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Abstract—In this paper, the newest Texas Instrument’s multicore 

DSP TMS320C6678 is used in order to perform a real-time 

H264/AVC high definition (HD) embedded video encoder. We 

exploit the high computing performance offered by this eight-

core DSP in order to meet the real-time encoding compliant. To 

enhance the encoding speed, Frame Level Parallelism (FLP) 

approach is applied.  A master core is reserved to handle data 

transfers to/from DSP. Multithreading algorithm combined with 

a ping-pong buffers technique are exploited in order to optimize 

the standard FLP approach and hide communication overhead. 

Experimental results show that our enhanced FLP 

implementation allows achieving real-time HD (1280x720) video 

encoding by reaching up to 26 f/s (frame/second) as encoding 

speed. Experiments show also that our parallel implementation, 

performed on seven C6678 DSP cores running each @ 1 GHz, 

allows accelerating the encoding run-time by a factor of 6,38 

without inducing any quality degradation or bit-rate increase. 

I. INTRODUCTION 

Nowadays, HD resolution is widely used in several 
multimedia video applications due to the rapid evolution of 
digital cameras technology. Facing the high cost of storing raw 
video data and transmission bandwidth limitation, video 
encoding with high compression performance is absolutely 
required. H264/AVC encoder represents one of the most 
efficient video standards. This encoder ensures a high encoding 
efficiency compared to previous standards by saving up to 50% 
of bit-rate while maintaining the same visual quality. However, 
this efficiency comes with a tremendous computational 
complexity which makes it hard to meet the real-time video 
encoding constraint (25 f/s) for HD resolution. 

In order to overcome this complexity, a high performance 
computing capability is absolutely required. Single core 
processors with low CPU frequency are not able to meet real-
time HD video coding. Consequently, using multicore, 
multithreading, and multiprocessor platforms can be a 
promising solution for this problem. Several works which 
profit from the potential parallelism in H264/AVC encoder 
have been presented in several papers [2]-[6]. These works are 
based on applying different partitioning techniques and 
exploited both task and data level parallelism.  

In this context, we try to develop our embedded video 
encoder solution which is characterized by software flexibility 
and low power consumption. Our proposed solution should 
meet HD encoding requirements in terms of visual quality, 

real-time processing, and compression performance. 
Consequently, it could be included in various video 
applications such as smart cameras, machine vision computing, 
smart TV, mobile phone, robotic, traffic security, and 
surveillance camera etc. 

To achieve this aim, the Keystone TI’s multicore DSP 
TMS320C6678 is used in order to perform a parallel 
H264/AVC video encoder implementation. Frame Level 
Parallelism approach is selected to accelerate data processing 
time. Multithreading algorithm combined with ping-pong 
buffers technique are exploited in order to improve the 
encoding performance and hide communication overhead. 

The rest of this paper is outlined as follows: next section 
details the different partitioning approaches and some parallel 
H264/AVC video encoder implementations. TMS320C6678 
architecture overview is described in section 3. Section 4 
highlights our enhanced FLP implementation on eight C66x 
cores and presents experimental results. Finally, section 5 
concludes this paper and presents some perspectives. 

II. H264/AVC ENCODER : PARTITIONING METHODS AND 

PARALLEL IMPLEMENTATIONS 

H.264/AVC baseline encoder is a video compression 
standard that aims to reduce the large amount of raw video data 
in order to overcome the bandwidth transmission limitation and 
reduce the raw video storing cost. The main structure of this 
standard consists in performing several tasks in order to ensure 
an efficient encoding performance such as: intra prediction, 
inter prediction, integer cosine transform, quantification, 
filtering, and entropy coding. This standard splits a video 
sequence into hierarchical data structure. In fact, the sequence 
is divided into one or more groups of pictures (GOP). Each 
GOP includes one or more frames. The first frame of the GOP 
is an intra frame (I) and the remaining ones are predicted 
frames (P). Each frame can be divided into one or more slices, 
subdivided themselves into macroblocks (MB) and blocks. 

In order to perform a parallel implementation for this 
encoder, two partitioning approaches can be exploited: 

Task-level parallelization (TLP): it exploits the functional 
organization of H264/AVC encoder by regrouping the different 
functions in several tasks, equal to the number of processing 
units available on the system, and run these tasks method as in 
[2]. This approach ensures low encoding latency; however, it 
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has some drawbacks. First, we can say that it is not very 
suitable for H264/AVC encoder because the existence of a lot 
of data dependencies among tasks which requires a large 
amount of data transfers among processors. Second, a lot of 
inter-processors synchronizations are required which increases 
the implementation complexity. Finally, functions in 
H.264/AVC encoder have not the same load balance which 
makes it hard to uniformly map functions among processors; 
consequently, encoding performance is always depending on 
the heaviest load processor. 

