
HAL Id: hal-01797855
https://hal.science/hal-01797855v1

Submitted on 12 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

QoS management mechanisms for Enhanced Living
Environments in IoT

Yassine Banouar, Clovis Anicet Ouedraogo, Christophe Chassot, Abdellah
Zyane

To cite this version:
Yassine Banouar, Clovis Anicet Ouedraogo, Christophe Chassot, Abdellah Zyane. QoS management
mechanisms for Enhanced Living Environments in IoT. 2017 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM), May 2017, Lisbon, Portugal. �10.23919/INM.2017.7987454�.
�hal-01797855�

https://hal.science/hal-01797855v1
https://hal.archives-ouvertes.fr

QoS Management Mechanisms for Enhanced

Living Environments in IoT

Yassine Banouar
1, 2

, Clovis Anicet Ouedraogo
1
, Christophe Chassot

1, 3
, Abdellah Zyane

4

1
CNRS, LAAS, 7 avenue du Colonel Roche, F-31400 Toulouse, France

Univ. de Toulouse,
2
UPS,

3
INSA, LAAS, F-31400 Toulouse, France

4
Cadi Ayyad University, S.A.R.S Group, ENSA Safi, Morocco

{banouar, ouedraogo, chassot}@laas.fr, a.zyane@uca.ma

Abstract—The Internet of Things (IoT) paradigm is expected

to bring ubiquitous intelligence through new applications in

order to enhance living and other environments. Several research

and standardization studies are now focused on the Middleware

level of the underlying communication system. For this level,

several challenges need to be considered, among them the Quality

of Service (QoS) issue. The Autonomic Computing paradigm is

now recognized as a promising approach to help communication

and other systems to self-adapt when the context is changing.

With the aim to promote the vision of an autonomic Middleware-

level QoS management for IoT-based systems, this paper

proposes a set of QoS-oriented mechanisms that can be

dynamically executed at the Middleware level to correct QoS

degradation. The benefits of the proposed mechanisms are also

illustrated for a concrete case of Enhanced Living Environment.

Keywords—Internet of Things; Enhanced Living

Environments; Middleware; Quality of Service mechanisms;

Autonomic Computing

I. INTRODUCTION

The Internet of Things (IoT) is expected to bring a large
and promising spectrum of ubiquitous intelligence through
new applications in various domains such as health, transport,
industry, energy, environment, retail or logistics. Living
environments should strongly benefit from those new
communication capabilities that will make possible the
execution of dynamic and autonomous actions going from, for
instance in healthcare context, accurate supervision of patients
to intervention in case of emergency. To make possible the
deployment of such Enhanced Living Environments (ELE),
network-level communication capabilities (such as Bluetooth,
Zigbee, Wi-Fi, or wired technologies) are not sufficient.
Indeed, Middleware-level platforms are required to allow
hiding complexity of heterogeneous devices (sensors,
effectors, tags, etc.) and communication technologies. Without
such an intermediate abstraction layer between the IoT
applications and the underlying communication technologies,
the implementation of each application would be dependent on
the devices technologies, leading to a vertical fragmentation
between IoT applications and an impossible extensibility when
new devices/capabilities appear.

In 2012, the ETSI standardization effort resulted in the
proposition of the Machine-to-Machine (M2M) architectural
framework [1] enabling the management of IoT applications,

the abstraction of networks and devices heterogeneity, etc.
This specification has been extended recently under the
oneM2M architectural framework [2] which is now
recognized as the de facto standard for the IoT paradigm.

Basically, both ETSI M2M and oneM2M frameworks are
built on 4 levels: (1) Application level where business
applications (home automation, smart metering, smart grid,
etc.) offering final solutions are defined; (2) Middleware level
that aims at hiding the details of various underlying networks
and technologies to facilitate interoperability; (3) Network
level that includes different types of networks to interconnect
equipment; and (4) Device level that includes IoT sensor /
actuators devices. An instantiation of this framework (Fig. 1)
is composed of Business applications, Server and Gateways
acting as Middleware entities, and finally Devices
interconnected to their Gateways through specific network
technologies (Bluetooth, Zigbee, etc.).

