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Abstract

The geometric hitting set problem is one of the basic geometric combinatorial opti-
mization problems: given a set P of points and a set D of geometric objects in the
plane, the goal is to compute a small-sized subset of P that hits all objects in D. Re-
cently Agarwal and Pan [7] presented a near-linear time algorithm for the case where
D consists of disks in the plane. The algorithm uses sophisticated geometric tools and
data structures with large resulting constants. In this paper, we design a hitting-set al-
gorithm for this case without the use of these data-structures, and present experimental
evidence that our new algorithm has near-linear running time in practice, and computes
hitting sets within 1.3-factor of the optimal hitting set. We further present dnet, a pub-
lic source-code module that incorporates this improvement, enabling fast and efficient
computation of small-sized hitting sets in practice.

Keywords: Geometric Hitting Sets, Approximation Algorithms, Computational
Geometry.

1. Introduction

The minimum hitting set problem is one of the fundamental combinatorial opti-
mization problems: given a set system (P,D) consisting of a set P and a set D of
subsets of P (sometimes also called ranges), the task is to compute the smallest subset
Q ⊆ P that has a non-empty intersection with each of the ranges inD. This problem is5

strongly NP-hard and if there are no restrictions on the set system D, then it is known
that it is NP-hard to approximate the minimum hitting set within a logarithmic factor
of the optimal [23].

The problem is NP-complete even for the case where each range has exactly two
points, since this problem is equivalent to the vertex cover problem which is known to10

be NP-complete [16, 13]. A natural case of the hitting set problem occurs when the
range space D is derived from geometry—e.g., given a set P of n points in R2, and

1The work of Nabil H. Mustafa in this paper has been supported by the grant ANR SAGA (JCJC-14-
CE25-0016-01).
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a set D of m triangles containing points of P , compute a minimum-sized subset of P
that hits all the triangles in D. Unfortunately, for most natural geometric set systems,
computing the minimum-sized hitting set remains NP-hard. For example, even the15

(relatively) simple case where D is a set of unit disks in the plane is strongly NP-
hard [15]. Note that this problem is equivalent to the problem of covering a given set
of points in the plane with a minimum number of given unit disks.

Given a set system (P,D), a positive measure µ on P (e.g., the counting measure),
and a parameter ε > 0, an ε-net is a subset S ⊆ P such that D ∩ S 6= ∅ for all D ∈ D20

with µ(D∩P ) ≥ ε ·µ(P ). The ε-net theorem [14, 19] implies that for a large family of
geometric set systems—balls in Rd, half-spaces in Rd, k-sided polytopes, r-admissible
set of regions in Rd—there exist ε-nets of sizeO

(
1
ε log 1

ε

)
[14, 17]. We refer the reader

to [21] for details on ε-nets. For certain range spaces, one can even show the existence
of ε-nets of size O

(
1
ε

)
—an important case being that of disks in R2 [22].25

In 1994, Bronnimann and Goodrich [8] (see also [12]) proved the following inter-
esting connection between the hitting-set problem and ε-nets: if one can compute an
ε-net of size c

ε for a given set system (P,D) in polynomial time, then one can compute
a hitting set of size at most c · OPT for (P,D) in polynomial time, where OPT is the
size of the optimal (smallest) hitting set. Until very recently, the best algorithms based30

on this observation had running times of Ω(n2), and it had been a long-standing open
problem to compute a O(1)-approximation to the hitting-set problem for disks in the
plane in near-linear time. In a recent breakthrough, Agarwal and Pan [7] presented
the first near-linear algorithm for computing O(1)-approximations for hitting sets for
disks.35

One limitation of this technique is that the quality of the solution is a function
of the size of the ε-net, and so the technique cannot give better than constant-factor
approximations. This limitation was overcome using an entirely different technique:
local search [20, 11, 6]. It has been shown [20] that the local search algorithm for the
hitting set problem for disks in the plane gives a PTAS. Unfortunately the running time40

of the algorithm to compute a (1 + ε)-approximation is nO( 1
ε2

). Based on local search,
an Õ(n2.34) time algorithm was proposed in [10] yielding an (8 + ε)-approximation
factor.

