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ABSTRACT
The momentum anisotropy contained in a sheared flow may be transferred to a pressure
anisotropy, both gyrotropic and non-gyrotropic, via the action of the fluid strain on the pressure
tensor components. In particular, it is the traceless symmetric part of the strain tensor (i.e. the
so-called shear tensor) that drives the mechanism, the fluid vorticity just inducing rotations
of the pressure tensor components. This possible mechanism of anisotropy generation from
an initially isotropic pressure is purely dynamical and can be described in a fluid framework
where the full pressure tensor evolution is retained. Here, we interpret the correlation between
vorticity and anisotropy, often observed in numerical simulations of solar wind turbulence,
as due to the correlation between shear rate tensor and fluid vorticity. We then discuss some
implications of this analysis for the onset of the Kelvin–Helmholtz instability in collisionless
plasmas where a full pressure tensor evolution is allowed, and for the modelling of secondary
reconnection in turbulence.

Key words: equation of state – instabilities – MHD – plasmas – turbulence – solar wind.

1 IN T RO D U C T I O N

Anisotropic, non-gyrotropic particle distributions are often directly
observed in magnetospheric plasmas (Astudillo et al. 1996; Posner
et al. 2003; Scudder & Daughton 2008; Scudder et al. 2012, 2015;
He et al. 2015; Graham et al. 2017) and in Vlasov simulations of
solar wind turbulence (Servidio et al. 2012; Perrone et al. 2013;
Servidio et al. 2015; Franci et al. 2016b; Valentini et al. 2016)
but the mechanism of generation of such anisotropies is still mat-
ter of investigation. Here, we further discuss a possible mecha-
nism of purely dynamical nature, recently proposed in Del Sarto,
Pegoraro & Califano (2016a), capable of generating both non-
gyrotropic and gyrotropic pressure anisotropy from an initially
isotropic plasma because of the action of the strain tensor related to
a sheared flow.

The possibility of such anisotropic states in sufficiently diluted
and/or warm plasmas is allowed as long as the particle collision
time largely exceeds the characteristic time-scale of the dynamics.
A well-known mechanism allowing (but not causing, per se) pres-
sure anisotropization is the rapid particle gyromotion around a suf-
ficiently strong magnetic field, whose presence breaks the spherical
symmetry of an isotropic Maxwellian state into the ‘parallel’ and the
‘perpendicular’ directions to the field lines. Therefore, the first ex-

� E-mail: daniele.del-sarto@univ-lorraine.fr (DDS); francesco.pegoraro
@unipi.it (FP)

ample which has been provided of a plasma equilibrium anisotropic
in pressure is the one associated with the gyrotropic, double adia-
batic (or CGL) closure (Chew, Goldberger & Low 1956). However,
it was soon noticed by Kaufman (1960) that inclusion of gyroviscous
Finite–Larmor–Radius (FLR) corrections related to the components
of the gradient velocity tensor breaks the gyrotropic symmetry of
the CGL equilibrium, as it has been more recently shown to hap-
pen, for example, next to a reconnecting X-point (Brackbill 2011).
The fact that in the presence of a velocity shear the kinetic equilib-
rium configurations are different from those predicted by an MHD
model, and the role that the gyromotion and the polarity of the scalar
product B · ω (with B and ω being the magnetic field and fluid vor-
ticity vectors, respectively) have in affecting these equilibria, was
later pointed out by Cai, Storey & Neubert (1990). Non-gyrotropic
CGL-FLR fluid equilibria have been then discussed by Cerri et al.
(2013) and anisotropic equilibria in an extended fluid model includ-
ing the full pressure tensor equation have been provided in Cerri
et al. (2014).

Per se, the existence of such non-gyrotropic equilibrium solu-
tions does not indicate how the anisotropy is generated. Here, we
focus on the generation mechanism by assuming the collision rates
to be negligible at the dynamical scale we consider. In particu-
lar, we are interested in discussing a possible explanation of the
correlation frequently observed between pressure anisotropy and
vorticity sheets forming at the boundary of convective cells in de-
veloped turbulence, in the light of the shear-driven anisotropization
mechanism. While this point was already commented upon in Del
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182 D. Del Sarto and F. Pegoraro

Sarto et al. (2016a) with reference, in particular, to the simulation
results by Servidio et al. (2012) by pointing out that it is not the
vorticity but rather the traceless rate of shear to act as a source mech-
anism for agyrotropy generation, some more recent articles (Franci
et al. 2016b; Parashar & Matthaeus 2016; Valentini et al. 2016) have
evidenced the correlation between vorticity and pressure anisotropy.
In our previous work, however, we already noted that the correlation
between gyrotropic anisotropy and vorticity evidenced by Franci
et al. (2016b) supported the analysis we had presented. The pur-
pose of this article is to address this latter point more explicitly.
In doing so, we concur with the point of view more recently ex-
pressed by Yang et al. (2017a,b), whose numerical results in the
kinetic regime appear to confirm the basis of the fluid modelling we
present.

After recalling the physical model (Section 2), its typical pa-
rameters, and the dynamical features of the pressure tensor evolu-
tion (Section 3), we discuss how a vorticity sheet, such as those
which are generated in turbulence or at the interface of two plasma
flows in relative motion, is generally accompanied by a non-null
symmetric part of the strain tensor (Section 4). We then show
how this makes it possible to apply the analysis performed in Del
Sarto et al. (2016a) in order to justify the generation of anisotropy
near a vorticity sheet. This anisotropization mechanism may also
inhibit the Kelvin–Helmholtz (KH) instability, whose occurrence
may be prevented by the broadening of the initial velocity shear
due to the full pressure tensor evolution (Section 5). In Sec-
tion 6 we apply these results to explain the correlation between
anisotropy and vorticity measured in simulations of 2D turbulence
and we compare our interpretation with different interpretations
available in the literature. Some implications and limitations of the
shear-induced anisotropization mechanism for the description of
Alfvénic turbulence are discussed in Section 7. In the Conclusions
(Section 8), we summarize the results and we outline possible future
developments.

2 MO D E L E QUAT I O N S

We consider a two-fluid ‘extended’ MHD model with cold, massless
electrons and we retain the contribution of the full ion pressure
tensor � to the plasma dynamics, while disregarding the divergence
of the heat flux in the pressure tensor evolution:

∂n

∂t
+ ∇ · (nu) = 0, (1)

∂u
∂t

+ u · ∇u = �c
J × b
ne

− ∇ · �

mn
, (2)

∂�

∂t
+ ∇ · (u �) + � · ∇u + (� · ∇u)T

− �c(� × b + (� × b)T ) = 0, (3)

J = c

4π
∇ × B, (4)

∂B
∂t

= ∇ ×
{(

u − J
ne

)
× B

}
. (5)

Here, �c ≡ e|B|/(mc) is the ion cyclotron frequency, b the unit
vector along the local magnetic field, the apex ‘T’ is for matrix
transpose, and ∇ · (u �) ≡ (∇ · u) � + u · ∇�.

3 T I M E - S C A L E S A N D D E F O R M AT I O N S O F
THE PRESSURE TENSOR

The evolution of the pressure tensor described by equation (3) is
determined by the contribution of the two linear operators

Lu(�) ≡ ∇ · (u �) + � · ∇u + (� · ∇u)T , (6)

MB(�) ≡ �c(� × b + (� × b)T ). (7)

Their actions on � involve the time-scales τ
H

≡ |∇u|−1 and τ
B

≡
�−1

c , respectively, whose ratio

τ
B

τ
H

≡ c
H

c
A

di

L
H

(8)

depends on L
H

≡ |u|/|∇u|, typical shear length of the flow,
c

H
≡ L

H
/τ

H
∼ |u|, characteristic magnitude of the fluid velocity,

c
A

, Alfvén velocity, and di ≡ c
A
/�c, ion-skin depth. Depending on

the ordering of the time-scales (8) with respect to those governing
the dynamics of the other equations (1–5), it is possible to identify
special limits leading to closure conditions, in which case the com-
ponents of � can be related to the lower order moments, n and u,
and to the magnetic field.

