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Abstract

We investigate to what extent correlating the Fourier components at slightly shifted frequencies

of the fluctuations of the electric field measured with a one-dimensional antenna array on board

of a satellite flying over a plane, allows one to measure the two-dimensional brilliance temperature

as function of position in the plane. We find that the achievable spatial resolution resulting from

just two antennas is of the order of hχ, with χ = c/(∆rω0), both in the direction of flight of the

satellite and in the direction perpendicular to it, where ∆r is the distance between the antennas,

ω0 the central frequency, h the height of the satellite over the plane, and c the speed of light.

Two antennas separated by a distance of about 100m on a satellite flying with a speed of a few

km/s at a height of the order of 1000km and a central frequency of order GHz allow therefore

the imaging of the brilliance temperature on the surface of Earth with a resolution of the order

of one km. For a single point source, the relative radiometric resolution is of order
√
χ, but for

a uniform temperature field in a half plane left or right of the satellite track it is only of order

1/χ3/2, indicating that two antennas do not suffice for a precise reconstruction of the temperature

field. Several ideas are discussed how the radiometric resolution could be enhanced. In particular,

having N antennas all separated by at least a distance of the order of the wave-length, allows

one to increase the signal-to-noise ratio by a factor of order N , but requires to average over N2

temperature profiles obtained from as many pairs of antennas.
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I. INTRODUCTION

Spatial aperture synthesis is a standard technique in radio-astronomy [1]. It allows one

to achieve the fine resolution of a large antenna by correlating time-delayed signals received

from the different antennas in an antenna array. In satellite-based remote sensing, spatial

aperture synthesis is a technique of choice when relatively long wave-lengths are imposed

by the applications, such as the measurement of sea surface salinity or surface soil moisture.

When operating in the protected L-band (1400-1427 MHz), a resolution of 10km would

require already a single antenna with a size of 32 meters. Spatial aperture synthesis for

passive microwave-sensing was therefore proposed to ESA [2], and implemented for the

first time in the SMOS mission in 2009 that still operates today [3, 4]. The satellite uses a

deployable Y-shaped antenna array and provides a spatial resolution between 27-60km.

With the application-driven need for higher spatial resolution down to the order of

1km, even spatial aperture synthesis leads to forbiddingly large antenna arrays, and there

is therefore an ongoing quest for finding alternative concepts (see e.g. [5] and references

therein). Compared to stationary antenna arrays on Earth used for astronomy, one may

wonder whether the motion of the satellite could be used for creating a two-dimensional (2D)

artificial antenna array out of a one-dimensional (1D) moving array, oriented perpendicular

to the motion of the satellite. It turns out that this is not possible when directly correlating

the observed microwave fields in the time-domain: the useful phase-shift gained due to the

motion of the satellite is, to first order in vs/c cancelled by the Doppler shift, where vs is

the speed of the satellite and c the speed of light [6].

In this paper, we examine another idea: instead of correlating the signals in the time

domain, we consider the correlations between their Fourier components at slightly different

frequencies. This may appear surprising at first, as, at the level of the sources, the standard

model assumption is that different frequencies are entirely decorrelated. Nevertheless, a

hypothetical monochromatic point source is seen by different antennas at slightly different

frequencies due to the slightly different Doppler effect, and hence it makes sense to correlate

different frequency components from different antennas with each other. The useful fre-

quency differences are tiny, down to below one Hertz, and correspondingly long acquisition
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times are needed. However, one may hope that this opens at least in principal a new way

of achieving a resolution of the order of a kilo-meter in passive microwave remote sensing in

the L-band by using the motion of the satellite for reducing a 2D antenna-array to a 1D array.

We derive the principles of this “Fourier-correlation imaging” (FouCoIm) technique in

detail, and calculate the achievable spatial and radiometric resolution. An emphasis is

put on pushing analytical calculations as far as possible, and testing the method at the

hand of simple situations, namely a single point source and a uniform temperature field.

Estimation of numerical values will be done with a standard set of parameters: h = 700 km,

vs = 7 km/s, ω0 = 2π × 1.4 GHz, T = 300 K, B = 20 MHz, and ∆r = 100 m. This leads to

the important dimensionless parameters βs = vs/c = 2.33 ·10−5, χ = c/(∆rω0) = 3.41 ·10−4,

and h̃ ≡ h/∆r = 7000.

II. MODEL

We assume that the fluctuating micro-wave fields measured at the position of the satellite

are created by fluctuating microscopic electrical currents at the surface of Earth that are

in local thermal equilibrium at absolute temperature T (x, y), where x, y are coordinates of

a point on the surface of Earth. The entire analysis will be in terms of classical electro-

dynamics. In [6] we derived the expression

E(r1 + vst, t) = −µ0

4π

∫
d3r′′

1

R(t)
∂t′j(r

′′, t′)
∣∣∣
t′=t−R(t)/c

, (1)

for the time dependent electric field arising from the current fluctuations at the position of

the satellite, with R(t) = |r1 +vst−r′′|, where r1 is the position of the antenna at time t = 0,

vs the speed of the satellite in the Earth-fixed reference frame, µ0 the magnetic permeability

of vacuum, and j(r′′, t) the current density as function of space and time. All expressions

are in the Earth-fixed reference frame, which is more convenient for the present study than

the satellite-fixed reference frame. It was shown in [6] that (1) is the correct far-field up to

relativistic corrections of the prefactor of order βs (due to the mixing of electric and magnetic

fields in a moving reference frame), and the neglect of terms of order β2
s in the phase. Eq.(1)

does contain in the phase the linear Doppler shift and relativistic effects (including time

dilation) up to order βs. The far-field approximation is justified for R(t) � λ, where λ (of
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order cm in the micro-wave regime) is the wave-length of the radiation (see Chapt.9 in [7]).

We substitute the Fourier-decomposition of the current density,

j(r′′, t) =
1√
2π

∫ ∞
−∞

dω′eiω
′tj̃(r′′, ω′) , (2)

into (1). The question whether one should differentiate R(t) with respect to t was answered

to the negative in [6], but it is irrelevant if we neglect changes of order βs to the prefactor.

We then find the time dependent field seen by the flying antenna,

Er1(t) ≡ E(r1 + vst, t) =
K1√
2π

∫
d3r′′

∫
dω′

iω′

|r1 + vst− r′′|
j̃(r′′, ω′)eiω

′(t−|r1+vst−r′′|/c) ,(3)

with K1 = −µ0/(4π). The Fourier transform of that signal is

Ẽr1(ω1) =
1√
2π

∫ ∞
−∞

dt1e
−iω1t1Er1(t1) (4)

=
K1

2π

∫ ∞
−∞

dt1

∫ ∞
−∞

dω′
∫
d3r′′

iω ′̃j(r′′, ω′)

|r1 + vst1 − r′′|
ei(ω

′−ω1)t1e−iω
′|r1+vst1−r′′|/c . (5)

We assume that the current sources can be described by a Gaussian process, where sources

at different positions or different frequencies, or with different polarizations are uncorrelated,

〈j̃i(r′′1, ω1)j̃∗j (r
′′
2, ω2)〉 = δij

l3c
τc
δ(r′′1 − r′′2)δ(ω1 − ω2)〈|j̃i(r′′2, ω2)|2〉 , (6)

where we have introduced for dimensional grounds a correlation length lc and a correlation

time τc, and the polarizations are indexed by i, j, taking values x, y, z. In principle the

average 〈. . .〉 is over an ensemble of realizations of the stochastic process, but we may

assume ergodicity of the fluctuations, such that they can also be obtained from a sufficiently

long temporal average. In practice this means that one should average over positions

considered as equivalent in terms of the ensemble, i.e. the time the satellite takes to fly over

a desired pixel size. For a satellite flying at a speed of order km/s and a pixel size of order

km, this means a maximal averaging time of the order of a second. This does not preclude

calculating Fourier transforms with finer spectral resolution from data acquired over much

longer times.

We will make the assumption that only the current intensities at the surface of

Earth contribute. In reality the emission seen by the satellite arises from a thin surface

layer on Earth that has a finite thickness d of the order of a few centimeters [4, 8],
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depending on the soil and its humidity, and the satellite also sees the cosmic microwave

background. We approximate the surface layer as a single plane located at z′′ = 0,

i.e. 〈|j̃i(r′′2, ω2)|2〉 = d〈|j̃i(x′′, y′′, ω2)|2〉δ(z′′) and neglect the cosmic microwave background

as its temperature is two orders of magnitude lower than that of Earth, as well as other

astronomical objects.

The current intensities are related to an effective temperature T (x, y) by

〈|j̃i(x, y, ω)|2〉 = K2T (x, y) , (7)

where K2 is a constant (see eq.(105)). Eq.(7) is valid for ~ω � kBT and hence very well

adapted to micro-wave emission at room temperature.

Eq.(6) together with (7) is a standard model of classical white noise currents, and

appears in many places in the literature, see e.g. eq.(4.16) in [9]. The equation is an

instance of the fluctuation-dissipation theorem that can be found in standard text-books on

statistical physics (see e.g. Part 1, Chap. XII and Part 2, Chap.VIII. in[10]). In the context

of thermal radiation it goes back at least to the original Russian version of [11] (from

1953); see also [12]. The model has also been used to study coherence effects in the thermal

radiation of near-fields (see eq.(3) in [13]). For completeness, we present the derivation of

(7) in the appendix, based on Planck’s law for the energy density of an e.m. field in thermal

equilibrium.

Compared to a black body, the emissivity of a real body is modified by a mode-dependent

emissivity factor Bi(x, y;ω, k̂), where k̂ is the direction of emission (from the patch on ground

to the satellite), and a factor cos θ(x, y, h) of geometrical origin that takes into account the

variation of the radiation with respect to the surface normal (i.e. the projection of the area

of a patch of the surface onto the plane perpendicular to the propagation direction). The

temperature T (x, y) is then really an effective temperature, Teff(x, y) = TB(x, y) cos θ(x, y, h),

where the brightness temperature TB(x, y) is defined as the absolute temperature a black-

body would need to have in order to produce the same intensity of radiation at the frequency

and in the direction considered (see Appendix X A 1). For simplifying notations, in the

following we keep writing T (x, y) for short instead of Teff(x, y), but keep in mind its physical

meaning, which, after all, is crucial for data-analysis and fitting vegetation and surface
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models to observational data [8]. We thus arrive at the current correlator

〈j̃i(r′′1, ω1)j̃∗j (r
′′
2, ω2)〉 = δijK3 δ(r

′′
1 − r′′2)δ(ω1 − ω2)T (x′′, y′′)δ(z′′) , (8)

which can be considered the statistical model underlying the imaging concept, and K3 =

l3cK2d/τc.

III. CORRELATION OF FOURIER COMPONENTS

For each antenna, the electric field component Ei,r1(t) is transduced into a voltage Ui,r1(t).

We denote the frequency response of the antennas and eventual subsequent filters by the

complex function A(ω), the Fourier transform of the time-dependent response function of

antenna and filter. In the frequency domain we have simply Ũi,r1(ω1) = A(ω1)Ẽi,r1(ω1).

