
HAL Id: hal-01797159
https://hal.science/hal-01797159v1

Submitted on 31 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the evolution of vortices in massive protoplanetary
discs

A. Pierens, Min-Kai Lin

To cite this version:
A. Pierens, Min-Kai Lin. On the evolution of vortices in massive protoplanetary discs. Monthly
Notices of the Royal Astronomical Society, 2018, 479 (4), pp.4878-4890. �10.1093/mnras/sty1314�.
�hal-01797159�

https://hal.science/hal-01797159v1
https://hal.archives-ouvertes.fr


MNRAS 479, 4878–4890 (2018) doi:10.1093/mnras/sty1314
Advance Access publication 2018 May 18

On the evolution of vortices in massive protoplanetary discs

Arnaud Pierens1,2 and Min-Kai Lin3
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ABSTRACT
It is expected that a pressure bump can be formed at the inner edge of a dead zone, and where
vortices can develop through the Rossby Wave Instability (RWI). It has been suggested that
self-gravity can significantly affect the evolution of such vortices. We present the results of
2D hydrodynamical simulations of the evolution of vortices forming at a pressure bump in
self-gravitating discs with Toomre parameter in the range 4−30. We consider isothermal plus
non-isothermal disc models that employ either the classical β prescription or a more realistic
treatment for cooling. The main aim is to investigate whether the condensating effect of self-
gravity can stabilize vortices in sufficiently massive discs. We confirm that in isothermal disc
models with Q � 15, vortex decay occurs due to the vortex self-gravitational torque. For discs
with 3 � Q � 7, the vortex develops gravitational instabilities within its core and undergoes
gravitational collapse, whereas more massive discs give rise to the formation of global eccentric
modes. In non-isothermal discs with β cooling, the vortex maintains a turbulent core prior
to undergoing gravitational collapse for β � 0.1, whereas it decays if β ≥ 1. In models that
incorporate both self-gravity and a better treatment for cooling, however, a stable vortex is
formed with aspect ratio χ ∼ 3–4. Our results indicate that self-gravity significantly impacts the
evolution of vortices forming in protoplanetary discs, although the thermodynamical structure
of the vortex is equally important for determining its long-term dynamics.

Key words: accretion, accretion discs – hydrodynamics – methods: numerical – planets and
satellites: formation.

1 IN T RO D U C T I O N

A striking feature of the current population of exoplanets is the
broad diversity in system architectures that have been discovered.
Among the known multiplanetary systems, a significant number
consist of compact and non-resonant systems of Super-Earths and
mini-Neptunes orbiting within a few tenths of au from their stars
(Lissauer et al. 2011; Lovis et al. 2011). There are two basic sce-
narios for the formation of these systems. The first one corresponds
to the in situ formation of these systems, involving planetesimal
accretion within high-mass discs (Hansen & Murray 2012, Chiang
& Laughlin 2013). This model however requires extremely massive
protoplanetary discs with a broad range of surface density slopes,
which is inconsistent with any known disc theory (Raymond &
Cossou 2014). An alternative possibility is that systems of close-in
Super-Earths formed through accretion during the inward migra-
tion of planetary embryos (Terquem & Papaloizou 2007; Ogihara
& Ida 2009; Cossou et al. 2014). Super-Earths formed in this way
are expected to migrate to the inner edge of the disc where they pile
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up in long chains of resonances. Resonant configurations can sub-
sequently be broken during disc dissipation (Izidoro et al. 2017), or
due to the action of disc turbulence (Pierens et al. 2011; Rein 2012)
or interaction with planet wakes (Baruteau & Papaloizou 2013).

