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Indroducing spatial regularization in SAR
tomography reconstruction

Clément Rambour Student Member, IEEE, Loı̈c Denis, Florence Tupin Senior Member, IEEE, Hélène Oriot

Abstract—The resolution achieved by current Synthetic Aper-
ture Radar (SAR) sensors provides detailed visualization of urban
areas. Spaceborne sensors such as TerraSAR-X can be used
to analyze large areas at a very high resolution. In addition,
repeated passes of the satellite give access to temporal and
interferometric information on the scene. Because of the complex
3-D structure of urban surfaces, scatterers located at different
heights (ground, building façade, roof) produce radar echoes that
often get mixed within the same radar cells. These echoes must be
numerically unmixed in order to get a fine understanding of the
radar images. This unmixing is at the core of SAR tomography.
SAR tomography reconstruction is generally performed in two
steps: (i) reconstruction of the so-called tomogram by vertical
focusing, at each radar resolution cell, to extract the complex
amplitudes (a 1-D processing); (ii) transformation from radar
geometry to ground geometry and extraction of significant scat-
terers. We propose to perform the tomographic inversion directly
in ground geometry in order to enforce spatial regularity in 3-D
space. This inversion requires solving a large-scale non-convex
optimization problem. We describe an iterative method based
on variable splitting and the augmented Lagrangian technique.
Spatial regularizations can easily be included in this generic
scheme. We illustrate on simulated data and a TerraSAR-X
tomographic dataset the potential of this approach to produce
3-D reconstructions of urban surfaces.

Index Terms—tomographic SAR inversion, dense urban areas,
TerraSAR-X, Compressed Sensing, inverse problems, 3-D recon-
struction

I. INTRODUCTION

SAR imagery is a powerful modality for the observation
and the interpretation of natural and man-made areas.

The existing diversity of SAR spaceborne sensors, with their
different spatial and temporal resolutions, has given rise to
numerous applications. They provide useful information for
the monitoring of large areas for man-made changes, natural
disasters, displacement of the ground. . . Moreover, depending
on the operating bandwidth, the radar wave can penetrate
some environments (vegetation, ice) and provide information
about their structure or the presence of underneath objects [1].
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Over urban areas, stacks of co-registered high resolution SAR
images can be jointly processed to unmix SAR echoes from
scatterers at different 3-D locations and thus reconstruct the
3-D reflectivity of the scene. The 3-D representation of cities
has many applications such as crisis management, movement
monitoring or change detection.

The spatial resolution of modern sensors such as TerraSAR-
X or COSMO-SKYMED can be better than one meter, which
is much finer than the average height of observed buildings
in city areas. At these resolutions, urban surfaces (façades,
roofs) can be recovered. However, as the dense urban scenes
contain a high number of back-scattering objects, scatterers
from different structures are projected within the same radar
resolution-cell. The actual tridimensional location of these
scatterers can be reconstructed by combining images from
repeated passes with slightly different angles of observation,
by SAR tomography. SAR tomography can be seen as an
extension of the SAR focusing to 3 dimensions, the separation
of scatterers projected within a given radar cell being per-
formed thanks to a synthetic aperture formed by the different
trajectories of the SAR antenna in the tomographic stack [2],
[3].

In the ideal case of equi-spaced trajectories, focusing in
the direction orthogonal to the line of sight can be simply
performed by application of the inverse discrete Fourier trans-
form. The resolution of this focusing is inversely proportional
to the maximal orthogonal baseline. Increasing the number
of tracks within this maximal orthogonal baseline improves
the sampling, hence reduces height ambiguities. However, the
vertical resolution is generally much worse compared to the
resolution in azimuth and range directions. Moreover, the
baselines are generally irregularly distributed which produces
side-lobes higher than expected and degrades the interpretation
of the reconstructed volume. Several spectral super-resolution
techniques have been introduced to overcome these phenom-
ena [4], [5], leading to satisfying results on homogeneous areas
dominated by volumic scattering such as forests or glaciers [1],
[6]. These estimators all rely on the analysis of the covariance
matrix. The estimation of this matrix is not a trivial task
because it involves some form of spatial averaging [7] and
becomes very challenging in dense urban areas due to the
high spatial heterogeneity [8], [9]. Compressed Sensing (CS)
can also produce super-resolved tomographic reconstruction
by performing a direct inversion of the data under sparsity
constraints [10], [11], assuming that only a few scatterers are
present in each resolution cell. Since this approach does not
require the estimation of a covariance matrix, it involves no
spatial filtering and is more effective at reconstructing multiple
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close-by point scatterers.

CS appears to be well suited to the inversion of stacks of
tomographic SAR images obtained over dense urban areas.
It can however be criticized for its lack of spatial regularity:
pixels are processed independently while many urban struc-
tures are organized in lines or planes. Including a spatial
regularization can be expected to improve the robustness to
noise, reduce the ambiguities and better preserve the signal
coming from the buildings. Moreover, the sparse estimation
step of the signal is generally hard to tune. Due to the high
dynamic of SAR images, it often appears that either weak parts
of the signal are suppressed during the estimation, or outliers
are detected. To refine the results, the volume reconstructed
with CS is generally post-processed by estimating the number
of scatterers in order to select only the most significant points,
see [12], [13]. The result is then a set of discrete points
defined by their 3-D localization and complex reflectivity. As
the distribution of the reflectivity in dense urban configurations
is hard to model, this approach often fails to select points with
low reflectivities.

A recent strategy to enhance the discrete reconstructions
obtained with CS consists of post-processing the SAR tomo-
graphic points clouds. It is mainly based on shape detection
and surface fitting using priors on the urban geometry. It has
been shown to recover some of the information lost during
point selection and even to fill missing parts of the scene [14]
[15]. Those approaches give satisfying geometrical 3-D model-
ing of urban environments but lack from a direct connection to
the data. In this paper, we consider an alternative approach that
enforces spatial regularity during the tomographic inversion
step. Since the output of our method is a sparse volume, a
discrete set of points can be extracted and any pipeline already
designed to process tomographic point clouds can possibly be
applied as a post-processing.