With (8) we obtain the correlation function between the voltages at two different frequency

components ω1, ω2 measured at the positions of the antennas with original positions r1 and

r2,

CF
ij (r1, r2, ω1, ω2) ≡ 〈Ũi,r1(ω1)Ũ∗j,r2

(ω2)〉 = Cij(r1, r2, ω1, ω2)A(ω1)A∗(ω2) (9)

Cij(r1, r2, ω1, ω2) = 〈Ẽi,r1(ω1)Ẽ∗j,r2
(ω2)〉 (10)

= K5δij

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2

∫ ∞
−∞

dω′
∫
dx′′dy′′

ω′2T (x′′, y′′)

|r1 + vst1 − r′′||r2 + vst2 − r′′|

×eiω′(t1−t2)e−i(ω1t1−ω2t2)e−i
ω′
c

(|r1+vst1−r′′|−|r2+vst2−r′′|) , (11)

where now r′′ = (x′′, y′′, 0), and K5 = K3K
2
1/(4π

2). The correlation func-

tion CF
ij (r1, r2, ω1, ω2) is the filtered version of the original unfiltered correlations

Cij(r1, r2, ω1, ω2). We see from (9) that the latter can be obtained from the former simply

by dividing through the product of the known filter functions, as long as the latter are

non-zero. Of course, outside the frequency response of the antennas and filters, the

measured correlations CF
ij (r1, r2, ω1, ω2) vanish due to the vanishing of A(ω) and do not

carry any information anymore. This will ultimately limit the frequency range over which

information on the brightness temperature can be extracted, or, equivalently, leads to a

finite geometrical resolution even if a Cij(r1, r2, ω1, ω2) known for all frequencies would

lead to perfect resolution. However, this appears only when inverting the measured signals

and will be discussed in section V A. For the moment we assume that we have access to
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the unfiltered Cij(r1, r2, ω1, ω2) through (9) for all frequencies that we need, and base the

general development of the theory on Cij(r1, r2, ω1, ω2).

We change integration variables from t1, t2 to “center-of-mass” and relative times, t =

(t1 + t2)/2 and τ = (t2 − t1), and introduce as well a new integration variable for the

spatial integration, r′ ≡ r′′ − vst. This implies r1 + vst1 − r′′ = r1 − vsτ/2 − r′ and

r2 + vst2 − r′′ = r2 + vsτ/2 − r′. The Jacobian of both transformations is equal to 1.

Furthermore, from now on we take the satellite to move in x direction, vs = vsêx, where êx

is the unit vector in x direction. This leads to T (x′′, y′′) = T (x′ + vst, y
′).

The total phase Φ appearing as arguments of the exponential functions under the integrals

in (11) is

iΦ = i

[
τ

(
−ω′ + ω2 + ω1

2

)
+ t(ω2 − ω1)− ω′

c
(|r1 − vsτ/2− r′| − |r2 + vsτ/2− r′|)

]
.

(12)

We see that t only appears as prefactor of (ω2 − ω1) in the phase (12), and as argument

vst in T (x′ + vxt, y
′). The integral over t therefore boils down to a 1D Fourier transform

of the intensity of the current fluctuations in the direction of the speed of the satellite,

with conjugate variable proportional to the difference ω2 − ω1 of the frequencies of the

Fourier components that we correlate. This can be made more explicit by introducing a

position variable x = vst along the path of the satellite. For the conjugate variable we define

κx = (ω2 − ω1)/vs. We write κx and not kx in order to distinguish this “wavevector” from

the usual one obtained from a single frequency and dividing by c. We also introduce the

“center of mass frequency” ωc ≡ (ω1 + ω2)/2. It will be called “center frequency” in the

following for short, but should not be confused with the central frequency ω0 that is the

fixed frequency in the middle of the band in which the satellite operates (e.g. 2π×1.4 GHz

for SMOS). With all this, we see that∫
T (x′ + vst, y

′)ei(ω2−ω1)tdt =
1

vs

∫
Tr′(x)eiκxx dx =

√
2π

vs
T̃r′(κx) (13)

≡
√

2π

vs
T̃x′,y′(κx) . (14)

We have defined T (x′+vst, y
′) ≡ Tr′(x), where vst = x is understood, and the spatial Fourier

transform T̃r′(κx) of the temperature field T (x, y) in x-direction. This notation makes clear

that in these coordinates the temperature depends both on r′ and t, even though the motion
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of the satellite combines the two arguments in a single one, r′+vst. We can think of T̃r′(κx)

as the Fourier image of T (r′ + xêx) with respect to the x coordinate, calculated with a

starting point r′. I.e. for all r′, we have a 1D spatial Fourier transform of the intensity of

the current fluctuations where the Fourier integral is defined with origin in r′. The Fourier

images obtained by translation of r′ in x-direction are not independent. Rather we have

T̃x′,y′(κx) =
1√
2π

∫
dxTx′,y′(x)eiκxx =

1√
2π

∫
dxT0,y′(x+ x′)eiκxx (15)

=
1√
2π

∫
dx′′T0,y′(x

′′)eiκxx
′′
e−iκxx

′
= e−iκxx

′
T̃0,y′(κx) . (16)

We are thus led to

Cij(r1, r2, ω1, ω2) = K5δij

√
2π

vs

∫ ∞
−∞

dτ

∫ ∞
−∞

dω′ω
′2

∫
dx′ dy′

T̃0,y′(κx)e
−iκxx′

|r1 − vsτ/2− r′||r2 + vsτ/2− r′|
(17)

× exp

[
i

(
τ(−ω′ + ω2 + ω1

2
)− ω′

c
(|r1 − vsτ/2− r′| − |r2 + vsτ/2− r′|)

)]
.

We neglect the slow dependence of ω′2 compared to the rapid oscillations of the phase factors

in (17) and pull it out of the integral as a prefactor ω2
0. We can then perform the integral

over ω′, and find∫ ∞
−∞

exp [. . .] dω′ = 2πδ(τ +
1

c
(|r1 − vsτ/2− r′| − |r2 + vsτ/2− r′|)) eiτ

ω1+ω2
2 . (18)

We introduce center-of-mass and relative coordinates for r1 and r2, R = (r1 + r2)/2 and

∆r = r2−r1. We further restrict vsτ to values much smaller than |R−r′±∆r|. This implies

a limitation of the integration range for τ when calculating the Fourier components, but it

is a mild one. Since |R− r′ ±∆r| ≥ h, it is enough to have τ ≤ h/vs, which is typically of

order 100s, and therefore gives time to resolve Fourier components down to a hundredth of

a Hertz. We can then approximate to first order in vs,

|r1 − vsτ/2− r′| − |r2 + vsτ/2− r′| ' −êR−r′ · (∆r + vsτ) . (19)

Neglecting terms of order |∆r + vsτ |/|R− r′| and of order β = vs/c in the prefactor of the

exponential, as well as a second order term of order βωc∆r/c in the phase, the integral over

the Dirac δ-function gives

Cij(r1, r2, ω1, ω2) = K6δij

∫ ∞
−∞

dx′
∫ ∞
−∞

dy′
T̃0,y′(κx)e

−iκxx′

|R− r′|2

× exp

[
i
∆r · êR−r′

c
ωc

]
, (20)
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and K6 = (2π)3/2ω2
0K5/vs. The unit vector êR−r′ is obtained by taking the original center

of mass position of the antennas at R = (x0, 0, h), and r′ = (x′, y′, 0). Eq.(20) is one of

the central results of this paper. It shows that the two-frequency correlation function of

the fields at different antenna positions is related linearly via a 2D integral-transformation

to the brightness temperature field in the source plane, or more precisely to the Fourier

transform of that field in x-direction. With T (x, y) defined on a 2D grid, the reconstruction

of T (x, y) from the measured correlation function thus becomes a matrix inversion problem

that has to be performed numerically in general. A crucial question is the conditioning of

the inversion problem. It will be studied in more detail in a subsequent paper dedicated to

a numerical approach [14].

Here we give a simplified analytical treatment that allows us to obtain estimates of

the spatial and radiometric resolutions, and thus provide evidence that the inversion

problem is sufficiently well conditioned for the reconstruction of T (x, y) from the mea-

sured Ci,j(r1, r2, ω1, ω2). For this, we study the situation where the vector ∆r from

antenna 1 to antenna 2 is orientated in y′ direction, r2 = r1 + ∆rêy, in which case

∆r · êR−r′ = −∆ry′/
√

(x′ − x0)2 + y′2 + h2, and ∆r = |∆r| denotes the spatial separation

of the two antennas.

We switch to a dimensionless representation by taking as length scale the distance ∆r

between the two antennas. We will express all other lengths in this unit, and introduce the

dimensionless coordinates ξ, η by x′ = ξ∆r, y′ = η∆r, and h̃ ≡ h/∆r. The dimensionless

height h̃ is for the standard parameters h̃ = 7 · 103. Eq.(20) then reads

Cij(r1, r1+∆rêy, ω1, ω2) = K6δije
−iκxx0

∫ ∞
−∞

dη√
η2 + h̃2

K(κx∆r

√
η2 + h̃2,

∆rωc
c

η√
η2 + h̃2

)T̃ (κx, η) ,

(21)

where T̃ (κx, η) ≡ T̃0,η∆r(κx). The 1D integral kernel

K(α, β) =

∫ ∞
−∞

dξ
e
−i(αξ+ β√

ξ2+1
)

ξ2 + 1
, (22)

which is itself defined through an integral over ξ. For fixed h, ∆r, ωc, and κx, the integral

kernel K(α, β) is a function of η that relates the 1D Fourier transform T̃ (κx, η) to the

observed correlation function by integration over η. Suppose that the integration over η can

be inverted by finding the inverse integral kernel. Integrating the inverse kernel over with
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the correlation function measured as function of the center frequency ωc, we then obtain

T̃0,∆rη(κx) for all η and the chosen κx. If this can be done for all relevant κx, we obtain

for each point on the y axis the Fourier transform in x direction of the intensity of the

brightness temperature. Taking the inverse Fourier transform in x-direction, we obtain the

full x- and y-dependent brightness temperatures. To proceed, we first study the integral

kernel in the relevant parameter regimes.

IV. PROPERTIES OF THE INTEGRAL KERNEL

The arguments α, β of K are given by eq.(21) as

α = κx∆r

√
η2 + h̃2 (23)

β =
∆rωc
c

η√
η2 + h̃2

. (24)

By their definition, we only need α, β ∈ R. For α we can consider that in the end the

maximum κx should be of the order of the inverse resolution ∆xmin required in x direction.

Taking ∆xmin of the order of one km, and using the standard parameters, we get |α|max ≥

|κxh| ' 700. With η varying from −∞ . . .∞ (in reality, the extension of Earth limits the

integration range to a maximum value of the order 107 − 108), β reaches its maximal value

∆rωc/c for η → ∞. For standard parameters, ωc = 2π×1.4 GHz, |β| . 30. Both α and β

can be positive or negative, such that there is also a regime, where |β| � |α|, and we will

find that this is the most important one. Note that from (22) we immediately obtain the

relations

K(α, β) = K(−α, β) = K(α,−β)∗ . (25)

We therefore restrict the following discussion to α, β ≥ 0.