In the context of this model, understanding the physical condi-
tions at the inner edge of the disc is therefore a crucial issue. In
the very inner regions where temperatures are high enough for the
disc to be thermally ionized, turbulence is expected to be driven by
the magnetorotational instability (MRI) (Balbus & Hawley 1991).
Beyond ∼0.8 au typically (Flock et al. 2017), however, temperature
drop below the ionization threshold of alkali metals (T ∼ 1000 K)
prevents turbulence to be sustained, giving rise to the formation
of a dead zone (Gammie 1996). Since magnetic stresses are or-
der of magnitude weaker there, gas accretion is driven faster in
the active region than in the dead zone. This results in the for-
mation of a local maximum in the radial profile of the disc pres-
sure, where dust particles can be collected and which can act as
a planet trap (Masset et al. 2006). At this location, the recent 3D
radiation MHD simulations of Flock et al. (2017) have also demon-
strated that for realistic inner disc models, a vortex is likely to be
formed through the Rossby Wave Instability (RWI) (Lovelace et al.
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1999). Vortex formation through the RWI has also been invoked
as a possible origin for the non-axisymmetric structures that have
been observed in many transition discs, such as in Oph IRS 48
(van der Marel et al. 2013), or HD 142527 (Casassus et al. 2013;
Fukagawa et al. 2013). In that case, the pressure maximum re-
sponsible for driving the RWI should be rather located at the outer
edge of the dead zone where the disc transitions from low to high
gas ionization where the MRI is active (Flock et al. 2017), or lo-
cated at the edge of a planetary gap (Ataiee et al. 2013; Zhu et al.
2014).

Because of the reduction of the accretion stress within the dead
zone, a significant amount of mass can accumulate there such that
the disc self-gravity starts to affect the structure and evolution of
vortices that are produced by the RWI. Results from previous work
indicate that self-gravity tends to stabilize vortex forming insta-
bilities. Linear stability analysis (Lovelace & Hohlfed 2013) pre-
dicts that self-gravity can inhibit modes with azimuthal wavenum-
bers m < (π /2)/(hQ), where h is the disc aspect ratio and Q the
Toomre stability parameter. In presence of self-gravity, suppres-
sion of modes with low m values has also been observed both in
2D (Lin & Papaloizou 2011) and 3D (Lin 2012) simulations of
vortices forming at the edge of the gap opened by a giant planet.
For a disc which initially presents a density bump where the RWI
can grow, this has also been reported in the simulations of Zhu
& Baruteau (2016), who also found that large-scale vortices are
significantly weakened when self-gravity is included. In fact, it
is expected that self-gravity can affect vortex dynamics in discs
with Q � 1/h (Regály et al. 2012; Yellin-Bergovoy, Heifetz &
Umurhan 2016), which suggests a possible important role of self-
gravity on the RWI for moderately massive discs. This has been
recently confirmed by Regály & Vorobyov (2017) who have shown
that vortices developed at sharp viscosity transitions can be sig-
nificantly stretched by the effect of self-gravity in low-mass discs
with masses 0.001 ≤ Mdiscs/M� ≤ 0.01, where M� is the mass of
the central star. This basically arises because the vortex exerts a
negative (resp. positive) torque on the gas material located ahead
(resp. behind) of the vortex which, combined with the effect of Kep-
lerian shear, results in the vortex being significantly stretched in the
azimuthal direction. As mentioned by Regály & Vorobyov (2017),
however, it is not clear whether or not vortex stretching can over-
come the effect of self-gravitational contraction in more massive
discs.

In this paper, we examine by means of 2D hydrodynamical sim-
ulations the effect of self-gravity on the evolution of vortices that
are formed at the inner edge of the dead zone in massive discs with
Qinit ≤ 30, where Qinit is the initial value for the Toomre parameter
at the location of the viscosity transition. The aim is to test whether
gravitational condensation can eventually stabilize the vortex struc-
ture in massive discs, and how this depends on the equation of state
that is adopted. The paper is organized as follows. In Section 2 we
describe the hydrodynamical model and the initial conditions that
are used in the simulations. In Section 3 we discuss the effect of self-
gravity on the evolution of vortices in both isothermal discs while
we consider the case of non-isothermal discs in Section 4. Finally,
we discuss our results and draw our conclusions in Section 5.