In this paper, we present a new algorithm that performs
the tomographic 3-D inversion of a stack of SAR images
using a sparse prior jointly with a spatial regularization in
ground geometry. To derive our algorithm, we account for
two inherent characteristics of SAR imaging: the geometrical
distortions induced by the geometry of acquisition and the
use of Single Look Complex (SLC) data. First, we present
in details the concept of SAR tomography and the used
notations (section II). Then, we address the problem of using
priors corresponding to the natural properties of the urban
environment. The third section is dedicated to solving the
tomographic inverse problem, which is a non-convex and high-
dimensional optimization problem (section III). In the fourth
section, we illustrate that our algorithm performs well both
on synthetic data with controlled sensor parameters, scene
composition and geometry and on real data (section IV).
The quality of our results is evaluated using the accuracy
and compactness defined in [16] [17]. We use a stack of 40
TerraSAR-X images of the city of Paris to test our algorithm
on real data. The results are evaluated on some buildings using
a 3-D modeling of the scene given by the French Geographic
Institute (IGN) as ground truth.

II. SAR TOMOGRAPHY

A. Forward model for SAR tomography in radar geometry

A SAR tomographic stack consists of N SAR Single Look
Complex (SLC) images acquired in interferometric configura-
tion. Each SAR image of the stack corresponds to a different
trajectory of the sensor over the scene. We consider all images
to have been co-registered with respect to a master image in a
preprocessing step. To simplify the notations, in the following
this master image will correspond to the first image of the
stack. The geometry of a simple 3-D scene and of the sensor
trajectories is illustrated in Fig. 1.

The complex value vn(x, r) obtained at pixel coordinates
(x, r) after SAR synthesis of the n-th image corresponds the
convolution of the complex 3-D reflectivity with the Point
Spread Function (PSF) of the sensor [2], [18]:

vn(x, r) =

∫∫∫
f(x− x′, r − ρn;y,z)u(x, y, z).

exp
(
−

4jπ

λ
ρn;y,z + jϕatmo

)
dx′dydz + ε (1)

To better identify real-valued and complex-valued variables,
we underline all complex-valued variables. Also the x and
azimuth axis coincide to avoid complicated notations without
loss of generality. Here x and r stand for the discrete coordi-
nates of the focused data, ρn;y,z is the distance between the
nth sensor and a scatterer at a position (y, z) for a given x.
ϕatmo is the phase shift corresponding to the Atmospheric
Phase Screen (APS). f correspond to the PSF and depends of
the sensors and the processing of the data. ε is a white additive
Gaussian noise.

In this paper, we will use two classical approximations in
SAR tomography. Firstly, the PSF is substituted with a boxcar
function that may have a near zero width depending on the
knowledge of the data. Then, to be in the same framework
as most of the other state of the art tomographic approaches,
we use the interferometric images with respect to the master
image as the input tomographic stack. The phase difference is
then approximated as a linear function of the elevation of the
scatterers [18]. Under those assumptions, we can also estimate
the APS contribution as a linear perturbation of the phase
and remove it [19]. The equation (1) becomes the sum of
the complex amplitudes scattered by all objects that project
within the resolution cell [10], [11], [18]:

vn(x, r) =

∫
(y,z)∈∆r

u(x, y, z)exp
(
−jξnh(y, z)

)
dydz + ε

(2)

The rth radar resolution cell is defined by ∆r = {(y, z)|r −
δr/2 ≤ ρ1;y,z ≤ r+δr/2} with δr being the step in range. The
chosen approximations allow us to use classical algorithms to
compensate the APS and to reduce the size of the operators
we will then define to perform the inversion. Here as we are
also interested in a comparison with other SAR tomographic
estimators we chose to keep this classical interferometric
framework. Moreover However, using directly the equation
(1) can also be done but the phase calibration may be harder.
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Fig. 1. Configuration of the tomographic acquisition of a 3-D scene. The
scene is naturally described by the coordinate system (x, y, z) whereas the
data are described in the sensor coordinate system (x, r, h).

We denote by x, y and z the coordinates of a reflector in
3-D space and by x, r and h its coordinates in radar space.
In equation (2), ∆r is the extension of the radar resolution
cell along the elevation direction h, u(x, y, z) is the complex
reflectivity of the scatterer located at position (x, y, z), and
h(y, z) its elevation. The parameter ξn = 4πbn

λr is the spatial
frequency associated to the sampling of the scene for each
baseline. bn is the baseline n and λ the radar wavelength.
Random variable ε models the complex additive white noise
due to thermal noise.

Consider a given radar resolution cell. We will drop in the
following the indices identifying the spatial location of that
cell. We form the vector u =

(
u1 · · ·uD

)T
that collects the

complex reflectivities of all scatterers seen within the same
radar resolution cell. and h =

(
h1 · · ·hD

)T
their elevation.

After discretization of (2), we can express v ∈ CN , the
collection of SLC values in the tomographic stack at the pixel
of interest, as a linear combination of the complex signal
backscattered by each of the D scatterers:

v = A(h)u+ n , (3)

where A(h) ∈ CN×D is the steering matrix. The d-th column
[A(h)]d of A(h) corresponds to the steering vector a(hd)
associated to the elevation of the d-th scatterer:

[A(h)]d = a(hd) =
(
exp(−jξ1hd) · · · exp(−jξNhd)

)T
(4)

B. Spectral Analysis in SAR Tomography

Many strategies exist to invert (3) in order to estimate
the heights h and reflectivities u. Most of them come from
the Direction Of Arrival (DOA) literature and have been
successfully used for SAR tomography on homogenous scenes
such as forest or ice. Non-parametric methods such as beam-
forming or Capon filters are fast to implement and offer a
good global representation of the reconstructed scene [4],
[5], [20], [21]. Parametric methods achieve super resolution
by exploiting priors on the estimated data. In many cases,
a limited number of point-like scatterers is assumed. When
considering a given number of such scatterers, the Maximum
Likelihood (ML) estimator can be applied to estimate the
location and reflectivity of each scatterer. Exact computation
of the ML estimator requires a prohibitive computation time
when more than 2 or 3 scatterers are considered, because of the
combinatorial nature of the optimization problem. Suboptimal
methods are therefore generally used specially when dealing
with big images. MUSIC [22] is one of the most popular
parametric estimators used to estimate the position of a finite
number of sources. The localization of the D sources is
obtained by finding the steering vectors with minimal norm
in the eigen-subspace of R associated to the (N −D) smaller
eigenvalues. Since this approach is adapted, by construction,
to separate discrete scatterers, it is not well suited to the
reconstruction of continuous reflectivity profiles. In urban
areas, it offers fair performances when the reflectivity profiles
can be accurately represented by sparse distributions. The
pseudo-spectrum given by the inverse of the projection is
also sometime used to analyze even continuous tomographic
profiles [23] [24]. Very similar to MUSIC, but derived as an
approximation of ML, Weighting Subspace Fitting (WSF) [25]
methods are designed to achieve an even better resolution than
MUSIC. By using both the signal and the noise subspace, it has
been proven that WSF can be used to separate the distribution
of the leaves in a forest and an artificial target underneath [1].
All those methods require to estimate the covariance matrix
at each pixel, which can be a very hard task in heterogeneous
regions such as dense urban areas. Since it takes at least N2