In the present analysis, in order to focus on the shear-induced
anisotropization process, we neglect the divergence of the heat flux,
assuming it to be small. At least for the plasma dynamics perpendic-
ular to the background magnetic field, this approximation is quite
reasonable – see also Del Sarto, Pegoraro & Tenerani (2017) for a
discussion of the role of the heat flux in the perpendicular propa-
gation of linear modes, and Chust & Belmont (2006) for a general
discussion on the adiabaticity hypothesis in fluid models.

In this article, we will specialize our analysis to a one-dimensional
velocity shear configuration that depends on a single Cartesian co-
ordinate perpendicular to the background magnetic field. This sim-
plified configuration is sufficient to illustrate the mechanism of
pressure anisotropy generation near a vorticity sheet, such as those
encountered in 2D turbulence (geometry frequently adopted in ki-
netic and hybrid simulations of solar wind turbulence – see e.g.
Franci et al. 2016b), and makes it possible to describe some pro-
cesses at the solar wind/magnetosphere boundary at the flanks of the
magnetopause, related to the onset of KH instabilities (Hasegawa
et al. 1996). Extension to a higher dimension coordinate dependence
requires a consistent description of the fluid dynamics parallel to
the magnetic field. As evidenced by the linear analysis of Del Sarto
et al. (2017), this is a delicate issue which will be examined in a
future dedicated study.

3.1 Parameters of the system

A comparison of the characteristic amplitudes of each term of equa-
tions (1–5) shows that the non-linear dynamics of the whole set is
ruled by three parameters,

τ
B

τ
H

,
cs

c
A

,
c

A

c
H

, (9)

where cs ≡ (2P⊥/(nmi))1/2 is the ‘sound’ velocity evaluated with
respect to an ion pressure, initially gyrotropic with respect to the
local magnetic field B. The second and third parameters arise
from the comparison of the two force terms in the momentum
equation (2) and from the contribution of the convection terms
∼u · ∇ in equations (1–3). Even if c

A
/c

H
formally disappears in a

linear mode analysis of the waves propagating in the system, it still
contributes to the definition of τ

B
/τ

H
when we choose L

H
/di as an
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independent parameter. This suggests to identify

� ≡ L
H

di

, β ≡
(

cs

c
A

)2

, M
A

≡ c
H

c
A

, (10)

as the three fundamental independent parameters descriptive of both
the linear and non-linear properties of the system, where we have
adopted the standard notation for the plasma β (evaluated for the
ion pressure only) and for the Alfvènic-Mach number, M

A
. We

then recall that either β or M
A

can be replaced by the sonic Mach-
number

Ms ≡ c
H

cs

= M
A√
β

. (11)

3.2 Deformations of the pressure tensor

In order to summarize the discussion of the pressure tensor evo-
lution given in Del Sarto et al. (2016a), we recast equation (3) by
expressing the action on � of the strain tensor � ≡ ∇ui and of
the magnetic field in terms of matrix operators. Thus, we split (see
e.g. Batchelor 1967, Section 2.3) the strain tensor in terms of its
traceless symmetric part, that is the incompressible rate of shear D,
of its anti-symmetric part, that is the vorticity tensor W, and of the
contribution from the isotropic compression C I (related to ∇ · u by
a minus sign as ∇ · u = −3C):

∇u︸︷︷︸
�

= 1

3
(∇ · u)I︸ ︷︷ ︸

−C I

+ 1

2

[
∇u + (∇u)T − 2

3
(∇ · u)I

]
︸ ︷︷ ︸

D︸ ︷︷ ︸
irrotational strain tensor (S)

+ 1

2

[∇u − (∇u)T
]

︸ ︷︷ ︸
W

. (12)

In tensor notation, which we will also use in the following, the
above equation reads

∂uj

∂xi︸︷︷︸
�ij

= 1

3

(
∂uk

∂xk

)
δij︸ ︷︷ ︸

−Cδij

+ 1

2

[(
∂uj

∂xi

+ ∂ui

∂xj

)
− 2

3

(
∂uk

∂xk

)
δij

]
︸ ︷︷ ︸

Dij︸ ︷︷ ︸
irrotational strain tensor (Sij)

+ 1

2

(
∂uj

∂xi

− ∂ui

∂xj

)
︸ ︷︷ ︸

Wij

. (13)

Isotropic compressions and the incompressible rate of shear con-
tribute to the irrotational strain tensor Sij ≡ Dij − Cδij, while Wij

is related to the fluid vorticity ω ≡ ∇ × u by duality, ωi = εijkWjk,
where εijm is the usual Levi-Civita symbol.

By analogy, we define the matrix B related by duality to the
local magnetic field B according to Bij ≡ �cεijmbm, and express-
ing gyrotropic rotations. Introducing the commutator [,] and anti-
commutator {,} between matrices, equation (3) can be then rewrit-
ten in a compact form as

∂�

∂t
+ u · ∇� = [B + W, �] − {D, �} + 5C�. (14)

This expression shows that B and W combine to generate rotations
of � around the magnetic field direction and the vorticity direction,
respectively. Isotropy of � in the plane perpendicular to B (or to
ω) implies the vanishing of the commutator [B,�] (or [W, �]).
When the magnetic field and the vorticity vector are locally aligned,

Figure 1. Sketch of the possible deformations induced by the strain tensor
∇u on the pressure tensor �, whose principal axes define the shape of an
ellipsoid. In the three diagrams, we have represented the examples: C > 0
acting on an isotropic � (red); D compressing an ellipsoidal (gyrotropic)
� along the two initial major axes (blue); and W having the rotation axis
parallel to one of the minor axes of an ellipsoidal (gyrotropic) �.

for example along z, by considering the local spatial dependence of
the cyclotron frequency, �c(x), and of the modulus of the vorticity,
ω(x), the local gyration frequency �′(x) around the magnetic lines
is increased by the vortical dynamics, |�′(x)| = |�c(x)| + |ω(x)|,
when B · ω > 0, whereas it is decreased, |�′(x)| = |�c(x)| − |ω(x)|,
when B · ω < 0. This spatial ‘asymmetry’ related to the sign
of B · ω plays a key role in the forced solutions discussed in
Section IV of Del Sarto et al. (2016a) obtained by assuming the
velocity and magnetic field fixed in time: an initial sheared velocity
profile transfers the spatial inhomogeneity in an anisotropic way to
the components of the pressure tensor, with a rate which, when B
is spatially uniform, is exponential for �c�

′(x) < 0 and periodic
in time for �c�

′(x) > 0. Moreover, the B · ω-related asymmetry is
at the basis of the asymmetric behaviour which may influence the
KH dynamics in presence of magnetic field (Huba 1996), as it is
well known to happen at the flanks of the terrestrial magnetosphere
(Hasegawa et al. 1996). We will return to this subject in Section 5.

The other feature we will focus on is the generation of pressure
anisotropy by the symmetric term {D, �} of equation (14).

The deformations of � related to each of the r.h.s. terms of
equation (13) are summarized in Fig. 1.