Fig. 1. Instantiation of the oneM2M framework for IoT.

ELE are expected to be driven by several kinds of
applications. In healthcare context, IoT can bring remote
supervision of patients’ health (heartbeat rate, glycaemia, etc.)
and intervention when critical situation occurs. Each activity
may be supported thanks to several devices held by the
patients themselves, but also by all the entities involved in the
global process (pharmacy, doctor, hospitals, etc.). All the
exchanges have different priorities depending on the context:
for instance, an alarm indicating a heart attack of a “risky-
condition” patient is more important than supervision
information of a young jogger. In terms of communication,
such differences have to be translated into quality of service
(QoS) requirements: the transmission delay of an alarm is
expected to be as fast as possible, while a great delay of a non-
sensitive supervision data could be acceptable.

Providing IoT platforms with QoS-oriented capabilities
becomes a necessity that remains under research study [3, 4].
QoS issue in such environments is more considered at the
network and device levels by the proposition of packet
scheduling algorithms [5], service differentiation techniques
[6], routing protocols [7] and adaptive architectures for
devices [8]. The work presented in this paper focuses on the
Middleware level and aims at promoting the vision of a
dynamic and autonomic management of QoS-oriented
adaptive actions, following the autonomic computing
paradigm (AC) [9]. As depicted in Fig. 2, this paradigm is
based on the monitoring, analysis, planning and execution
steps, which are aimed at applying adaptation actions on the
managed system according to its state thanks to a shared
knowledge base. In our case, the considered system is an
ETSI-M2M compliant Middleware platform, the open-source
OM2M platform [10].

Fig. 2. Deployment context of the proposed autonomic computing-based
approach for Middleware-level QoS management.

The contributions of this paper are foccussed on the
adaptation actions that may be performed to go toward the
respect of the required QoS. Two kinds of adaptation actions
are considered: “request-oriented” adaptation deals with the
differentiation actions that can be done in the processing of
requests having different QoS requirements; “resource-
oriented” actions deals with the adaptation of the deployment
resources, for instance at the virtual machine level for
Middleware-level entities that are deployed in a cloud
environment (typically IoT Servers).

The rest of this paper is structured as follows. Section II
describes the QoS-oriented mechanisms that we propose at the
Middleware level for an ETSI M2M compliant IoT platform.
Section III illustrates how some of those mechanisms can be
implemented within a typical example of ELE scenario.
Performance measurements allow showing the benefits that
can be induced with the application of those mechanisms.
Finally, section V provides conclusion and future work.

II. QOS-MANAGEMENT MECHANISMS AT THE

MIDDLEWARE LEVEL

In order to satisfy the requirements of critical IoT
applications, Middleware-level functionalities need to be
extended to include QoS management mechanisms. In this
section, we propose two levels of mechanisms: (1) request-
oriented mechanisms that intervene on incoming HTTP

requests; and (2) resource-oriented mechanisms that re-
configure Middleware resources. Those mechanisms are
supposed to be configured by an autonomic manager (AM),
and more specifically by its planning component, according to
the QoS constraints of critical IoT applications but also to the
type of the managed entity (Server or Gateway) and its current
performance state.

A. Request-oriented Mechanisms

Request-oriented mechanisms are inspired by the
mechanisms used in the Internet, specifically at the Transport
and Network layers of the TCP/IP architecture. The approach
follows the main principles of the DiffServ model [11], which
is based on packet marking at the network entry and
differentiation of the packet processing in each core routers
depending on their mark. To implement a similar approach at
the Middleware level, we add a field to the HTTP request
specifying its priority; this priority allows guiding the request
processing through the mechanisms components.

Two successive steps are then carried out (Fig. 3). The first
one is the classification and priority marking based on a
number of criteria defined by the AM; this step is done by the
Classification and Marking Component (CMC). The second
step is the processing of the request based on its priority by the
Performance Enhancing-Proxy (PEP), and then its possible
redirection to the Middleware entity (i.e. server or gateway)

Fig. 3. Architectural composition of request-oriented mechanisms.