pixels to get a full-rank sample covariance matrix, the more
images in the tomographic stack, the strongest the spatial
filtering necessary to estimate the covariance matrices (hence,
the strongest the range and azimuth resolution loss).

C. Compressed Sensing in SAR Tomography

The use of Compressed Sensing (CS) for SAR tomography
is recent. It is well suited to the urban environment [26]
as it does not require to estimate R. The estimation of the
reflectivities profile u along the height direction, for a given
SAR resolution cell, is obtained by solving the following
optimization problem:

min
u
||u||0 s.t. v = A(h0)u (5)

As the vector of heights h is one of the unknown, the elevation
axis is sampled into D0 bins forming the array h0. The
solution to the combinatorial problem (5) can be approximated
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using the classical convex relaxation of the `0 pseudo-norm
into an `1 norm:

û = arg min
u

1

2
||A(h0)u− v||22 + µ1||u||1 (6)

where µ1 is a Lagrange multiplier. Despite its very good per-
formances on urban areas, this approach has some drawbacks.
Indeed, the matrix A(h0) does not in general guarantee to
satisfy either the Restrictive Isometry Property (RIP) or an
incoherence condition [27] required to obtain reconstruction
guarantees when using the relaxed problem (6). When choos-
ing a large number of samples D0 in the height direction in
order to achieve a super-resolution, these conditions are largely
violated. RIP essentially indicates that any random sub-matrix
of A(h0) composed from D random columns of A(h0) is
nearly orthogonal which preserves the energy of any D-sparse
vector u. The incoherence insures that a highly localized
signal gets spread over all the columns of A(h0) which
makes the reconstruction robust to random under-sampling.
The consequences of the violation of RIP and incoherency are
the creation of outliers and/or multiple detections of the same
scatterer in adjacent positions.

In order to refine the results obtained via a sparse re-
construction on can include spatial priors that describe the
urban geometry. As illustrated in figure 1, when performing a
tomographic inversion in the radar geometry, natural geomet-
rical properties (e.g., predominance of vertical and horizontal
structures and of straight angles) are not straightforward to
express. Rather than using the radar frame (r, h), we suggest in
this paper to perform the tomographic inversion in the ground
frame (x, y, z) in order to include structural information in the
form of priors (i.e., regularization terms).

III. PROPOSED APPROACH: TOMOGRAPHIC INVERSION
WITH SPATIAL REGULARIZATIONS

A. Forward model for SAR tomography in ground geometry

In order to enforce some spatial smoothness, the tomo-
graphic inversion has to be performed globally, rather than
independently for each radar resolution cell as with the other
methods described so far. Rather than considering the collec-
tion of measurements at a given radar pixel, from now on the
notations u ∈ CNx.Ny.Nz and v ∈ CNx.Nr.N will respectively
refer to column vectors obtained by stacking all the values
in the 3-D volume, and all the values in the tomographic
stack of SAR images. Nx, Ny and Nz are the number of
voxels in each direction in ground geometry while Nr is
the size of SAR images in the range direction and N is
the number of images in the tomographic stack. The linear
operator Φ ∈ C(Nx.Nr.N)×(Nx.Ny.Nz) maps the volume of
complex reflectivities in 3-D space to the complex amplitudes
in the tomographic stack of SAR images, see Fig 2. Since we
chose to align the x axis and the azimuth, an element of Φ is
defined as:

Φi,j =


exp(−jϕ) if xi = xj and

ri − δr
2 < ρ1;yj ,zj < ri + δr

2 ,

0 otherwise.
(7)

with ϕ = ξih(yj , zj) the phase shift due to the path between
voxel j with coordinates (xj , yj , zj) and antenna i. As in
the previous equations, ρ1;yj ,zj corresponds to the distance
between antenna 1 (of the master image) and the point with
ground coordinates (yj , zj). The size of a radar pixel in the
range direction is noted δr.

The construction of the matrix Φ is illustrated on Fig. 3.
Matrix Φ is sparse: only a few entries are different from zero,
so that products of the form Φu can be computed efficiently.

The observed SAR tomographic stack v can be modeled by
the following (complex-valued) linear model:

v = Φu+ ε (8)

where ε stands for the noise. This corresponds to a generaliza-
tion of the tomographic direct model (3) where we additionally
consider the geometric transformation from ground geometry
to SAR geometry and model at once the measurements for
all the pixels. In order to invert this tomographic model, it is
necessary to introduce some regularization terms.

B. Spatial regulariations for tomographic inversion

It is often desired to reconstruct volumes with a discretiza-
tion in heights that is finer than the resolution given by
the synthetic aperture in the height direction (i.e., super-
resolution). The inversion of equation (8) is therefore ill-
posed (more unknowns than measurements) and requires some
regularization. In the following, we note R the regularization
function. Since the intrinsic phase of a scatterer is typically
modeled as uniformly distributed and independent from one
scatterer to another, no specific regularization can be enforced
on the phase of our unknown complex reflectivities u. We
define the regularization R as a function of the modulus
of u only. The reconstruction of the volume of complex
reflectivities û is thus obtained by solving an optimization
problem of the general form:

û = arg min
u

1

2
||Φu− v||22 +R(|u|) (9)

To design the regularization function R, we need to select a
function that favors volumes of reflectivities |u| that are often
present in urban environments. Many different such functions
could be considered, we selected a function based on the two
following remarks:
• The 3-D scene can be represented as a sparse volume.

