode 5 for y = 0.

5.3 Connectivity analysis

The multi-mode parallel robot can switch among its five operation modes in its home pose in which x = 0, z = 0, α = 0

and β = 0. In Fig. 19, starting from the home pose, the red arrows show the corresponding postures for each operation mode.

The grey regions are the regions of the workspace that the robot cannot reach without crossing a parallel singularity.

Based on this analysis, Figs. 20 and 21 depict, at the left side, the workspace for the operations modes 1, 2 and 5 and

the operation modes 1, 3 and 4, respectively, and at the right side, the remaining connected regions.

In operation mode 1, only the yellow region can be reached if we do not switch to operation modes 4 or 5. For example,

in the operation mode 1, the trajectory T1 to T2 defined in Fig. 22(a) is not feasible because the point T3 is singular. So,

along the negative z-axis, we can reach at most z = −70.456 for x = 0 starting from the home pose. In operation mode 4,

the robot is singular at any configuration with z = 0 (Fig. 22(c)). The pink and green regions can be reached only if we

apply a trajectory either with operation mode 1 or operation mode 5 as shown Fig. 21. Conversely, in the operation mode 5

(Fig. 22(b)), the trajectory T1 to T2 is fully included inside a single region.

Based on the above results, we conclude that it is possible to change the parallel aspects for a given operation mode by

passing through operation mode 1 or 4 or 5 (Figs. 22(a)-(c)). This change only happens at configurations with x = 0 and any

values of y (Fig. 23). This property increases the workspace of the robot theoretically.

We notice that the ranges of translation in operation modes 2, 3, 4 and 5 are within the ranges defined by the intersections

of the workspace with the x- and z- axes in operation mode 1. The above analysis has shown that the asymmetric 3-PRPiR

multi-mode PM is better than the symmetric case of the multi-mode PM detailed in [35].

6 Conclusions

In this paper, we have presented the kinematics of a multi-mode parallel robot that can change operation modes by using

reconfigurable Pi joints and lockable R joints without the problem of the constraint singularities. Changes in operation modes

are realized by locking/releasing certain lockable joints. This feature allow us to know the operation mode without external or

internal sensors. We have investigated the singularities of the parallel robot in different operation modes from the study of the

determinant of the Jacobian matrices. For an operation mode resulting from the “home” configuration of the robot, we have

decomposed the workspace into aspects and represented their projection in the workspace. The conditions for switching from
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1

2

3

4

5

Fig. 19. Transition among the five operation modes.

(a) (b)

Fig. 20. Workspace (a) and connected regions (b) for y = 0 for translation motion and the rotations around the z-axis

(a) (b)

Fig. 21. Workspace (a) and connected regions (b) for y = 0 for translation motion and the rotations around the x-axis
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Fig. 22. Non-singular and singular assembly mode changing trajectory for three operation modes for T1 = [−100,0], T2 = [100,0],
T3 = [−70.456,0] and T4 = [0,0] where x = 0 in (b) and (c), β = 0 in (a) and (b), α = 0 in (a) and (c).

(a) (b)

Fig. 23. Non-singular and singular assembly mode changing trajectory for β = 0 (a) and α = 0 (b) between T1 = [−100,0] and T2 =
[100,0].

one operation mode to another have been identified. The aspects that the robot can achieve in a given operation mode without

going through a parallel singularity have also been obtained. Two non-singular assembly mode changing trajectories have

been introduced by changing operation mode. This feature can justify the additional brakes requested to change operation

mode by increasing the reachable workspace of one operation mode.

This work, together with the literature on the reconfiguration analysis of multi-mode parallel mechanisms [15, 20–23],

provide a comprehensive framework for the analysis of multi-mode parallel robots.

Future works will be done on the prototype by adding some brakes to automatically change operation mode and optimize

the values of the design parameters to optimize the accuracy of the robot as well as its stiffness.
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