Data-level parallelization (DLP): it profits from the 
hierarchical data structure of H264/AVC encoder by 
simultaneously processing several data levels on multiple 
processing units. Some data dependencies should be respected 
among the different data when applying this approach.  

First, no dependencies exist among different GOPs. In fact, 
each GOP starts with an intra frame (the current MB encoding 
requires only some data from its neighboring MBs in the same 
frame). Consequently, several GOPs can be processed in 
parallel. This approach is called ―GOP Level Parallelism‖. It 
has been adopted by several researchers as in [3].This method 
ensures the best encoding speedup and characterized by low 
synchronization cost and no data communications among 
processors. However, it requires a large memory amount in 
order to handle all the frames and it is characterized by a high 
encoding latency. Consequently, it is not suitable for System on 
Chip platforms (SOC) and real-time video applications. 

Temporal dependency is imposed by the motion estimation 
algorithm between successive frames of the same GOP. In fact, 
to determine the current MB motion vector, a block matching 
algorithm is performed in a restricted search window in the 
reference frames (previous frames already encoded) as shown 
in Fig .1. Accordingly, multiple frames can be encoded in 
parallel way once the search window in the reference frame has 
already been encoded. This method is called ―Frame Level 
Parallelism‖ [4]. This approach provides a compromise 
between encoding latency and implementation efficiency. In 
fact, Memory amount and encoding latency is significantly 
reduced compared to GOP parallel implementation. In the other 
side, processors synchronizations are required in order to 
respect the temporal data dependency. 
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Fig. 1. Data dependency for inter prediction 

Since H264/AVC standard gives the possibility to divide 
the frame into independent slices, several slices can be 
processed in parallel, and this approach is named by ―Slice 
Level Parallelism‖ such as in [5]. This approach is 
characterized by high scalability and low encoding latency but 
it has a major drawback. In fact, it induces visual quality 
degradation in terms of PSNR and an increase in bit-rate. This 

returns to data dependencies that are not respected among MBs 
of different slices.  

Finally, in the frame itself, several MBs can be encoded in 
parallel once its neighboring MBs have already been processed 
in order to respect spatial data dependencies required by the 
intra prediction module as shown in Fig. 2. 

Current

 MB

LEFT 

 MB

TOP pixels 

dependency

TOP 

right 

L
E

F
T

 p
ix

el
s 

d
ep

en
d

en
cy

TOP 

Left 

TOP MBTOP LEFT 

 MB

TOP right 

MB

 
Fig. 2. spatial dependencies for the current MB 

This approach is called ―MB level Parallelism‖ [6]. It is 
characterized by low encoding latency and low memory 
requirement but in the other side, low scalability, large amount 
of data transfers and synchronizations among processors in 
addition to the non-equal load balance make MB level 
parallelism approach not efficient for parallel H264/AVC 
encoder implementation.  

In the state of art, some parallel H264/AVC encoder 
implementations have not yet succeeded to meet the real-time 
compliant especially for high resolutions. Consequently, we 
will present in this work our strategy to perform a real-time 
parallel H264/AVC video coding without inducing any 
distortion in terms of visual quality or bit-rate. Our scheme is 
based on exploiting the merits of a multicore platform and 
applying an efficient partitioning method. 

III. DSP PLATFORM DESCRIPTION 

New generations of DSP processors represent an attractive 
solution for embedded applications that require high computing 
performance. In fact, these DSPs are characterized by software 
flexibility, high performance computing, multicore 
architecture, low power consumption, competitive price tag, 
and time to market. According to these merits, we chose to 
implement the H264/AVC encoder on the last generation of 
TI’s keystone multicore DSP TMS320C6678 [7] in order to get 
a flexible embedded encoder that allows achieving a real-time 
25 f/s HD video encoding. As shown in Fig. 3, eight DSP Core 
Subsystems (C66x CorePacs) running each @ 1GHz, very long 
instruction word (VLIW) architecture, Single Instruction 
Multiple Data (SIMD) set instruction and 8.5 Mega-bytes (Mb) 
of memory on chip are combined to deliver 64000 MIPS 
performance. To support applications that require a large 
amount of memory such as ultra HD video applications, 
TMS320C6678L includes a 512MB of DDR3-1333 external 
memory. This EVM platform (evaluation module) comes with 
TI’s Multicore Software Development Kit (MCSDK) for 
SYS/BIOS Real Time Operating System (RTOS). For external 
communications, TMS320C6678 supports several high speed 
standard interfaces such as RapidIO for DSP-to-DSP 
communications and Gigabit Ethernet for Internet Protocol (IP) 
networks etc. 