Our Contributions

All approaches towards approximating geometric hitting sets for disks have to be45

evaluated on the questions of computational efficiency as well as approximation qual-
ity. In spite of all the progress, there remains a large gap, mainly due to the trade-
offs between running times and approximation factors. The breakthrough algorithm
of Agarwal and Pan [7], henceforth referred to as the AP algorithm, uses complicated
data-structures that have large constants in the running time. In particular, it uses a50

O(log n + k)-time algorithm for range reporting for disk ranges in the plane (alterna-
tively, for halfspaces in R3) as well as a dynamic data-structure for maintaining ap-
proximate weighted range-counting under disk ranges in poly-logarithmic time. These
data structures are based on rather sophisticated machinery, including shallow cuttings
and the shallow partition theorem. We refer the reader to the survey [5] for the cur-55

rent state-of-the-art on range searching. These typically involve large constants in their
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construction and use; perhaps due to their practical shortcomings, we have not been
able to find efficient (in fact, any) implementations of any of these data-structures. In
practice, methods based on spatial partitioning are commonly used instead, e.g., quad-
trees, kd-trees, R-trees and Box-trees. Many of these practical structures are suited for60

orthogonal searching problems; indeed, the principal library of geometric algorithms—
CGAL—contains efficient algorithms for the orthogonal (called ‘windowed’) queries,
but none for the more general and harder problem of arbitrary half-space range queries.

This work is an attempt to address this shortcoming: based on a practical spatial
partitioning data structure tailored to the specific problem at hand, we give a new mod-65

ified elementary algorithm and implement a variant of the algorithm that works well
in practice to compute small-sized hitting sets in near-linear time, though with weaker
theoretical guarantees: the worst-case running times are quadratic, while experiments
indicated near-linear running times. In fact, it will turn out that an efficient practical
solution for the geometric hitting set problem for disks relies on one of the basic struc-70

tures in the study of planar geometry: Delaunay triangulations. A major advantage of
Delaunay triangulations is that their behavior has been extensively studied, there are
many efficient implementations available, and they exhibit good behavior for various
real-world data-sets as well as random point sets. For computation of ε-nets, we will
rely on the following result:75

Theorem 1.1 ([9]). Given a set P of n points in R2 and disk ranges, an ε-net of size at
most 13.4

ε can be computed in expected time O(n log n).

Broadly, the algorithm for computing the ε-net in the above theorem is the follow-
ing: first pick a sample Q of size Θ( 1

ε ). All disks that are not hit by Q are contained
in two of the Delaunay disks in the Delaunay triangulation of Q. Thus, it suffices to80

recursively build a ε
2 -net for the points in each Delaunay disk. The union of all these

nets together with Q is the required ε-net.
As an additional benefit, the algorithm used for computing ε-nets uses the same

Delaunay triangulation as our algorithm, enabling us to reduce computations. More
precisely, our contributions are:85

1. A hitting set algorithm (Section 2). We present a modification of the algorithm
of Agarwal and Pan that does not use any complicated data-structures—just De-
launay triangulations (and point-location on it), ε-nets and binary search. For
example, it turns out that output sensitive range reporting is not required. This
comes with a price: although experimental results indicate a near-linear running90

time, we have been unable to formally prove that the algorithm runs in expected
near-linear time.

2. Implementation and experimental evaluation (Section 3). We present dnet, a
public source-code module to efficiently compute small-sized hitting sets in prac-
tice. We give detailed experimental results on both synthetic and real-world data95

sets, which indicates that the algorithm computes, on average, a 1.3-approximation
in near-linear time.
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2. A Hitting Set Algorithm

The Agarwal and Pan (AP) algorithm (shown in Algorithm 1) uses an iterative
reweighing strategy, where the idea is to assign a weight w(·) to each p ∈ P such100

that the total weight of points contained in each D ∈ D is relatively high. It starts by
settingw(p) = 1 for each p ∈ P . If there exists a diskD with small weight, it increases
the weight of the points in D by a multiplicative factor β > 1 until their total weight
exceeds a threshold of c · WOPT

, where c is a fixed constant and W =
∑
p∈P w(p) is the

current total weight. In the AP algorithm, β is set to 2. However, any constant greater105

than 1 works and our algorithm uses this flexibility. If after any iteration, all disks have
weight above the threshold c

2eOPT
·W , return a c

2eOPT
-net with respect to these weights,

ensuring that every disk is hit.
For the purpose of analysis, Agarwal and Pan conceptually divide the reweighings

into O(log n) phases, where each phase (except perhaps the last) performs Θ(OPT)110

reweighings. The implementation of the AP algorithm requires two ingredients: A)
a range reporting data structure and B) a dynamic approximate range counting data
structure. The former is used to construct the set of points to be reweighed and the
latter is required for figuring out whether a disk needs reweighing. As a pre-processing
step, the AP algorithm first computes a 1

OPT
-net Q to be returned as part of the hitting115

set. This ensures that the remaining disks not hit by Q contain less than n
OPT

points.
Additionally they observe that in any iteration, if less than OPT disks are reweighed,
then all disks have weight more than cW

2eOPT
.