Indeed a good reconstruction should retrieve only the
illuminated part of the buildings and of the ground. The
estimated volume is then mostly filled with zero intensity
voxels.

• The illuminated structures are spatially smooth (continu-
ous surfaces: frontages, rooftops, ground).

These remarks suggest the following regularization function:

∀w ∈ RNx.Ny.Nz , R(w) =
µx

2
‖Dxw‖22 +

µy

2
‖Dyw‖22

+
µz

2
‖Dzw‖22 + µ`1‖w‖1 (10)

where the matrices Dx, Dy and Dz stand for the finite differ-
ences operators in the x, y and z directions, and parameters
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Fig. 2. The operator Φ performs a projection of voxels from the 3-D scene in ground geometry on the SAR tomographic stack.

Fig. 3. Construction of the matrix Φ. The radar cell associated to each
position of the 3-D scene is computed as well as the phase term corresponding
to distance between a point in 3-D space and an antenna.

µx, µy , µz and µ`1 weight each term. The `1 norm favors
vectors w with many zeros while the terms with the finite
difference operators enforce a spatial smoothness.

In urban environment, dihedral and trihedral structures pro-
duce very strong echoes. When only an `1 norm is minimized,
it is hard to reconstruct at the same time very strong scatterers
and weaker scatterers on the ground or rooftops. The role of
the first three terms is thus to favor spatial smoothness and
hence preserve these scatterers whenever they are close to
other scatterers.

When reconstructing images of urban areas, we found that
it was impossible to find a value of the sparsity parameter
µ`1 that would both preserve the weakest scatterers and
successfully suppress side-lobes in areas with strong scatterers.
To improve the reconstructions, we introduced a spatially
variant regularization based on the square-root of the estimated
intensity of the master image which can be obtained using
a denoising algorithm such as NL-SAR [7] or simply using
the average intensity depending of the configuration of the
acquisitions. We define the diagonal matrix D`1 whose j-th
diagonal entry is equal to the square-root of the estimated
intensity at the corresponding azimuth and range coordinates
(i.e., such that the range r verifies r− δr

2 < ρ1;yj ,zj < r+ δr
2 ).

0.5

1

1

1.5

1
0

0

-1 -1

Fig. 4. Illustration of the non-convexity of spatial regularizations expressed
on the modulus of the complex reflectivities.

The equation (10) is then modified into:

∀w ∈ RNx.Ny.Nz , R(w) =
µx

2
‖Dxw‖22 +

µy

2
‖Dyw‖22

+
µz

2
‖Dzw‖22 + µ`11

TD`1w (11)

where 1 is the vector of size Nx.Ny.Nz with each entry equal
to 1.

C. Optimization algorithm for the 3-D reconstruction

The minimization problem (9) is not easy. It is indeed
large scale (millions up to several billions unknowns) and
non-convex. The non-convexity is illustrated in a simple case
where the vector u has only two elements in Fig. 4: the spatial
smoothness favors vectors such that the modulus of each entry
is close. Since the regularization is independent on the phase,
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(a) (b)

Fig. 5. Accuracy (a) et completeness (b) criteria. The accuracy computes the mean of the error for each estimated point. The compactness gives an indication
on the proportion of holes in the rendering.

the minimum (for a fixed value of u1) corresponds to a set of
complex values with equal modulus (the white circle drawn
on Fig. 4).

To solve the minimization problem (9), we use a variable
splitting approach in order to break down the problem into a
sequence of simpler problems. We introduce two new vectors:
f (complex-valued: f ∈ C(Nx.Ny.Nz)) and w (real-valued:
w ∈ R+(Nx.Ny.Nz)). Problem (9) is formally equivalent to the
following constrained problem:

û = arg min
u

1

2
‖Φu− v‖22 +R(w) (12)

s.t.

{
u = f

|f | = w

To solve this constrained optimization problem, we apply the
method of multipliers [28], i.e., we look for a saddle point of
the augmented Lagrangian L defined by:

L(u,f ,w,d1,d2) =
1

2
||Φu− v||22 +

β1

2
||f − u+ d1||22

+
β2

2

∥∥w − |f |+ d2

∥∥2

2
+R(w) (13)

where d1 ∈ C(Nx.Ny.Nz) and d2 ∈ R(Nx.Ny.Nz) are the
scaled dual variables and β1 and β2 are penalty parameters
(relevant only to the optimization method, i.e., impacting the
convergence). We follow the hierarchical approach described
in [29] and minimize jointly on the variables u and w while
f is substituted with its optimal value f∗(u,w):

f∗ = arg min
f

β1

2
||f − u+ d1||22 +

β2

2

∥∥w − |f |+ d2

∥∥2

2

(14)

=

[
β1 · |u− d1|+ β2 · (w + d2)

β1 + β2

]+

exp
[
j · arg

(
u− d1

)]
(15)

where .+ is the identity on [0,+∞[ and is the constant null
function on ]−∞, 0[.

Proof. The second term in (14) only depends on the modulus
of f . The phase of f∗ is then driven by the first term and
must be chosen equal to that of u−d1 so as to minimize the

cost function. There remains to estimate the modulus of f∗

which is a solution of a 1-D quadratic problem

arg min
ρ≥0

β1

2
||ρ− |u+ d1|||22 +

β2

2

∥∥w − ρ+ d2

∥∥2

2
(16)

ρ is either given by the unconstrained solution:

ρ∗ = (β1 · |u− d1|+ β2 · (w + d2))/(β1 + β2),

or ρ = 0. The optimal value of ρ and of the phase together
lead to the expression (15).

This leads to the following algorithm1 which alternates
between the joint minimization with respect to variables u
and w, and the update of dual variables.

