
HAL Id: hal-01797192
https://hal.science/hal-01797192

Submitted on 24 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-time H264/AVC high definition video encoder on a
multicore DSP TMS320C6678

Nejmeddine Bahri, Nidhameddine Belhadj, Med Ali Ben Ayed, Nouri
Masmoudi, Thierry Grandpierre, Mohamed Akil

To cite this version:
Nejmeddine Bahri, Nidhameddine Belhadj, Med Ali Ben Ayed, Nouri Masmoudi, Thierry Grandpierre,
et al.. Real-time H264/AVC high definition video encoder on a multicore DSP TMS320C6678. 2015
International Conference on Computer Vision and Image Analysis Applications (ICCVIA), Jan 2015,
Sousse, Tunisia. �10.1109/ICCVIA.2015.7351893�. �hal-01797192�

https://hal.science/hal-01797192
https://hal.archives-ouvertes.fr

Real-time H264/AVC High Definition video encoder

on a Multicore DSP TMS320C6678

Nejmeddine Bahri, Nidhameddine Belhadj, Med Ali

Ben Ayed, Nouri Masmoudi

National Shool of Engineers of Sfax, LETI Laboratory,

University of Sfax, Tunisia

nejmeddine.bahri@esiee.fr

Thierry Grandpierre, Mohamed Akil

ESIEE Engineering, LIGM Laboratory,

University Paris-EST, France

thierry.grandpierre@esiee.fr

Abstract—In this paper, the newest Texas Instrument’s multicore

DSP TMS320C6678 is used in order to perform a real-time

H264/AVC high definition (HD) embedded video encoder. We

exploit the high computing performance offered by this eight-

core DSP in order to meet the real-time encoding compliant. To

enhance the encoding speed, Frame Level Parallelism (FLP)

approach is applied. A master core is reserved to handle data

transfers to/from DSP. Multithreading algorithm combined with

a ping-pong buffers technique are exploited in order to optimize

the standard FLP approach and hide communication overhead.

Experimental results show that our enhanced FLP

implementation allows achieving real-time HD (1280x720) video

encoding by reaching up to 26 f/s (frame/second) as encoding

speed. Experiments show also that our parallel implementation,

performed on seven C6678 DSP cores running each @ 1 GHz,

allows accelerating the encoding run-time by a factor of 6,38

without inducing any quality degradation or bit-rate increase.

I. INTRODUCTION

Nowadays, HD resolution is widely used in several
multimedia video applications due to the rapid evolution of
digital cameras technology. Facing the high cost of storing raw
video data and transmission bandwidth limitation, video
encoding with high compression performance is absolutely
required. H264/AVC encoder represents one of the most
efficient video standards. This encoder ensures a high encoding
efficiency compared to previous standards by saving up to 50%
of bit-rate while maintaining the same visual quality. However,
this efficiency comes with a tremendous computational
complexity which makes it hard to meet the real-time video
encoding constraint (25 f/s) for HD resolution.

In order to overcome this complexity, a high performance
computing capability is absolutely required. Single core
processors with low CPU frequency are not able to meet real-
time HD video coding. Consequently, using multicore,
multithreading, and multiprocessor platforms can be a
promising solution for this problem. Several works which
profit from the potential parallelism in H264/AVC encoder
have been presented in several papers [2]-[6]. These works are
based on applying different partitioning techniques and
exploited both task and data level parallelism.

In this context, we try to develop our embedded video
encoder solution which is characterized by software flexibility
and low power consumption. Our proposed solution should
meet HD encoding requirements in terms of visual quality,

real-time processing, and compression performance.
Consequently, it could be included in various video
applications such as smart cameras, machine vision computing,
smart TV, mobile phone, robotic, traffic security, and
surveillance camera etc.

To achieve this aim, the Keystone TI’s multicore DSP
TMS320C6678 is used in order to perform a parallel
H264/AVC video encoder implementation. Frame Level
Parallelism approach is selected to accelerate data processing
time. Multithreading algorithm combined with ping-pong
buffers technique are exploited in order to improve the
encoding performance and hide communication overhead.

The rest of this paper is outlined as follows: next section
details the different partitioning approaches and some parallel
H264/AVC video encoder implementations. TMS320C6678
architecture overview is described in section 3. Section 4
highlights our enhanced FLP implementation on eight C66x
cores and presents experimental results. Finally, section 5
concludes this paper and presents some perspectives.