Unfortunately, the integral over ξ in (22) cannot be done analytically. However, we can

find approximations for different cases. Consider first β = 0. Using the methods of residues,

one easily finds

K(α, 0) = πe−α . (26)
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More generally, one can obtain a useful expansion for small β by expanding

exp(−iβ/
√
ξ2 + 1) into a power series, and then integrating term by term. We find

K(α, β) =
∞∑
n=0

1

n!

∫ ∞
−∞

(−iβ)n
e−iαξ

(ξ2 + 1)1+n
2

dξ (27)

=
√

2πα
∞∑
n=0

(
−iβ

√
α/2

)n
n!Γ(1 + n/2)

K(n+1)/2(α) , (28)

where Kn(x) is the modified Bessel function of the second kind of order n. The zeroth

order result (26) is recovered by observing that K1/2(x) =
√

π
2x
e−x. For small β the series

converges rapidly, and one can even improve the agreement with the numerically calculated

kernel by re-exponentiating the first few terms. For example, up to second order we have a

polynomial p0 + p1β + p2β
2 which we wish to write as p0 exp(a1β + a2β

2). Expanding the

exponential in powers of β and comparing powers up to order β2, one finds a1 = p1/p0 and

a2 = p2/p0 − (p1/p0)2/2. When plotted together with the exact result, the thus obtained

approximation agrees with K(α, β) for α = 2 visibly well up to β ' 4, i.e. well beyond the

regime β � 1. For the fourth order re-exponentiated form the agreement extends up to

about β ' 5. However, the exponential decay (26) already of the zeroth order term with α

indicates that for the values of α ' 102 to 103 the contribution to the η integral for values

such that β is of order of or smaller than one, can be entirely neglected.

In the opposite regime of large β, an approximation based on a stationary phase ap-

proximation can be found. More precisely, one needs β � α. In that case one can treat

e−iαξ/(ξ2 +1) as a slowly varying factor compared to the rapidly oscillating e−iβ/
√
ξ2+1. The

point of stationary phase of the latter term is found at ξ = 0 (where the function has a

maximum). The second derivative of the phase at ξ = 0 equals 1. With this we get

K(α, β) '
√

2π

β
eiπ/4e−iβ , (29)

valid for β/α� 1. Interestingly, the integral kernel becomes independent of α in this regime,

which is of course a consequence of the fact that the stationary phase point is at ξ = 0,

thus eliminating the factor α in the phase of the prefactor. We furthermore see that in this

regime there is no exponential suppression of the kernel.

For α = 0, the kernel can be evaluated exactly,

K(0, β) =

∫ ∞
−∞

dξ
e
−i β√

ξ2+1

ξ2 + 1
= π(J0(β)− iH0(β)) , (30)

11
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FIG. 1: (left) α and β as function of η. Standard parameters are used (see sec.I), and two different

values for κx: κx = 10−5/m (blue curve for α) and κx = 10−3/m (red curve for α); β (green

dashed curve) is independent of κx. (right) Real (red) and imaginary parts (blue) of the roots of

the stationary phase equation in the regime α ∼ β as function of β/α.

where J0 is the zeroth Bessel function, and H0 the zeroth Struve function. Their asymptotic

behavior gives back (29).

In Fig.1 we plot α, β as function of η. We see that a regime α < β exists for κ < κMax,

which defines κMax (see after eq.(32) for its precise value). For κ � κMax, α � β. The

regime α ∼ β � 1 is also possible, but it is restricted to a tiny η interval, such that its

contribution to the integral over η is negligible. For α ∼ β � 1, the stationary phase points

of ξ + (β/α)/
√
ξ2 + 1 become relevant. Fig.1 shows the Im- and Re-parts of the six roots

of the corresponding stationary phase equation. We see that only for (β/α) & 2.5 real sta-

tionary phase points exist. Since on the other hand α ∼ β � 1 occurs for sufficiently large

κ for almost all η only for β < α (see Fig.1), the kernel is exponentially small in this regime

α ∼ β � 1. Altogether, the only relevant regime is thus β � α� 1.

While the asymptotic form of the integral kernel suggests the use of the orthogonality

relations of Bessel functions, inverting (20) is nevertheless non-trivial due to the more com-

plicated dependence of α and β on η. However, the above asymptotic form allows one to

obtain an approximate analytical inversion of the kernel that allows for an estimation of the

resulting resolution, as we will show now.
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V. ESTIMATION OF GEOMETRICAL RESOLUTION

A. Approximate analytical inversion of the integral kernel

At first sight, the requirement β � α appears unnatural given that α can already of the

order 102 to 103. And indeed, this leads to a first rather stringent condition which must

be met in order for the correlation function C to be non-zero. In terms of the original

parameters, β/α = ωcη/(cκx(η
2 + h̃2)). For this to be much larger than one, one needs

η

η2 + h̃2
� cκx

ωc
=

c

vs

∆ω

ωc
, (31)

or ∆ω/ωc � (vs/(2ch̃)), where we have used already the maximum value 1/(2h̃) of the

function of η on the left hand side (lhs) in (31). For the standard parameters, we find

∆ω/ωc � 1.66 · 10−9. When operating at ωc in the GHz regime, this means that the

correlation function essentially vanishes for ∆ω larger than a few Hertz and thus bears no

more information for the measurement of the position dependent brightness temperature.

Another way of seeing this is to observe that (31) limits the integration range for η: The

lhs of (31) is a function that starts of at 0 for η = 0, increases linearly, reaches a maximum

of 1/2h̃ at η = h̃, and decays as 1/η for large η. Condition (31) then limits the integration

range of η to an interval η1 ≤ η ≤ η2 with

η1,2 =
1±

√
1− 4δ2h̃2

2δ
≡ η1,2(κ), (32)

where δ ≡ c∆ω/(vsωc) = cκx/ωc = cκ/(ωc∆r) = χκ, κ ≡ κx∆r, and χ = c/(ωc∆r) � 1

(see introduction and Fig.2). A finite real integration range exists only for δ < 1/(2h̃),

equivalent to κ < ωc∆r
2ch̃
≡ κMax. For given η, we have κ ≤ κmax(η) ≡ ωc∆r

c
η

η2+h̃2 ≤ κMax.

A finite minimal value of κ can be deduced from a maximum desired snapshot size in

x−direction. Also the requirement τ < h/vs may bound the relevant values of κ from

below, as it leads to a smallest resolvable frequency, and thus also smallest resolvable ∆ω:

∆ω > 2π/τ ⇒ κ = ∆r∆ω/vs > ∆r 2π
τvs
≡ κmin.

As the contributions from areas outside the allowed range η1 ≤ η ≤ η2 (or, correspond-

ingly for negative η, −η2 ≤ η ≤ −η1) are exponentially suppressed, we can limit the in-

tegration range of η to that interval for a given κx, and replace the integral kernel by its

13
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FIG. 2: Effectively contributing integration region as function of κ = κx∆r: (a) in terms of η

and (b) in terms of ζ. Only the area in the xy-plane between the two curves, η1 ≤ η ≤ η2 and

correspondingly for ζ, contributes effectively to the correlation function for a given value of κ.

The two curves join at κMax ' 0.21 (numerical value for standard parameters, see sec.I). Only the

region with κ, η ≥ 0 is shown; three more regions contribute in the other three quadrants, and the

boundaries are obtained by reflecting the graph at the η-axes and κ-axes. The integration region

translates directly into the area “seen” by the satellite in y-direction for a given wave vector κ

in x-direction. For κ → 0, the integration region is in reality cut-off by the size of Earth, and

the smallest value of κ is determined by the desired size of the snapshot or the maximum time

τ < h/vs.

approximate form, eq.(29), extended to β < 0 by (25), yielding

K(α, β) '

√
2π

|β|
esign(β)iπ

4 e−iβ (33)

in the allowed range, and zero elsewhere. After the substitution ζ = η/

√
η2 + h̃2, the result

for Cii can be written as

Cii(r1, r1 + ∆rêy, κ, k̃c) '
√

2π
K6e

−iκx̃0√
|k̃c|

∫ ∞
−∞

dζF (κ, ζ, k̃c)e
−ik̃cζ (34)

F (κ, ζ, k̃c) =
(
eisign(k̃c)π/4w(ζ1(κ), ζ2(κ), ζ) + e−isign(k̃c)π/4w(−ζ2(κ),−ζ1(κ), ζ)

)
×T̃

(
κ,

ζh̃√
1− ζ2

)
1√

|ζ|(1− ζ2)
, (35)

where T̃ (κ, η) ≡ T̃0,η∆r(κx) (with κ = κx∆r, x̃0 = x0/∆r), and w(ζ1, ζ2, ζ) is a window

function equal to one for ζ1 ≤ ζ ≤ ζ2 and zero elsewhere. The window functions translate

in a straight forward fashion the integration range for η into an integration range for ζ. By
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definition, ζ ranges from −1, . . . , 1. So ζ1, ζ2, lie within this interval, −1 ≤ ζ1, ζ2 ≤ 1, and

the window functions take care of restricting the argument ζ of the integrand to the intervals

±[ζ1, ζ2]. We have replaced ω1, ω2 by the equivalent information κ ≡ κx∆r (related to ∆ω)

and k̃c = ∆rωc/c (related to ωc), and consider i = j only. Given eq.(34) it is tempting to try

to recover F (κ, ζ, k̃c) by Fourier transform. However, the sign(k̃c) functions that appear in

F (κ, ζ, k̃c) prevent (34) from being a simple Fourier integral. Moreover, from the measured

data we only have CF
ij , the filtered version of Cij, that is restricted to a frequency range

ω1, ω2 ∈ ±[ω0−πB, ω0 +πB], where B is the bandwidth (20MHz in SMOS for the L-band).

We assume here for simplicity a Gaussian filter and the same for both antennas. For a real

filter response function A(t), its Fourier transform must satisfy A(ω) = A∗(−ω). Taking

also A(ω) as real, we can write it as

A(ω) = (G(ω;−ω0, b) +G(ω;ω0, b))
√
bπ1/4 , (36)

where G(ω;ω0, b) = exp(−(ω − ω0)2/(2b2))/(
√

2πb) is a normalized Gaussian centered at

ω0 with standard deviation b ≡ 2πB. The factor
√
bπ1/4 assures that for ω0 � b, A(ω) is

normalized according to
∫∞
−∞ |A(ω)|2 dω = 1. Under the same condition we have

CF
ii (r1, r2, κ, k̃c) = Cii(r1, r2, κ, k̃c)A(ω1)A∗(ω2) (37)

A(ω1)A∗(ω2) =
1

2

(
G(k̃c; k̃c0,

b̃√
2

) +G(k̃c;−k̃c0,
b̃√
2

)

)
, (38)

where k̃c0 = ∆rω0/c = 1/χ ' 2932.55, and b̃ = ∆rb/c ' 41.89. This contains the approxi-

mation of using only the “diagonal” terms in the product of A(ω1)A∗(ω2), i.e. the ones with

sign(ω1) = sign(ω2), which is justified by the fact that ∆ω � b� ω0. Fourier transforming

CF
ii with respect to k̃c (denoted by Fk̃c→ζ) gives a convolution product between the FT of

the Gaussians (which is (
√

2/b̃)G(ζ; 0,
√

2/b̃)e±ik̃c0ζ) and F (κ, ζ, k̃c), and leads to

Fk̃c→ζ

CF
ii (r1, r1 + ∆rêy, κ, k̃c)

√
|k̃c|
2π

eiκxx0

K6

 =

√
2

b̃

∑
σ=±

(
G(ζ; 0,

√
2

b̃
) cos(k̃c0ζ + σ

π

4
)

)
(39)

?