Algorithm Tomographic SAR 3-D Inversion

Input: v (stack of SLC SAR images)
Output: û (3-D cube of complex reflectivities)

Initialization :
1: d̂1 ← 0
2: d̂2 ← 0
3: while not converged do
4: {û, ŵ} ← approximate_min(v, d̂1, d̂2, û, ŵ)
5: d̂2 ← d̂2 + ŵ − |f∗(û, ŵ)|
6: d̂1 ← d̂1 + f∗(û, ŵ)− û
7: end while
8: return û

1compared to the well-known alternating directions method of multipliers
(ADMM) [30], this hierarchical approach has been shown in [29] to converge
faster and to be less sensitive to the tuning of the optimization parameters
β1 and β2; moreover, we improve the convergence by constraining w to be
positive, such a constraint would be costly to enforce with ADMM.
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Procedure approximate_min
Input: v (stack of SLC SAR images)
Input: d̂1 (vector of dual variables)
Input: d̂2 (vector of dual variables)
Input: û (current vector of primal variables)
Input: ŵ (current vector of primal variables)
Output: {û, ŵ} (approximate solution)

1: C (v, d̂1, d̂2, û, ŵ) = 1
2 ||Φu − v||22 + R(w)

+β1

2 ||f
∗(u,w)−u+ d̂1||22 + β2

2

∥∥w−|f∗(u,w)|+ d̂2

∥∥2

2
,

2: ∇uC = ΦH(Φu− v) + β1(u− f∗(u,w)− d̂1)

3: ∇wC = (µxD
T
xDx + µyD

T
yDy + µzD

T
zDz)w + µ`11

+β2(w − f∗(u,w) + d̂2) .

4: ∇C (v, d̂1, d̂2, û, ŵ) =

(
∇uC
∇wC

)
,

Call quasi-Newton minimization algorithm :
5: {û, ŵ} ← quasi_Newton

[
C (v, d̂1, d̂2, û, ŵ),

∇C (v, d̂1, d̂2, û, ŵ),
constraint: ŵ ≥ 0

]
After replacing f by its optimal value f∗(u,w) and con-

straining w to be positive, the objective function is differen-
tiable (since w ≥ 0, ‖w‖1 = 1Tw, which is differentiable;
moreover, after substituting f by the optimal value f∗ in
the quadratic terms, the cost function becomes smooth, see
[29]). The cost function can thus be minimized using a lim-
ited memory quasi-Newton algorithm that handles positivity
constraints, such as L-BFGS-B [31], or the slightly more
efficient algorithm VMLM-B [32] that we used, with Eric
Thiébaut’s freely available implementation2. The minimization
step described in Procedure approximate_min does not
need to be performed up to a high precision. A few (e.g.,
ten) iterations of the quasi-Newton algorithm are sufficient
since the algorithm is warm-restarted. In the definition of
the gradient of the cost function (lines 2 to 4 of Procedure
approximate_min), we used the fact that ∂C

∂[f∗]i

∂[f∗]i
∂[u]j

=
∂C
∂[f∗]i

∂[f∗]i
∂[w]k

= 0 for all i, j, k, even though f∗ depends
on variables u and w when applying the chain rule since
∂C
∂[f∗]i

= 0 for all i. The necessary condition for f∗ being
a minimizer of the augmented Lagrangian is then respected.
As the function we want to minimize is non-convex, the
convergence is assumed when we met a local minimum. In
practice the algorithm can then be stopped after a fixed number
of iterations (around 60) or when the distance between two
iterations is below a given threshold.

IV. EXPERIMENTS

A. Evaluation Protocol

In this part we compare 3-D scenes reconstructed by five
different approaches: classical beamforming [4], Capon beam-
forming [20], MUSIC [22], CS [11] [10] and our algorithm.
Evaluation of different SAR tomographic estimators can be

2https://github.com/emmt/OptimPackLegacy

hard as they originate from various fields and are thus not
suited to the same applications. Moreover, they do not always
estimate the same quantities: classical and Capon beamform-
ing give the estimated power of the scatterers, CS and our 3-D
inversion estimate the scatterers reflectivity, and MUSIC only
provides us with their position. Here, we will only evaluate
the quality of the localization, as all methods can be used to
estimate the 3D location of scatterers and this represents a rich
information in urban areas. It can be compared to a ground
truth (digital elevation model).

We use the accuracy and completeness criteria introduced
in [17] to evaluate the tomographic SAR reconstructions.
Those two metrics are defined for the evaluation of point
clouds reconstructions. Tomographic inversions must thus be
converted into a discrete representation in order to compute
these performance criteria.

1) Accuracy: For a given discrete reconstruction P̂ , the
accuracy represents the mean distance from each point in P̂
to the ground truth P .

A(P̂,P) =
1

Np̂

Np̂∑
j=1

min
k
||p̂j − pk||2 (17)

where p̂j ∈ P̂ is the jth point of the estimated point cloud P̂
and pk ∈ P is the kth point of the ground truth. Np̂ is the
number of points in the estimated reconstruction. Accuracy
indicates whether reconstructed points are correctly located.

2) Compactness: The compactness corresponds to the
mean distance from each point of the ground truth to the points
in P̂:

C(P̂,P) =
1

Np

Np∑
k=1

min
j
||p̂j − pk||2 , (18)

with Np the number of points in the ground truth. Complete-
ness indicates whether the ground truth is well represented by
the set of points in the reconstruction.

These two metrics are illustrated in Fig. 5 where green dots
represent estimated points p̂j and blue squares the ground truth
points pk. Accuracy and compactness provide complementary
information: accuracy improves when reconstructed points are
close to actual points from the ground truth, but does not
indicate when points are missing (holes in the reconstruction).
For instance, if we could retrieve a single point of the scene
(the strongest permanent scatterer, for example) with a location
very close to the ground truth, the accuracy would be excellent
(A(P̂,P) near zero) while the compactness C(P̂,P) would
be large, indicating that much of the scene is missing in
the reconstruction. Conversely, if we loosely select points
(many points for each resolution cell), we would obtain a
dense volume, thus a good compactness (low compactness
value C(P̂,P)), but erroneously selected points lying far from
the true surfaces would lead to a poor accuracy score (large
accuracy value A(P̂,P)).