II. H264/AVC ENCODER : PARTITIONING METHODS AND

PARALLEL IMPLEMENTATIONS

H.264/AVC baseline encoder is a video compression
standard that aims to reduce the large amount of raw video data
in order to overcome the bandwidth transmission limitation and
reduce the raw video storing cost. The main structure of this
standard consists in performing several tasks in order to ensure
an efficient encoding performance such as: intra prediction,
inter prediction, integer cosine transform, quantification,
filtering, and entropy coding. This standard splits a video
sequence into hierarchical data structure. In fact, the sequence
is divided into one or more groups of pictures (GOP). Each
GOP includes one or more frames. The first frame of the GOP
is an intra frame (I) and the remaining ones are predicted
frames (P). Each frame can be divided into one or more slices,
subdivided themselves into macroblocks (MB) and blocks.

In order to perform a parallel implementation for this
encoder, two partitioning approaches can be exploited:

Task-level parallelization (TLP): it exploits the functional
organization of H264/AVC encoder by regrouping the different
functions in several tasks, equal to the number of processing
units available on the system, and run these tasks method as in
[2]. This approach ensures low encoding latency; however, it

This work is supported by the French ministry of Foreign Affairs and the
Tunisian ministry for Higher Education and Scientific Research in the context

of Hubert Curien Partnership (PHC UTIQUE) under the CMCU project

number 12G1108.

has some drawbacks. First, we can say that it is not very
suitable for H264/AVC encoder because the existence of a lot
of data dependencies among tasks which requires a large
amount of data transfers among processors. Second, a lot of
inter-processors synchronizations are required which increases
the implementation complexity. Finally, functions in
H.264/AVC encoder have not the same load balance which
makes it hard to uniformly map functions among processors;
consequently, encoding performance is always depending on
the heaviest load processor.

Data-level parallelization (DLP): it profits from the
hierarchical data structure of H264/AVC encoder by
simultaneously processing several data levels on multiple
processing units. Some data dependencies should be respected
among the different data when applying this approach.

First, no dependencies exist among different GOPs. In fact,
each GOP starts with an intra frame (the current MB encoding
requires only some data from its neighboring MBs in the same
frame). Consequently, several GOPs can be processed in
parallel. This approach is called ―GOP Level Parallelism‖. It
has been adopted by several researchers as in [3].This method
ensures the best encoding speedup and characterized by low
synchronization cost and no data communications among
processors. However, it requires a large memory amount in
order to handle all the frames and it is characterized by a high
encoding latency. Consequently, it is not suitable for System on
Chip platforms (SOC) and real-time video applications.

Temporal dependency is imposed by the motion estimation
algorithm between successive frames of the same GOP. In fact,
to determine the current MB motion vector, a block matching
algorithm is performed in a restricted search window in the
reference frames (previous frames already encoded) as shown
in Fig .1. Accordingly, multiple frames can be encoded in
parallel way once the search window in the reference frame has
already been encoded. This method is called ―Frame Level
Parallelism‖ [4]. This approach provides a compromise
between encoding latency and implementation efficiency. In
fact, Memory amount and encoding latency is significantly
reduced compared to GOP parallel implementation. In the other
side, processors synchronizations are required in order to
respect the temporal data dependency.

Reference

 Frame

Current Frame

Search

window

Current MB

Fig. 1. Data dependency for inter prediction

Since H264/AVC standard gives the possibility to divide
the frame into independent slices, several slices can be
processed in parallel, and this approach is named by ―Slice
Level Parallelism‖ such as in [5]. This approach is
characterized by high scalability and low encoding latency but
it has a major drawback. In fact, it induces visual quality
degradation in terms of PSNR and an increase in bit-rate. This

returns to data dependencies that are not respected among MBs
of different slices.

Finally, in the frame itself, several MBs can be encoded in
parallel once its neighboring MBs have already been processed
in order to respect spatial data dependencies required by the
intra prediction module as shown in Fig. 2.

Current

 MB

LEFT

 MB

TOP pixels

dependency

TOP

right

L
E

F
T

 p
ix

el
s

d
ep

en
d

en
cy

TOP

Left

TOP MBTOP LEFT

 MB

TOP right

MB

Fig. 2. spatial dependencies for the current MB

This approach is called ―MB level Parallelism‖ [6]. It is
characterized by low encoding latency and low memory
requirement but in the other side, low scalability, large amount
of data transfers and synchronizations among processors in
addition to the non-equal load balance make MB level
parallelism approach not efficient for parallel H264/AVC
encoder implementation.

