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1  | INTRODUC TION

Huntington’s disease (HD) is a hereditary neurodegenerative disease, 
caused by a mutation of the huntingtin protein that impairs cell func-
tions and produces cell death. HD is associated with cognitive and 
psychiatric disturbances that precede chorea and other motor im-
pairments. Several postmortem studies in humans have shown only 
limited signs of cell loss in the brain, despite overt clinical symptoms 
and the genetic confirmation of HD,1-3 suggesting that neuronal and 
synaptic dysfunction, rather than cell death, may underlie the early 
behavioral manifestations of the HD mutation.4,5 In addition, cogni-
tive, psychiatric, motor, electrophysiological, and neuroimaging as-
sessments in humans also suggest that early cognitive deficits occur 

years prior to cell death or predicted clinical diagnosis in HD carriers, 
and are probably due to synaptic and cellular dysfunction.6-8

The expression of the huntingtin protein is ubiquitous, and the 
mutation for HD affects virtually all brain structures. However, al-
terations are most obvious in the striatum. This structure is the main 
input nucleus of the basal ganglia, a group of subcortical nuclei that 
are closely connected with several brain areas, including the cere-
bral cortex and the thalamus.9 The basal ganglia are considered to be 
involved in voluntary movement, memory, and cognitive functions. 
Medium spiny neurons (MSNs) are major constituents of the stria-
tum and are comprised of 2, anatomically nonsegregated, subpop-
ulations: 1 expressing mainly dopamine D1 receptors and the other 
expressing dopamine D2 receptors.10 The 2 subpopulations are at the 
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Summary
Hereditary Huntington’s disease (HD) is characterized by cell dysfunction and death 
in the brain, leading to progressive cognitive, psychiatric, and motor impairments. 
Despite molecular and cellular descriptions of the effects of the HD mutation, no ef-
fective pharmacological treatment is yet available. In addition to well-established al-
terations of glutamatergic and dopaminergic neurotransmitter systems, it is becoming 
clear that the GABAergic systems are also impaired in HD. GABA is the major inhibi-
tory neurotransmitter in the brain, and GABAergic neurotransmission has been pos-
tulated to be modified in many neurological and psychiatric diseases. In addition, 
GABAergic neurotransmission is the target of many drugs that are in wide clinical 
use. Here, we summarize data demonstrating the occurrence of alterations of 
GABAergic markers in the brain of HD carriers as well as in rodent models of the 
disease. In particular, we pinpoint HD-related changes in the expression of GABAA 
receptors (GABAARs). On the basis that a novel GABA pharmacology of GABAARs 
established with more selective drugs is emerging, we argue that clinical treatments 
acting specifically on GABAergic neurotransmission may be an appropriate strategy 
for improving symptoms linked to the HD mutation.

K E Y W O R D S

basal ganglia, disease progression, inhibitory postsynaptic currents, inhibitory tonic currents, 
rest/activity fragmentation, synapse

http://orcid.org/0000-0003-3862-8744
mailto:maurice.garret@u-bordeaux.fr


     |  293GARRET et al.

origin of the direct striatonigral and indirect striatopallidal pathways, 
respectively. These projection neurons are also regulated by differ-
ent classes of local interneurons.11,12 Being tightly connected to the 
striatum via the indirect pathway, the external globus pallidus (GPe) 
is considered as a hub within the basal ganglia.13-15 It is important to 
note, furthermore, that an alteration in GPe function is linked to HD 
symptoms.16-20 The GPe also receives GABAergic collaterals from the 
direct pathway,21 glutamatergic projections from the subthalamic nu-
cleus, and some dopaminergic inputs from the substantia nigra pars 
compacta.14 The GPe projects to virtually all basal ganglia compo-
nents, including the striatum.22 Interestingly, direct connections with 
the cortex have been recently described.23,24 Therefore, the GPe may 
play an important integrative role in coordinating neuronal activity 
throughout the basal ganglia with direct links to the cortex.