The accuracy and completeness can be jointly used to
evaluate the quality of a discrete reconstruction. Beforehand,
3-D points must be extracted from the volume of voxels
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obtained by the tomographic reconstruction algorithms. We
performed this extraction by finding the local maxima in
each radar resolution cell. This produces a first point-based
representation of the data. Then, to reduce the sensitivity to
noise and side-lobes, we applied a threshold on the obtained
point cloud. Starting from a reconstructed volume û, we obtain
the collection of 3-D points P̂û,t:

P̂û,t =

{
pj = (xj , yj , zj) ∈ R3, such that

|ûxj ,yj ,zj
| ≥ |ûxj ,νy,νz

| and |ûxj ,yj ,zj
| > t

}
(19)

where νy and νz are the coordinates of the direct neighboring
voxels restricted to the same radar resolution cell and t is a
threshold. In the following experimentss, when we visually
compare reconstructions obtained by different algorithms, we
always select the threshold t as the value t∗ that achieves the
best trade-off between accuracy and compactness:

t∗ = arg min
t

A(P̂û,t,P)2 + C(P̂û,t,P)2 . (20)

When evaluating different tomographic estimators, we are
generally interested in different regimes (accurate recon-
struction of the strongest scatterers, dense reconstruction of
most scatterers). To capture these different cases, rather than
considering a single reconstruction obtained with threshold
t∗, we also represent the accuracy score A(P̂û,t,P) as a
function of the compactness C(P̂û,t,P). Applications that
focus on the reconstruction of permanent scatterers will favor
algorithms that achieve the highest accuracy values (even if
the compactness is poor). Many works have considered linear
dependencies of the phase of permanent scatterers on various
parameters such as their height but also their speed or the
temperature [33] [26]. If the reconstruction of surfaces is the
aim, compactness should be favored, even if this degrades the
accuracy.

B. Simulated Data

In this section, we compare our 3-D tomographic recon-
struction algorithm to state-of-the-art methods, using simulated
data. We simulate two stack of images corresponding to two
different configurations of trajectories: a regular sampling
along the elevation axis h (referred to in the following as Reg),
and the actual trajectories of TerraSAR-X given in Fig. 17 (re-
ferred to in the following as TSX). As in [11], the decorrelation
effect is introduced by adding a Gaussian white noise and
the phase noise is modeled by adding a uniformly distributed
random phase. Fig. 6 shows the theoretical distribution of the
scatterers. Both scenes are composed of a ground at a constant
altitude, a wall and a roof, resulting in a large layover area
in the SAR images. The simulated building is higher than the
estimated elevation resolution (as given by Fourier inversion)
in the TSX case. The chosen noise level are the same but in
the TSX case, we put more scatterers by resolution cells. Their
back-scattered signal is added constructively and destructively
which produces a speckle phenomenon and is of course a more
realist simulation.

C. Influence of the regularization parameters

To show the influence of each regularization parameter,
we performed different reconstructions of the Reg scene for
various sets of regularization values (in particular, with one
parameter chosen so as to illustrate the effect of either under-
regularization or over-regularization). The results are presented
in figures 7, 8, 9 and 10. On this well-sampled scene with a
good resolution, the parameter with the largest influence is µ`1 ,
associated to the sparsity constraint. Fig. 7 illustrates that when
µ`1 is too large, there are some holes in the reconstruction,
while a value of µ`1 that is too small leaves side-lobes and
outliers. The effect of over-smoothing (values of µx, µy or
µz too large) is the extension of structures in the direction
of the spatial smoothing. This is visible in particular with
structures whose orientation differs from that of the smoothing,
see in Fig. 9 the widening of the wall due to excessive
smoothing in the horizontal direction. The same effect appears
on the rooftop in Fig. 10. Insufficient smoothing translates
into residual fluctuations (i.e., large variance) that are reduced
by increasing spatial smoothing, see in particular the corner
between the roof and the wall, or the ground and the wall in
Fig. 9 and 10. Outliers located far from the actual surfaces can
also be observed when the spatial regularization is too weak.

By combining sparsity and spatial smoothness constraints,
our algorithm is very flexible and well-suited both to the
reconstruction of urban areas where scatterers are sparsely
distributed over 2-D surfaces and to vegetated areas where
scatterers are spread in volumes in a smooth 3-D distribution.
The downside of this flexibility is the necessity to tune
four regularization parameters. In numerical simulations, the
ground-truth can be used to select the set of regulariza-
tion parameters {µx, µy, µz, µ`1} that offers the best perfor-
mance, as measured by the accuracy / completeness trade-off
A(P̂û,t∗ ,P)2 + C(P̂û,t∗ ,P)2. The regularization parameters
can then be tuned (one at a time, by importance: µ`1 , then µz ,
then µx and µy) or jointly (with a derivative-free method like
Nelder-Mead) in order to reach the best possible trade-off. In
the absence of ground truth, a simple numerical simulation
using the same geometrical configuration and SNR can be
generated in order to automatically tune the parameters.

To further illustrate the behavior of our algorithm with
respect to its regularization parameters, we plotted accuracy
as a function of completeness for different sets of parameters.
These curves are drawn for our two simulation cases Reg and
TSX respectively in Fig. 11 and 12. We observe that the best
accuracy /compactness trade-off (point of the curve closest to
the origin of the axes) is reached for a unique set of parameters
that can thus be found for example by binary search.

The optimization parameters β1 and β2 have an impact on
the convergence speed. We found that, when starting from
a volume initialized at zero, using large penalty parameters
β1 and β2 produces very quickly a sparse reconstruction
while lower contrasted structures are correctly reconstructed
after many more iterations. Smaller values of the parameters
help to reconstruct those structures, at the cost of a slower
convergence (i.e., sidelobes suppression) in the brightest areas.
Penalty parameters β1 and β2 can be set according to methods



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

x
y

z

(a)

y

x

z

(b) (c)

yx

z

(d)

y

x

z

(e) (f)

Fig. 6. Two simulations of a simple 3-D scene: first row, considering a regular sampling of trajectories along the h axis; second row: using the trajectories of
TerraSAR-X satellites. Sub-figures (a), (b), (d) and (e) show two views of the scenes while sub-figures (c) and (f) correspond to the average of the simulated
SAR images. The sub-figures in the top row correspond to the Reg case and the ones in the bottom correspond to the TSX case. The Reg case consists of
20 images acquired with uniformly distributed sensors along the elevation axis. In the TSX case the geometry of the scene is given by the true TerraSAR-X
satellites position for each of the 40 acquisitions. In both case the SNR is 3dB. In the TSX experiment, more scatterers are projected in the same resolution
cell which produce a speckle noise where the structure is present.

described in [30], [34]. Here, we fixed those parameters to 10
after having tested different values.