In the state of art, some parallel H264/AVC encoder
implementations have not yet succeeded to meet the real-time
compliant especially for high resolutions. Consequently, we
will present in this work our strategy to perform a real-time
parallel H264/AVC video coding without inducing any
distortion in terms of visual quality or bit-rate. Our scheme is
based on exploiting the merits of a multicore platform and
applying an efficient partitioning method.

III. DSP PLATFORM DESCRIPTION

New generations of DSP processors represent an attractive
solution for embedded applications that require high computing
performance. In fact, these DSPs are characterized by software
flexibility, high performance computing, multicore
architecture, low power consumption, competitive price tag,
and time to market. According to these merits, we chose to
implement the H264/AVC encoder on the last generation of
TI’s keystone multicore DSP TMS320C6678 [7] in order to get
a flexible embedded encoder that allows achieving a real-time
25 f/s HD video encoding. As shown in Fig. 3, eight DSP Core
Subsystems (C66x CorePacs) running each @ 1GHz, very long
instruction word (VLIW) architecture, Single Instruction
Multiple Data (SIMD) set instruction and 8.5 Mega-bytes (Mb)
of memory on chip are combined to deliver 64000 MIPS
performance. To support applications that require a large
amount of memory such as ultra HD video applications,
TMS320C6678L includes a 512MB of DDR3-1333 external
memory. This EVM platform (evaluation module) comes with
TI’s Multicore Software Development Kit (MCSDK) for
SYS/BIOS Real Time Operating System (RTOS). For external
communications, TMS320C6678 supports several high speed
standard interfaces such as RapidIO for DSP-to-DSP
communications and Gigabit Ethernet for Internet Protocol (IP)
networks etc.

Fig. 3. Internal architecture of TMS320C6678 multi-core DSP

IV. ENHANCED FRAME LEVEL PARALLELISM

IMPLEMENTATION

To profit from our multicore DSP architecture and the
potential parallelism in H264/AVC encoder, Frame Level
Parallelism approach is chosen to parallelize data processing
and accelerate encoding run-time. Our choice is based on
several reasons: First, this approach is characterized by high
scalability. Second, this method ensures an important encoding
speedup without inducing any rate distortion (Quality
degradation or bit-rate increase) as the case of slice Level
Parallelism method. Finally, it presents a compromise between
GOP Level Parallelism and MB Level Parallelism
implementations in terms of memory amount, CPU
synchronizations cost, load balance, and implementation
complexity.

A. H264/AVC Video encoding demo

To perform real-time video encoding demo, frames
acquisition should be also performed in real-time. For that,

277Mbits/s as transmission bandwidth at least is required to
transfer HD frames @ 25 f/s in YCrCb 4:2:0 format
((1280x720x1.5)x8bits x25f/s). As our DSP evaluation board
has not yet a frame grabber interface, a personal computer (PC)
linked to a Universal Serial Bus (USB) HD webcam is used as
preliminary step to send raw frames to DSP as shown in Fig. 4.
In fact, Our DSP platform and the used PC include both a
Gigabit Ethernet communication interface which makes it
possible to perform real-time data transfer between them.

As our platform includes eight DSP cores, we reserved the
first core ―core0‖ to handle data transfer between the DSP and
the camera board side (PC) via Ethernet connection. It is
considered as a master processor that executes a TCP/IP server
application (transmission Control Protocol/Internet Protocol)
exploiting Network Developer’s Kit library [8]. It is used
firstly to receive the current frames sent by the camera board
side and save them into the DDR3 memory which is a shared
memory for all DSP cores. Consequently, the seven remaining
cores are considered as slaves and they are devoted to encode
the seven received frames in parallel way.

For each slave core (1 to 7), a memory section is allocated
in the DDR3 memory. It contains the current frame, the
reconstructed frame (RECT), and the bit-stream.

Our H264/AVC program is loaded into each internal L2
memory of the seven cores. Local variables used during
encoding such as predicted MB buffers, transform and
quantification matrixes, and best predicted modes etc are all
allocated also in the L2 memory of each core to avoid data
overlap among different cores. Our H264/AVC single core
implementation is based on MBs row Level implementation
[9]. It is an optimized design for the encoder in order to profit
from the internal on-chip L2 memory and reducing DDR3
accesses. It consists in copying one MBs row instead of one
MB (the classic encoding way) from the current frame in the
DDR3 into a MB row buffer in the internal L2 memory.