[
w(ζ1(κ), ζ2(κ), σζ)T̃ (κ,

ζh̃√
1− ζ2

)
1√

|ζ|(1− ζ2)

]
,

where we used that the sign of k̃c0 in (37) determines the one of k̃c in (35). Thus, we get back

the original function T̃ (κ, ζh̃√
1−ζ2

) = T̃ (κ, η), cut by the two window functions and multiplied
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with 1/(
√
ζ(1−ζ2)), convoluted with the product of a Gaussian of width

√
2/b̃ and a rapidly

oscillating cosine function. The factor 1/(
√
ζ(1 − ζ2)) can be tracked back to the change

of variables from η to ζ and will distort the image at the nadir and at infinity. Sources at

positive or negative η contribute differently due to the different sign of the π/4 phase shift.

This arises already in (33) due to the different phase shift in the asymptotics of the Struve

functions for negative or positive arguments and leads to the sum over σ = ±. In general, an

exact inversion can not be simply done by Fourier transform but needs a numerical approach.

Nevertheless, we can arrive at an estimation of the resolution by considering a single point

source, as then only one of the two terms in the sum over σ in (39) contributes, and the

factor 1/(
√
ζ(1− ζ2)) becomes a simple numerical factor given by the position of the source.

B. Single point source and geometric resolution

1. Correlation function and reconstructed image

Let the point source be at position x′′ = 0, y′′ = ηs∆r and with polarization i, where ηs

is situated in the allowed range 0 ≤ η1(κ) ≤ ηs ≤ η2(κ) for some κ in the desired range up

to the largest considered κ = 2π/px, where px is the pixel size. We thus have

T (r′′) = T0δ(x
′′)δ(y′′ − ηs∆r)∆r2 , (40)

which together with eq.(16) yields

T̃ (κ, η) =
T0∆r√

2π
δ(η − ηs). (41)

As η is in the allowed range, we can use the approximate analytical form of the integral

kernel, eq.(33), to get from eq.(34) the correlation function

Cii(r1, r1 + ∆rêy, κ, k̃c) = K6T0∆r
e−iκx̃0eisign(k̃c)π/4√
|k̃c|ηs(η2

s + h̃2)1/4

e
−ik̃c ηs√

η2
s+h̃2

θ(κmax(ηs)− |κ|) ,(42)

where θ(x) is the Heaviside theta-function. Considering (39), we may define an approxima-

tive reconstructed source function suitable for sources at ηs > 0 through

T̃rec(κ, η) ≡ NFk̃c→ζ

CF
ii (r1, r1 + ∆rêy, κ, k̃c)

√
|k̃c|
2π

eiκxx0

K6

 , (43)
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where N is a normalization constant. Due to the κ−dependence of the window functions,

and the ζ dependence of the integral transform as compared to a simple Fourier-transform

of T̃ , one cannot get a normalization constant independent of the source field. In particular,

for the single point source, N would depend on the position of the point source. However,

we use Trec only for estimating the geometric and radiometric resolution. For the former,

all prefactors are irrelevant. For the latter, we avoid the problem by calculating relative

uncertainties of σ(Trec)/Trec only, where any prefactor cancels. We hence set N = 1 in the

following.

Inverting the Fourier transform in κ leads to

Trec(x, y) =
1

2πK6∆r

∫ ∞
−∞

dκ

∫ ∞
−∞

dk̃ce
−iκ(x̃−x̃0)eik̃cζCF

ii (r1, r1 + ∆rêy, κ, k̃c)

√
|k̃c|
2π

. (44)

This equation is valid for all sources located in the positive y plane, not necessarily point

sources. When we re-express the correlation function through (34) and perform the Gaussian

integral over k̃c, we find a direct approximate formal relation between the FT of the original

T (x, y) in the upper half plane, and its reconstructed image Trec(x, y),

Trec(x, y) =
1

2π∆r

∫ ∞
−∞

dκ

∫ ∞
−∞

dζ ′
T̃ (κ, ζ′h̃√

1−ζ′2
)√

|ζ ′|(1− ζ ′2)
e−iκx̃e−b̃

2(ζ−ζ′)2/4

×
(
w(ζ1(κ), ζ2(κ), ζ ′) cos(kc0(ζ − ζ ′) +

π

4
) + w(ζ1(κ), ζ2(κ),−ζ ′) cos(kc0(ζ − ζ ′)− π

4
)
)
.

(45)

Using this expression, or by inserting (42) into (37), and the resulting filtered correlation

function into (44), we find the reconstructed image of the single point source

Trec(x, y) =
T0

√
ζs(1− ζ2

s )√
2π3/2χh̃2

e−(ζ−ζs)2b̃2/4 cos(k̃c0(ζ − ζs) +
π

4
)sinc(κmax(ζs)x̃/π) , (46)

where ζs = ηs/
√
η2
s + h̃2, κmax(ζs) ≡ ζs

√
1− ζ2

s/(χh̃), and sinc(x) ≡ sin(πx)/(πx).

2. Geometric resolution

We see that the reconstructed image of the point source is a series of narrow peaks spaced

by the inverse of k̃c0 due to the rapidly oscillating cos-function, under an approximate
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Gaussian in y-direction centered at the position of the source with a width in η given

by ∆η =
√

2
√
η2
s + h̃2/b̃ ≥

√
2h̃/b̃ = hc/((∆r)2

√
2πB). It reminds one of a diffraction

image from a double slit, even though there the envelope is a sinc-function, not a Gaussian.

Nevertheless, we adapt the definition of resolution from that example, namely that the best

resolution is obtained from the smallest shift that makes a peak move into the next trough.

This leads to

k̃c0
∂

∂η

η√
η2 + h̃2

|η=ηs ∆η ' π , (47)

hence ∆y = ∆rπ(η2
s + h̃2)3/2/(k̃c0h̃

2). For y ' h, this is of the order 2
√

2πhc/(∆rωc) = χh.

The numerical value for the standard parameters gives ∆y ' 2.1 km, i.e. a resolution of the

order of a kilo-meter. However, for actually achieving this resolution for an extended source,

one has to face two issues: i.) The reconstructed point-source image should be brought as

close as possible to a single narrow peak; and ii.) one has to deal with the different phases

from sources at positive or negative η. The first issue can be addressed by superposing

correlation functions from pairs of antennas at different separation, and/or changing the

considered central frequency. This shifts the pattern of peaks due to the cos-function, and

one can engineer a rather narrow central peak (see [14] for details). The second issue should

be absent in a numerically exact inversion of the integral kernel. The Gaussian envelope

has a width hc/(
√

2πB∆r) given by the inverse bandwidth, which is much larger than the

width of a single peak, namely by a factor ωc/(4πB) ' 35 for the standard parameters.

The resolution in x-direction follows from the effective wave vector κmax in the sinc

function. It depends on the position of the source and reaches its maximum possible value

κMax for ηs = h̃ (i.e. ys = h). The inverse of κMax thus gives the best possible resolution in

x-direction:

∆x ≥ ∆r

κMax

=
2hc

ωc∆r
. (48)

We conclude that both in x- and y-direction one can expect a geometric resolution of the

order hχ = c/(∆rωc) for sources close to y = h. For sources close to y = 0, κ(ηs) goes to

zero ∝ ηs, whereas for larger ys the decay of κ(ηs) is ∝ 1/ηs. The geometric resolution in

x-direction deteriorates correspondingly. The resolution in y-direction, on the other hand,

depends only weakly on the source-position, as (η2
s + h̃2)3/2/(k̃ch̃

2) increases monotonically

from h̃ at ys = 0 to 2
√

2 at ys = h, and keeps growing slowly beyond ys = h. It is remarkable
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that correlating electric fields at two different frequencies can lead to a resolution that is

given by the central frequency.

The definition of κmax is based on the request that the stationary phase approximation

(SPA) holds in the regime β � α. In practice, the SPA is almost always better than

expected, such that in the end the result hχmight be a conservative estimate of the geometric

resolution.

VI. RADIOMETRIC RESOLUTION

Besides the geometric resolution, the radiometric resolution (RR), i.e. the smallest dif-

ference in temperature that the system can measure for a given pixel, is the most important

characteristics of the satellite imaging system. Here we calculate the RR for the idealized

situations of a single point source considered above and for a uniform temperature field in

the positive half-plane y > 0.

A. Fluctuations of the reconstructed temperature profiles

The idea behind the calculation of RR is that the electric field measurements yield ran-

dom values, whose fluctuations and correlations reflect the thermal nature of the radiation

field. Thus, if with the same field T (x, y) one repeated the measurements many times,

one would obtain different correlation functions in each run, and thus, after inverting the

linear relationship between Cij and T (x, y), also different reconstructed T (x, y) (called Trec

in the following) in each run. The (relative) RR is then defined as the standard deviation

σ(Trec(x, y)) divided by the average Trec(x, y) for a given position x, y. In general it will

vary as function of x, y, and also depend on the temperatures at all positions, a behavior

well known from standard spatial aperture synthesis. In reality, things become still a bit

more complicated, as the measured signal is a superposition of the e.m. field emitted by the

antenna itself (at temperature Ta), and the radiated field from the surface of Earth. How-

ever, these fields are uncorrelated, and their averaged squares just add up. For simplicity,

we will neglect the noise contribution of the antennas in this first analysis, which amounts

to calculating lower bounds of σ(Trec).
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Starting point of the calculation is the assumption that the current fluctuations j(r′′, t)

which are at the origin of the radiated thermal field are described by a random Gaussian

process, both in time and space (see sec. II). This implies immediately, that also the

temporal FT j̃(r′′, ω′) of the current fluctuations is a Gaussian process, now over space and

frequency. Finally, the connection between j̃(r′′, ω′) and Ẽr1(ω1) is linear, which implies

that Ẽr1(ω1) is a Gaussian process over r1 and ω1. By the nature of this variable, it is a

complex Gaussian process. One easily shows that the average of Ẽr1(ω1) equals zero (if

the average of all current components is, which must be true at thermal equilibrium). The

correlation function Cij is the (complex) covariance matrix of this Gaussian process, and

all higher correlations can be expressed in terms of it.