 

Fig. 3. Internal architecture of TMS320C6678 multi-core DSP 

IV. ENHANCED FRAME LEVEL PARALLELISM 

IMPLEMENTATION  

To profit from our multicore DSP architecture and the 
potential parallelism in H264/AVC encoder, Frame Level 
Parallelism approach is chosen to parallelize data processing 
and accelerate encoding run-time. Our choice is based on 
several reasons: First, this approach is characterized by high 
scalability. Second, this method ensures an important encoding 
speedup without inducing any rate distortion (Quality 
degradation or bit-rate increase) as the case of slice Level 
Parallelism method. Finally, it presents a compromise between 
GOP Level Parallelism and MB Level Parallelism 
implementations in terms of memory amount, CPU 
synchronizations cost, load balance, and implementation 
complexity. 

A. H264/AVC Video encoding demo 

To perform real-time video encoding demo, frames 
acquisition should be also performed in real-time. For that, 

277Mbits/s as transmission bandwidth at least is required to 
transfer HD frames @ 25 f/s in YCrCb 4:2:0 format 
((1280x720x1.5)x8bits x25f/s). As our DSP evaluation board 
has not yet a frame grabber interface, a personal computer (PC) 
linked to a Universal Serial Bus (USB) HD webcam is used as 
preliminary step to send raw frames to DSP as shown in Fig. 4. 
In fact, Our DSP platform and the used PC include both a 
Gigabit Ethernet communication interface which makes it 
possible to perform real-time data transfer between them.  

As our platform includes eight DSP cores, we reserved the 
first core ―core0‖ to handle data transfer between the DSP and 
the camera board side (PC) via Ethernet connection. It is 
considered as a master processor that executes a TCP/IP server 
application (transmission Control Protocol/Internet Protocol) 
exploiting Network Developer’s Kit library [8]. It is used 
firstly to receive the current frames sent by the camera board 
side and save them into the DDR3 memory which is a shared 
memory for all DSP cores. Consequently, the seven remaining 
cores are considered as slaves and they are devoted to encode 
the seven received frames in parallel way. 

For each slave core (1 to 7), a memory section is allocated 
in the DDR3 memory. It contains the current frame, the 
reconstructed frame (RECT), and the bit-stream. 

Our H264/AVC program is loaded into each internal L2 
memory of the seven cores. Local variables used during 
encoding such as predicted MB buffers, transform and 
quantification matrixes, and best predicted modes etc are all 
allocated also in the L2 memory of each core to avoid data 
overlap among different cores. Our H264/AVC single core 
implementation is based on MBs row Level implementation 
[9]. It is an optimized design for the encoder in order to profit 
from the internal on-chip L2 memory and reducing DDR3 
accesses. It consists in copying one MBs row instead of one 
MB (the classic encoding way) from the current frame in the 
DDR3 into a MB row buffer in the internal L2 memory. 
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Fig. 4. H264/AVC vide encoder demo using Frame Level Parallelism approach



Encoding process will be thereafter performed between the 
CPU and the fast L2 memory without accesses to the DDR3. 
This implementation requires copying three MBs rows from 
the reconstructed frame into L2 memory to be used as motion 
estimation search window for all the MBs of the current MBs 
row. More details of this encoder design are presented in our 
previous publication [9]. 

Once encoding process is achieved, core0 sends the bit-
streams of all encoded frames to the PC in order to store them 
in a file or decode them later. 

To improve the classic Frame level parallelism 
implementation, our optimization consists in hiding 
communication overhead. The proposed enhancement is based 
on two strategies: the first is exploiting the ping-pong buffers 
technique on the DSP side in order to overlap encoding process 
with reading and writing data processes. The second is using a 
multi-threading approach on the camera board side as shown in 
Fig. 4. Thus, three threads are created to handle: 1) Reading 
raw frames and sending them to DSP via Ethernet. 2) 
Receiving bit-streams from DSP. 3) Saving the received bit-
streams in a file. 

On the DSP side, for each slave core, a ping-pong buffer is 
allocated for both the current frame and the generated bit-
stream. A single buffer is used for the reconstructed frame 
since no transfers are required for this data. 

OpenCv library [10] is exploited in our C/C++ project on 
the camera board side in order to capture raw frames from the 
HD USB camera. This C++ library is also used to convert 
captured frames from RGB to YCrCb 4:2:0 format that is 
required in our H264/AVC video encoder. 