Algorithm 1: AP algorithm for computing hitting sets [7].
Data: A point set P , a set of disks D, a fixed constant c, and the value of OPT.

1 Compute a ( 1
OPT

)-net, Q, of P and remove disks hit by Q from D.
2 Set w(p) = 1 for all p ∈ P .
3 repeat
4 foreach D ∈ D do
5 if w(D) ≤ cW

OPT
then

6 reweigh D repeatedly until the weight w(D) exceeds cW
OPT

.

7 flag = false.
8 foreach D ∈ D do
9 if w(D) < c

2e ·
W

OPT
then flag = true.

10 until flag = false.
11 return Q along with a ( c

2eOPT
)-net of P with respect to w(·).

The AP algorithm is simple and has a clever theoretical analysis that proceeds
as follows: each reweighing increases the total weight of the points by a relatively120

small amount, i.e., by O( WOPT
). On the other hand, since each reweighing must involve

reweighing a point present in an optimal hitting set, the weight of the points in an op-
timal solution increases relatively quickly. A quick calculation then shows that after a
logarithmic number of steps, the total weight would be smaller than the weight of the
optimal hitting set, a contradiction. Its main drawback is that the two data structures125
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it uses are sophisticated with large constants in the running time. This unfortunately
renders the AP algorithm impractical. Our goal is to find a method that avoids these
sophisticated data structures and to develop additional heuristics which lead to not only
a fast implementation but also one that generally gives an approximation ratio smaller
than that guaranteed by the theoretical analysis of the AP algorithm. As part of the130

algorithm, we will use Theorem 1.1 for constructing small-sized ε-nets.

Removing A). Just as Agarwal and Pan do, we start by picking a c1
OPT

-net, for some
constant c1. The idea for getting rid of the range-reporting data structure is to observe
the following. If a disk D is not hit by Q, then D is contained in the union of two
Delaunay disks in the Delaunay triangulation of Q. We will show that these two disks135

can be found quickly by a simple binary search. We can then check all points in the
two disks for containment in D and thus enumerate all points in D. Since each of the
Delaunay disks contain at most εn points, this takes O (εn) time.

Removing B). Our approach towards removing the dependence on dynamic approxi-
mate range counting data structure is the following: at the beginning of each phase,140

we pick a c2
OPT

-net R, for some constant c2. We then compute the set of disks that are
not hit by R by going over the disks one by one and checking if they are hit by R.
Checking whether a disk D is hit by R can be done by finding the closest point in R
to the center of D and checking whether the distance between the two points is at most
the radius of D. Finding the closest point in R to a query point can be done efficiently145

by doing point location in the Voronoi diagram of R. We reweigh the disks that are not
hit by R, which are guaranteed to have weight at most c2WOPT

.
While this avoids having to use data-structure B), there are two problems with this:

a) disks with small weight hit by R are not reweighed, while they should have been
reweighed, and150

b) a disk whose initial weight was less than c2W
OPT

could have its current weight more
than c2W

OPT
in the middle of a phase, and so it is erroneously reweighed. This would

imply that we reweigh disks of large weight, which would then be insufficient to
derive a contradiction as in the AP algorithm analysis.

Towards solving these problems, the idea is to maintain an additional set S which155

is empty at the start of each phase. When a disk D is reweighed, we add a random
point of D, sampled according to the probability distribution induced by w(·), to S.
We reweigh a disk only if it is not hit by R ∪ S. Checking whether a disk is hit by
R∪S can again be done using point location in Voronoi diagrams as described before.
We already have such a data structure forR. We additionally need to maintain a similar160

data structure for S. Now, if during a phase, there are Ω(OPT) reweighings, then as in
the Agarwal and Pan algorithm, we move on to the next phase, and a) is not a problem.
Otherwise, there have been less than OPT reweighings, which implies that less than
OPT disks were not hit by R. Then we can return R together with the set S consisting
of one point from each of these disks. This will still be a hitting set.165

To remedy b), before reweighing a disk, we compute the set of points insideD, and
only reweigh if the total weight is at most c2W

OPT
. Consequently we sometimes waste

O( n
OPT

) time to compute this list of points inside D without performing a reweighing.
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Algorithm 2: Algorithm for computing small-sized hitting sets.
Data: A point set P , a set of disks D, and the size of the optimal hitting set OPT.