3.2.1 Gyrotropic anisotropy in a double adiabatic closure

The most commonly used notion of the term ‘anisotropy’ in
plasma literature refers to the gyrotropic CGL-type, double adi-
abatic anisotropy P||/P⊥ (see e.g. Schekochihin et al. 2008), where
P|| and P⊥ are, respectively, the parallel and perpendicular pressure
to the local magnetic field, sufficiently intense to grant the CGL,
gyrotropic form of the pressure tensor (Chew et al. 1956):

�CGL
ij ≡ P⊥δij + (P|| − P⊥)bibj . (15)

When the cyclotron frequency is the dominant inverse time-scale of
equation (5) so that τ

B
/τ

H
� 1, �CGL

ij is indeed the leading order
solution in the expansion of � that satisfies MB(�) = [B, �] =
0. Thanks to the lower time resolution required, the gyrotropic
anisotropy is typically easier to be measured than pressure agy-
rotropy, both by satellites and in numerical simulations, and in gyro-
averaged descriptions is obviously the dominant pressure anisotropy
which can be observed. This anisotropy follows from the two
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equations which are obtained by, respectively, contracting equa-
tion (14) with δij (i.e. by taking the trace) and with bibj (i.e. by
taking the projection along the local direction of B). For a generic
form of �, we have tr{[B + W,�]} = 0 and [B, �]ij bibj = 0 be-
cause of symmetry. Then, expanding the pressure tensor as � =
�CGL + �(1) + .. and ordering ∂t ∼ uk∂k ∼ ||D|| ∼ ||W|| ∼ τ−1

H
,

we find that the projected equations at the leading order o(τ
B
/τ

H
)

are:

∂

∂t
(2P⊥ + P||) + uk

∂

∂xk

(2P⊥ + P||) − 5C(2P⊥ + P||)

+ 2(P|| − P⊥)Dlkblbk = 0, (16)

∂P||
∂t

+ uk

∂P||
∂xk

− 5CP|| + 2P||Dlkblbk = 0. (17)

The diagonal form of �CGL
ij has made the vorticity contribution dis-

appear from the equation for P|| too, since [W, �CGL]ij bibj = 0 be-
cause of symmetry. Also note that symmetry grants [B, �(1)]ij δij =
0 and [B,�(1)]ij bibj = 0, which makes the set (16–17) closed with
respect to the zeroth-order expansion of �. Obtaining the equation
for P⊥ is then straightforward,

∂P⊥
∂t

+ uk

∂P⊥
∂xk

− 5CP⊥ − P⊥Dlkblbk = 0. (18)

A more customary form of the ‘generalized CGL-type’ equations
(17–18) – cf., e.g., App. B of Del Sarto et al. (2017) – is ob-
tained by expressing C and Dij as defined in equation (13). Equa-
tions (17–18) make it manifest that the gyrotropic anisotropy al-
lowed by this closure condition follows from the different compres-
sion on the components P⊥ and P||, which are due to the projection
of D along the local magnetic field. For D = 0, the evolution of
both P⊥ and P|| is adiabatic (with polytropic index 5/3) and becomes
isobaric if C = 0, too.

The D = 0 case is relevant, for instance, to von Karman flow
experiments, such as those discussed by Plihon et al. (2015), in
which a cylindrical plasma is set in motion by a dominant eddy flow
with B × ω = 0. In this case, a non-isotropic, gyrotropic pressure
evolution would be allowed at the (τ

B
/τ

H
)0 order of validity of

equations (17–18) only if the gradients of the heat flux were retained.
In the more general D 	= 0 case, the CGL-type closure may also

account for a non-gyrotropic pressure anisotropy once FLR cor-
rections of the order of o(τ

B
/τ

H
) are retained to describe the �(1)

components (Kaufman 1960; Cerri et al. 2013). These corrections
are obtained by balancing the non-null contributions of [B, �(1)]
with the remaining components of equation (14). It results, how-
ever, that these extended model equations fail to provide a consistent
dispersion of magnetoacoustic modes (MacMahon 1965; Del Sarto
et al. 2017): the full pressure tensor evolution must be retained
when the hypothesis τ

B
/τ

H
� 1 is relaxed, and a more accurate

FLR expansion accounting for the contribution of higher order mo-
ments should be retained for values of β ∼ 1 (Mikhailovskii and
Smolyakov 1985; Sulem & Passot 2015; Del Sarto et al. 2017).

We conclude by recalling that equations (17–18) assume a partic-
ularly simple form when they are coupled to the continuity and ideal
Ohm’s law, which provides the standard double adiabatic form

d

dt

(
P⊥

n|B|
)

= 0,
d

dt

(
P|||B|2

n3

)
= 0, (19)

where d/dt ≡ ∂t + u · ∇, or when gradients are assumed to be
purely parallel or purely perpendicular to the magnetic field. In
these latter cases, polytropic closures with different indices for P⊥
and P|| are obtained from equations (17–18). With obvious notation,

these correspond to T|| ∝ n2 and T⊥ = constant (i.e. to polytropic
indices �|| = 3 and �⊥ = 1) when spatial gradients are approxi-
matively parallel to B, and to T|| = constant and T⊥ ∝ n (i.e. to
polytropic indices �|| = 1 and �⊥ = 2) when spatial gradients are
approximatively perpendicular to B.

The latter case is relevant, for example, to the solar wind: an
interpretation mechanism for the main features of the gyrotropic
anisotropy at a given radial distance R from the Sun can be pro-
vided (Matteini et al. 2012) by using the standard double adiabatic
equations in the limit of negligible parallel gradients of the solar
wind velocity, once we estimate n ∝ R−2 and we consider a power-
law scaling in R for the amplitude of the magnetic field components.
For example, |B| ∝ R−2 can be assumed for a strictly radial mag-
netic field, whereas a scaling ∝ R−1 should be further considered
for the tangential magnetic component in Parker’s spiral magnetic
field model.

3.2.2 Gyrotropic and non-gyrotropic anisotropy in a planar flow

Anisotropy, of both gyrotropic and non-gyrotropic type, is naturally
referred to the local principal axes of �. In the B × ω = 0 case of
interest here, one of these axes, which we relate to the eigenvalue
�||, will be aligned to the common axis of rotation of both B and
W. Naming P1 and P2 the eigenvalues corresponding to the other
two principal axes of the pressure tensor, its agyrotropy, that is its
non-gyrotropic anisotropization, can be quantified as

Ang ≡ P1 − P2

P1 + P2
, (20)

whereas its gyrotropic anisotropization is given by

Agyr ≡ 2P||
P1 + P2

. (21)

From now on, we restrict to a geometry where the magnetic field is
along z, coordinate with respect to which we assume translational
invariance (∂z = 0). We will consider the ux and uy components
only, since the flow in the (x, y) plane results to be decoupled from
the uz components, while the B × ω = 0 condition is verified at
any time. The strain tensor is now a 2 × 2 matrix, (∇u)⊥, written
in tensor notation as ∂iuj with the latin indices which from now on
read i, j = x, y. Then, the isotropic volume compression coefficient
C becomes an isotropic surface compression coefficient defined as

C⊥ ≡ −1

2

∂uk

∂xk

(k = x, y). (22)

The traceless rate of shear D of equation (13), which now becomes
a 2 × 2 matrix, D⊥, related to non-isotropic surface compressions,
should be accordingly re-defined as

D⊥,ij ≡ 1

2

[
∂ui

∂xj

+ ∂uj

∂xi

]
+ C⊥δij (i, j = x, y). (23)

In this geometry, the pressure tensor has a diagonal block form,
� = �⊥ + P||bb, and its evolution equation in matrix form, which
replaces equation (14), rewrites as

d�

dt
= [B⊥ + W⊥, �] − {D⊥,�} + 4C⊥�, (24)

where the symbol ‘⊥’ labels the x − y components of the matrices
B and W previously defined in equations (12–14) and d/dt is the
total time derivative already introduced in equations (19). Using the
equation for the trace of �⊥, which can be directly deduced from
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Figure 2. Sketch of the possible deformations induced by the 2 × 2 strain
tensor (∇u)⊥ on the pressure tensor �⊥, whose principal axes define the
shape of an ellipse in the (x, y) plane. Examples in the diagrams: C⊥ > 0
acting on an isotropic �⊥ (red); D⊥ compressing an agyrotropic �⊥ along
its major axis (blue); W⊥ rotating an agyrotropic �⊥ in the (x, y) plane
(green).

the previous one,

d

dt
tr(�⊥) = −2tr(D⊥�⊥) + 4C⊥tr(�⊥), (25)

the equation for the non-gyrotropic part of the perpendicular matrix
component �⊥, �

ng
⊥ ≡ �⊥ − tr{�⊥}I⊥/2, reads

d�
ng
⊥

dt
= [B⊥ + W⊥, �

ng
⊥ ] − {D⊥, �

ng
⊥ } + 4C⊥�

ng
⊥ (26)

+ I⊥ tr(D⊥�
ng
⊥ ) − D⊥ tr(�⊥).