Studies in animal models have established that glutamate neu-
rotransmission, including glutamate release, clearance and receptor 
trafficking, is altered in HD (reviewed in4,5,25). An early alteration of 
glutamatergic neurotransmission has been recently described in the 
subthalamic nucleus neurons of BAC transgenic and Q175 knock-in 
mouse models of HD, leading to the loss of autonomous pacemak-
ing.26 Because the striatum receives extensive excitatory gluta-
matergic innervation from the cerebral cortex and thalamus and is 
primarily affected in HD, changes in glutamatergic neurotransmis-
sion resulting in excitotoxicity and neuronal damage have been con-
sidered as a key event in HD pathogenesis. Besides the impairment 
of the predominant excitatory glutamate neurotransmission, inhib-
itory GABAergic neurotransmission, although largely neglected, 
is also altered in the HD-affected brain.27-30 This review focuses 
mainly on our current knowledge of the alteration in inhibitory neu-
rotransmission through changes in GABAA receptor (GABAAR) sub-
type expression (Figure 1A). We will also consider whether current 

pharmacological tools targeting GABAergic transmission could be of 
relevance for future treatment of HD symptoms.

2  | GABAergic  NEUROTR ANSMISSION

GABA exerts inhibitory control on many neurons in the central nerv-
ous system. The diversity in GABAergic signaling is due to several 
peri-, pre-, and postsynaptic factors (Figure 1B) that are the target of 
many drugs that are currently in wide clinical use.31,32 It is also well 
documented that an alteration in any aspect of this system is linked 
to several neurological and neurodevelopmental disorders.33-40 
GABAARs are the main inhibitory receptors in the brain, and their 
heteromeric structure contributes in several ways to the physiologi-
cal properties of brain GABAergic neurotransmission. GABA also 
acts on GABABRs which have different molecular and functional 
properties to those of GABAARs (eg, see 41). As data on alterations of 
GABAB neurotransmission in HD are sparse, they are not considered 
further in this review.

3  | STRUC TURE AND FUNC TION OF 
GABA ARs

Ionotropic GABAA receptors are responsible for fast and flexible 
postsynaptic transmission. GABA binding results in the opening of 
anion-selective intrinsic channels through which primarily chloride 
anions flow. This in turn changes neuron excitability. Many studies 
have demonstrated that the subunit composition determines both the 
functional properties and subcellular localization of GABAARs. These 
receptors are heteromeric structures composed of a combination of 

F IGURE  1 Schematic drawing of GABAA receptors (GABAARs, A) and a GABAergic synaptic terminal (B). Native GABAARs, which are 
heteropentameric structures containing α1, α2, or α3 with β and γ subunits, are located at the synapse and mediate a phasic inhibitory effect 
correlated with presynaptic action potentials. The aggregation of receptors on the postsynaptic domain depends on scaffolding proteins, 
including gephyrin. GABAARs containing the α5 or δ subunits are extrasynaptic with a high sensitivity to GABA and mediate tonic activity 
as a function of ambient transmitter level in the extracellular space. GABA levels depend on the expression of 2 isoforms of glutamate 
decarboxylase (GAD 67 and 65), the vesicular transporter VGAT, and the transporters GAT-1 and GAT-3. These GABAergic components are 
all subject to alteration in Huntington’s disease
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5 of 19 different subunits, grouped in several classes.42-44 Different 
subtypes of GABAARs are generated by a coassembly of the α1-6, 
β1-3, γ1-3, δ, ε, θ, π, and ρ1-3 subunits.45 Strong evidence supports a 
model in which subunit composition confers a distinctive cellular dis-
tribution, functional properties, and the specific effect of allosteric 
modulators like benzodiazepines or neurosteroids.36,45,46 In brain re-
gions, including the striatum, synaptic neurotransmission mediating 
phasic inhibition is linked to GABAARs composed of α1, α2, or α3 
in combination with β and γ2 subunits (Figure 1A). The substitution 
of an α5 by an α1-3 or a δ by a γ2 subunit has been shown to form 
extrasynaptic receptors (Figure 1B) mediating tonic inhibition.47,48 
Indeed, it is now established that receptor subtypes are associated 
with significant physiological outcomes and specific cognitive func-
tions.37,49,50 These findings have in turn led to the search for selec-
tive drugs with enhanced efficacy and fewer side effects.51