1) Classification and Marking Component

The Classification and Marking Component (CMC) adds a
TOS_HTTP header (Type Of Service for HTTP) that contains
the priority assigned to the HTTP request. The CMC interacts
with two main actors:

● Source: sender of the HTTP request towards the
system. We consider two types of sources: QoS-
unaware sources that are not able to express their QoS
requirements, and QoS-aware sources that are able to
express them through the adding of the TOS_HTTP
field with an appropriate priority ;

● Autonomic Manager: responsible of the
configuration of the underlying components (CMC,
PEP and Middleware). For the CMC, the AM
intervenes for the classification (requests classes) and
the marking (priority of each class) policies.

As described in Fig. 4, the CMC contains the following
components:

● CMC Manager: acts as a communication interface
with the AM; it allows activation/deactivation of the

CMC as well as management of classification and
marking policies;

● CMC Receiver: receives requests from sources.
When activated, it directs the traffic either to the
“Request Classifier” if the TOS_HTTP header does
not exist, or directly to the “HTTP Forwarder” if it
exists or if the component is deactivated;

● Request Classifier: classifies the incoming requests
according to the classification policy. It first analyses
the HTTP request (without TOS_HTTP header)
according to the criteria specified in the policy (source
IP address, destination IP address, resource URL,
etc.), and then redirects it to the “Request Marker”;

● Request Marker: assigns a priority to each request
based on its membership class. It is based on the
marking policy and adds the TOS_HTTP header to the
HTTP request with the corresponding priority. For
instance, the TOS_HTTP can get as a value
PRIORITY_HIGH, PRIORITY_MEDIUM or
PRIORITY_LOW;

● CMC Forwarder: redirects the request containing the
TOS_HTTP header to the PEP component if the QoS
management is activated, otherwise to the OM2M
platform.

Fig. 4. Internal composition of the CMC.

2) Performance Enhancing Proxy

The Performance Enhancing Proxy (PEP) is responsible
for processing requests according to their priorities
(TOS_HTTP). This component can make either request
rejection, request delaying, request scheduling, or a
combination of these mechanisms depending on the policy
communicated by the AM. As illustrated in Fig. 5, the PEP
contains the following components:

● PEP Manager: applies the policy coming from the
AM. It includes the mechanism(s) to be triggered
(rejection, delaying or scheduling) as well as the
configuration to be applied (percentage of rejection,
delaying duration, scheduling policy to be applied and
weight of each priority, etc.);

● PEP Receiver: receives requests containing the
TOS_HTTP header and sends them to the “PEP
Controller”;

● PEP Controller: analyses the TOS_HTTP header of
the requests and sends them to one of the internal
components according to the management policy;

● PEP Rejecter: is responsible for rejecting requests
based on their priorities. Each priority corresponds to
a percentage of rejection;

● PEP Delayer: delays requests according to their
priorities. Each priority corresponds to a delaying
duration;

● PEP Scheduler: schedules the incoming requests
according to their priorities. This component offers
two scheduling policies: priority-first and weighted far
queuing;

● PEP Forwarder: redirects requests to the OM2M
platform for processing.

Fig. 5. Internal composition of the PEP.

The diagram presented by Fig. 6 describes the algorithm
implemented by the PEP. M1, M2, and M3 respectively
represent the rejecter, delayer and scheduler algorithms.

Fig. 6. PEP algorithm flow chart.

In addition to request-oriented mechanisms, here after we
propose resource-oriented mechanisms in order to manage the
resources of M2M platforms deployed in dynamic
environments such as cloud computing.

B. Resource-oriented Mechanisms

These mechanisms are inspired by those used in
virtualisation deployment environments such as cloud
computing. They target the adaptation of the underlying
computing resources available in order to improve
performances of the Middleware entities. This type of
mechanism is more suitable for the server entity that can be
run on a cloud platform.