1 Compute a ( c1
OPT

)-net Q of P and the Delaunay triangulation Ξ(Q) of Q.
2 foreach q ∈ Q do construct Ψ(Q)(q).
3 foreach D ∈ D do
4 if D not hit by Q then add D to D1. // using Ξ(Q)

5 P1 = P \Q.
6 foreach p ∈ P1 do set w(p) = 1.
7 repeat
8 Compute a ( c2

OPT
)-net, R, of P1 and the Delaunay triangulation Ξ(R) of R.

9 Set S = ∅, Ξ(S) = ∅.
10 foreach D ∈ D1 in a random order do
11 if D not hit by R ∪ S then // using Ξ(R) and Ξ(S)

12 foreach p ∈ D do set w(p) = w(p) + c3w(p). // using Ψ(Q)

13 Add a random point lying in D to S; update Ξ(S).

14 until |S| ≤ c4OPT.
15 return {Q ∪R ∪ S}.

Due to this, the worst-case running time increases to O( n
2

OPT
). In practice, this is un-

likely to happen for the following reason: in contrast to the AP algorithm, a disk is170

responsible for only one reweighing in our algorithm. Therefore if the weight of any
disk D increases significantly, and yet D is not hit by S, the increase must have been
due to the increase in weight of many disks intersected by D which were reweighed
before D and for which the picked points (added to S) did not hit D. Reweighing
in a random order makes these events very unlikely (in fact we suspect this gives an175

expected linear-time algorithm, though we have not been able to prove it).
See Algorithm 2 for the new algorithm (the data-structure Ψ(Q) will be defined

later).

Lemma 2.1. Algorithm 2 terminates, Q∪R∪S is a hitting set of size at most (13.4 +
δ) · OPT, for any δ > 0.180

Proof. By construction, if the algorithm terminates, thenQ∪R∪S is a hitting-set. Set
c1 = 13.4 ·3/δ, c2 = 1/(1+δ/(13.4 ·3)), c3 = δ/10000 and c4 = δ/3. Now we apply
a standard reweighing argument (see [7]) as follows. The weight increases by at most
c3c2 · WOPT

at each reweighing, and as the initial weight was n, after t steps, the total
weight of the points of P is upper-bounded by n · (1 + c2c3

OPT
)t. On the other hand, each185

reweighing will reweigh a point of an optimal hitting set. Noting that a point reweighed
a total of r times will have weight (1 + c3)r at the end, the total weight of the points in
an optimal hitting set is, by the convexity of the exponential function, lower-bounded
by OPT (1 + c3)

t
OPT . Thus after t reweighings, we have:

OPT (1 + c3)
t

OPT ≤ n ·
(

1 +
c2c3
OPT

)t
, (1)
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which solves to t = O
(

OPT logn
δ

)
. Each iteration of the repeat loop, except the190

last one, does at least c4OPT reweighings. Then the repeat loop can run for at most
O( OPT logn

c4OPTδ ) = O( logn
δ ) times.

By Theorem 1.1, |Q| ≤ (13.4/c1)OPT, |R| ≤ (13.4/c2)OPT, and |S| ≤ c4OPT.
Thus the overall size is 13.4OPT ·

(
1/c1 + 1/c2 + c4/13.4

)
≤ (13.4 + δ) · OPT.

195

Remark. The values of c1, c2 and c4 are chosen so that the terms 1/c1, 1/c2 and c4/13.4
in the last expression above are roughly the same (about δ/3). It is not necessary to set
them this way. Similarly, c3 is chosen so that it is a small fraction of δ. The constant
10000 is arbitrarily. We have not optimized these constants.

Algorithmic details. Computing an ε-net takes O(n log n) time using Theorem 1.1.200

Checking if a disk D is hit by an ε-net (Q, R, or S) reduces to finding the closest point
in the set to the center of D, again accomplished in O(log n) time using point-location
in Delaunay/Voronoi diagrams Ξ(·). It remains to show how to compute, for a given
disk D ∈ D1, the set of points of P contained in D:

Lemma 2.2. Given a disk D ∈ D1, the set of points of P contained in D can be205

reported in time O( n
OPT

log n).