B. Parallel encoding steps using enhanced FLP approach on 

seven DSP cores 

Encoding steps of our parallel implementation using the 
enhanced FLP approach on seven DSP cores are described in 
Fig. 5 and detailed as follows: 

 Thread1 captures the first frame from the camera and 
sends it to DSP. Core0 receives this frame and stores it 
into the ping buffer SRC[0] of core1. After that, Core0 
notifies core1 by sending an Inter Processor 
Communication event (IPC) to inform it that it can 
start encoding its current frame.  

 When receiving the IPC interruption from core0, 
core1 starts the encoding process. At the same time, 
thread1 continues reading and sending the next six 
frames to core0 which will store them into the ping 
buffers of core2 to core7. Thus, each core immediately 
starts encoding its corresponding frame after receiving 
the IPC event from core0. 

 Core1 is the first core that starts encoding process. 
Once it finishes encoding the first 3 MBs rows of its 
current frame, it sends an IPC to the following core 
(core2) which itself is in a wait state for an 
interruption from core1 to start encoding its 
appropriate frame in order to respect temporal 
dependency by using these 3 MBs rows as a search 

window for motion estimation.  The same procedure 
will be reproduced from core3 to core7.  

 To avoid that core i exceeds core i-1 (which is 
strongly possible because encoding load balance is not 
equal among successive frames so, it may lead to an 
erroneous result), encoding the next MBs row by core 
i is conditioned with the reception of an IPC from its 
previous core. Thus, each core sends an IPC to its 
following core after encoding a MBs row which its 
index is higher than 3. 

 Since each core starts encoding its MBs row when its 
previous core finishes encoding the first three MBs 
rows, it should not wait an IPC from its antecedent to 
encode the two last MBs rows of the current SRC 
frame. Otherwise, encoding will be blocked by 
waiting an incoming IPC. In fact, each core sends 
Max_MBs_rows-2 IPC interruptions to its following 
core.  

 During encoding the first seven frames by core1 to 
core7, thread1 sends the next 7 frames to core0 which 
will store each frame into the pong buffer SRC[1] of 
each core. Because encoding process takes more time 
than reading process, communication delays are 
hidden and they do not contribute to the parallel run-
time. 

 When core i terminates encoding its current frame, it 
stores the bitstream into the ping buffer bitstream[0]. 
Then, it notifies core0 by sending an IPC event to 
inform it that it can forward its bitstream to the PC. 
Immediately after that, core i starts encoding its pong 
frame already stored into SRC[1] without any wait 
and stores the bitstream into the pong buffer 
bitstream[1]  in order to not overwrite data stored into 
bitstream[0] which is being transferred. 

 While core i encodes its pong frame, core0 sends the 
ping bitstream[0] corresponding to core i without 
waiting that all cores finish encoding their respective 
frames. Thread2 receives the ping bitsteams and stores 
them into the ping buffers Bitstream[0][i]. At this 
time, thread3 writes the bitstreams in a file and 
thread1 sends the next seven frames to core0 which 
will store each frame into the ping buffer SRC[0] of 
each core.  

 With this enhancement, the pong SRC frames 
encoding, the ping bitstreams writing, and the next 7 
ping SRC frames reading and sending are processed in 
parallel way. 

 The processing is thereafter looped in a reverse order 
for SRC frames and bitstreams through ping pong 
buffers. 

 As shown in Fig. 5, no significant delays are occurred. 
Each core processes its respective data without any 
waiting time. Multithreading algorithm with ping pong 
buffers technique efficiently overlap data transfer with 
encoding process. 
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Fig. 5. chronological steps of the Enhanced FLP implementation on the multicore DSP TMS320C6678 

C. Cache coherence 

Parallel processing on a multicore platform may lead to a 
cache coherence problem. This is happen when processing a 
shared data by several cores with a private cache memory. In 
order to deal with cache coherence problem, the Chip Support 
Library included in the MCSDK development Kit [11] of TI 
provides two API functions: 

 CACHE_wbL2() to return back the cached data from 
the cache memory to its original location in the shared 
memory. 

 CACHE_invL2() to invalidate the cache lines and 
force the CPU to read data from its original location in 
the shared memory. 

In our case, when receiving the captured frames from the 
PC, core0 should write back the cached lines to their locations 
in the external DDR3 memory in order to be encoded later by 
the slave cores. Similarly, core1 to core7 should invalidate the 
current frames addresses in their cache memories before start 
encoding. This allows processing the updated data written by 

core0 and not the old data already existed in their cache 
memories. Furthermore, when encoding process is achieved, 
core1 to core7 should write-back the bit-streams from their 
cache memories to their original locations in the external 
memory. Consequently, core0 should invalidate the bit-streams 
from its cache memory in order to send the updated values to 
the PC.  