1) Horizontal Scalability oriented Mechanisms

Horizontal scalability consists in adding new instances of
the server entity (or part of its components). “Federation” and
“Clustering” are two deployment approaches that allow
exploitation of the distribution properties of the OM2M
platform. Several mechanisms can be used in each approach.

The federation-oriented management that is proposed here
consists in the subdivision of the OM2M platform into several
components and the dynamic distribution of some of them
onto independent virtual machines (VMs). This action can
involve, for instance, the Database (DB) by deploying it in
another VM (Fig. 7) in order to allow the platform to manage
several concurrent accesses and thus reduce the consequent
losses.

Fig. 7. Distribution mechanism.

Clustering-oriented management mechanisms consist in
the creation of several instances of OM2M and the use of a
load balancer (Fig. 8) to distribute the HTTP requests. The
distribution policy can be guided by several techniques,
among them:

● Round Robin: fair distribution of the load among all
OM2M instances;

● Weighted Round Robin: distribution according to
weights attributed to each OM2M instance;

● Load-oriented: forwarding of the requests to the

OM2M instances depending on their load.

Fig. 8. Load balancing-based adaptation mechanism.

2) Vertical Scalability oriented Mechanisms

Vertical scalability allows adaptation (increasing or
decreasing) of the OM2M platform resources in order to
support the traffic load. Given that the implementation of the
platform is based on the JAVA programming language, three
adaptation levels are considered (Fig. 9):

● dynamic adaptation of the VM resources: the
adapter allows dynamic adjustment (addition or
deletion) of VM resources, based on the use of
physical resources (processors, memory, physical
disk, etc.);

● dynamic adaptation of JVM resources: by
dynamically taking into account the new resources
allocated to the VM;

● dynamic adaptation of OM2M resources: OM2M
has a number of internal resources (such as threads).
The adapter allows dynamic configuration of these
resources to improve the performance of OM2M. For
example: dynamic configuration of maxThreads to
process new requests according to the load.

Fig. 9. Multi-level resources adaptation.

In the next section, we give a scenario of application of a
request-oriented mechanism in order to demonstrate the
benefits in the case of a critical IoT application. Due to space
limits, we do not provide a similar scenario demonstrating the
benefits of a resource-oriented mechanism.

III. VALIDATION SCENARIO

This section shows the benefits of the previous
mechanisms for a critical application (i.e. having some QoS
requirements) through a proof-of-concept. Due to space limits,
we only focus on request-oriented mechanisms through the
implementation of a rejection policy. Validation is done
through performance measurements performed upon an
emulation platform allowing generating HTTP requests from
different sources towards a real M2M Middleware platform
(in our case, the open source OM2M platform).

A. Considered ELE and its applications

Let us consider an ELE consisting in a connected nursing
home in which the residents are submitted to different kinds of
monitoring according to their individual health situation.
These monitoring can range from the simple location of
patients or their daily diet to potentially very fine supervision,
for example during a convalescence period after medical
treatment or surgical procedure. Numerous sensors have to be

used in the context of multiple applications. In this scenario,
we consider three kinds of monitoring applications having
characteristics and QoS requirements exposed in Table I.

TABLE I. FEATURES AND QOS REQUIREMENTS OF THE CONSIDERED

MONITORING APPLICATIONS

Application Average

requests

rate

Acceptable

RTT
Acceptable

Loss rate

Postoperative monitoring 6 req/s < 350 ms 0%

Location monitoring 2 req/s ~10s 50%

Calories monitoring 2 req/s No constraint No constraint

Let now study how those features and requirements may
be taken into account thanks to the proposed QoS oriented
mechanism.

B. The validation platform

As shown in Fig. 10, the validation platform is composed
of the following entities:

● Traffic Emulator: allows generating http traffic from
different IoT sources in order to implement the
application scenario. This emulator is based on a
controller for injectors configuration. Each injector is
able to simulate the traffic of a given application
independently of the other injectors. The traffic can be
stochastic, periodic or burst;

● Request-oriented QoS Manager: consists in the
CMC and PEP components. The CMC relies on the IP
source address to assign priority and the PEP uses
the rejection mechanism;

● GSCL: OM2M platform following the SmartM2M
standard deployed on a Gateway.