4  | ALTER ATION OF THE GABA SYSTEM IN 
THE HD BR AIN

Over the last decades, benzodiazepine or muscimol binding on 
GABAARs has been widely used. Postmortem analyses in the human 
HD brain have shown a decrease in benzodiazepine binding in the cau-
date nucleus or the putamen.52-54 In contrast, binding is increased in 
the cerebellum, frontal cortex, and the GPe.53-56 Other studies have 
measured concentrations of GABA and found a decrease in the cau-
date putamen and the GPe.57,58 More recently, positron emission to-
mographic (PET) imaging using [11C]flumazenil as a marker of GABAARs 
has been performed (reviewed in59). In patients with early HD, ben-
zodiazepine binding levels were found to be reduced in the caudate 
nucleus, while no changes were observed in the putamen, thalamus, 
frontal cortex, or cerebellum.60,61 Transcranial magnetic stimulation 
investigations have revealed significant GABA-mediated cortical in-
hibitory deficits in premanifest and early symptomatic HD patients.62

The most thorough and recent investigations on GABAergic neuro-
transmission, including molecular and functional analyses, have been 
conducted on transgenic rodent models. Interestingly, quantitative 
autoradiography has been used to assess neurotransmitter receptor 
densities in several brain regions in a rat model for the HD mutation.63 
These analyses showed that the expression levels of receptors of the 
cholinergic, dopaminergic, serotoninergic, noradrenergic, glutamater-
gic, and GABAergic systems are either increased, decreased, or remain 
unchanged. These findings in turn suggest that receptor alterations 
in HD are subtype selective and regionally differential. Moreover, the 
most recent studies on GABAergic neurotransmission in the striatum 
have analyzed receptor subtype alterations in identified neurons.

5  | ALTER ATION OF GABA 
NEUROTR ANSMISSION IN MSNs

In the striatum of transgenic mouse or rat models of HD, no changes 
in benzodiazepine or GABA binding 63,64 or a slight, albeit significant 

increase65 have been reported. Functional and molecular analyses 
of GABAergic neurotransmission in the striatum have revealed 
complex changes in this brain structure (Figure 2). The kinetics of 
evoked GABAergic currents are altered in MSNs of animal models 
of HD,66 associated with a reduction both in rise and in decay times 
leading to faster currents. Because it is well established that α1 is 
responsible for fast inhibitory currents,67 this kinetic alteration is 
probably linked to the global increase in α1 subunit expression in the 
MSN neuropil of HD mice.68,69 In addition to the increased expres-
sion of α1, immunohistochemical labeling analyses of MSN cell body 
membranes showed an increased number of clusters containing the 
α2 subunit at postnatal 2 months followed by a decreased expres-
sion at 6 months in presymptomatic and symptomatic R6/1 mice, 
respectively.69 Among α subunits, α2 is the major component of 
GABAARs in MSNs. Thus, a decreased expression of the α2 subunit 
on MSN cell bodies of 6-month-old R6/1 mice69 is consistent with 
a decreased number of GABAergic terminals in contact with MSN 
somata in the zQ175 KI mouse model of HD.29 In vitro analyses have 
shown that cell surface receptor expression, as well as the expres-
sion of α1 and α2 subunits in MSNs, is regulated by dopamine and 
GABAAR activity.70,71 Thus, changes in GABAAR subtypes might be 
directly linked to alterations of both dopaminergic and GABAergic 
neurotransmission in HD.66,72 An alteration of GABAAR trafficking 
resulting in reduced mIPSCS has also been shown in striatal MSNs 
of the N171-82Q mouse model.73

It is also interesting to note that the α1 subunit is present in post-
synaptic structures facing dopaminergic striatal synapses 74 which 
are believed to corelease dopamine and GABA onto MSNs.75-77 
Although the functional role of this GABAergic inhibition remains 
elusive, it would be of interest to analyze the impact of the HD mu-
tation on nigrostriatal synaptic transmission.