2 TH E H Y D RO DY NA M I C A L M O D E L

2.1 Numerical setup

Simulations were performed using the GENESIS (De Val-Borro et al.
2006) numerical code which solves the equations governing the disc

evolution on a polar grid (R, φ) using an advection scheme based
on the monotonic transport algorithm (Van Leer 1977). It uses the
FARGO algorithm (Masset 2000) to avoid time step limitation due to
the Keplerian velocity at the inner edge of the disc, and includes
a module to calculate self-gravity using a Fast Fourier Transform
method (Baruteau & Masset 2008). In order to take into account
the effect of the finite disc thickness, the gravitational potential is
smoothed out using a softening length εSG = bR with b = 0.6h
(Muller & Kley 2012; Zhu & Baruteau 2016). We emphasize that
the indirect term of the gravitational potential has been included in
the simulations presented here. Previous work has demonstrated that
including this term tends to strenghen large-scale vortices (Zhu &
Baruteau 2016; Regály & Vorobyov 2017) so that it is important to
include this term when considering the evolution of vortices formed
at a viscosity transition.

We adopt computational units such that the mass of the central
star M∗ = 1M�, the gravitational constant G = 1, and the radius
R = 1 in the computational domain corresponds to 0.3 au. When
discussing the results of the simulations, time will be measured in
units of the orbital period at R = 3.5 that corresponds to the location
of the pressure bump where the RWI is generated.

The simulations presented here employ NR = 792 radial grid cells
logarithmically distributed between Rin = 1 and Rout = 12.5, and
Nφ = 1280 grid cells in azimuth.

In this work, we will examine the evolution of vortices in isother-
mal and radiative disc models. In both cases, the effective kinematic
viscosity is modelled using the standard α prescription ν = αc2

s /


(Shakura & Sunyaev 1973), where cs is the isothermal sound speed,

 the angular velocity, and α is the viscous stress parameter that
can vary from very small values in the dead zone to much higher
values in the active region.

2.1.1 Isothermal disc models

For the isothermal disc models, the α profile that we employ is given
by:

α = αa − αd

2

[
tanh

(
R − Ridz

�Ridz

)
− 1

]
+ αa (1)

where αa = 10−2 is the α value in the active region, whereas the
α viscosity inside the dead zone is set to αdz = 10−4. We note that
adopting a non-zero value for αdz is in agreement with the results
of 3D magnetohydrodynamical simulations (Okuzumi & Hirose
2011; Gressel et al. 2012), which show that the dead zone has a
small residual viscosity due to the propagation, inside the dead
zone, of sound waves generated in the active region. In the previous
equation Ridz = 3.5 corresponds to the location of the inner edge of
the dead zone and �Ridz is the radial width of the viscosity transition
which is set to �Ridz = Hidz, where Hidz is the disc scaleheight at
R = Ridz.

2.1.2 Non-isothermal and radiative disc models

The energy equation that is implemented in the code for the radiative
disc models reads:

∂e

∂t
+ ∇ · (ev) = −(γ − 1)e∇ · v + Q+

visc − Q− (2)

where e is the thermal energy density, v the velocity, and γ the
adiabatic index which is set to γ = 1.4. In the previous equation,
Q+

visc is the viscous heating term (D’angelo et al. 2003) and Q− is
the gas cooling function for which we adopt two different forms. The
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first one corresponds to a standard β parametrization for cooling,
with (Les & Lin 2015):

Q− = 1

τcool

(
e − ei

�

�i

)
(3)

where ei and �i are the initial thermal energy and surface density
which are set in such a way that both the aspect ratio and surface den-
sity profiles coincide to those of the isothermal runs just before the
random perturbations that will give rise to vortices are applied (see
Section 2.2). τ cool is the cooling time which is set to τ cool = β
−1,
with β the cooling parameter. In this work, we considered values for
β running from β = 0.01 to β = 1. We emphasize that in the con-
text of gravitational instabilities, a disc that becomes gravitationally
unstable can fragment for these values for β (Gammie 2001). Here,
the disc is initially stable regarding the development of gravitational
instabilities since Qinit � 2 at all radii and for all models that we
consider. Whenever the cooling term given by equation (3) is em-
ployed, we also note that an additional source term is also included
in the energy equation by changing Q+

visc to Q+
visc − Q+

visc,i
�
�i

to
ensure that the heating and cooling terms couterbalance initially,
where the index i denotes the initial evaluation of the quantities
Q,�.