D. Comparaison of different tomographic estimators

The figures 13 and 14 give the 3-D reconstructions ob-
tained using several state-of-the-art tomographic reconstruc-
tion methods and our spatially regularized approach: (a) clas-
sical beamforming, (b) Capon beamforming, (c) the parametric
estimators MUSIC, (d) Compressed Sensing, and (e) our
algorithm. The corresponding curves of accuracy as a function
of completeness are presented in figure 15 for the two scenes.

Both in the easy case where the antennas are uniformly
distributed and in the difficult one, classical beamforming
presents really good performances, achieving a smaller error
than Capon beamforming or MUSIC. However, we can see
that this method doesn’t allow to achieve a completeness as
good as with our method. In the reconstruction of the Reg
scene, it is clear that the limited resolution achieved by the
classical beamforming is liable for the poor completeness
scores. Indeed, the reconstructed wall is composed of only
a few number of iso-heights band. On the TSX scene, we
see that classical beamforming is the only estimator that
fails to achieve a better accuracy score when reducing the
threshold (i.e., when degrading the completeness score). A
closer inspection of the reconstructions indicates that the
presence of side-lobes leads to many outliers.

Both Capon beamforming and MUSIC, which rely on the
covariance matrix to achieve super resolution, are penalized in
the layover area and in the shadow area to differentiate outliers.
For the Reg case, this explains the bounded accuracy scores
even when the completeness is poor. Capon beamforming
manages to reduce the side lobes in the Reg case but not
in the TSX simulation where the irregular sampling produces
dramatic biasing effects on the estimation of the position of the
scatterers. As for classical beamforming, Capon beamforming
suffers from the averaging step needed to estimate the covari-
ance matrix, which produces distorted walls and rooftop.

In the TSX scene, the best accuracy / completeness trade-off
from the MUSIC pseudo-spectra produces a sparse scene with
no outliers. However the bias present in the estimation of the
covariance matrix strongly deforms the wall and introduces
some fake discontinuities.

As expected, CS is one of the top estimator in accuracy
and often manage to achieve the most accurate representa-
tions. However, the precision comes with the cost of a loss
of information which explains the relatively bad scores in
completeness.

We can see that the proposed 3D inversion algorithm
shows better performances that the local CS approach. This is
explained by the fact that we are looking for a global sparsity,
rather than pixel by pixel. Doing so, we avoid more outliers
in the shadow areas whereas the local CS tries to explain a
radar cell containing only noise by a small number of targets.
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Fig. 7. Influence of the parsimony µ`1 parameter. In (a) the parameter
is way above its optimal value resulting in a lot of holes in the structure.
In (b) we use a small value of µ`1 resulting in a high number of outliers.
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Fig. 8. Influence of the µx parameter. In (a) the parameter is way above
its optimal value. In (b) the value of the parameter is set to zero.
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Fig. 9. Influence of the µy parameter. In (a) the parameter is way above
its optimal value. In (b) the value of the parameter is set to zero.
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Fig. 10. Influence of the µz parameter. In (a) the parameter is way
above its optimal value. In (b) the value of the parameter is set to zero.

Finally, the potential outliers that would survive a sparsity
constraint are generally suppressed thanks to the smoothing
constraint.

E. Real Data

We test our algorithm and compare it to the other SAR
tomographic estimators on a stack of 40 TerraSAR-X spotlight
images acquired over the front de Seine in the south-west of
Paris, France. The slant-range resolution is 0.45 m and the
azimuth resolution 0.87 m. The observed scene is presented

in Fig. 163. The spatial and temporal baselines are shown in
Fig. 17. The total spatial baseline ∆b span is more than 775
m and the total temporal baseline more than 5 years with a
large gap of almost two years. The theoretical resolutions in
h and z are given by :

δz = δh sin(θ) =
λr sin(θ)

2∆b
= 6.99m (21)

3These data have been provided by the DLR in the framework of the project
LAN1746.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

completeness

ac
cu

ra
cy

(a)

completeness

ac
cu

ra
cy

(b)

completeness

ac
cu

ra
cy

(c)

completeness

ac
cu

ra
cy

(d)

Fig. 11. Study of the influence of each parameter on the metrics for the Reg
scene (cf. Fig. 6 (a)). The plots in (a), (b), (c) and (d) correspond respectively
to different values of µ`1 , µx, µy and µz with the three other parameters
being fixed.
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Fig. 12. Study of the influence of each parameter on the metrics for the TSX
scene (cf. Fig. 6 (a)). The plots in (a), (b), (c) and (d) correspond respectively
to different values of µ`1 , µx, µy and µz with the three other parameters
being fixed.

with an incidence angle θ = 0.6◦ and wavelength λ = 0.0311
m. Sparse reconstructions in urban SAR tomography have
been shown to significantly improve this resolution [35].

To evaluate the different tomographic estimators we use a
rough ground truth of the scene. The ground truth surface is
shown in Fig. 184. The big structures such as the skyscrapers
or the tall buildings are well represented by smooth polygons.
However, the vegetation and the small structures on the docks,
bridges or streets are not represented. We therefore performed
the evaluation only on some areas where we found the ground
truth to be accurate enough. The results of the evaluation are
given in Fig. 18.

It is noteworthy that MUSIC performs particularly well on
areas containing a lot of ground surface. In the first test,
the sub-scene is composed of a mixture of tall buildings,

4Ground truth on Paris complimentary provided by the IGN, France.

small structures near the ground level and smooth flat areas
(streets and docks). As the diffuse signal back-scattered by
flat surfaces is much weaker than the one reflected by the
dihedral or trihedral structures, it is generally not taken into
account by sparse representations of the scene. CS is then
unable to correctly represent ground areas. Taking more points
into account results only in more outliers generally due to
the sidelobes of the brightest points. The averaging step used
to estimate the covariance matrix allows MUSIC to retrieve
part of the ground points or to extend the signal coming from
one punctual target close to the ground to neighboring pixels.
Unlike the non-parametric beamforming methods, MUSIC is
designed to retrieve a sparse scene which removes most of the
side lobes and outliers. MUSIC is then able to outperform CS
according to our evaluation method that includes scatterers on
the ground. On the second tested area corresponding to the red
rectangle in Fig. 18, the performance of MUSIC and CS in
terms of accuracy are very similar. MUSIC seems to perform
a little bit better than CS. However, this may be again be due
to its ability to retrieve more points on the ground and the
small gap between the two methods needs to be taken with
caution as the used ground truth is coarse.

