Lorentz-invariant second-order tensors and an irreducible set of matrices - Archive ouverte HAL Access content directly
Journal Articles journal of geometry and symmetry in physics Year : 2018

Lorentz-invariant second-order tensors and an irreducible set of matrices

Abstract

We prove that, up to multiplication by a scalar, the Minkowski metric tensor is the only second-order tensor that is Lorentz-invariant. To prove this, we show that a specific set of three 4 × 4 matrices, made of two rotation matrices plus a Lorentz boost, is irreducible.
Fichier principal
Vignette du fichier
Arminjon_Lorentz-Invariant_Tensors_&_IrreducibleSet.pdf (285.39 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01797592 , version 1 (22-05-2018)

Identifiers

Cite

Mayeul Arminjon. Lorentz-invariant second-order tensors and an irreducible set of matrices. journal of geometry and symmetry in physics, 2018, 50, pp.1-10. ⟨10.7546/jgsp-50-2018-1-10⟩. ⟨hal-01797592⟩
228 View
1367 Download

Altmetric

Share

Gmail Facebook X LinkedIn More