In order to assess the fluctuations of Trec we first define a product of Fourier coefficients

of E from a single run (denoted by aˆ),

Ĉ(r1, r2, κ, k̃c) ≡ Ĉzz(r1, r2, ω1, ω2) ≡ ˆ̃Ez,r1(ω1) ˆ̃E∗z,r2
(ω2) (49)

=
1

2π

∫
dt1

∫
dt2Êz,r1(t1)Êz,r2(t2)e−iω1t1+iω2t2 , (50)

and its corresponding filtered version ĈF (r1, r2, κ, k̃c) = Ĉ(r1, r2, κ, k̃c)A(ω1)A∗(ω2) (with

ω1, ω2 expressed in terms of κ, k̃c).

The fluctuations of Trec(x, y) are defined as ∆Trec(x, y) ≡ 〈Trec(x, y)2〉 − 〈Trec(x, y)〉2,

where the average is over the thermal ensemble. With Trec(x, y) from (44), one finds

∆Trec(x, y) =
1

K2
6(2π)3∆r2

∫
dκ1 dκ2 dk̃c1 dk̃c2

√
|k̃c1k̃c2|e−i(κ1−κ2)(x̃−x̃0)ei(k̃c1−k̃c2)ζ

×
(
〈ĈF (r1, r2, κ1, k̃c1)ĈF∗(r1, r2, κ2, k̃c2)〉

−〈ĈF (r1, r2, κ1, k̃c1)〉〈ĈF∗(r1, r2, κ2, k̃c2)〉
)
. (51)

It can be shown (see Sec.X A 2) that in the narrow frequency intervals considered here the

Gaussian random processes given by the Ẽz,ri(ω) is circularly symmetric. It hence enjoys

the property (see eq. 8.250 in [15]),

〈EiEjE∗kE∗l 〉 = 〈EiE∗k〉〈EjE∗l 〉+ 〈EiE∗l 〉〈EjE∗k〉 , (52)

where we have abbreviated Ei ≡ Ẽz,r(imod 2)
(ωi). The correlation function contained in the

large parentheses of the second line of (51) becomes

CF
zz(r1, r1, κ13, k̃c13)CF∗

zz (r2, r2, κ24, k̃c24) , (53)
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with κij = ∆r(ωj − ωi)/vs, k̃cij = ∆r(ωi + ωj)/(2c) ∀i, j, and where we have used

〈ĈF (r1, r2, κ, k̃c)〉 = CF (r1, r2, κ, k̃c).

The fact that CF
zz and CF∗

zz in (53) contain the same position arguments twice makes

that we cannot evaluate it directly through eq.(21), as the coordinate transformation to

dimensionless variables based on the rescaling with ∆r becomes singular. We therefore have

to go back a step to eq.(20) which yields

Czz(r1, r1, κ, k̃) = K6e
−iκxx0

∫ ∞
−∞

∫ ∞
−∞

dx′ dy′
T̃0,y′(κx)e

−iκ′xx′

x′2 + y′2 + h2
(54)

= K6e
−iκxx0π

∫
dy′

T̃0,y′(κx)e
−|κx|
√
y′2+h2√

y′2 + h2
. (55)

Comparing with (21) we see that this result corresponds formally to ωc = 0 in that equation,

rather than ∆r = 0, and (55) is recovered by using the exact result (26). We can now re-

introduce dimensionless variables via the same rescaling with ∆r, where, however, ∆r is

still given by ∆r = |r2 − r1|, and ri denote as before the positions of the two antennae

at t = 0, only one of which still enters as argument in Czz(r1, r1, κ13, k̃13), respectively

CF∗
zz (r2, r2, κ24, k̃c24). This gives

Czz(r1, r1, κ, k̃) = K6e
−iκx̃0π

∫
dη′

T̃0,η′(κ)e−|κ|
√
η′2+h̃2√

η′2 + h̃2

. (56)

We calculate ∆Trec for the single point source considered in Sec. V B at the position of the

source, i.e. ∆Trec(xs, ys) = 〈Trec(xs, ys)
2〉 − 〈Trec(xs, ys)〉2, and for a uniform temperature

field.

B. Single point source

For the single point source at position (0, ys), the correlation function Czz(r1, r1, κ, k̃)

becomes (see (41))

Czz(r1, r1, κ, k̃) = K6

√
π

2
T0e

−iκx̃0
e−|κ|
√
η2
s+h̃2√

η2
s + h̃2

. (57)
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Insert this into eq.(51) to find

∆Trec(0, ys) =
T 2

0

16π2

∫
dκ12dκ34dk̃c12dk̃34

√∣∣∣k̃c12k̃c34

∣∣∣e−(|κ13|+|κ24|)
√
η2
s+h̃2

η2
s + h̃2

×

(
G(k̃c13; k̃c0,

b̃√
2

) +G(k̃c13;−k̃c0,
b̃√
2

)

)(
G(k̃c24; k̃c0,

b̃√
2

) +G(k̃c24;−k̃c0,
b̃√
2

)

)
×ei(κ12−κ34−κ13+κ24)x̃0+i(k̃c12−k̃c34)ζs . (58)

We change integration variables to κ13, k̃c13, κ24, k̃c24. The Jacobian is 1. In the product of

the Gaussians only the diagonal terms (i.e. with the same signs in front of k̃c0) contribute in

the relevant regime k̃c0 � b̃, as for opposite signs k̃c12 ' k̃c34 ' 0. Finally, we approximate

k̃c12 = k̃c34 ' k̃c0 (59)

and pull that factor out from the integral which is permissible for all ranges of variables for

which the product of Gaussians is non-negligible. The integrals can then be performed, and

we find for the standard deviation σ(Trec(0, ys)) ≡
√

∆(Trec(0, ys))

σ(Trec(0, ys)) =
T0√
2π

|k̃c0|1/2

η2
s + h̃2 + β2ζ2

s

4

' T0√
2π

|k̃c0|1/2

η2
s + h̃2

, (60)

where in the last step we have used that h̃� 1 and βζs � 1 (where once more β = vs/c).

From (46) we find

Trec(0, ys) =
T0
√
ηs

2π3/2χ(η2
s + h̃2)5/4

. (61)

Combined with (60) we obtain the relative RR

σ(Trec(0, ys))

Trec(0, ys)
=

√
2πχ

ηS
(η2
s + h̃2)1/4 . (62)

For ηs = h̃, the relative RR is of order 0.055, corresponding at T = 300 K to σ(Trec(0, h)) '

16.5 K.

C. Uniform temperature field

We now look at the second standard situation considered commonly for the determination

of the radiometric resolution, namely a field of constant temperature. More precisely, we

consider

T (x, y) =

 T0 0 ≤ y ≤ ŷ

0 else
. (63)
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The restriction to sources in the upper plane is due to the fact that we still want to use

eq. (44) for calculating the reconstructed temperature profile. The cut-off ŷ arises physically

from the size of the Earth and prevents a divergence of the correlation function.

From (13) we obtain

T̃ (κx, η) =


√

2πδ(κx)T0 0 ≤ y ≤ ŷ

0 else
. (64)

The correlation function (56) becomes

Cii(r1, r1, κ, k̃c) = K6

√
2π3/2T0e

−iκx̃0δ(κ)∆r

∫ η̂

0

dη√
η2 + h̃2

(65)

= K6

√
2π3/2T0e

−iκx̃0δ(κ)∆r ln

 η̂ +

√
η̂2 + h̃2

h̃

 . (66)

with η̂ ≡ ŷ/∆r. For ŷ = RE ' 6370 km the radius of Earth, and ∆r = 100 m, η̂ = 63700.

We see that here the correlation function is perfectly diagonal in frequency, which of course

reflects the lack of structure of the temperature field in x-direction. Hence, we can set

everywhere κ = 0, which greatly simplifies the analysis. The cutoff η̂ in eq.(65) prevents

a logarithmic divergence that arises from 1/

√
η2 + h̃2 ∼ 1/η for η → ∞. Eq.(65) can

be extended to a temperature field that is uniform everywhere from −ŷ to ŷ. In this

case, the ζ-integral starts at −1 + ε rather than at 0. However, in this situation we can-

not use (44) anymore as it is valid only for sources at positive y (see the discussion after (39)).

Eq.(65), when inserted into (51), and with the same change of integration variables and

approximation (59), leads to

σ(Trec(0, y)) =
T0√

2

√
|k̃c0| ln

 η̂ +

√
η̂2 + h̃2

h̃

 . (67)

The reconstructed temperature field (45) is given by

Trec(x, y) =
T0√
2π

∫ ζ̂

0

dζ ′
e−b̃

2(ζ−ζ′)2/4√
|ζ ′|(1− ζ ′2)

cos(k̃c0(ζ − ζ ′) +
π

4
) . (68)

Unfortunately, no closed analytical form could be found for the remaining integral, and even

a numerical evaluation is not straight forward, as the Gaussian yields a very narrow peak,

broader, however, than the period of the cos-function. But we can get an estimate of Trec

23



by replacing the Gaussian (normalized to an integral equal 1) with a rectangular peak of

width aσ and height 1/(aσ) centered, as the Gaussian, at ζ. Here, σ =
√

2/b̃, and a is a

parameter of order 1. This gives

Trec(x, y) =
T0

a

∫ min(ζ̂,ζ+aσ/2)

max(0,ζ−aσ/2)

dζ ′
cos(k̃c0(ζ − ζ ′) + π

4
)√

|ζ ′|(1− ζ ′2)
. (69)

A numerical evaluation of the integral is now relatively straight forward and shows a slowly

varying Trec(0, y) as function of ζ in the interval ζ ∈ [aσ/2, ζ̂ − aσ/2], whereas outside this

interval it oscillates rapidly. The slow variation arises from the factor
√
|ζ ′|(1 − ζ ′2) that

distorts this approximately reconstructed image. Pulling out this slowly varying factor in

order to get an analytical estimate of the order of magnitude of Trec(x, y), we are led to

Trec(x, y) ' T0

√
2

ak̃c0

1√
|ζ|(1− ζ2)

sin

(
ak̃c0√

2b̃

)
(70)

for ζ ∈ [aσ/2, ζ̂ − aσ/2]. Hence, in this interval and apart from the distorting factor

1/
√
|ζ|(1− ζ2) identified previously, we recover a constant temperature field. The value of

the reconstructed temperature depends on the precise value of a as well as the ratio k̃c0/b̃.

Outside the mentioned interval, Trec(x, y) oscillates again as function of ζ, which can be

understood from the fact that the box is cut-off when ζ gets within a distance aσ/2 of 0 or

ζ̂. The sought-for order of magnitude can be estimated from the maximum value of (70) as

function of a. As for standard parameters k̃c0/b̃ ' 70, we can bound the sin-function by

one (while still having a ∼ 1), in which case we obtain Trec(x, y) ' T0/k̃c0 = T0χ in the

mentioned ζ-interval. With all this, and approximating

√
h̃2 + η̂2 ' η̂ in the logarithm in

(67), we find the order of magnitude σ(Trec(x, y))/Trec(x, y) ∼ ln(2η̂/h̃)/χ3/2 For ζ ∼ 1, this

is of order ∼ 105 for standard parameters, i.e. a catastrophically large uncertainty. A small

value of σ(Trec(x, y))/Trec(x, y) is possible only if
√
|ζ|(1− ζ2) is very small, but apart from

the fact that one should not rely on this image-distorting factor, it could only be sufficiently

small for y unrealistically close to the nadir.