It shows with its last r.h.s. term that a non-null rate of shear
can generate agyrotropy on a time-scale τan ∼ ||D⊥||−1 from an
initial isotropic state. The evolution of the parallel component
P|| = �ijbibj, calculated by projecting equation (14) on bibj and
already written in the form of equation (17) for a more general
3 × 3 matrix expression of the strain rate D, assumes a more trivial
form of a polytropic with index 2 in this B × ω = 0 case where
{D⊥, �}ij bibj = 0,

dP||
dt

= 4C⊥P||. (27)

The deformations related to the strain tensor, specialized to a two-
dimensional geometry, acting on �⊥ are schematized in Fig. 2.

4 ANISOTROPIZATION N EAR A ‘VORTICI TY
SHEET’

We apply the shear-induced mechanism of anisotropization to large
aspect ratio vorticity sheets, such as those generated at the boundary
of a convective cell in turbulence or at the interface of two fluids
in relative motion one with respect to each other (consider, for
example, the magnetopause boundary with the solar wind). The
main point we make here is that such a sheared flow corresponds to
a traceless rate of shear of characteristic amplitude comparable to
the fluid vorticity, that is ||D⊥|| ∼ ||W⊥||.

Consider a vorticity sheet characterized by a large-scale separa-
tion between its length extension, say L, and its thickness, say δ.
The assumption δ � L means that |∂δuL| � |∂Luδ|, with ‘∂δ’ and
‘∂L’ expressing the gradient across and along the vorticity sheet,
respectively. We can thus assume a planar configuration by approx-
imating the vorticity sheet as a 1D structure of infinite length L with

respect to the scale of variation across its thickness. Taking y to
be the coordinate along the vorticity sheet, we model the latter by
assuming an initial velocity profile u0 = (0, u0

y(x/δ), 0), sheared
with respect to a coordinate x over a length-scale L

H
≡ δ � L,

and we will consider its evolution on spatial intervals in x that
remain much smaller than L. This initial flow is incompressible
(C⊥ = 0) and has a rotational component corresponding to a
vorticity ω = (0, 0, ∂xu

0
y(x)). Thus, at t = 0, the components of

D⊥ and W⊥ read

D⊥ ≡
(

0 ωz/2
ωz/2 0

)
, W⊥ ≡

(
0 ωz/2

−ωz/2 0

)
, (28)

where ωz ≡ ∂xu
0
y(x) has the characteristic amplitude

ωz ∼ c
H

L
H

∼ di

δ
M

A
�c. (29)

This u0 = (0, u0
y(x/δ), 0) sheared flow, besides representing a po-

tentially KH-unstable configuration, as we will discuss in Section 5,
can be seen also as the limit of a 2D ‘stretched’ eddy-like incom-
pressible flow of the kind u(x, y) = ez × ∇ϕ(x, y), with the stream
function having contour lines (x/δ)2 + (y/L)2 = constant. In this
case, the error made is in neglecting additional terms which are
only δ/L smaller than the dominant elements in the off-diagonal
components of both D⊥ and W⊥, which are of the order of c

H
/δ.

Examples of more complex flows with D⊥ = 0 and non-null vor-
ticity are discussed in Appendix A.

The simplification of assuming both the vorticity and magnetic
field axes to be approximately parallel (to the z-axis), and which, as
already noted, allows us to maintain a fully planar evolution of the
fluid in the (x, y) plane, implies negligible (formally zero) in-plane
components of the magnetic field and therefore restricts the regimes
of Alfvénic turbulence with which this analysis can be compared
quantitatively. On the other hand, it excludes the well-known sta-
bilizing effect of an in-plane magnetic field for the KH instability,
therefore allowing for a better comparison with the ‘stabilizing ef-
fect’ related to a full pressure tensor evolution that may prevent the
onset of the KH instability in this configuration, as we will discuss
in Section 5.

As stated by equations (20–21), the local non-gyrotropic and
gyrotropic anisotropies are related to the eigenvalues P1, P2, and P||
of the pressure tensor. Choosing Ang to be positive defined and P1

to be the largest eigenvalue of �⊥, this relation can be expressed in
a matrix form as⎛
⎝ P1 0 0

0 P2 0
0 0 P||

⎞
⎠ = tr{�⊥}

2

⎛
⎝ 1 + Ang 0 0

0 1 − Ang 0
0 0 Agyr

⎞
⎠ . (30)

Since the traces of � and �⊥ are invariant with respect to the
rotation around the z-axis which brings � to the local diagonal
form (30), it is possible to express Ang and Agyr in terms of the
coordinate components of �. In particular, P|| = �zz and P⊥ =
tr{�⊥}/2 = (�xx + �yy)/2. Equations (20–21) then become

Ang =
√

(tr{�⊥})2 − 4 det{�⊥}
tr{�⊥} , Agyr = 2P||

tr{�⊥} . (31)

Naming θ (x, t) the angle between the principal axes of �⊥ and
its local components in the Cartesian reference frame, i.e. the an-
gle of the local rotation around z which brings � to the diagonal
form (30) according to 2�xy = Angtr{�⊥} sin 2θ and �xx − �yy =
Angtr{�⊥} cos 2θ , and naming φ(x, t) the angle of the analogous
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rotation which brings D⊥ to the form(
D⊥ 0
0 −D⊥

)
(32)

according to Dxy = D sin 2φ and Dxx − Dyy = 2 D cos 2φ, it is
possible to write the equations for the time evolution of Ang and
Agyr. The former has been provided in Del Sarto et al. (2016a)

dAng

dt
= 2D⊥ [(Ang)2 − 1] cos[2(θ − φ)]. (33)

A straightforward derivation of the equation above follows from dif-
ferentiating (Ang)2 as given by equation (31) while using det{�⊥} =
((tr{�⊥})2 − tr{�⊥�⊥})/2 and equations (25–26, 31), and noting
that tr{D⊥�⊥} = AngD⊥tr{�⊥} cos[2(θ − φ)].

An analogous equation for Agyr can be obtained by using Agyr =
2(tr{�}/tr{�⊥} − 1), the trace of equation (24), and equation (25):

dAgyr

dt
= 2D⊥AgyrAng cos[2(θ − φ)]. (34)

Equations (33–34) state that both Ang(x, t) and Agyr(x, t) increase
in time at a rate which is maximum when the major (minor) prin-
cipal axes of �⊥ and D⊥ are de-phased by an angle π/2. Neither
C⊥ nor W⊥ contributes to the evolution of Ang and Agyr. We now
identify the maximum anisotropization rate of both Ang and Agyr to
be τ−1

an ∼ ||D⊥|| = D⊥, hence from equations (28–29) it follows
τ−1

an ∼ ||D⊥|| = c
H
/L

H
close to a vorticity sheet.

We can therefore quantify the anisotropization mechanism near
a vorticity sheet given as an initially steady configuration (for in-
stance, as the result of a local force balance condition) by consider-
ing the numerical example analysed in Del Sarto et al. (2016a), with
parameters β = 1, � = 1 (δ = di), and M

A
= 1 [relevant, for exam-

ple, to the magnetospheric environment (Nakamura, Hasegawa &
Shinohara 2010)], with an initial isotropic pressure �0

ij = c2
A
/2δij

and with a velocity profile u0
y(x) = c

A
tanh(x/di)/ cosh2(x/di),

which corresponds to a Fourier spectrum peaked at kxdi < 1.
The contour-plots of Fig. 3, obtained by integrating with a spec-
tral code, using a third-order Runge–Kutta algorithm for the time
advancement, the full set of equations (1–5) initialized with the
profiles above, show that a relatively long-standing anisotropy
both non-gyrotropic (frame a) and gyrotropic (frame b) is gen-
erated after an initial rapid transient – cf. for a comparison
the corresponding shade-surface plot in fig. 7a and b of Del
Sarto et al. (2016a). The fact that Agyr and Ang appear corre-
lated to both a traceless rate of shear and to a fluid vorticity
is evidenced by frame c, where the contour-plot of ωz is shown
(cf. equations 28).