Fig. 10. Validation platform based emulation.

The different components have the physical resources
described in Table II. The frequency of each processor is
1.6GHz.

TABLE II. PHYSICAL RESOURCES ALLOCATION

Resource Emulator CMC PEP GSCL

RAM (MB) 1024 1024 2048 512

CPU (core) 1 1 2 1

In this scenario, the collected metrics are: RTT (round trip
delay), CPU and RAM consumption.

C. Implementation of the rejection-oriented policy

In this scenario, we consider the monitoring applications
introduced in section A. The traffic generated by each
application is emulated by a traffic injector. The injectors send
HTTP traffic (POST requests) to the Gateway environing the
patients. We focus on the injector representing the
Postoperative monitoring (PostOp_Inj) for which the system
has to respect strong QoS constraints in presence of the other
monitoring application flows (Loc_Inj and Food_Inj).

Given those constraints, the CMC assigns a priority to
each request coming from a given injector, with respect to its
loss tolerance (CMC is guided by the injector ID). It assigns
priority HIGH to PostOp_Inj, MEDIUM to Loc_Inj and LOW
to Food_Inj. The PEP implements the actions described in
Table III depending on the priorities (medium and low
priorities (MED_PR & LOW_PR)) in order to meet RTT
required by PostOp_Inj. The RTT state is supposed to be
triggered when five successive RTT values satisfy the state
condition.

TABLE III. ADAPTATION ACTIONS BASED ON THE RTT STATE

RTT (ms) State MED_PR

Rejection
LOW_PR

Rejection

RTT < 300 Normal 0 0

300 ≤ RTT < 400 Warning 30 70

RTT ≥ 400 Critical 40 80

For adaptation actions, when the PostOp_Inj RTT
approaches the required RTT threshold, an alarm is set up in
order to anticipate the degradation of the response time.

D. Results and analysis

Fig. 11 represents the RTT evolution of PostOp_Inj
requests in presence of traffic from Loc_Inj and Food_Inj,
without QoS mechanisms. We note that the RTT threshold is
fast exceeded at the 36

th
 request (RTT = 536 ms) and evolves

quickly to reach huge RTT values (RTT > 6000 ms). We can
then conclude that by default, without QoS mechanisms
integration, the system is not able to guarantee a systematic
respect of QoS constraints for critical applications.

Fig. 11. RTT evolution without QoS management.

By integrating QoS management through CMC and PEP,
and applying the rules and actions described above, the RTT

of PostOp_Inj evolves as described by Fig. 12. In this
rejection scenario, the RTT of initial requests is less than the
“Warning” threshold. After saturation of the gateway, the RTT
increases to exceed a threshold of 400ms, which generates a
“Critical” state (41

th
 request). The generation of this symptom

leads to activate the critical policy allowing the PEP to reject
40% of the Loc_Inj (MEDIUM priority) traffic and 80% of the
Food_Inj (LOW priority) traffic. This action reduces the load
of the Gateway and allows again having a RTT in a normal
state (less than 300ms) from the 57

th
 request.

When this state lasts a certain time (after 12 events), it
leads to the generation of a state "Normal" which disables the
blocking of requests from other injectors. By applying this
policy, the system returns to the initial conditions at the
beginning of the scenario (197

th
 request).

Fig. 12. RTT evolution with rejection mechanism.

In terms of benefices, the average PostOp_Inj RTT for the
entire scenario is 222 ms and therefore remains under the
threshold (350 ms). Regarding the integration cost of this
management, the additional average processing time induced
by the CMC and PEP components is 7,992 ms. In terms of
resources consumption, the consumed CPU (Fig. 13) of the
two mechanisms remains low with an average consumption of
30%.

Fig. 13. CPU usage by the CMC and PEP.

In the same time, the RAM consumption (Fig. 14) of the
CMC and the PEP increases gradually until becoming
insufficient; this is due to the Garbage Collector default
configuration.