Proof. Each disk in D1 is not hit by Q, and so contains at most c1n
OPT

points of P .
We now show how, given any disk D with D ∩ Q = ∅, one can find two disks whose
union coversD inO(log n) time. GivenD, compute, using Ξ(Q), the nearest neighbor
p ∈ Q to the center of D. Consider the list of Delaunay triangles incident to p, sorted210

by their circumcenters radially around p. Denote this list for the point p by Ψ(Q)(p).
Let D′

1 and D′
2 be the two Delaunay disks of Ξ(Q) whose triangles are adjacent to

p, and whose circumcenters are immediately before and after the center of D in this
radially sorted order.

Claim 2.1. D ⊆ D′
1 ∪D′

2.215

Proof. The proof of Theorem 1.1 shows that for any disk D not hit by the ε-net Q,
there exist two Delaunay disks of Ξ(Q), say D1 and D2, such that D ⊆ D1 ∪D2. In
particular, the proof shows that given D, D1 and D2 are circumcircles of two adjacent
Delaunay triangles, say ∆1

e and ∆2
e, where e = {p1, p2} ∈ Ξ(Q) is the shared Delau-

nay edge. Moreover, one of the vertices of e, say p1, is the closest point in Q to the220

center of D.
We finish the proof by showing that i) the circumcenters of D1 and D2 are consec-

utive in the radially sorted list Ψ(Q)(p1), and ii) the center of D lies between c(D1)
and c(D2) in this consecutive order. Thus {D′

1, D
′
2} = {D1, D2}. See Figure 1(a) for

the geometric configuration.225

For contradiction assume a disk D′ whose c(D′) lies between c(D1) and c(D2).
D′ passes through p1, and there are two cases:

• D′ enters/leaves p1 through D1/D2 (Figure 1(b) bottom). Then either D′ ⊂
D1 ∪ D2, and the two points of Q on ∂D′ lie inside D1 ∪ D2, contradicting
emptiness of int(D1 ∪D2). Or D′ must contain p2, contradicting emptiness of230

D′.
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p1

p2

D

D1

D2
D1 D2

D′

D1 D2

D′

D1 D2

D′

(a) (b)

Figure 1: Computing D1 and D2.

• D′ enters/leaves p1 through outside ((Figure 1(b) top). Then c(D′) must lie
radially outside the interval of c(D1) and c(D2).

Finally note that Ψ(Q) can be constructed in the pre-processing phase in expected235

O(n log n) time: for each point q ∈ Q, extract its set of adjacent Delaunay triangles
from Ξ(Q), and radially sort their circumcenters around q to get the list Ψ(Q)(q).
As the number of triangles is O(|Q|), this takes time O(|Q| log |Q|) = O( n

OPT
log n).

And for each D, one can find the two Delaunay disks D′
1 and D′

2 by binary search in
Ψ(Q)(q) in time O(log n). The points of P lying in D can be reported by going over240

all points of P in D′
1 and D′

2 and checking whether they lie in D.

3. Implementation and Experimental Evaluation

In this section we present experimental results for our algorithms implemented in
C++ and running on a machine equipped with an Intel Core i7 870 processor (2.93 GHz)
and with 16 GB main memory. All our implementations are single-threaded, but we245

note that our hitting set algorithm can be easily multi-threaded. For nearest-neighbors
and Delaunay triangulations, we use CGAL [24]. It computes Delaunay triangulations
in expected O(n log n) time. The parameters used by our algorithm are set as follows:
c0 = 10, c1 = 30, c2 = 12, c3 = 2 and c4 = 0.6. These parameters are chosen taking
into account various trade-offs: e.g., higher value of c1 results in a smaller net at step 1,250

but that increases the number of violations at step 4, thus increasing the size of R ∪ S.
For evaluating the practical usability of our approximate hitting set algorithm we

compare it to the optimal solution. Our algorithm needs a guess for OPT, and so we
run it with O(log n) guesses for the value of OPT. To calculate the optimal solution
for the hitting set problem we use the IP solver SCIP [4] (with the linear solver So-255

Plex [25]). Creating the linear program is carried out efficiently by using the Delaunay
triangulation of the points for efficient range searching.