D. Experimental results 

Our parallel implementation of H264/AVC encoder is 
performed on the eight-core TMS320C6678 DSP. Each core of 
our target is running @ 1 GHz of CPU frequency.  H264/AVC 
LETI laboratory’s software which is an optimized version of 
the Joint Model (JM) software [8] is used. Experimental 
simulations are performed on the most commonly used video 
test sequences in HD (1280x720) resolution.  These sequences 
are a raw data in YCrCb 4:2:0 format recommended by the 
Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG 
organizations [12]. Encoding parameters are presented in 
TABLE I. 



TABLE I.  ENCODING PARAMETERS 

Intra period (GOP size) 8 

Search range 16 

QP value 30 

Frames to be encoded 280 

Error metric for mode decision Sum of Absolute Difference 

Entropy coding CAVLC 

Rate control off 

Number of Reference Frames 1 

 
For performance evaluation, encoding speed is measured 

for several implementations using different number of cores 
and expressed as follows: 

encoding speed (f/s) = 
DSP frequency

Number of clock cycles
x number of frames       (1)  

In our experiments, data transfer time, which includes PC 
frames capturing, sending them to DSP via Ethernet, and 
loading them to DSP memory by core0, is considered in our 
computation in order to evaluate our enhancement techniques 
of hiding communication overhead. Table II shows the 
encoding speeds of our optimized H264/AVC video encoder 
implementation with different number of cores. 

TABLE II.  ENCODING SPEEDS FOR HD RESOLUTION 

Video 

sequences 

Enc speed 

on 1 core 

(f/s) 

Enc speed 

on 3 cores 

(f/s)) 

Enc speed 

on 5 cores 

(f/s) 

Enc speed 

on 7 cores 

(f/s) 

Planet 4.19 12.07 18.92 26.83 

Parkjoy 4.78 12.98 21.81 28.87 

Nature 3.88 11.01 17.58 25.75 

Mob_cal 4.01 11.24 18.28 26.18 

Crowdrun 3.79 10.80 17.13 25.12 

Birds 4.98 12.37 22.04 30.46 

Shields 3.87 11.10 17.68 25.15 

Stockholm 3.98 11.20 17.32 25.34 

Average 4.18 11.60 18.84 26.71 

Experimental results show that single core implementation 
is not able to meet the real-time encoding compliant (25 f/s). In 
fact, the obtained encoding speed using a single DSP core is 
equal to 4,18 f/s in average for HD resolution. Applying our 
multicore implementation exploiting the enhanced FLP 
approach allows enhancing the encoding speed. As shown in 
Table II, encoding speed is significantly increased from 4,18 f/s 
to 11,6 f/s and 18,84 f/s when using respectively 3 and 5 DSP 
cores for encoding.  Exploiting seven DSP cores allows 
achieving the real-time processing and reaching 26.71 f/s in 
average surpassing the real-time constraint 25 f/s. Our parallel 
implementation accelerates the encoding run-time by a factor 
of 6,38 without inducing any rate distortion in terms of visual 
quality degradation or bit-rate increase compared to single core 
implementation. 

Despite that data transfer time has been considered in our 
performance evaluation; this time does not contribute in the 
encoding run-time. This affirms that our proposed data transfer 
scheduling technique efficiently hides communication 

overhead. In fact, data transfer time will be only noticed in the 
first seven frames as shown in Fig. 5 but after that, these 
transfers are mostly overlapped with the encoding process 
especially that this latter takes more time than reading and 
writing processes.  

V. CONCLUSION 

In this paper, an embedded real-time H264/AVC video 
encoder implementation on the last generation of TI’s 
multicore DSP TMS320C6678 was presented. FLP approach 
was selected to accelerate the encoding run-time. Exploiting a 
multi-threading algorithm combined with using a ping-pong 
buffers technique allows enhancing our implementation and 
efficiently hides communication overhead. Experimental 
results on seven DSP cores running each @ 1 GHz showed that 
real-time was achieved by reaching up to 26 f/s as encoding 
speed for HD resolution. Our parallel implementation 
accelerated the encoding process by a factor of 6,38 without 
inducing any visual quality degradation or bit-rate increase.  As 
perspective, we will exploit our expertise in multicore DSP 
implementation to implement the newest HEVC video encoder 
and trying to achieve real-time encoding.  
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