If one traces back the difference to the single-point source, one realizes that while σ(Trec)

scales in both cases as 1/
√
χ, the difference comes from Trec itself: for the single point

source it is of order 1/χ, but for uniform T in the upper half plane of order χ, which

explains a factor 1/χ2 worse relative RR for the latter compared to the former. The factor
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1/χ in the single-point Trec arises from the cut-off of the κ integral: κMax scales as 1/χ, and

for x = 0 the κ-integral in (44) just gives a factor 2κMax ∼ 1/χ, as the correlation-function

is independent of κ in this case. On the other hand, for constant temperature in the upper

half-plane, the cut-offs κMax do not play a role, as the δ(κ)-function picks up only κ = 0.

This leads to the loss of one factor 1/χ in Trec. The second one comes from the integration

over ζ ′ in (68): the rapidly oscillating cos-function leads to a factor 1/k̃c0 = χ, whereas

for the point-source only a single point ζ = ζs contributes, such that the cosine is of order one.

In the light of the RR of standard radiometers that typically scales as σ(T ) ∝ 1/
√
Btint,

where tint is the integration time, the fact that σ(Trec) in eqs.(60,67) is independent of the

bandwidth is rather surprising. Formally, the disappearing of b̃ can be traced back to using

the lowest order in the Laplace approximation of (58). The next order corrections are of order

b̃, such that σ(Trec)→ σ(Trec)(1+O(b̃)). One expects the sign of the correction to be positive,

as the integrand is positive everywhere, and the lowest order approximations amounts to

replacing the Gaussians by normalized Dirac-delta functions. Hence, for small but finite

b̃, σ(Trec) is expected to increase with b̃, which is contrary to the behavior of standard

radiometers. Standard radiometers are based on the van Cittert-Zernike theorem, which

gives the reconstructed temperature field as Fourier transform of the observed visibilities at

a fixed frequency. Different frequencies at the source are uncorrelated, and the scaling of

σ(Trec)/T0 ∝ 1/
√
Btint just reflects averaging over a number of independent measurements

that scales ∝ B tint. In FouCoIm the information is in the correlation between different,

very narrowly spaced Fourier components, and averaging over the central frequency does

not lead to additional information (see also Sec.VII B). Therefore a larger bandwidth does

not improve RR.

VII. NOISE REDUCTION

The bad signal-to-noise ratio for the radiometric resolution in the case of a uniform

temperature field in the upper half plane, makes it essential to consider measures that lead

to a noise reduction and in particular averaging schemes.
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A. Averaging over time

Instead of examining Trec(x, y), we consider here for simplicity directly the fluctuations

of the measured ”single shot” correlation function Ĉij. The first idea that comes to mind

for reducing the fluctuations of Ĉij is to average over the origin of the time-interval from

which we construct the Fourier transform. Note that this is very different from an ensemble

that one would obtain by displacing the initial position ri. But averaging over the origin of

time only leads to an overall factor:

Cexp(r1, r2, ω1, ω2) ≡
∫ τa/2

−τa/2
dt

∫
dt1

∫
dt2Ez,r1(t1 + t)Ez,r2(t2 + t)e−iω1t1+iω2t2 (71)

= sinc((ω1 − ω2)
τa
2π

)Ĉ(r1, r2, ω1, ω2) . (72)

So it is obvious that this kind of averaging is useless. This is indeed to be expected, as

all available data were already used. The situation improves only slightly if the FTs are

calculated from a finite stretch of data (say over a duration τF ). Then shifting the origin in

time will include some new random data, but since we must have τF � τa, it is clear that we

still use essentially the same data with the exception of some new data points at the edge

of the interval of length τF .

B. Additional frequency pairs

Using only a small frequency separation of width ∆ω about the central frequency ωc

which itself is allowed to vary over a large bandwidth B appears to be a very wasteful use of

all the pairs of frequency components (Ẽz,r1(ω1), Ẽz,r2(ω2)). Can we use different measured

correlations Ĉ(r1, r2, ω1, ω2) with sufficiently different ωc = (ω1 +ω2)/2 as independent data

for improving the radiometric sensitivity? In order to answer this question, we need to

calculate the covariance matrix V between two different correlators,

V ≡ 〈Ĉ(r1, r2, ω1, ω2)Ĉ∗(r1, r2, ω
′
1, ω

′
2)〉 − 〈Ĉ(r1, r2, ω1, ω2)〉〈Ĉ∗(r1, r2, ω

′
1, ω

′
2)〉 , (73)

as well as the pseudo-covariance matrix M ,

M ≡ 〈Ĉ(r1, r2, ω1, ω2)Ĉ(r1, r2, ω
′
1, ω

′
2)〉 − 〈Ĉ(r1, r2, ω1, ω2)〉〈Ĉ(r1, r2, ω

′
1, ω

′
2)〉 . (74)

Both matrices together determine the statistical properties of the random process

Ĉ(r1, r2, ω1, ω2). Note that despite the fact that Ez,r(ω) can be considered a circularly
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symmetric Gaussian process (see Appendix) over r and ω in the narrow frequency band we

are interested in, the same is not true for Ĉ(r1, r2, ω1, ω2)− 〈Ĉ(r1, r2, ω1, ω2)〉 (which is not

even Gaussian). We need to know whether both V and M essentially vanish for almost

all pairs of pairs of frequencies, with the first pair (ω1, ω2) in a first region (notably in the

central narrow strip S ≡ ω2 ∈ [ω1 −∆ω, ω1 + ∆ω]), and the second pair (ω′1, ω
′
2) in another

region in the (ω1, ω2) plane that we may want to consider, whereas the correlation functions

Cij(r1, r2, ω1, ω2) and Cij(r1, r2, ω
′
1, ω

′
2) themselves should still be non-zero. Such a situa-

tion would signal statistically independent non-vanishing correlation functions. However,

we saw that only within a central narrow strip S (whose width is given by κmax(η)) in the

(ω1, ω2)−plane Cij is non-zero, and within that strip all pairs of frequencies are used for

obtaining a single profile T (x, y). Here we show the same thing once more by proving that

for M and V to vanish the second pair of frequencies ω′1, ω
′
2 must be not in S — where,

however, Cij(r1, r2, ω
′
1, ω

′
2) vanishes.

To see this, one first shows with the help of (52) and in a few lines of calculation that

V = Czz(r1, r1, ω1, ω
′
1)C∗zz(r2, r2, ω2, ω

′
2) . (75)

M = Czz(r1, r2, ω1, ω
′
2)Czz(r1, r2, ω

′
1, ω2) . (76)

We have Czz(r1, r1, ω1, ω
′
1) from (56), where now κ = (ω′1 − ω1)∆r/vs, and correspondingly

for Czz(r2, r2, ω2, ω
′
2). Whether V,M are large or small can be judged by comparing it to the

product of the standard deviations of each factor. This corresponds to calculating Pearson’s

product-moment coefficients [16] V res ≡ V

σ(Ĉ)σ(Ĉ′)
and M res ≡ M

σ(Ĉ)σ(Ĉ′)
where we define, for

complex Ĉ, σ(Ĉ) ≡
√
σ2(<Ĉ) + σ2(=Ĉ), and Ĉ ≡ Ĉzz(r1, r2, ω1, ω2), Ĉ ′ ≡ Ĉzz(r1, r2, ω

′
1, ω

′
2)

for short. Going through the same calculation as for V , we find after some algebra

σ2(Ĉ) = Czz(r1, r1, ω1, ω1)Czz(r2, r2, ω2, ω2) (77)

= (πK6)2I2(0) , (78)

where

I(κ) ≡
∫ ∞
−∞

T̃0,η(κ)e−|κ|
√
η2+h̃2√

η2 + h̃2

dη , (79)

and hence I(0) =
∫∞
−∞

T̃0,η(0)√
η2+h̃2

dη. This implies

|V res| =
∣∣∣∣I((ω′1 − ω1)∆r/vs)I((ω′2 − ω2)∆r/vs)

I2(0)

∣∣∣∣ (80)
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For M we have

|M res| =

∣∣∣∣Czz(r1, r2, ω1, ω
′
2)Czz(r1, r2, ω

′
1, ω2)

Czz(r1, r1, ω1, ω1)Czz(r2, r2, ω2, ω2)

∣∣∣∣ (81)

=

∣∣∣∣J(κ12′ , ωc12′)J(κ1′2, ωc1′2)

I2(0)

∣∣∣∣ (82)

where

J(κ12′ , ωc12′) ≡
∫

dη√
η2 + h̃2

K(κ12′

√
η2 + h̃2,

∆rωc12′

c

η√
η2 + h̃2

)T̃0,η(κ12′) (83)

with κ12′ ≡ (ω′2 − ω1)/vs, κ1′2 ≡ (ω2 − ω′1)/v2, ωc12′ ≡ (ω1 + ω′2)/2, and ωc1′2 ≡ (ω′1 + ω2)/2.

From the properties of the integration kernel K we know that Czz(r1, r2, ω1, ω
′
2) vanishes iff

|ω1−ω′2| & (ω1+ω′2)vs/(2ch̃), and correspondingly for Czz(r1, r2, ω
′
1, ω2). Hence, for |M | � 1

and ω1,2 and ω′1,2 all of order ω0, we need |ω1 − ω′2| & ω0vs/(ch̃) or |ω′1 − ω2| & ω0vs/(ch̃).

Note that ω0vs/(ch̃) = (1/χ)vs/h� vs/h.

For determining the properties of V , we consider our two previous cases of sources.

Case 1: Single point source. Here we have T̃ independent of κ, see eq.(41), which inserted

into (79) yields

I(κ) =
T0∆r

√
2π
√
η2
s + h̃2

e−|κ|
√
η2
s+h̃2

(84)

and hence

|V res| = e−
∆r
vs

√
η2
s+h̃2(|ω′

1−ω1|+|ω′
2−ω2|) . (85)

For sources at ηs ∼ h̃, we have therefore |V res| � 1 iff |ω′1 − ω1| > δω or |ω′2 − ω2| > δω

where δω ≡ vs/(∆r
√
η2
s + h̃2) ∼ vs/(∆rh̃) = vs/h ∼ 10−2 Hz.

Case 2: Constant temperature field in the positive upper half plane. Here, T̃ (κx, η) is given

by eq.(64). Hence, V res = 0 as soon as ω′1 6= ω1 or ω′2 6= ω2. Of course, the δ(κx) function

in (64) arises from the complete lack of structure of the temperature profile in x-direction.

More realistic is at least a cut-off at the size of Earth, which we take as the same as in y

direction. In that case one finds T̃r′(κx) = (ŷT0/π)sinc
(
κxŷ
π

)
and hence

I(κ) = (ŷT0/π)sinc

(
κxŷ

π

)∫ η̂

0

dη√
η2 + h̃2

e−|κ|
√
η2+h̃2

. (86)

The exponential factor in the integral makes again that V res vanishes essentially if

|ω′i − ωi| & vs/h for i = 1 or i = 2.
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Comparing with the situation for M , we find that for both types of sources considered,

V vanishes much more rapidly as function of the separation of two frequencies, as there is

no factor 1/χ multiplying vs/h. Hence, the request for vanishing M is more restrictive.