Visual C/C++ project

TCP Stream

socket

Server (@IP,

port number)

External memory

SDRAM DDR3

Ping current

frame SRC[0]

Pong current

frame SRC[1]

RECT frame

Bitstream[0]

Core 1

SYS BIOS

project

H264

encoder. Out

CSL APIs

EVMC6678 DSP

Send 7

current

frames

1

Recv

Bitstream

of 7

frames

Core 0

SYS BIOS

project

TCP server. out

Network

developer's Kit

& CSL APIs

2 3

4

6

Bitstream[1]

.

.

.

5

Bitstream[1][0]

Bitstream[1][1]

Bitstream[1][2]

Bitstream[1][3]

Bitstream[1][4]

Bitstream[0][0]

Bitstream[0][1]

Bitstream[0][2]

Bitstream[0][3]

Bitstream[0][4]

For(k=0;k<FramesToBeEncoded/7;k++)

{

 For(i=0;i<7;i++)

 {

 Rcv (bitstream [k&1] [i])

 }

}

For(k=0;k<FramesToBeEncoded/7;k++)

{

 For(i=0;i<7;i++)

 {

 write (bitstream [k&1] [i])

 }

}

Thread1 (reading and sending)

Thread2 (bitstream receiving)

Thread3 (bitstream writing)

Bitstream[1][5]

Bitstream[1][6]

Bitstream[0][5]

Bitstream[0][6]
Ping current

frame SRC[0]

Pong current

frame SRC[1]

RECT frame

Bitstream[0]

Core 7

SYS BIOS

project

H264

encoder. Out

CSL APIs

2 3

4

Bitstream[1]

5

For(k=0;k<FramesToBeEncoded/7;k++)

{ For(i=0;i<7;i++)

 { Capture frame SRC[frame_size];

 Send (SRC[frame_size]) ;

 }

}

Fig. 4. H264/AVC vide encoder demo using Frame Level Parallelism approach

Encoding process will be thereafter performed between the
CPU and the fast L2 memory without accesses to the DDR3.
This implementation requires copying three MBs rows from
the reconstructed frame into L2 memory to be used as motion
estimation search window for all the MBs of the current MBs
row. More details of this encoder design are presented in our
previous publication [9].

Once encoding process is achieved, core0 sends the bit-
streams of all encoded frames to the PC in order to store them
in a file or decode them later.

To improve the classic Frame level parallelism
implementation, our optimization consists in hiding
communication overhead. The proposed enhancement is based
on two strategies: the first is exploiting the ping-pong buffers
technique on the DSP side in order to overlap encoding process
with reading and writing data processes. The second is using a
multi-threading approach on the camera board side as shown in
Fig. 4. Thus, three threads are created to handle: 1) Reading
raw frames and sending them to DSP via Ethernet. 2)
Receiving bit-streams from DSP. 3) Saving the received bit-
streams in a file.

On the DSP side, for each slave core, a ping-pong buffer is
allocated for both the current frame and the generated bit-
stream. A single buffer is used for the reconstructed frame
since no transfers are required for this data.

OpenCv library [10] is exploited in our C/C++ project on
the camera board side in order to capture raw frames from the
HD USB camera. This C++ library is also used to convert
captured frames from RGB to YCrCb 4:2:0 format that is
required in our H264/AVC video encoder.

B. Parallel encoding steps using enhanced FLP approach on

seven DSP cores

Encoding steps of our parallel implementation using the
enhanced FLP approach on seven DSP cores are described in
Fig. 5 and detailed as follows:

 Thread1 captures the first frame from the camera and
sends it to DSP. Core0 receives this frame and stores it
into the ping buffer SRC[0] of core1. After that, Core0
notifies core1 by sending an Inter Processor
Communication event (IPC) to inform it that it can
start encoding its current frame.

 When receiving the IPC interruption from core0,
core1 starts the encoding process. At the same time,
thread1 continues reading and sending the next six
frames to core0 which will store them into the ping
buffers of core2 to core7. Thus, each core immediately
starts encoding its corresponding frame after receiving
the IPC event from core0.