In both experiments, our algorithm achieves the best scores
in term of accuracy and completeness. Moreover, the analysis
of the metrics on real data shows that in all the possible ways
of selecting the reconstructed voxels, our tomographic 3-D
inversion algorithm performs a better reconstruction than the
compared estimators.

The 3-D plain representation of the scene obtained by our
approach is presented in Fig. 19. The heat color is chosen to
be proportional to the intensity of the voxels normalized by
the averaged intensity of the corresponding radar cell. This
normalization is used only to help the visualization as the dy-
namic range of SAR images is very high. In Fig. 20, the same
image is shown except that the near zero intensity voxels are
made fully transparent and the ground truth is superimposed.
We can see that most of the very bright buildings present in
the SAR images in Fig. 16 are well reconstructed. The two
towers that were mostly missing in the 2D intensity image
have a point-like representation but are fairly visible in this
3-D rendering.

By using the georeferencing of the voxels, we can project
the corresponding point cloud into Google Earth c©. The
results are presented in Fig. 21. This step allows us to have
more details in the visualization of the scene. We can now see
that some points above the Mirabeau Tower are relevant: they
correspond to the structure of its rooftop. Our reconstruction
method also correctly identified parts of the structures on
the dock and a large amount of buildings hidden behind the
Mirabeau tower.

Finally, we considered a different test case: reconstruction
of a vegetated area. We reconstructed a slice of boreal forest
using six SAR images from the BioSAR campaign. The results
showed on figure 22 look promising as our method is able to
separate the canopy from the ground in some places. More-
over, compared to classical beamforming, Capon beamforming
or even the MUSIC pseudo-spectrum, we obtain a much more
detailed representation of the imaged environment.
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Fig. 13. Best representation on the Reg scene using classical beam-
forming (a), Capon beamforming (b), MUSIC (c), CS (d) and our
tomographic 3D inversion (e).
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Fig. 14. Best representation on the TSX scene using classical beam-
forming (a), Capon beamforming (b), MUSIC (c), CS (d) and our
tomographic 3D inversion (e).

V. CONCLUSION

In this paper a new tomographic 3-D inversion method
has been proposed. This method is shown to be effective

to inverse a SAR tomographic stack in a dense urban area.
The chosen spatial regularization strategy takes advantage of
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Fig. 15. Accuracy vs. completeness for classical beamforming, Capon
beamforming, MUSIC, Compress Sensing and our 3D Inversion algorithm.
In (a) the evaluation is done on the Reg scene 6 and in (b) on the TSX scene
6.

both the natural sparsity of targets in urban environments and
the spatial smoothness (i.e., spatial proximity of scatterers).
Our approach generalizes compressed sensing techniques and
includes, in an adaptive way, a spatial smoothing.

To be able to compare our method with other estimators
used in SAR tomography we proposed a protocol of evaluation
based on accuracy and completeness. The tests done on
numerical simulations and on a stack of TerraSAR-X images
in a urban area and another stack over a forest showed that
our method leads to better results than existing approaches in
terms of accuracy / completeness compromise.

As the priors we chose are very general, they can also be
used for more isotropic environments such as vegetated areas,
as shown on a tomographic stack from the BioSAR campaign.

Finally, this 3D inversion algorithm opens a door to more
sophisticated approaches taking into account more complex
priors describing the data. Indeed, the main structure of the
tomographic 3D inversion would remain unchanged if other
regularization terms were considered within a variable splitting
approach.

(a)

(b)

Fig. 16. (a) Image of the temporal mean of all the iamges in the stack and (b)
the corresponding optic image obtained from Geoportail (IGN).The building
back-scattering a strong signal in the center af the image is the Mirabeau
Tower. In the bottom left of the image, the structure presenting a strong
periodic back-scattering signal is the Ministry of Foreign Affair.

Fig. 17. Orthogonal spatial baseline vs. temporal baseline for all the 40
acquisitions

REFERENCES

[1] Y. Huang, L. Ferro-Famil, and A. Reigber, “Under foliage object
imaging using SAR tomography and polarimetric spectral estimators,”



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

(a) (b)

completeness

ac
cu

ra
cy

(c)

completeness

ac
cu

ra
cy

(d)

Fig. 18. Scores accuracy versus completeness based on the ground truth in (a) for the tomographic estimators classical beamforming, Capon
beamforming, MUSIC, CS and the proposed 3D inversion. In (c) the evaluation is done over the area corresponding to the red rectangle in
(b). In (d) the test area is inside the green rectangle.

in 8th European Conference on Synthetic Aperture Radar, June 2010,
pp. 1–4.

[2] A. Reigber and A. Moreira, “First demonstration of airborne SAR
tomography using multibaseline L-band data,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 38, no. 5, pp. 2142–2152, Sep
2000.

[3] A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and
K. P. Papathanassiou, “A tutorial on synthetic aperture radar,” IEEE
Geoscience and Remote Sensing Magazine, vol. 1, no. 1, pp. 6–43,
March 2013.

[4] R. M. P. Stoica, in Introduction to Spectral Analysis. Prentice Hall,
1997.

[5] F. Gini and F. Lombardini, “Multibaseline cross-track SAR interferom-
etry: a signal processing perspective,” IEEE Aerospace and Electronic
Systems Magazine, vol. 20, no. 8, pp. 71–93, Aug 2005.

[6] S. Tebaldini and F. Rocca, “Multibaseline Polarimetric SAR Tomog-
raphy of a Boreal Forest at P- and L-Bands,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 50, no. 1, pp. 232–246, Jan 2012.

[7] C. A. Deledalle, L. Denis, F. Tupin, A. Reigber, and M. Jäger, “NL-SAR:
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Fig. 21. Visualization of the point cloud obtained from the reconstructed cube with projected
in Google Hearth c©.
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(c)

(d)

Fig. 22. Results on a slice of boreal forest from
the ESA campaign BioSAR. The tomograms
are obtain using classical beamforming in (a),
Capon beamforming in (b), MUSIC in (c) and
the proposed tomographic 3F inversion in (d).
In red is the indicative low resolution DEM.