5 AGYROTROPY AND STABILITY O F A
VO RTI C I T Y SH E E T

The previous analysis has been performed by assuming an initially
given current sheet, which acts as a source for the anisotropy. Such
a vorticity sheet would be in an equilibrium configuration in an
isotropic MHD plasma, but it is not in equilibrium when a full
pressure tensor evolution is accounted for (Cerri et al. 2014; Del
Sarto et al. 2016a). When described by equations (1–5), the current
sheet evolves [i.e. D⊥(x, t) and φ(x, t) of equations (33–34) change
in time]. However, as evidenced by Fig. 3, such an evolution may
be relatively slow with respect to the rate of anisotropization, which
justifies the approach we have previously developed.

The pressure tensor evolution induces a progressive broad-
ening of the vorticity sheet, which, for a sheared velocity

Figure 3. From the top to bottom: amplitude, with respect to x (abscissa)
and t (ordinate) of the non-gyrotropic anisotropy Ang (a), of the gyrotropic
anisotropy Agyr (b), and of the eigenvalue D of the shear rate matrix (c), which
here coincides with half the fluid vorticity ωz = ∂xuy (cf. equation 28).
The simulation has been initialized with �0

ij = δij /2, u0 = (0, u0
y , 0) with

u0
y (x) = tanh(x/di )/ cosh2(x/di ), B0 = (0, 0, 1), and β = 1, � = 1, M

A
=

1. The dashed lines represent the slopes of �t/�x = ±1/
√

2, here drawn
for reference, since they correspond to the approximate phase velocities
vLF in the limit kdi � 1. The contour-plots (a) and (b) correspond to the
shade-surface plot of figs 7a and b of Del Sarto et al. (2016a).
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profile with spectral density peaked at kxdi < 1, occurs on a time-
scale ∼(kx(c2

A
+ c2

s )1/2)−1. At di ∼ ρ i, (that is for M
A

∼ Ms) and
L

H
∼ di , as is the case for the numerical example of Fig. 3, this

‘broadening time’ is by a factor c
H
/(c

A
kxdi

√
2) = M

A
/(kxdi

√
2)

longer than the anisotropization time τan ∼ di/cH
. This estimate

can be obtained from a heuristic model, in which the vorticity sheet
is treated as if it were an initial perturbation on an isotropic equi-
librium, homogeneous in density and with zero vorticity.

The linear analysis detailed in Del Sarto et al. (2017) shows
that a low-frequency (LF) branch, corresponding to a fast magne-
toacoustic wave, and a high-frequency (HF) branch, correspond-
ing to a generalized, non-quasi-electrostatic m = 2 ion-Bernstein
wave, can be excited. Based on this analysis, a given vorticity
sheet with spectral density peaked at kxdi < 1 excites two counter-
propagating magnetosonic modes, oscillating at the LF branch
frequency ωLF ∼ kx(c2

A
+ c2

s )1/2. These counterpropagating mag-
netosonic modes are dominated by the ũx velocity component and
account for about 1/2 of the u0(x) initial amplitude, since that of the
ũy component results ∼(kxρi/4)

√
β/(1 + β) smaller. The remain-

der of the initial velocity profile should be carried away by the HF
branch, which for small kxdi has a circular polarization {1, −i} with
respect to the basis {ux, uy}. However, at the same spatial scales, the
HF branch group velocity is vHF ∼ kxdicA

/2, which is small for kxdi

� 1. This maintains the velocity shear (i.e. ωz, Fig. 3c) localized
in a spatial interval of width 2�x/di � 2vHF�c�t , centred around
x/di � 0, for a time interval �t and explains the corresponding
behaviour of the pressure anisotropies Agyr and Ang, which keep on
staying localized close to x = 0, while oscillating at about ∼2�c

(i.e. at the frequency of the HF branch at kxdi � 1). Also note that
the broadening of the vorticity sheet related to the propagation of
the wave packets takes place linearly in time with time-scales ω−1

LF

and ω−1
HF

, and thus more slowly with respect to the anisotropiza-
tion process, even when the time-scales of the former result to
be comparable to τ an, (as, for example, for the kxdi ∼ 1 spectral
component of the LF branch in the numerical example considered).
The fact that the broadening of the vorticity sheet is mostly due to the
propagation of the large wavelength spectral component kxdi < 1 of
the LF branch is evidenced in Fig. 3 by the dashed lines, whose slope
represents the inverse phase velocity of the LF branch evaluated for
ωLF ∼ kx(c2

A
+ c2

s )1/2.
On the other hand, the fact that the vorticity sheet configura-

tion is not an equilibrium condition in an initial homogeneous
and isotropic plasma when an anisotropic tensor described by
equation (3) is accounted for, contrasts the onset of the KH in-
stability. Both the anisotropization and the maximally unstable
KH mode grow exponentially in time over the same time-scale
γ −1

KH
∼ L

H
/u0

y ∼ L
H
/c

H
∼ τan. However, the widening of the vor-

ticity sheet, which is self-consistently accounted for in the shear-
induced anisotropization process, opposes to the onset of the KH
on a time-scale essentially provided by ω−1

LF
.

The competition between the vorticity sheet dynamics and the
onset of the KH, which we have discussed in the framework of the
fluid model extended to include a full pressure tensor evolution,
appears to be qualitatively consistent with the results of full kinetic
(PIC) numerical simulations, in particular those by Nakamura et al.
(2010). They have pointed out that the dominant effect due to the ki-
netic modelling of a KH unstable velocity field is on the broadening
of the initial velocity shear layer. While the observed broadening of
an initial velocity profile u0

y(x) = c
A

tanh(x/di) up to a width ∼2ρ i

over a time ∼�−1
c appears to be compatible with the action of the

LF branch for kxdi < 1, the existence of a final relaxed state cannot
be interpreted in the framework of the fluid collisionless model.

6 D I SCUSSI ON: VORTI CI TY, ANI SOTROPY,
A N D T U R BU L E N C E

An excellent correlation between pressure gyrotropic anisotropy
and fluid vorticity has been evidenced first by Franci et al. (2016b)
and then by Parashar & Matthaeus (2016), and an analogous corre-
lation between agyrotropy and vorticity has been more recently
remarked in Valentini et al. (2016). On the other hand, as we
have pointed out, the fluid vorticity does not play any role in the
shear-induced anisotropization mechanism, and an interpretation
of the anisotropization observed in kinetic simulations of Alfvénic
turbulence has been related to the deformations of the distribu-
tion function induced by electromagnetic (e.m.) effects (Valentini
et al. 2016).

We now discuss (Section 6.1) how the shear-induced
anisotropization mechanism, first proposed in Del Sarto et al.
(2016a) as a candidate to explain the generation of anisotropy in
presence of localized shear flows in developed turbulence, could
provide a reasonable explanation to the aforementioned correla-
tions.