 Core1 is the first core that starts encoding process.
Once it finishes encoding the first 3 MBs rows of its
current frame, it sends an IPC to the following core
(core2) which itself is in a wait state for an
interruption from core1 to start encoding its
appropriate frame in order to respect temporal
dependency by using these 3 MBs rows as a search

window for motion estimation. The same procedure
will be reproduced from core3 to core7.

 To avoid that core i exceeds core i-1 (which is
strongly possible because encoding load balance is not
equal among successive frames so, it may lead to an
erroneous result), encoding the next MBs row by core
i is conditioned with the reception of an IPC from its
previous core. Thus, each core sends an IPC to its
following core after encoding a MBs row which its
index is higher than 3.

 Since each core starts encoding its MBs row when its
previous core finishes encoding the first three MBs
rows, it should not wait an IPC from its antecedent to
encode the two last MBs rows of the current SRC
frame. Otherwise, encoding will be blocked by
waiting an incoming IPC. In fact, each core sends
Max_MBs_rows-2 IPC interruptions to its following
core.

 During encoding the first seven frames by core1 to
core7, thread1 sends the next 7 frames to core0 which
will store each frame into the pong buffer SRC[1] of
each core. Because encoding process takes more time
than reading process, communication delays are
hidden and they do not contribute to the parallel run-
time.

 When core i terminates encoding its current frame, it
stores the bitstream into the ping buffer bitstream[0].
Then, it notifies core0 by sending an IPC event to
inform it that it can forward its bitstream to the PC.
Immediately after that, core i starts encoding its pong
frame already stored into SRC[1] without any wait
and stores the bitstream into the pong buffer
bitstream[1] in order to not overwrite data stored into
bitstream[0] which is being transferred.

 While core i encodes its pong frame, core0 sends the
ping bitstream[0] corresponding to core i without
waiting that all cores finish encoding their respective
frames. Thread2 receives the ping bitsteams and stores
them into the ping buffers Bitstream[0][i]. At this
time, thread3 writes the bitstreams in a file and
thread1 sends the next seven frames to core0 which
will store each frame into the ping buffer SRC[0] of
each core.

 With this enhancement, the pong SRC frames
encoding, the ping bitstreams writing, and the next 7
ping SRC frames reading and sending are processed in
parallel way.

 The processing is thereafter looped in a reverse order
for SRC frames and bitstreams through ping pong
buffers.

 As shown in Fig. 5, no significant delays are occurred.
Each core processes its respective data without any
waiting time. Multithreading algorithm with ping pong
buffers technique efficiently overlap data transfer with
encoding process.

Send IPC to core0

Send IPC to core0

 Frame21

 Frame14

 Frame7

Frame8

Frame1

Frame16

Frame9

Frame2

Send IPC to core0

Send IPC to core2

Capture Frame1 + send
Send IPC to core1

Core 0Thread1 Core 1 Core 2 Core 7……….....

Capture Frame2 + send

Capture Frame3 + send

Capture Frame4 + send

Capture Frame5 + send

Rcv frame 1

Rcv frame 2

Rcv frame 3

Rcv frame 4

Rcv frame 5
Wait IPC+Encode row1

Wait IPC+Encode row2

Wait IPC+Encode row3

Wait IPC+Encode row4

Wait IPC+Encode row5

Wait IPC+Encode row6

Encode row_max

Wait+Enc row_max-2

Encode row_max-1

…

Send IPC to core3

Send IPC to core3

Send IPC to core3

Send IPC to core3

Send IPC to core3

Send IPC to core3

Send IPC to core3

….