6  | ALTER ATION OF GABA 
NEUROTR ANSMISSION IN STRIATAL 
INTERNEURONS

Other than the predominant MSN projection neurons in the stria-
tum, several local interneurons (INs) are also GABAergic (Figure 2). 
It is well established that the GABAergic control of MSNs originates 
from different classes of INs78: fast-spiking INs (FSI) expressing 
parvalbumin, persistent low-threshold spiking INs (PLTS) express-
ing somatostatin or nNOS, INs expressing calretinin, as well as 
collaterals from MSNs themselves (Figure 2). In addition to these 
GABAergic neurons, the striatum also contains cholinergic INs 
that regulate local inhibitory circuits.79 Striatal INs are relatively 
spared from degeneration in HD, although there is evidence for 
dysfunctions.66,80-84

In the brain, GABAergic INs are involved in the coordination 
and regulation of network functions, and many pathological con-
ditions are linked to their alteration.47,78,85,86 In the striatum, it has 
been suggested that the functional role of inhibition from fast-
spiking PV cells might be in shaping striatal output conveyed in 
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both direct and indirect pathways.87 This feed-forward inhibition 
from fast-spiking PV INs to MSNs is altered in HD.66 We found a 
decreased expression of the α1 subunit in striatal PV interneuron 
cell bodies at postnatal 2 and 6 months, while the expression of α2 
is increased at 2 months and decreased at 6 months.69 Although a 
comprehensive study of the molecular, pharmacological, and func-
tional properties of GABAergic conductances in these cell types 
is still lacking, the increased expression of the α2 subunit and de-
creased expression of α1 in mutant mice predict that GABAergic 
currents in PV cells from 2-month-old R6/1 should have lower 
decay times compared to their WT counterparts.67 Interestingly, 
following a striatal-dependent cognitive task, we found an alter-
ation in activation of interneurons that express parvalbumin in 
the dorsomedial striatum at both presymptomatic and early symp-
tomatic ages, thereby confirming a severe and early impairment of 
these INs in HD mice.84

Cholinergic INs also play a major role in striatal physiology.83 It 
has been shown that in human and animal models, there is no, or a 
limited, loss of these INs, whereas the level of vesicular acetylcho-
line transporters and choline acetyltransferase is decreased.81,88,89 In 
symptomatic R6/1 or R6/2 mice, a decrease in acetylcholinesterase 
expression and acetylcholine levels has also been reported.69,90 With 
immunohistochemical labeling, we found an increased expression of 
the α3 GABAAR subunit in cholinergic INs.69 The α3 subunit is the 
main α subunit expressed in cholinergic striatal INs,91 which is likely 
to represent the major GABAAR subtype in these neurons. In R6/2 
mice, striatal cholinergic INs receive more GABAergic inhibitory post-
synaptic currents compared to their WT counterparts.80 Together 
these data suggest that an increased number of α3-containing post-
synaptic GABAARs are involved in the increased inhibition of striatal 
cholinergic INs in HD (Figure 2) and underlie the decreased level of 
acetylcholine.

7  | ALTER ATION OF TONIC INHIBITORY 
NEUROTR ANSMISSION

Both δ- and α5-GABAARs are responsible for generating tonic inhibi-
tory conductances in the brain (Figure 1), which is recognized as a key 
factor in controlling local networks.35,92 These 2 GABAAR subtypes 
are developmentally regulated in MSNs.48 Tonic inhibition is de-
creased in MSNs in mouse models of HD.66,93 In addition, a decrease 
in striatal δ subunit mRNA expression has been reported in different 
HD mouse models as well as in human patients,69,94,95 suggesting that 
a reduction in δ subunit expression plays a major role in the tonic in-
hibition decrease. It is also of note that it has been shown93 that an al-
teration in tonic GABA currents in HD might be also due to a reduced 
release of GABA from surrounding astrocyte processes (Figure 1B). 
However, the role played by astrocytes in the regulation of GABA ho-
meostasis remains poorly understood, and further studies should be 
conducted to tackle this important question. A striking finding in a re-
cent study from our laboratory was that α5 and δ subunit expression 
in the striatum is increased and decreased, respectively.69 In addition 
to MSNs, the expression of both α5 and δ subunits has been identi-
fied in striatal INs.48,66,93,96 Because tonic inhibition of interneurons 
may also be modified in many movement or psychiatric disorders,47,78 
it would be of interest to identify the neuron types whose specific α5 
or δ subunit expression is modified in HD.