6.1 Shear-induced anisotropization and plasma turbulence

The idea we pursue here is that, although e.m. effects dominate the
evolution of Alfvénic turbulence in a kinetic plasma, the ‘efficient
cause’ behind the observed anisotropy and identified in Valentini
et al. (2017) as an ‘ion differential heating close to thin current
sheets’ be in the dynamical action of the rate of shear associated
with thin vorticity sheets on the second-order moment, �, of the
distribution function. This would have the appealing feature to pro-
vide an actual mechanism of anisotropization, which is moreover
based on dynamical effects that can be described in terms of macro-
scopic quantities. Furthermore, as we will see, it seems to comply
with many features observed in the quoted studies of numerical tur-
bulence, and in particular with the debated role of vorticity (Franci
et al. 2016b; Parashar & Matthaeus 2016; Valentini et al. 2016).
This point of view appears to be confirmed by more recent kinetic
simulations by Yang et al. (2017a,b)

First, we note that di at β � 1, and ρ i at β � 1 with cold
electrons (or ρs ≡ ρi

√
Te/Ti if the electron temperature is the dom-

inant contribution to the plasma β � 1), provides the order of
magnitude of the characteristic shear lengths of steady structures in
turbulence. An estimation of the typical scale of the thickness δ in
developed turbulence can be indeed provided by considering that for
a steady vorticity/current sheet generated by turbulent motion, the
condition ∂t = 0 and the balancing between the convective terms
∼u · ∇(...) and the other terms of equations (1–5) can be assumed.
The balance between the r.h.s. terms of the induction equation (5) [or
equivalently between the Lu(�) and MB(�) operators of equation
(3)] gives L

H
∼ dicH

/c
A

. An analogous balance between the terms
u · ∇u ∼ �c J × b/(ne) (for β � 1) and u · ∇u ∼ ∇ · �/(mn)
(for β � 1) in momentum equation (2) gives c2

H
∼ c2

A
and c2

H
∼ c2

S
,

respectively. We can thus evaluate the characteristic layer thickness
δ as the typical scale length L

H
satisfying the above estimate, so to

obtain

δ ∼ ρi ∼ di when β ∼ 1 and
δ ∼ di for β � 1, δ ∼ ρi for β � 1.

(35)

The estimate δ ∼ ρs for β � 1 follows instead when the electron
temperature in equation (2) is accounted for, at the place of ion
temperature. These values appear to be correlated also with the
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numerical estimates of the spectral break at the ion scale, well known
for β ∼ 1 to be at kdi ∼ 1 (Bale et al. 2005) and recently evidenced
in 2D hybrid-PIC turbulence simulations by Franci et al. (2016a) to
be at kρ i ∼ 1 for β > 1 (k being the wavevector amplitude).

On the other hand, we have shown (Section 4) that δ ∼ di is the
characteristic thickness at which, for β ∼ 1, the generation of non-
gyrotropic and gyrotropic anisotropy occurs over a time τ

H
∼ τ

B
,

and that the 1D flow sheared over a layer of thickness δ ∼ di is
representative of a vorticity sheet in which δ is the scale of variation
across the vorticity sheet, much smaller than the scale of variation
L, providing the vorticity sheet elongation.

Therefore, from the discussion of the two previous paragraphs
we may conclude that the 1D flow sheared over a layer of thickness
δ ∼ di is locally representative of the shear-driven anisotropization
mechanism which can be encountered in fluid1 turbulence at β � 1.
As shown in Fig. 3, in this limit the gyrotropic and non-gyrotropic
anisotropies Agyr and Ang are correlated to both the strain rate D⊥
and the fluid vorticity ωz (cf. equations 28 and 32), even if the for-
mer only intervenes in the anisotropization mechanism (equations
26 and 27). As we are going to discuss in the next subsections,
where we compare this mechanism to previous interpretations of
anisotropy generation in plasma turbulence, we argue that such a
shear-driven anisotropization mechanism be relevant also to the
regimes of Alfvénic turbulence investigated in the kinetic simula-
tions quoted above.

6.2 Comparisons with previous interpretations

The generation of localized non-gyrotropic and gyrotropic ion pres-
sure anisotropy in Alfvénic turbulence at β ∼ 1 has been first re-
marked by Servidio et al. (2012).

In the following part of this section, we will compare the interpre-
tation described above for the generation of the pressure anisotropy
with different interpretations that have been proposed in the litera-
ture.

6.2.1 Correlation between pressure anisotropy and current sheets

In Servidio et al. (2012), first, then in Perrone et al. (2013) and
Servidio et al. (2015), and, more recently, in Valentini et al. (2016),
a correlation has been pointed out between local peaks of Ang and
current density structures Jz of characteristic thickness δ ∼ di. In
these works, where the development of 2D Alfvénic turbulence
has been investigated with hybrid-Vlasov simulations, the source
of anisotropy has been attributed to the turbulent character of the
e.m. field and to its ‘intermittent’ features meant as spatially non-
uniformities. In this context, a more specific mechanism for the
generation of pressure anisotropy has been recently proposed in
Valentini et al. (2017), where kinetic Alfvén waves generated by
phase-mixing of shear Alfvén waves propagating in an inhomoge-
neous plasma have been shown to induce a deformation of the ion
distribution function that leads to both agyrotropic and gyrotropic
anisotropy.

1 In the 2D configuration we are considering here, we can distinguish be-
tween fluid and Alfvénic turbulence, since a spatial dependence is assumed
only on the coordinates (x, y) perpendicular to a background magnetic field
B = B0ez. With fluid we mean the turbulence achieved when perturbations
are excited on the components ux and uy only, and not on the components of
B (we recall in this regard that the condition B × ω = 0 is maintained at any
time since ũz = B̃x = B̃y = 0). 2D Alfvénic turbulence requires instead the
excitation of both fluid (ux, uy) and magnetic (Bx, By) in-plane components.

Our interpretation differs from those which have been provided
above, since we deem that the correlation between Jz and Ang or
Agyr does not necessarily imply a casual relation. While we cannot
exclude the role that e.m. effects may play in the anisotropization
process, we have shown that the effect of Jz is not necessary to the
anisotropization model we propose (where no Jz fluctuations are
generated – cf footnote 1). We interpret instead such a correlation
to be due to the shear-driven anisotropization mechanism which,
as stated above, for elongated vorticity sheets appears to be corre-
lated to (but not determined by) the fluid vorticity and to the fact
that vorticity and current sheets develop close one to each other
in a low collision plasma with a 2D coordinate dependence. This
coincidence is essentially due to the generation of vorticity because
of the rotational of the Lorentz force intervening as a source term
in the vorticity equation (Matthaeus 1982), and to the convection
by the fluid flow of the component of the electron canonical mo-
mentum parallel to the out-of-plane magnetic field. An example
is provided by the generation of current and vorticity sheets near
X-points in magnetic reconnection (Matthaeus 1982), or by the tur-
bulence developed in the non-linear regime of strong guide field
or of electron magnetohydrodynamics collisionless reconnection,
where current sheets are advected by the flow along the vorticity
sheets and are subject to secondary reconnecting processes in the
turbulent regime achieved inside of the magnetic island (Del Sarto,
Califano & Pegoraro 2003, 2005).

This point of view about the anisotropization mechanism in
Alfvénic turbulence appears to be supported also by Vlasov studies
(Parashar & Matthaeus 2016), where it has been evidenced that:

(i) vorticity structures are generated in a kinetic plasma, typically
very close to current sheets and

(ii) that a proton heating, which depends on the local sign of
B · ω, seems to be more strongly correlated to the vorticity than to
the current density profile.
Further evidence in this regard has been more recently provided by
the works of Yang et al. (2017a,b), which we consider as supportive
of the interpretation we propose: these authors have shown by full
Vlasov–Maxwell simulations of 2D Alfvénic turbulence that the
action of the fluid strain � = ∇u on � is the only one responsible
for the generation of the plasma internal energy, whereas the e.m.
forces contribute to the generation of localized proton and electron
flows, i.e. current sheets.

Finally, the anisotropization mechanism that we describe can also
qualitatively account for the fact that the gyrotropic anisotropization
of alpha particles is more pronounced than that of protons, as shown
by Valentini et al. (2017). Since the cyclotron frequency of alphas
is half that of protons, the anisotropization due to the rate of shear
D results to be more efficient for the alphas which have a value of
τ

B
/τ

H
twice larger than the protons.