Send Bitstream frame 1

Send Bitstream frame 2

Send Bitstream frame 3

Send Bitstream frame 4

Send Bitstream frame 5

Rcv Bitstream frame 1

Rcv Bitstream frame 2

Rcv Bitstream frame 3

Rcv Bitstream frame 4

Rcv Bitstream frame 5

Time

Wait

Wait

Wait

T=0

Send IPC to core3

Send IPC to core4

Send IPC to core5

Send IPC to core7

Send IPC to core7

Send IPC to core7

Send IPC to core7

Send IPC to core7

Send IPC to core7

Send IPC to core7

Wait IPC+Encode row1

Wait IPC+Encode row2

Wait IPC+Encode row3

Wait IPC+Encode row4

Wait IPC+Encode row5

Wait IPC+Encode row6

Encode row_max

Wait+Enc row_max-2

Encode row_max-1

…

Capture Frame6 + send

Capture Frame7 + send

Rcv Frame 6

Rcv Frame 7
Send IPC to core6

Send IPC to core7

Encode row1

Encode row2

Encode row3

Encode row4

Encode row5

Encode row6

Encode row_max

Encode row_max-2

Encode row_max-1

…

Send IPC to core2

Send IPC to core2

Send IPC to core2

Send IPC to core2

Send IPC to core2

Send IPC to core2

Send IPC to core2

Encode row1

Encode row2

Encode row3

Encode row4

Encode row5

Encode row6

Encode row_max

Encode row_max-2

Encode row_max-1

…

Send IPC to core2

Send IPC to core2

Send IPC to core2

Send IPC to core2

Send IPC to core2

Send IPC to core2

Wait IPC+Encode row1

Wait IPC+Encode row2

Wait IPC+Encode row3

Wait IPC+Encode row4

Wait IPC+Encode row5

Wait IPC+Encode row6

Encode row_max

Wait+Enc row_max-2

Encode row_max-1

…

Send IPC to core3

Send IPC to core3

Send IPC to core3

Send IPC to core3

Send IPC to core3

Send IPC to core3

Send IPC to core0

Send IPC to core7
Send IPC to core7

Send IPC to core7

Send IPC to core7

Send IPC to core7

Send IPC to core7

Send IPC to core7

Wait IPC+Encode row1

Wait IPC+Encode row2

Wait IPC+Encode row3

Wait IPC+Encode row4

Wait IPC+Encode row5

Wait IPC+Encode row6

Encode row_max

Wait+Enc row_max-2

Encode row_max-1

…

write Bitstream frame 1

write Bitstream frame 2

write Bitstream frame 3

write Bitstream frame 4

write Bitstream frame 5

Thread2Thread3

Send Bitstream frame 8

Send Bitstream frame 9

Send Bitstream fr 10

Send Bitstream fr 11

Send Bitstream fr 12

Rcv Bitstream frame 8

Rcv Bitstream frame 9

Rcv Bitstream frame 10

Rcv Bitstream frame 11

Rcv Bitstream frame 12

write Bitstream frame 8

write Bitstream frame 9

write Bitstream fr 10

write Bitstream fr 11

write Bitstream fr 12

Encode row1

Encode row2

Encode row3

Encode row4

Encode row5

Encode row6

Encode row_max

Encode row_max-2

Encode row_max-1

…

Send IPC to core2

Send IPC to core2

Send IPC to core2

Send IPC to core2

Send IPC to core2

Send IPC to core2

Send IPC to core2

Wait IPC+Encode row1

Wait IPC+Encode row2

Wait IPC+Encode row3

Wait IPC+Encode row4

Wait IPC+Encode row5

Wait IPC+Encode row6

Encode row_max

Wait+Enc row_max-2

Encode row_max-1

…

Send IPC to core3

Send IPC to core3

Send IPC to core3

Send IPC to core3

Send IPC to core3

Send IPC to core7

Send IPC to core7

Send IPC to core7

Send IPC to core7

Wait IPC+Encode row1

Wait IPC+Encode row2

Wait IPC+Encode row3

Wait IPC+Encode row4

Wait IPC+Encode row5

Wait IPC+Encode row6

Wait

WaitWait

Wait

Wait

Wait

Send IPC to core3

Send IPC to core3

EVM C6678PC

Send IPC to core0

Capture Frame8 + send
Send IPC to core1

Capture Frame9 + send

Capture Frame10+send

Capture Frame11+send

Capture Frame12+send

Rcv frame8

Rcv frame 9

Rcv frame 10

Rcv frame 11

Rcv frame 12

Send IPC to core3

Capture Frame13+send

Capture Frame14+send

Rcv Frame 13

Rcv Frame 14
Send IPC to core6

Send IPC to core2

Send Bitstream frame 6

Send Bitstream frame 7

Rcv Bitstream frame 6

Rcv Bitstream frame 7Rcv Bitstream frame 6

Rcv Bitstream frame 7 Capture Frame15+send
Send IPC to core1

Capture Frame16+send

Capture Frame17+send

Capture Frame18+send

Capture Frame19+send

Rcv frame 15

Rcv frame 16

Rcv frame 17

Rcv frame 18

Rcv frame 19

Send IPC to core3

Send IPC to core4

Send IPC to core5
Capture Frame20+send

Capture Frame21+send

Rcv Frame 20

Rcv Frame 21

Send IPC to core0

Send IPC to core2

Frame15

Send Bitstream fr 13

Send Bitstream fr 14

Rcv Bitstream frame 13

Rcv Bitstream frame 14write Bitstream fr 13

write Bitstream fr 14

…
..