Based on this validation scenario, the integration of a
rejection mechanism provides response times that match the
requirements of the Postoperative monitoring application,
leading to the improvement of the patient health monitoring
and intervention in case of emergency. We can therefore
conclude that an IoT system “alone” may not be sufficient,
and that it is necessary to integrate a QoS management taking
into account constraints of the different applications, in order

to enhance the living environments of people (here the
patients).

Fig. 14. RAM usage by the CMC and PEP.

IV. CONCLUSIONS ET PERSPECTIVES

The IoT paradigm is expected to bring ubiquitous

intelligence through new applications in order to enhance

living and other environments. IoT applications present

different features and QoS requirements. Both Network and

Middleware underlying levels have to be considered to tackle

those QoS requirement. This paper focused on the Middleware

level for which QoS-oriented mechanisms are proposed,

specified and implemented. Those mechanisms are evaluated

through an emulation platform combining applicative traffic

emulation and real ETSI M2M compliant Middleware

platform. The obtained results allows showing both the need

in QoS management and the benefits that can be performed

within an instance of ELE thanks to the application of simple

QoS-oriented mechanisms.

Our vision is to propose an autonomic QoS-oriented

Middleware for the IoT. The current work presents a set of

QoS-oriented mechanisms that can be used by the autonomic

manager to manage the Middleware platform. The next step

will be to integrate the required intelligence to guide the

planning component of the Autonomic Manager and propose

the most efficient plan. This intelligence can be based on

artificial intelligence paradigm in order to choose the adequate

mechanism(s) to activate and compute their settings (policies)

depending on the characteristics (entity type, deployment

context) and the state of the managed entity.

REFERENCES

[1] ETSI TS 102.690 v1.1.1. “Machine-to-Machine communications
(M2M); Functional architecture”. October 2011.

[2] oneM2M, TS 0010 V1.5.1, “MQTT Protocol Binding”, February 2016.
[3] Y. Banouar, S. Reddad, C. Diop, C. Chassot and A. Zyane, "Monitoring

solution for autonomic Middleware-level qos management within iot
systems," 2015 IEEE/ACS 12th International Conference of Computer
Systems and Applications (AICCSA), Marrakech, 2015, pp. 1-8.

[4] M. E. Khanouche, Y. Amirat, A. Chibani, M. Kerkar and A. Yachir,
"Energy-centered and qos-aware services selection for internet of
things," in IEEE Transactions on Automation Science and Engineering,
vol. 13, no. 3, pp. 1256-1269, July 2016.

[5] L. Jia-Ming, et al., “An energy-efficient sleep scheduling with qos
consideration in 3gpp lte-advanced networks for internet of things,”
IEEE Journal, vol. 3, pp. 13-22, March 2013.

[6] S. Abdullah and K. Kun Yang, “A qos aware message scheduling
algorithm in internet of things environment,” IEEE Online Conference
on Green Communications, pp. 175-180, 2013.

[7] C. S. Shih, C. H. Li and J. J. Chou, "Distributed qos aware meta-routing
for iot/cps," 2016 IEEE 4th International Conference on Cyber-Physical
Systems, Networks, and Applications (CPSNA), Nagoya, Japan, 2016.

[8] S. Ezdiani, I. S. Acharyya, S. Sivakumar and A. Al-Anbuky, "An iot
environment for wsn adaptive qos," 2015 IEEE International Conference
on Data Science and Data Intensive Systems, Sydney, NSW, 2015.

[9] O. Kephart , D. M. Chess, “The vision of autonomic computing”,
Computer, v.36 n.1, p.41-50, January 2003.

[10] M. Ben Alaya, Y. Banouar, T. Monteil, C. Chassot, and K. Drira,
“OM2M: extensible ETSI-compliant M2M service platform with self-
configuration capability,” Procedia Computer Science, Vol. 32, 2014.

[11] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss, “An
architecture for differentiated services,” RFC 2475, IETF, Dec. 1998.