6.2.2 Correlation between pressure anisotropy and fluid vorticity

The hybrid-PIC simulations of 2D Alfvénic turbulence by Franci
et al. (2016b) have first evidenced, instead, a correlation between
Agyr and the spatial distribution of vorticity sheets ωz of thick-
ness δ ∼ di. This correlation, also involving the non-gyrotropic
anisotropy Ang, has been then rediscussed by Parashar & Matthaeus
(2016) and, more recently, it has been noted by Valentini et al.
(2016) and re-interpreted by Yang et al. (2017a,b). In Franci et al.
(2016b), Parashar & Matthaeus (2016), and Yang et al. (2017a,b),
in particular, the possible role played by the fluid vorticity in the
anisotropization process has been suggested.
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Our interpretation is that this correlation too is not causal, but that
instead it is due to the correlation between fluid vorticity and rate of
shear D, the latter alone providing the mechanism of anisotropiza-
tion. This has been recently reported also in Yang et al. (2017b),
where the strong correlation between proton heating and vortic-
ity has been explained, as we discuss here, as due to the fact that
‘in the large Reynolds number limit, nearby vortices are stretched
to planar sheet-like structures that have equal part symmetric and
anti-symmetric velocity stresses’. It has been noted however in the
same work that vorticity may distort the distribution function. While
further kinetic studies exist that provide similar conclusions, such
as the gyrokinetic simulations of tokamak turbulence by Strugarek
et al. (2013a,b), we point out that these results fall outside the
extended-MHD description that we have adopted. For example the
‘fluid vorticity injection’ in Strugarek et al. (2013a,b), from which a
relatively important gyrotropic temperature anisotropy follows, can
be shown to correspond to a polarization density injection (Ghizzo
et al. 2017b).

In concluding this section, we remark that our interpretation is
not limited to configurations with imposed large aspect ratio vor-
ticity sheets in which D⊥ ∼ ωz/2 (equation 28). In fact, even a
flow with an initial null rate of shear D⊥ (corresponding by it-
self to a quite special configuration – see Appendix A) will nat-
urally evolve into a configuration with non-vanishing D⊥ due to
the action of the gradients of the magnetic and plasma pressure
(see Appendix B).

7 LONG-TERM SELF-CONSISTENT E.M.
E FFECTS

A long time description of the self-consistent pressure tensor evo-
lution must take account the onset of e.m. effects.

Besides the work cited in Section 6.2.1, we have previously seen
that at perpendicular propagation both magnetoacoustic waves (the
LF branch) and non-electrostatic generalized ion-Bernstein waves
(the HF branch) are involved in the non-linear pressure tensor dy-
namics, and it is known, e.g. from tokamak experiments (Amatucci
et al. 1996; LeBlanc et al. 1999) that ion-Bernstein waves can gen-
erate sheared flows and vice-versa. In addition, the role played on
the full pressure tensor dynamics by anisotropy-driven instabilities
is not less important. The fast time-scale of the anisotropization
mechanisms which can be achieved when the hydrodynamic time
and length-scale approach the ion kinetic scales (that is, for values
of τ

H
/τ

B
or � approaching unity – see equations 9 and 10) makes

the process relevant to a variety of e.m. anisotropy-driven instabil-
ities. These range from instabilities which feed on gyrotropic or
non-gyrotropic pressure anisotropies by amplifying e.m. perturba-
tions (Section 7.1, next) to reconnecting instabilities for which the
change of magnetic topology is allowed or enhanced by pressure
anisotropy effects (Section 7.2). Differently from the KH instabil-
ity, these anisotropy-driven instabilities do not affect the stability
of a vorticity sheet per se. However, they are likely to influence the
evolution of the vorticity sheet, since they influence the persistence
in time of the shear-induced anisotropy and the dynamics of the
e.m. structures.

7.1 Anisotropy-driven e.m. instabilities feeding on pressure
anisotropy

First, we consider the instabilities which can find their free energy in
the pressure anisotropy generated close to a sufficiently strong local
value of the rate of shear D (e.g. close to a vorticity sheet). Such

instabilities can induce during the first stage of their evolution an
isotropization of the plasma pressure which is even more efficient
than the heat flux gradient (which in not included in our analysis –
see Section 3). An example is provided by the Weibel instability, as
discussed in Sarrat et al. (2016) and Ghizzo et al. (2017a), or by the
fire-hose and mirror instabilities, whose thresholds are supposed to
fix the boundaries, in the parameter space, of the ion gyrotropic
anisotropy measured in the solar wind (Hellinger et al. 2006). In
particular, the anisotropization at the electron scales should be taken
into account when describing Weibel-type instabilities. In this case,
electron agyrotropy (labelled e hereafter) can be expected to develop
on a time-scale me/mi shorter than ions (labelled i hereafter). For
example, considering the B × ω = 0 configuration and assuming
comparable velocities ce

H
∼ ci

H
in the plane perpendicular to the

local magnetic field implies

τ e
H

τ e
B

≡ ce
H

Le
H
�e

c

∼
(

mi

me

Li
H

Le
H

)
τ i

H

τ i
B

, (36)

where τα
H
/τ

B
generalizes equation (9) for α = e, i. Unless

Li
H
/Le

H
∼ me/mi , equation (36) implies τ e

H
/τ e

B
� τ i

H
/τ i

B
. Note

that, for equally oriented vorticities, the different sign of the
charge qα implies a different contribution of the anti-commutators
[(qα/|qα|)B⊥ + W⊥, �α

⊥] for ions and electrons (cf. equation 24
for the ion case). This affects, for example, the stability thresh-
old of the anisotropization mechanism (cf. Section IV of Del Sarto
et al. 2016a).

7.2 Anisotropy-driven e.m. instabilities feeding on magnetic
energy

Current structures generated near the vorticity sheets during de-
veloped Alfvénic turbulence are well known to be subject to sec-
ondary reconnection events (Matthaeus & Lamkin 1985; Lazarian &
Vishniac 1999), typically indicated with the name of ‘turbulent re-
connection’ processes.2 These have been measured in the solar wind
(Retinò et al. 2011) and are expected to fundamentally contribute
to the heating of the solar corona (Lazarian & Vishniac 1999; Velli
et al. 2015). Due to the large-scale separation between the macro-
scopic scale (e.g. the simulation box size) and the turbulent current
sheet structures, the models which link the global rate of magnetic
energy dissipation to the local reconnection processes are clearly
statistical in nature (Lazarian & Vishniac 1999). Nevertheless, they
rely on specific assumptions and models for the average reconnec-
tion processes on the single current sheet. Depending on the relative
amplitude of the single current sheet magnetic field with respect to
the field mean reference amplitude (Del Sarto & Ottaviani 2017),
these reconnecting modes are likely to develop either as standard
tearing modes, or in the ideal tearing regime (Pucci & Velli 2014;
Del Sarto et al. 2016b), as it has been evidenced by numerical stud-
ies of the stability of current sheets whose aspect ratio increases at
an Alfvénic time-scale (Tenerani et al. 2015; Tenerani et al. 2017).
It is in this way that pressure anisotropy effects are expected to inter-
vene in tearing-type instabilities, which can develop on the current
sheets generated by Alfvénic turbulence.

Electron agyrotropy, in particular, is expected to play a promi-
nent role, since via a non-null B · (∇ × ∇ · �(e)) contribution it is

2 The same terming is sometimes used for the feedback of a turbulent
background on large-scale tearing modes (Loureiro et al. 2009; Muraglia
et al. 2009). The latter is not the case considered here, even if the role of
shear-driven pressure anisotropization is of course relevant to it, too.
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capable to break alone the field line connection of ideal MHD (Va-
syliunas 1975; Axford 1983), as resistivity and electron inertia do.
Ion agyrotropy formally does the same but with a contribution me/mi

smaller in amplitude in non-ideal Ohm’s law, which combines with
the relatively slower anisotropization rate expected from equation
(36). Both species agyrotropies are however known from hybrid-
PIC (Hesse & Winske 1993) and PIC (Cai & Lee 1997) simulations
to play a dominant role in the acceleration of ions and electrons
along the X-line (i.e. the z direction, in the 2D case considered here).
Furthermore, the gyrotropic anisotropy of both species strongly in-
fluences the linear and non-linear tearing mode reconnection rate.
On the one hand, indeed, the difference between the parallel and
perpendicular pressure in a CGL closure, despite not contributing to
the parallel component of generalized Ohm’s law, modifies the �′