Taken together, analyses in the striatum of HD brains show that 
GABAergic neurotransmission undergoes complex changes leading 
to alterations in synaptic and extrasynaptic GABAergic functions. 
The change in GABAAR subunit composition would likely influence 
the pharmacological and gating properties of the GABAARs of in-
terneurons and MSNs and thus alter inhibitory neurotransmission 
in the striatum of the HD brain. Interestingly, the change in synap-
tic GABAA receptor subunit expression in HD follows the opposite 

F IGURE  2 Schematic representation of striatal local circuits highlighting alterations of inhibitory currents and GABAAR subunit 
expression in identified neurons in mouse models of HD. The striatum includes medium-sized output neurons expressing dopamine D1 or 
D2 receptors, and fast-spiking, persistent low-threshold spiking, or tonically active interneurons. The 2 main projection pathways to the 
external globus pallidus and substantia nigra pars reticulata/internal globus pallidus are also indicated. Alteration of inhibitory currents in 
symptomatic HD mice is indicated by thicker (increase) or thinner (decrease) lines. Alteration in subunit expression or tonic inhibition is 
indicated by↑, increase; ↓, decrease; or =, no change. The figure was constructed using data from30,66,69,80,101
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trend in experimental models of Parkinson’s disease,97 suggesting 
the occurrence of mirror alterations in GABAergic synaptic neuro-
transmission in hyperkinetic and hypokinetic disorders, respectively.

8  | ALTER ATION OF GABA 
NEUROTR ANSMISSION IN THE GPe

The GPe receives many sources of GABA. In addition to massive 
GABAergic input from the striatal indirect pathway,98 local GPe col-
laterals99 and bridging collaterals from the striatal direct pathway21 
control GPe neuronal excitability. In humans, the GPe is overactive 
in HD,19 and GPe deep brain stimulation has been shown to allevi-
ate motor and cognitive dysfunctions in both human patients and a 
rat model of HD.16-18,20 Ex vivo, the firing pattern of GPe neurons is 
altered in R6/2 mice where blockade of GABAARs facilitates bursting 
activity.100 It is then reasonable to anticipate that the HD mutation 
has an impact on GABAergic neurotransmission in this brain structure.

In R6/1 mice, we showed a decreased expression of α1, β2, and 
γ2 subunits (Figure 2) in addition to a decreased expression of the 
vesicular GABA transporter (VGAT) involved in the synaptic re-
lease of GABA as well as gephyrin and neuroligin 2, both of which 
are involved in inhibitory synapse formation.101 We also found a 
decrease in the frequency of mIPSCs (Figure 2) supported by a re-
duced number of synapses, whereas the amplitude of mIPSCs was 
not altered, suggesting that the number of receptors in individual 
synapses is not decreased. Interestingly, the modification of mIPSC 
kinetics in 2-month-old R6/1 mice in the absence of a change in 
the short-term facilitation of striatopallidal synapses suggested 
postsynaptic alterations in GABAAR subunit composition.102

In addition to α1, β2, and γ2 subunits, α2, α3, and γ1 are also ex-
pressed in the GPe.103,104 The GPe also contains a number of distinct 
neuronal subtypes and projections with different physiological func-
tions.13,14 It would thus be of interest to investigate the localization 
of the different subunits expressed in GPe neurons and correlate 
functional property alterations with specific GABAAR subtypes. It is 
of note that data on the GPe from R6/1 and HdhQ111 mouse mod-
els 101 are at odds with immunohistolabeling from the postmortem 
human GPe.105 This may highlight one limitation of rodent models 
where a limited neuronal death is observed.106 It also suggests that 
rodent transgenic models display an alteration occurring in humans, 
before any dramatic cell damage occurs in the brain. The hyperac-
tivity of the GPe in animal models and human HD 20,107 may be the 
consequence of a decrease in GABAergic neurotransmission and 
GABAAR synapses. The development of PET analyses in the future 
should allow monitoring the evolution of GABA binding, well before 
the overt onset of the disease.

9  | POTENTIAL THER APEUTIC AVENUES

Although GABAA neurotransmission is clearly altered in HD, drugs, 
whether already approved or under clinical trials, are currently being 

employed to target other neuromodulatory systems aiming to im-
prove motor dysfunction in HD.5 Only limited treatment evaluations 
have been conducted,108-111 and to our knowledge, no drug thera-
pies that target the alteration in GABAergic neurotransmission in HD 
are currently available (reviewed in112). A new benzodiazepine phar-
macology acting on GABAARs and comprising selective hypnotics, 
nonsedative anxiolytics, and cognition enhancement is emerging.32 
This suggests potential therapeutic avenues for nonmotor symp-
toms including anxiety, sleep alteration, cognitive dysfunctions, or 
psychiatric disorders linked to the HD mutation that are present long 
before the appearance of overt motor symptoms (reviewed in113). 
In addition, an altered tonic inhibitory conductance as found in HD 
(see above) is also the therapeutic target for the treatment of several 
other diseases.114,115