The question of the usefulness of considering other frequency pairs can now be phrased

as: Can one find pairs of frequencies (ω′1, ω
′
2) such that |ω′2 − ω1| � ∆ω ≡ (1/χ)vs/h or

|ω′1 − ω2| � ∆ω while still |ω′2 − ω′1| . ∆ω, for all frequencies ω1, ω2 with |ω2 − ω1| . ∆ω

used in the reconstruction of a temperature profile from C(r1, r2, ω1, ω2)? For a single

frequency pair (ω′1, ω
′
2) all conditions can be easily satisfied. It is enough that both pairs

(ω1, ω2) and (ω′1, ω
′
2) be inside the strip S, and at the same time far away from each other,

i.e. |ω1 − ω′1| � ∆ω, which implies |ω′2 − ω1| � ∆ω and |ω′1 − ω2| � ∆ω at the same time.

However, the difficulty arises from the fact that we use already all pairs (ω1, ω2) in the full

available band-width for the reconstruction of a single temperature profile. This can be seen

e.g. from eq.(39), where we integrate over all k̃c = ∆r(ω1 +ω2)/(2c) for recovering T̃ . Hence,

there are really no new frequency pairs that can be used for improving the signal/noise ratio

of the reconstructed temperature profile.

The same conclusion can be arrived at more formally by calculating the correlations be-

tween temperature profiles obtained from different center frequencies. Let Trec(x, y;ω0) be

the reconstructed temperature profile given by eq.(44), where we now keep explicit the de-

pendence on the center frequency ω0, hidden in that equation in the filter functions A(ω1, ω0),

see eqs.(37,38), and CF
ii → ĈF

ii is understood, so as to get the temperature profile from a

single realization of the noise process. We define the correlation function

K(Trec(ω01), Trec(ω02)) ≡ 〈Trec(x, y;ω01)Trec(x, y;ω02)〉 − 〈Trec(x, y;ω01)〉〈Trec(x, y;ω02)〉 ,

(87)

and its renormalized dimensionless version

Krel(Trec(ω01), Trec(ω02)) ≡ K(Trec(ω01), Trec(ω02))/K(Trec(ω01), Trec(ω01)) (88)
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that obviously satisfies Krel(Trec(ω01), Trec(ω01)) = 1. We have

K(Trec(ω01), Trec(ω02)) =

(
1

2πK6∆r

)2 ∫
dκ1 dκ2 dk̃c1 dk̃c2

√
|k̃c1k̃c2|
2π

× e−i(κ1−κ2)(x̃−x̃0)ei(k̃c1−k̃c2)ζF (k̃c1, k̃
(1)
c0 ,

b̃√
2

)F (k̃c1, k̃
(2)
c0 ,

b̃√
2

)

×
(
〈Ĉzz(r1, r2, ω1, ω2)Ĉ∗zz(r1, r2, ω

′
1, ω

′
2)〉

− 〈Ĉ∗zz(r1, r2, ω1, ω2)〉〈Ĉzz(r1, r2, ω
′
1, ω

′
2)〉
)
, (89)

where κ1 = (ω2 − ω1)∆r/vs, κ2 = (ω′2 − ω′1)∆r/vs, k̃c1 = (ω1 + ω2)∆r/(2c), k̃c2 = (ω′1 +

ω′2)∆r/(2c), k̃
(i)
c0 = ω

(i)
0 (i = 1, 2), F (k̃c, k̃c0,

b̃√
2
) = A(ω1, ω0)A∗(ω2, ω0) with k̃c0 = ∆rω0/c

(see eq.(36)), and we have used that Trec ∈ R. We evaluate K(Trec(ω01), Trec(ω02)) for

the case of constant temperature in the upper half plane. Using (73), (65), and switching

momentarily to integration variables ω1, ω2, ω
′
1, ω

′
2, and then back to κ1 k̃c1, we are led to

K(Trec(ω01), Trec(ω02)) =
T 2

0 vs
2πc

∫
dκ1 dk̃c1|k̃c1|e2iζk̃c1F (k̃c1, k̃

(1)
c0 ,

b̃√
2

)F (k̃c1, k̃
(2)
c0 ,

b̃√
2

) .(90)

The integral is clearly real, as it should. The integral over κ1 leads, when integrated from

−∞ to ∞ to a divergent factor, but that factor cancels (together with the remaining

prefactor T 2
0 vs/(2πc)) when we consider the re-scaled version of the correlation function

Krel(Trec(ω01), Trec(ω02)). If we set k̃
(2)
c0 = k̃

(1)
c0 + δk̃c0, it is clear that the only remaining scale

for δk̃c0 is b̃/
√

2. The remaining integral over k̃c1 in (90) can in fact be evaluated analytically.

The result is too cumbersome to be reported here, but plotting it as function of δk̃c0 shows

that indeed the correlations decay only on a scale of order b̃. This proves that by shifting

the center frequency within the available bandwidth one cannot gain independent estimates

of Trec that would allow one to improve substantially the signal-to-noise ratio.

C. Additional antennas

So far we considered only two antennas. As mentioned before, in order to obtain a

reconstructed single source image with a single peak, one may sum the correlated signals

from several antenna pairs. It is to be expected that this will reduce σ(Trec)/Trec, but we

have to figure out how far two pairs of antenna have to be separated in order to produce

essentially uncorrelated correlation functions. To answer this question, we have to generalize
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eq.(73) to pairs of correlators at different points r′1, r
′
2. We define

Vr ≡ 〈Ĉ(r1, r2, ω1, ω2)Ĉ∗(r3, r4, ω1, ω2)〉 − 〈Ĉ(r1, r2, ω1, ω2)〉〈Ĉ∗(r3, r4, ω1, ω2)〉 , (91)

where we take ri+2 = ri +ρiêy for i = 1, 2, i.e. the antennas in the second pair are shifted by

distance ρi in y-direction compared to the corresponding ones in the first pair. From (52)

we have

Vr = C(r1, r3, ω1, ω1)C(r4, r2, ω2, ω2) , (92)

where from (21) and (30)

C(r1, r3, ω1, ω1) = K6

∫
dη√
η2 + h̃2

K(0,
ρ1ω1

c

η√
η2 + h̃2

)T̃ (0, η) (93)

= K6

∫
dζ

1− ζ2
(J0(

ρ1ω1ζ

c
)− iH0(

ρ1ω1ζ

c
)) . (94)

The corresponding result for C(r4, r2, ω2, ω2) is obtained from the last line in (93) by

replacing ρ1 → ρ2. For the uniform temperature field in the upper half plane up to a

cut-off ŷ and also a cut-off of the same value in x-direction, we have T (0, η) = ŷT0/π for

0 ≤ y ≤ ŷ. No closed form was found for the remaining integral over ζ, but a closed form

is easily obtained if we neglect the slowly varying envelope 1/(1 − ζ2), which is legitimate

for cut-offs η̂ not too close to 1 and gives an idea on which length-scale Vr will vanish.

Plotting the results of the integration one finds that both real and imaginary part decay on

a scale of ρiω0/c ∼ 1, where we have used again ω1 ' ω2 ' ω0. Hence, for the correlation

functions of two pairs of antenna to decorrelate, it is enough that one antenna in one pair

be at a distance of order r & c/ω0 = λ/2π, i.e. of the order of the central wave-length

λ with respect to at least one antenna of the other pair. For standard parameters, this

is of the order 10 cm, neglecting factors of order 1 (the 2π helps of course, but for the

imaginary part of C(r1, r2, ω1, ω1) there is a comparable factor in the scale). Extending

the separation of the two antennas in the original pair to 2∆r = 200 m, one would have

place for about 2000 antennas in between. This in turn would then allow to be built

correlations from 106 pairs of antenna, where the antennas in each pair are still separated

at least by ∆r = 100 m. Considering that averaging of N temperature profiles obtained

from N statistically independent correlation functions improves the signal-to-noise ratio of

the average temperature profile by a factor
√
N , we can improve the SNR by a factor 103.

If considering the prefactors of order one, 10 times more antennas can be used, the SNR
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could be improved by a factor 104. But even such a large improvement is not yet sufficient

to beat the low SNR of order χ3/2 ' 10−5. It is quite likely, however, that a displacement

of an antenna also in x direction by a distance of the order λ/(2π) leads to a completely

decorrelated correlation function. If so, one might gain another factor up to 103 in the

SNR by considering quasi-1D antenna arrangements, with a width in x-direction of order

10 meters. In the latter case one should then be able (after averaging temperature profiles

obtained from some 1014 correlation functions from that many pairs of antennas) to achieve

an SNR of 102, and hence a RR of order of a few Kelvin. However, it is obvious that the

effort for doing so is humungous, and the same geometrical and radiometric resolution

might be achievable more easily with other means.

Other interesting ideas of improving the SNR involve using focussing antennas for

increasing the flux, and/or exploiting higher order correlation functions as well, but these

are beyond the scope of the present investigation.

VIII. DISCUSSION

We examined the fundamental feasibility of a new type of passive remote microwave-

imaging of a 2D scenery with a satellite having only a 1D antenna array, arranged per-

pendicular to the direction of flight of the satellite. We analyzed the simplest possible

configuration of only two antennas. The scheme is based on correlating Fourier components

of the observed electric field fluctuations at the position of the two antennas at slightly

different frequencies ω1 and ω2, and leads effectively to a mapping of the 2D brightness

temperature as function of position x, y to correlations as function of the center frequency

ωc = (ω1 + ω2)/2 and the frequency difference ∆ω = ω1− ω2. With two antennas separated

by ∆r, center frequency ωc and a satellite flying at height h, the resolution both in x- and

y-direction is of the order hχ = hc/(∆rωc). Only very small frequency-differences lead to

correlations of finite, useful magnitude. For typical intended SMOS-NEXT values they are

of the order of at most 10Hz, which, however, still have to be divided by the number of

points in x direction that one wants to resolve within a snapshot. This implies that one

must be able to measure GHz frequencies with accuracy of the order of a 1/10-1/100 Hz.
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The speed vs of the satellite only enters in the maximum frequency difference useful for

correlating the signals, which is given by ∆ω . (∆r/h)(vs/c)ωc.

In the minimal situation of two antennas, the relative radiometric resolution σ(T )/T is,

for a single point source of order
√
χ, whereas for a uniform temperature field in the positive

half plane y > 0 (up to some large cut-off of the size of Earth), σ(Trec)/Trec ∼ 1/χ3/2

which for standard parameters is of order 105. We have neglected so far the additional

noise that comes from the antennas themselves, such that our results should be considered

as lower bounds for σ(Trec)/Trec. Unfortunately, this large uncertainty prevents a direct

application of the method with just two antennas, and massive noise reduction is required.