Data sets. In order to empirically validate our algorithms we have utilized several
real-world point sets. All our experiments’ point sets are scaled to a unit square. The
World dataset [3] contains locations of cities on Earth (except for the US) having around260

10M records. For our experiments we use only the locations of cities in China having

8



1M records (the coordinates have been obtained from latitude and longitude data by
applying the Miller cylindrical projection). The dataset ForestFire contains 700K lo-
cations of wildfire occurrences in the United States [2]. The following data sets were
obtained from [1]. The KDDCUP04Bio dataset (KDDCU for short) contains the first265

2 dimensions of a protein dataset with 145K entries. The MOPSI Finland dataset con-
tains 13K location records of users in Finland. The Europe and Birch3 data sets have
169K and 100K entries respectively. The former consists of differential coordinates
of the map of Europe while the latter has random sized clusters in random locations.
We have created a random data set Uniform with 50K points sampled from a uniform270

distribution. We have also created a random data set Gauss9 with 90K points sampled
from 9 different Gaussian distributions with random mean and covariance matrices. In
order to provide more detailed data with optimal solutions we have restricted the size
of our point sets to 50K, otherwise the memory required by the IP solver is more than
what is available on our machine. Our data sets only contain points and in order to275

create disks for the hitting set problem we have utilized two different strategies. In the
first approach we create uniformly distributed disks in the unit square with uniformly
distributed radius within the range [0, r]. Let us denote this test case as RND(r). In
the second approach we added disks centered at each point of the dataset with a fixed
radius of 0.001. Let us denote this test case by FIX(0.001).280

Table 1: Hitting sets for the test case RND(0.1).
# of

points
# of
disks

Q
size

R
size

S
size

# of
phases

IP
solution

dnet
solution

ap-
prox.

IP
time(s)

dnet
time(s)

China 50K 50K 367 809 604 11 1185 1780 1.5 60 12
ForestFire 50K 16K 43 85 224 11 267 352 1.3 54.3 6.9
KDDCU 50K 22K 171 228 786 11 838 1185 1.4 40.9 9.8
Gauss9 50K 35K 322 724 1035 11 1493 2081 1.4 52.5 11.7
Europe 50K 31K 185 322 419 11 630 926 1.5 87.6 9.8
Birch3 50K 29K 166 233 1036 11 1026 1415 1.4 51.4 10.4

Uniform 50K 48K 665 1109 2169 11 2824 3943 1.4 49.8 12.3
Mopsi 13K 5K 40 55 197 10 228 292 1.3 2.4 1.7

Speed and approximation quality. The results are shown in Table 1, 2 and 3
for RND(0.1), RND(0.01) and FIX(0.001) respectively. Our algorithm provides a
1.3 approximation on average. With small radius the solver seems to outperform our
algorithm but this is most likely due to the fact that the problems become relatively
simpler and various branch-and-bound heuristics become efficient. With bigger radius285

and therefore more complex constraint matrix our algorithm clearly outperforms the IP
solver. Our method obtains a hitting set for all point sets, while in some of the cases
the IP solver was unable to compute a solution in reasonable time (we terminate the
solver after 1 hour).

Memory usage and efficiency of our algorithm. In Table 4 we have included the290

memory consumption of both methods and statistics for range reporting. It is clear that
the IP solver requires significantly more memory than our method. The statistics for
range reporting includes the total number of range reportings (calculating the points in-
side a disk) and the number of range reportings when the algorithm doubles the weight
of the points inside a disk (the doubling column in the table). It can be seen that only295

a fraction of the computations are wasted since the number of doublings is almost as
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Table 2: Hitting sets for the test case RND(0.01).
# of

points
# of
disks

Q
size

R
size

S
size

# of
phases

IP
solution

dnet
solution

ap-
prox.

IP
time(s)

dnet
time(s)

China 50K 49K 673 1145 4048 11 4732 5862 1.2 4.5 14.5
ForestFire 50K 25K 162 268 1021 11 1115 1451 1.3 6.2 9.5
KDDCU 50K 102K 1326 2492 6833 11 8604 10651 1.2 12.5 22.2
Gauss9 50K 185K 2737 6636 9867 11 15847 19239 1.2 22.4 36.0
Europe 50K 85K 683 1491 3138 11 4211 5312 1.3 13.2 18.1
Birch3 50K 117K 1359 3358 7223 11 9683 11940 1.2 15.4 25.6

Uniform 50K 387K 5549 13081 16826 11 31787 35446 1.1 34.7 66.3
MOPSI 13K 6K 179 314 656 10 762 1009 1.3 0.6 2.5

Table 3: Hitting sets for the test case FIX(0.001).
# of

points
# of
disks

Q
size

R
size

S
size

# of
phases

IP
solution

dnet
solution

ap-
prox.