Sleep disturbances are believed to contribute to HD symp-
toms,116-118 and recent findings suggest that the GABA system may 
be a target for preventing sleep alteration and reduce the cognitive 
and psychiatric symptoms of this neurodegenerative disease.119-121 
In transgenic mouse models, it has been shown recently that treat-
ment with zolpidem, an hypnotic benzodiazepine acting preferen-
tially on α1-containing GABAARs, corrects EEG abnormalities.119 In 
addition, the regulation of sleep/wake activity with a benzodiaze-
pine treatment has been found to improve cognitive function and 
apathy.121 Interestingly, consistent with the well-established alter-
ation of rest/activity in HD,101,116,122-124 a role for the basal ganglia 
in sleep/wake regulation has been highlighted (reviewed in125), and 
lesions of the GPe in rats have a profound effect on sleep/wakeful-
ness fragmentation.126 A link between the striatopallidal pathway 
and the regulation of sleep/wake behavior has also been shown very 
recently.127 Therefore, it is tempting to speculate that an early alter-
ation in GABAergic neurotransmission in the striatum or GPe and an 
early modification in rest/activity are not independent phenomena.

Based on analyses with point-mutated mice of a benzodiaze-
pine binding site, it was possible to attribute specific behavioral re-
sponses following benzodiazepine treatments to specific GABAARs 
comprising either α1, α2, α3, or α5 subunits, thereby providing the 
opportunity to selectively modulate brain areas or neuronal net-
works (review in128). In HD, changes in GABAAR subtype expression 
are specific not only to brain area53,63,69,101,129 but also to neuronal 
cell type.66,69 The fact that the expression of GABAAR subunits in 
the different striatal neuron classes is differentially altered suggests 
that subtype-specific benzodiazepine drugs may act on particular 
symptoms linked to HD disorders.

Besides the altered expression of GABAARs containing α1-3 
subunits essentially present in the postsynaptic domain, the 
expression of extrasynaptically localized α5- and δ-containing 
GABAARs is also altered in human HD carriers and animal mod-
els.69,94,95,129 These extrasynaptic receptors are key factors in the 
control of local networks35 and are potential therapeutic targets for 
synthetic compounds or endogenous neuroactive steroids.34,130-132 
On the basis of an increased expression of α5 in the striatum of 
R6/1 mice,69 it would be relevant to test whether an α5-specific 
antagonist could slow disease progression or symptoms in HD, as is 
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the case in mouse models of Down syndrome.32,115 Our preliminary 
data point to the validity of such a possibility because an allevia-
tion of HD symptoms was observed following an acute treatment 
with an inverse α5 agonist (M. Garret, M.C. Potier, Y.H. Cho, un-
published observations). Although a clinical trial with 1 synthetic 
agonist of δ-containing GABAARs failed to improve symptoms of 
HD patients,111 it would be of interest to test the effect of several 
available compounds on animal models during the progression of 
HD.114 Interestingly, striatal tonic GABAA currents mediated by δ-
containing GABAARs have neuroprotective effects against excito-
toxicity133 and might be a relevant target to slow disease evolution.

10  | CONCLUSION

GABAergic neurotransmission is altered early in HD and is likely 
to precede the appearance of overt symptoms. Significantly, stud-
ies on animal models suggest that such alterations depend on the 
particular brain structure, neuronal cell type, and the stage of the 
disease. It remains to study these changes during aging in HD car-
riers using new technologies such as PET imaging59 with a view to 
determine whether the GABA system could be a therapeutic target 
for preventing sleep alteration and reducing the cognitive and psy-
chiatric symptoms of this neurodegenerative disease.32,118 Although 
HD-related changes have been mostly studied in the basal ganglia, 
it would be of further interest to assess whether GABAergic neuro-
transmission is also altered in other areas of the HD-affected brain. 
Because deficits in the ontogeny of GABAergic neurotransmission 
may impact on adult brain functions,134 it would also be relevant to 
assess whether synapses involving GABAARs are altered during de-
velopment in HD carriers.
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