instability parameter of tearing modes in strong guide field, low-β
plasmas: for Âgyr < 1, it leads to a faster reconnection rate and shifts
the instability threshold at larger wavenumbers, whereas it stabilizes
the reconnecting mode when Âgyr > 1 (Chen & Palmadesso 1984).
On the other hand, it has been recently pointed out by Cassak et al.
(2015) that the electron gyrotropic anisotropy, self-generated in a
CGL gyrotropic closure in the neighbourhood of an X-point, may
be a dominant effect for the reconnection rate increase in slab re-
connection at moderate values of the plasma β, which is related to
the dispersive features acquired by the e.m. waves propagating dur-
ing reconnection. The generation and/or increase of a gyrotropic
anisotropy close to a current sheet due to the different evolution
of P|| and P⊥ in a double adiabatic closure had been earlier stud-
ied by Vainshtein & Mazur (1982) and in several further works.
In general, the occurrence of an even more complex scenario has
been evidenced, when the gyrotropic ion pressure anisotropy, initial
or achieved, becomes capable of destabilizing further anisotropy-
driven modes such as those discussed in Section 7.1. We also re-
mark, in this regard, that as an X-point forms on a current sheet, a
further generation of both Ang and Agyr is expected because of the
2D traceless rate of shear D⊥ associated with the hyperbolic flow
near the X-point [this agrees with the generation of ‘particle gyro-
viscosity’ at an X-point, first suggested by Dungey 1988 (see also
Dungey 1994) and more recently reformulated by Brackbill 2011].

8 C O N C L U S I O N

By recalling the role played by the traceless rate of shear (Section 3)
and by evidencing how this shear rate can be correlated with the
fluid vorticity, we have discussed a mechanism leading to the gen-
eration of both gyrotropic and non-gyrotropic pressure anisotropy
on a large aspect ratio vorticity sheet (Section 4). We have recalled
how the fluid vorticity alone, through its dynamical action on the
pressure tensor evolution, cannot generate any kind of anisotropy,
either agyrotropic or gyrotropic. The dynamics induced by the full
pressure tensor evolution, which modifies a given 1D shear flow on
the same time-scale of the inverse growth rate of the KH instability,
has made it possible to neglect the latter in the study of the 1D
shear flow configuration which approximates the large aspect ratio
vorticity sheet (Section 5). In particular, the waves which can be
excited in this fluid model at propagation perpendicular to a back-
ground magnetic field intervene by carrying away the initial spatial
inhomogeneity, thus stabilizing the velocity configuration with re-
spect to the KH instability and broadening the velocity shear in
agreement with numerical results of PIC simulations (Nakamura
et al. 2010).

We have then provided an interpretation for the correlation be-
tween pressure anisotropy and fluid vorticity, recently shown in 2D

numerical simulations of solar wind turbulence (Section 6.1), based
on the anisotropization mechanism induced by the rate of shear first
discussed in Del Sarto et al. (2016a). We have compared this analy-
sis to different interpretations of kinetic numerical results available
in the literature (Section 6.1,6.2).

The analytical model discussed in Section 4, being restricted to a
configuration satisfying the condition B × ω = 0 at all times, does
not account however for in-plane magnetic perturbations. An ex-
tension of the model to include these effects would allow a more
direct comparison with the numerical studies of Servidio et al.
(2012), Franci et al. (2016b), and Valentini et al. (2016, 2017) and
would require to account for further e.m. effects such as the onset
of anisotropy-driven instabilities (Section 7.1) and the occurrence
of secondary reconnection processes (Section 7.2). In particular,
we have commented upon the role that the anisotropization, both
gyrotropic and non-gyrotropic, induced by the fluid strain, should
affect the reconnecting instabilities occurring on the current struc-
tures localized close to the vorticity sheets in the so-called turbulent
reconnection scenario.

As discussed throughout the paper, all these features are rele-
vant to various phenomena observed in the solar wind and, more
generally, to the physics of the heliosphere. The extension of this
analysis to include the parallel fluid dynamics in a 3D coordinate
dependence on the one hand, and to the simultaneous accounting of
both ion and electron pressure tensors on the other hand, are the next
steps to be accomplished in order for the proposed model to allow a
throughout comparison with in situ satellite measurements such as
those of Astudillo et al. (1996), Posner et al. (2003), Graham et al.
(2017), He et al. (2015), and Scudder et al. (2012). This is an issue
of uttermost importance, for example, to the THOR mission project
(Vaivads et al. 2017) or to the study of magnetic energy dissipation
by turbulent processes in the solar corona (Velli et al. 2015; Fox
et al. 2016).
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APPENDI X A : EXAMPLES OF FLOW S W ITH
N U L L R ATE O F SH E A R

An incompressible, pure vortical flow with D⊥ = 0 necessarily
corresponds to a stream function ϕ(x, y), where both x and y have
the same scale variation length a. To show this, we generalize the
sheared flow u = (0, uy(x), 0) by adding a potential ψ(x, y) while
looking at solutions of the form ux(x, y) = ∂xψ and uy(x, y) =
V (x) + ∂yψ , which satisfy D⊥, ij = 0 ∀i, j = x, y, with D⊥ defined
as in equation (23). In order to satisfy D⊥, xy = D⊥, yx = 0, the
velocity potential must be of the form

ψ(x, y) = −1

2
yV (x) + A(x) + B(y). (A1)

The further condition D⊥, xx = D⊥, yy = 0 imposes a constraint on
the arbitrary functions A(x) and B(y), that is

d2

dx2
A(x) − 1

2
y

d2

dx2
V (x) = d2

dy2
B(y). (A2)

Differentiation of (A2) with respect to y fixes the condition
d2V/dx2 = V2, constant with respect to both x and y. Direct integra-
tion then gives V = V0 + V1x + V2x2/2, A = A0 + A1x + B2x2/2,
B = B0 + B1y + B2y2/2 − V2y3/12, where Ai, Bi, and Vi for i = 0,
1, 2 are free coefficients. Substituting in equation (A1), we obtain

ux(x, y) = A1 + B2x − V1

2
y − V2

2
xy, (A3)

uy(x, y) = V0

2
+ B1 + V1

2
x + B2y + V2

4
(x2 − y2).

This flow has D⊥ = 0, compression rate C⊥ = −B2 − V1y/2, and
vorticity given by ωz = (V1 + V2x)/2. Its compressionless limit
B2 = V1 = 0 leads to a stream function with circular contour levels,

ϕ(x, y) = −V1

4

[(
x + V0 + 2B1

V1

)2

+
(

y − 2A1

V1

)2
]

. (A4)

It is important to notice that the requirement that x and y vary over
the same characteristic length-scale, needed for equations (A3) to
satisfy Dij = 0, does not qualify these vector fields nor the stream
function of equation (A4) as representative of a vorticity sheet, as
it has been considered in Section 4.
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A P P E N D I X B: EVO L U T I O N O F T H E R ATE O F
S H E A R

The equation for the evolution of D⊥, ij is obtained from the com-
ponents of equations (2), combined according to the definition of
equation (23). Using the total time derivative as in equations (27),
expressing the in-plane strain tensor ∂iuj with i, j = x, y in terms
of the operators C⊥, D⊥, ij, and W⊥, ij (cf. equations 13, 22 and 23),
and using the continuity equation (1), we find

d

dt

(
Dij

n

)
= 1

2

(
∂2Mmj

∂xi∂xm

+ ∂2Mim

∂xm∂xj

− ∂2Mkm

∂xk∂xm

δij

)
, (B1)

where the r.h.s. term depends on the gradients of the divergence of
the Maxwell stress tensor, which in this 2D geometry with B × ω =
0 reads

Mij ≡ 1

2
|B|2δij + �ij . (B2)

Its divergence, ∂kMik , corresponds to the i-component of the forces
at r.h.s of momentum equation (2).

Analogously, under the same conditions, for the fluid vorticity,
we obtain

d

dt

(
Wij

n

)
= 1

2

(
∂2Mmj

∂xi∂xm

− ∂2Mim

∂xm∂xj

)
. (B3)
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