IP
time(s)

dnet
time(s)

China 50K 50K 2765 7376 7851 11 − 17329 − − 19.8
ForesFire 50K 50K 331 602 1273 11 − 2206 − − 11.9
KDDCU 50K 50K 2764 5824 15734 11 22368 24318 1.1 8.9 22.3
Gauss9 50K 50K 5380 13321 19153 11 36302 37827 1.0 19.1 26.7
Europe 50K 50K 1376 2644 5161 11 − 9181 − − 16.2
Birch3 50K 50K 2709 7492 14434 11 − 24630 − − 22.1
Uniform 50K 50K 5442 13417 27573 11 46124 46420 1.0 19.4 30.4
MOPSI 13K 13K 354 673 870 10 1294 1646 1.3 127.2 2.9

high as the total number or range reportings. This in fact shows that the running time
of our algorithm is near-linear in n.

Table 4: Memory usage in MB (left) and range reporting statistics (right).
RND(0.01) RND(0.1) FIX(0.001)

IP dnet IP dnet IP dnet
China 243 21 4282 19 434 20

ForesFire 524 28 3059 18 5470 24
KDDCU 458 30 2999 23 175 22
Gauss9 569 33 3435 24 158 24
Europe 734 30 4418 25 659 24
Birch3 523 31 3655 24 960 26
Uniform 693 39 4083 25 155 24
MOPSI 30 11 294 8 1735 10

RND(0.01) RND(0.1) FIX(0.001)
total doubling total doubling total doubling

China 44014 43713 9406 9184 96335 95846
ForesFire 11167 11086 2767 2728 15648 15020
KDDCU 75448 75016 8485 8364 173147 173044
Gauss9 121168 120651 14133 13906 217048 217019
Europe 38112 37886 5224 5160 58644 57014
Birch3 85399 85063 11219 11049 167384 167197
Uniform 198168 197388 26970 26431 309286 309284
MOPSI 1883 1863 2283 2249 10360 10235

Scalability. In order to test the scalability of our method compared to the IP solver
we have used the ForestFire and China dataset with limiting the number of points300

to 10K, 20K, 30K. . . and repeating exactly the same experiments as above (while
increasing the number of disks in a similar manner). In Figure 2 we plot the running
time of the methods. The solid lines represent the case RND(0.1) while the dashed
ones denote RND(0.01). One can see that as the number of points and disks increases
our method becomes more efficient even though for small instances this might not hold.305

It can be seen that for the China dataset and RND(0.01) the IP solver is faster than
our method but after 500K points our method becomes faster. In Figure 2 the dotted
line represents the running time of our algorithm for FIX(0.001). In this case the IP
running time is not shown because the solver was only able to solve the problem with
10K points within a reasonable time (for 20K and 30K points it took 15 and 21 hours310

respectively).
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Figure 2: Different point set sizes for the ForestFire (left) and China (right) datasets.

Robustness. We have varied the radius of the disks for the fixed radius case to see
how the algorithms behave. See Figure 3. With bigger radius the IP solver becomes
very quickly unable to solve the problem (for radius 0.002 it was unable to finish within
a day), showing that our method is more robust.315
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Figure 3: Different radii settings for the KDDCU (left) and China (right) datasets.

In order to test the extremes of our algorithm we have taken the World dataset
containing 10M records. Our algorithm was able to calculate the solution of the
FIX(0.001) problem of size around 100K in 3.5 hours showing that the algorithm
has the potential to calculate results even for extremely big data sets with a more opti-
mized (e.g., multi-threaded) implementation.320

4. Conclusion

We have presented a novel algorithm for efficiently computing small-sized hitting
sets for disks in the plane, even for very large data sets. The algorithm achieves near
linear-running time in practice. This research opens up several avenues of future work:

• It would be interesting to extend the algorithm to half-spaces in three dimensions,325

as well as for more general pseudo-disks in the plane.

• Given the recent advances in GPU-based algorithms, the next natural step is
to consider algorithms on graphics card architectures, e.g., CUDA-based algo-
rithms.

• The main bottleneck for extending these results to more general geometric ob-330

jects is that the size of ε-nets can become super-linear (in 1
ε ), e.g. [18], and thus

the reweighing algorithms can no longer guarantee constant-factor approxima-
tion ratios.
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