Some ideas are discussed in Sec.VII, where it was found that one can obtain statistically

independent correlation functions by displacing one antenna by a distance of the order of

λ/2π, where λ is the central wave-length. Hence, the signal-to-noise ratio Trec/σ(Trec) can

be massively increased by a factor N when using the correlations from ∼ N(N − 1)/2 pairs

of antennas from N antennas separated all by at least a distance of order λ/2π. However,

the computational effort and the size of the overall structure appear forbiddingly large for

achieving a radiometric resolution of order of a few Kelvin with a geometrical resolution of

order one kilometer.

An alternative application might be the precise localization of very strong point sources

that by far dominate the more or less uniform background from Earth’s thermal emission.

As long as one is not interested in a very precise measurement of the intensity of the source,

one might localize it very precisely using just two widely separated antennas. These need

not even by an board of the same satellite. By having two satellites with well-known dis-

tance separated by about 100km for instance, the geometrical resolution achievable in the

microwave regime would be of the order of a meter in both x− and y− direction and with

rather small computational effort, opening interesting perspectives for such applications.

It should also be kept in mind that the method can be easily transferred to other types

of waves, sources, and media. For example 2D ultra-sound imaging might be possible by

beating the signals of just two moving microphons. Different physical systems can be easily

mapped to each other by comparing the corresponding dimensionless parameters introduced

in Sec.I.
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X. APPENDIX

A. Current fluctuations and temperature

The connection between the intensity of the current fluctuations and the local tempera-

ture can be found e.g. in [9, 11–13]. For being self-contained and relating to the notations

used in this paper, we here give a short derivation of this connection. We also show that

Êz,r(ω) is, in the frequency range considered, a circularly symmetric Gaussian process.

1. Thermal radiation

We begin by recalling the energy density of electromagnetic black body radiation at

frequency ω, u(ω) = ~ωρ(ω)f(ω, T ), where ρ(ω) = ω2/(π2c3) is the density of states (number

of modes between frequencies ω and ω + dω per volume), and f(ω, T ) = 1/(e~ω/(kBT ) − 1)

the thermal Bose occupation factor, with kB the Boltzmann constant, and T the absolute

temperature of the radiation field. An infinitesimal patch on the surface at position x, y with

surface dA and temperature T (x, y) in thermal equilibrium with the radiation field in its

immediate vicinity, radiates off an amount of energy per unit time and at frequency ω given

by dAu c cos θ in direction θ with respect to the the surface normal. The energy density for

both polarization directions received at the position of the satellite at distance R from this

patch also varies ∝ cos θ, and energy conservation requires

dus(ω) =
dAu(ω) cos θ

2πR2
=

dA~ω3 cos θ

2π3c3R2(e~ω/(kBT ) − 1)
. (95)

Earth is rather a grey than a black body, and we therefore have to include the emissivitiy of

the patch B(x, y;ω, θ, ϕ) in the direction of the satellite given by polar and azimuthal angles.

It can also depend on polarization, which we skip here for simplicity. Integration over the
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whole radiating surface gives the entire energy density at the position of the satellite at this

frequency,

us(ω) =

∫
dx dy u

2πR2
=

∫
dx dy~ω3 cos θ(x, y, h)B(x, y;ω, θ, φ)

2π3c3(h2 + x2 + y2)(e~ω/(kBT (x,y)) − 1)
. (96)

In the microwave regime and temperatures T ' 300K, ~ω is about four orders of magnitude

smaller than kBT , such that the Bose factor becomes, to first order in ~ω/kBT , f(ω, T ) '

kBT/(~ω), with corrections of order 10−4. This simplifies us to

us(ω) =
kB

2π3c3

∫
dx dy ω2TB(x, y) cos θ(x, y, h)

h2 + x2 + y2
, (97)

where we defined the brightness temperature TB(x, y) ≡ T (x, y)B(x, y;ω, k̂), i.e. the abso-

lute temperature a black body would need to have for producing the same thermal radiation

intensity at the frequency and in the direction k̂ considered, specified explicitly by the two

angles (θ, ϕ). At the same time, the total energy density (integrated over all frequencies) at

position r1 of antenna 1 is Us =
∫
dωus(ω) = ε0

2
〈E2(r1)〉, where the average is over the ther-

mal ensemble, but due to ergodicity we may also average over time, 〈. . .〉τa = 1
τa

∫ τa/2
−τa/2(. . .)dt.

In the end one should take the limit τa → ∞. In fact, we may even average over both the

thermal ensemble and time, i.e. Us = ε0
2
〈〈E2(r1)〉〉τa Expressing then the electric field in

terms of its Fourier transform, the time integral leads to a sinc-function,

Us =
ε0
4π

∫ ∫
sinc

(
(ω′ − ω)

τa
2π

)
〈Ẽ∗r1

(ω)Ẽr1(ω′)〉dω dω′ , (98)

with sinc(x) ≡ sin(πx)/(πx). For large τa, the sinc-function can be replaced by (2π/τa)δ(ω−

ω′), and we are then left with

Us =
ε0
2τa

∫
〈|Ẽr1(ω)|2〉dω . (99)

Therefore, the energy density per unit frequency at frequency omega is given by us(ω) =

ε0
2τa
〈|Ẽr1(ω)|2〉. Together with eq.(97) we thus have

〈|Ẽr1(ω)|2〉 =
τakB
π3ε0c3

∫
dx dy

ω2TB(x, y) cos θ(x, y, h)

h2 + x2 + y2
. (100)

The connection to the current fluctuations is found by comparing this expression to what

we obtain from eq.(11) if we do not use (7) yet. There we set i = j, r1 = r2 = (0, 0, h),

ω1 = ω2, and vs = 0, as we are interested in the energy density in a given fixed point r1,
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identical to the original position of the antenna. This gives

〈|Ẽi,r1(ω)|2〉 = K4

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2

∫ ∞
−∞

dω′
∫
dx dy

ω′2〈|j̃i(x, y, ω′)|2〉
h2 + x2 + y2

×ei(ω−ω′)(t1−t2) , (101)

where K4 = K2
1 l

3
cd/(4π

2τc), and we have already restricted the current density to the surface

of Earth, i.e. assumed 〈|j̃i(r′, ω′)|2〉 = d〈|j̃i(x, y, ω′)|2〉δ(z). In practice, the time integrals

originating from the Fourier transforms will be taken over a finite time τF . Since the only

time-dependence is in the exponential, the time-integrals can be done exactly, leading to∫ τF /2

−τF /2

∫ τF /2

−τF /2
dt1 dt2e

i(ω−ω′)(t1−t2) =
2

(ω − ω′)2

(
1− cos(τF (ω − ω′))

)
. (102)

For large τF , this function is highly peaked at ω = ω′ and behaves as 2πτF δ(ω − ω′), where

the prefactor may be verified by integrating over. We are thus led to

〈|Ẽi,r1(ω)|2〉 = K42πτF

∫
dx dy

ω2〈|j̃i(x, y, ω)|2〉
h2 + x2 + y2

. (103)

The thermal fluctuations of the electric field are isotropic in their intensity, such that one

third of the energy is in a given polarization direction i, i.e. 〈|Ẽi,r1(ω)|2〉 = 1
3
〈|Ẽr1(ω)|2〉.

Inserting eq.(100) for the latter quantity, we are led to

〈|Ẽi,r1(ω)|2〉 =
τakB

3π3ε0c3

∫
dx dy

ω2TB(x, y) cos θ(x, y, h)

h2 + x2 + y2
. (104)

Comparison with eq.(103) allows one to identify

〈|j̃i(x, y, ω)|2〉 = K2Teff(x, y), (105)

with K2 = 32τaτckB/(3τF l
3
cdµ0c) and Teff(x, y) ≡ TB(x, y) cos θ(x, y, h). Thus, the current

fluctuations are given directly by the brightness temperature (rescaled by the directional-

cos θ(x, y, h)), up to a constant prefactor. As mentioned in the Introduction, we write T for

short for Teff in the rest of the article. The constant prefactor depends on the time intervals

for averaging and the Fourier transforms, but in the end we will always be interested

in relative radiometric resolution, i.e. σ(T (x, y))/T (x, y), where σ(T (x, y)) denotes the

standard deviation of the reconstructed temperatures over the thermal ensemble of the

radiation field, such that the constant prefactor cancels out.
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2. Circular symmetry

A Gaussian distribution of a complex jointly-Gaussian random vector z =

(z1, z2, . . . , zn) ∈ Cn is fully characterized by the expectation values, E(zi)∀i, the covariance

matrix K = E[z z†], and the pseudo-covariance matrix M = E[z zt]. Both matrices together

specify the correlations between the four different combinations of real and imaginary parts

of the zi. The Gaussian distribution is called circularly symmetric, if P (z) is invariant under

the transformation z 7→ zeiφ with an arbitrary real phase φ. One shows that a distribution

is Gaussian symmetric if and only if M = 0. This implies immediately that E[zi] = 0 ∀i [17].

The corresponding definitions and statements for complex Gaussian processes are easily

obtained by replacing the discrete index i in zi by a continuous one, e.g. a time argument,

or in our case of Êz,r(ω), a 4-component real vector with a “continuous index” ω, r. In

order to show that Êz,r(ω) is a circularly symmetric complex Gaussian process over ω, r,

we need to prove that 0 = M(r1, r2, ω1, ω2) ≡ 〈Êz,r1(ω1)Êz,r2(ω2)〉, at least in the narrow

frequency band that we are interested in. In view of eq.(5), for this it is enough to show

that MJ ≡ 〈j̃z,r1(ω1)j̃z,r2(ω2)〉 = 0. Expressed as Fourier transforms of the time-dependent

current-densities, this correlator equals

〈j̃z,r1(ω1)j̃z,r2(ω2)〉 =
1

2π

∫ ∞
−∞

dt1 dt2e
−i(ω1t1+ω2t2)〈jz,r1(t1)jz,r2(t2)〉 . (106)

The physical origin of the current fluctuations are thermal fluctuations, and the condition

of thermal equilibrium implies that the current correlator is invariant under global time-

translation (i.e. a shift of the origin of the time axis of t1 and t2 by the same amount) and

hence depends only on t2 − t1, 〈jz,r1(t1)jz,r2(t2)〉 = f(r1, r2, τ), where τ = t2 − t1, and we

will also use t = (t2 + t1)/2. With this we get

MJ =
1

2π

∫ ∞
−∞

dt e−i(ω1+ω2)t

∫ ∞
−∞

dτ e−i(ω2−ω1)τ/2f(r1, r2, τ)

=
√

2πδ(ω1 + ω2)f̃(r1, r2, (ω2 − ω1)/2) , (107)

where f̃(r1, r2, ω) is the Fourier transform of f(r1, r2, t) with respect to time. The δ-function

implies that MJ vanishes unless ω1 = −ω2. But we are interested only in frequencies in the

small interval ω2 ∈ [ω1 −∆ω, ω1 + ∆ω], centered close to ω0 of the order of 1.4GHz. Hence,

in this frequency interval we have indeed MJ = 0, and the complex Gaussian process Êz,r(ω)
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over ω, r can be considered as circularly symmetric and eq.(53) valid. In particular, it does

not contain any correlator of the type E E, but only of the type E E∗.
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