Multifunctional Stimuli-Responsive Cellulose Nanocrystals via Dual Surface Modification with Genetically Engineered Elastin-Like Polypeptides and Poly(acrylic acid) - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue ACS Macro Letters Année : 2018

Multifunctional Stimuli-Responsive Cellulose Nanocrystals via Dual Surface Modification with Genetically Engineered Elastin-Like Polypeptides and Poly(acrylic acid)

Résumé

Cellulose nanocrystals (CNCs) are promising candidates for a myriad of applications; however, successful utilization of CNCs requires balanced and multifunctional properties, which require ever more applied concepts for supramolecular tailoring. We present here a facile and straightforward route to generate dual functional CNCs using poly(acrylic acid) (PAA) and biosynthetic elastin-like polypeptides (ELPs). We utilize thiol-maleimide chemistry and SI-ATRP to harvest the temperature responsiveness of ELPs and pH sensitivity of PAA to confer multifunctionality to CNCs. Cryo-TEM and light microscopy are used to exhibit reversible temperature response, while atomic force microscopy (AFM) provides detailed information on the particle morphology. The approach is tunable and allows variation of the modifying molecules, inspiring supramolecular engineering beyond the currently presented motifs. The surge of genetically engineered peptides adds further possibilities for future exploitation of the potential of cellulose nanomaterials.
Fichier non déposé

Dates et versions

hal-01797189 , version 1 (22-05-2018)

Identifiants

Citer

Jani-Markus Malho, Jérémie Brand, Gilles Pécastaings, Janne Ruokolainen, André Gröschel, et al.. Multifunctional Stimuli-Responsive Cellulose Nanocrystals via Dual Surface Modification with Genetically Engineered Elastin-Like Polypeptides and Poly(acrylic acid). ACS Macro Letters, 2018, 7 (6), pp.646 - 650. ⟨10.1021/acsmacrolett.8b00321⟩. ⟨hal-01797189⟩

Collections

CNRS INC-CNRS LCPO
94 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More