…
..

Ping

Frames

Pong

Frames

Ping

Frames

Fig. 5. chronological steps of the Enhanced FLP implementation on the multicore DSP TMS320C6678

C. Cache coherence

Parallel processing on a multicore platform may lead to a
cache coherence problem. This is happen when processing a
shared data by several cores with a private cache memory. In
order to deal with cache coherence problem, the Chip Support
Library included in the MCSDK development Kit [11] of TI
provides two API functions:

 CACHE_wbL2() to return back the cached data from
the cache memory to its original location in the shared
memory.

 CACHE_invL2() to invalidate the cache lines and
force the CPU to read data from its original location in
the shared memory.

In our case, when receiving the captured frames from the
PC, core0 should write back the cached lines to their locations
in the external DDR3 memory in order to be encoded later by
the slave cores. Similarly, core1 to core7 should invalidate the
current frames addresses in their cache memories before start
encoding. This allows processing the updated data written by

core0 and not the old data already existed in their cache
memories. Furthermore, when encoding process is achieved,
core1 to core7 should write-back the bit-streams from their
cache memories to their original locations in the external
memory. Consequently, core0 should invalidate the bit-streams
from its cache memory in order to send the updated values to
the PC.

D. Experimental results

Our parallel implementation of H264/AVC encoder is
performed on the eight-core TMS320C6678 DSP. Each core of
our target is running @ 1 GHz of CPU frequency. H264/AVC
LETI laboratory’s software which is an optimized version of
the Joint Model (JM) software [8] is used. Experimental
simulations are performed on the most commonly used video
test sequences in HD (1280x720) resolution. These sequences
are a raw data in YCrCb 4:2:0 format recommended by the
Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG
organizations [12]. Encoding parameters are presented in
TABLE I.

TABLE I. ENCODING PARAMETERS

Intra period (GOP size) 8

Search range 16

QP value 30

Frames to be encoded 280

Error metric for mode decision Sum of Absolute Difference

Entropy coding CAVLC

Rate control off

Number of Reference Frames 1

For performance evaluation, encoding speed is measured

for several implementations using different number of cores
and expressed as follows:

encoding speed (f/s) =
DSP frequency

Number of clock cycles
x number of frames (1)

In our experiments, data transfer time, which includes PC
frames capturing, sending them to DSP via Ethernet, and
loading them to DSP memory by core0, is considered in our
computation in order to evaluate our enhancement techniques
of hiding communication overhead. Table II shows the
encoding speeds of our optimized H264/AVC video encoder
implementation with different number of cores.

TABLE II. ENCODING SPEEDS FOR HD RESOLUTION

Video

sequences

Enc speed

on 1 core

(f/s)

Enc speed

on 3 cores

(f/s))

Enc speed

on 5 cores

(f/s)

Enc speed

on 7 cores

(f/s)

Planet 4.19 12.07 18.92 26.83

Parkjoy 4.78 12.98 21.81 28.87

Nature 3.88 11.01 17.58 25.75

Mob_cal 4.01 11.24 18.28 26.18

Crowdrun 3.79 10.80 17.13 25.12

Birds 4.98 12.37 22.04 30.46

Shields 3.87 11.10 17.68 25.15

Stockholm 3.98 11.20 17.32 25.34

Average 4.18 11.60 18.84 26.71

Experimental results show that single core implementation
is not able to meet the real-time encoding compliant (25 f/s). In
fact, the obtained encoding speed using a single DSP core is
equal to 4,18 f/s in average for HD resolution. Applying our
multicore implementation exploiting the enhanced FLP
approach allows enhancing the encoding speed. As shown in
Table II, encoding speed is significantly increased from 4,18 f/s
to 11,6 f/s and 18,84 f/s when using respectively 3 and 5 DSP
cores for encoding. Exploiting seven DSP cores allows
achieving the real-time processing and reaching 26.71 f/s in
average surpassing the real-time constraint 25 f/s. Our parallel
implementation accelerates the encoding run-time by a factor
of 6,38 without inducing any rate distortion in terms of visual
quality degradation or bit-rate increase compared to single core
implementation.

Despite that data transfer time has been considered in our
performance evaluation; this time does not contribute in the
encoding run-time. This affirms that our proposed data transfer
scheduling technique efficiently hides communication

overhead. In fact, data transfer time will be only noticed in the
first seven frames as shown in Fig. 5 but after that, these
transfers are mostly overlapped with the encoding process
especially that this latter takes more time than reading and
writing processes.

V. CONCLUSION

In this paper, an embedded real-time H264/AVC video
encoder implementation on the last generation of TI’s
multicore DSP TMS320C6678 was presented. FLP approach
was selected to accelerate the encoding run-time. Exploiting a
multi-threading algorithm combined with using a ping-pong
buffers technique allows enhancing our implementation and
efficiently hides communication overhead. Experimental
results on seven DSP cores running each @ 1 GHz showed that
real-time was achieved by reaching up to 26 f/s as encoding
speed for HD resolution. Our parallel implementation
accelerated the encoding process by a factor of 6,38 without
inducing any visual quality degradation or bit-rate increase. As
perspective, we will exploit our expertise in multicore DSP
implementation to implement the newest HEVC video encoder
and trying to achieve real-time encoding.

REFERENCES

[1] Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG,
―Advanced video coding for generic audiovisual services,‖ Avril 2013.

[2] Zhibin Xiao, Stephen Le and Bevan Baas, ―A Fine-grained Parallel
Implementation of a H.264/AVC Encoder on a 167-processor
Computational Platform,‖ ACSSC 2011 – Pacific Grove, CA, 2011.

[3] S. Sankaraiah ,Lam Hai Shuan, C. Eswaran and Junaidi Abdullah ,
―Performance Optimization of Video Coding Process on Multi-Core
Platform Using Gop Level Parallelism,‖ International Journal of Parallel
Programming, ISSN:1573-7640, September2013..

[4] Zhuo Zhao; Ping Liang, "A Highly Efficient Parallel Algorithm for
H.264 Video Encoder," Acoustics, Speech and Signal Processing, 2006.
ICASSP 2006 Proceedings. 2006 IEEE International Conference on ,
vol.5, no., pp.V,V, 14-19 May 2006.

[5] António Rodrigues, Nuno Roma, and Leonel Sousa,‖ p264: Open
Platform for Designing Parallel H.264/AVC Video Encoders on Multi-
Core Systems,‖ NOSSDAV '10 Proceedings of the 20th international
workshop on Network and operating systems support for digital audio
and video Pages 81-86, Amsterdam, 2010.

[6] Shenggang Chen; Shuming Chen; Huitao Gu; Hu Chen; Yaming Yin;
Xiaowen Chen; Shuwei Sun; Sheng Liu; Yaohua Wang, "Mapping of
H.264/AVC Encoder on a Hierarchical Chip Multicore DSP
Platform," High Performance Computing and Communications 12th
IEEE International Conference , pp.465,470, 1-3 Sept. 2010

[7] TMS320C6678 manual datasheet, online available:
http://www.ti.com/lit/ds/symlink/tms320c6678.pdf

[8] TI NDK user's Guide, online available:
http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/ndk/
2_21_01_38/exports/ndk_2_21_01_38/docs/spru523h.pdf

[9] Bahri, N., Werda, I., Grandpierre, T., Ben Ayed, M., Masmoudi, N., &
Akil, M, ―Optimizations for Real-Time Implementation of H264/AVC
Video Encoder on DSP Processor,‖ International Review on Computers
& Software,8(9), 2013.

[10] OpenCv library: http://opencv.org/

[11] MCSDK user’s guide, online available:
http://processors.wiki.ti.com/index.php/BIOS_MCSDK_2.0_User_Guid
e

[12] Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG
organizations, online available: http://www.itu.int/en/ITU-
T/studygroups/com16/video/Pages/jvt.aspx

http://www.ti.com/lit/ds/symlink/tms320c6678.pdf
http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/ndk/2_21_01_38/exports/ndk_2_21_01_38/docs/spru523h.pdf
http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/ndk/2_21_01_38/exports/ndk_2_21_01_38/docs/spru523h.pdf
http://opencv.org/
http://processors.wiki.ti.com/index.php/BIOS_MCSDK_2.0_User_Guide
http://processors.wiki.ti.com/index.php/BIOS_MCSDK_2.0_User_Guide
http://www.itu.int/en/ITU-T/studygroups/com16/video/Pages/jvt.aspx
http://www.itu.int/en/ITU-T/studygroups/com16/video/Pages/jvt.aspx