We also considered models with more realistic cooling instead of
β cooling. In that case the cooling function is similar to that used
in Faure et al. (2015) and is given by:

Q− = b�(T 4 − T 4
irr) (4)

where T = μ(γ − 1)e/R� is the temperature, with R the gas con-
stant and μ = 2.3 the mean molecular weight, b is the cooling
parameter, and Tirr is the irradiation temperature with:

T 4
irr = 0.1

(
R�

R

)2

T 4
� (5)

where T� = 4300K is the stellar temperature, R� = 2R� the stellar
radius, and where the factor of 0.1 accounts for the component of
stellar irradiation that is normal to the disc equatorial plane (Zhu
et al. 2012). A constant value is adopted for the cooling parameter
b in equation (4), and is chosen in such a way that the disc aspect
ratio h at the inner edge of the disc corresponds to a chosen value
h = hin. Given that Q+

visc = 9
4 ν�
2 and Q− ∼ b�T 4 in the active

region, the condition of thermal equilibrium implies:

b = 9R4αa

μ4h6
inR

6
in


5
in

(6)

where 
in the angular velocity at R = Rin.
To allow for a direct comparison with the results of Faure et al.

(2015), the runs with realistic cooling include a different function
for α:

α =
{

αa if T ≥ TMRI

αdz if T < TMRI
(7)

where TMRI = 1000 K is the critical temperature above which the
MRI is supposed to be at work due to thermal ionization of alkali
metals (Umebayashi & Nakano 1988). It is important to note that
the results for such runs may not be easily compared to those corre-
sponding to a non-isothermal setup with β cooling. This is because
(i) equation (7) employs a feedback loop between the temperature
and viscosity which is responsible for the vortex cycles observed in
the simulations of Faure et al. (2015) and (ii) compared to the case
where α is given by equation (1), equation (7) gives rise to a much
sharper viscosity transtion whose width corresponds typically to

that of one grid cell, and this is expected to give rise to a stronger
vortex with longer lifetime (Regály et al. 2012).

In these runs, we also model the turbulent diffusion of heat by
adding in the right-hand side of equation (2), a diffusion term for the
gas entropy S = p/�γ , where p is the pressure, and which is given
by D = κe∇2logS. The thermal diffusion coefficient κ is chosen
assuming a Prandtl number PR = ν/κ of unity, which is consistent
with the results of Pierens et al. (2012) who found PR ∼ 1.2 in
non-isothermal disc models with turbulence driven by stochastic
forcing. Within the dead zone, we note that radiative diffusion can
possibly dominate over turbulent transport for diffusing entropy
(Latter & Balbus 2012), so we expect the Prandtl number in a
realistic protoplanetary disc model to be close to unity only in the
active region.

2.2 Initial conditions

The isothermal disc models that we consider have constant aspect
ratio h = 0.05 that corresponds to a fixed temperature profile that
varies as T ∝ R−1. A similar initial temperature profile is used in
the non-isothermal disc models. In the case where the β cooling
prescription is adopted, the cooling function given by equation (4)
tries to restore the initial temperature profile, whereas in the case
where a more realistic cooling is used, the temperature profile at
steady state can differ significantly from the original one. In both
cases, however, the aspect ratio at the disc inner edge is kept fixed
with a value of h = hin = 0.05.

The initial disc surface density is � = f�in(R/Rin)−3/2 where f is
a scaling factor for which we consider values of f = 1, 2, 4, 8 and
�in is defined such that for f = 1, the initial surface density at 1 au
in the unperturbed disc is ∼870 g/cm2. This corresponds to a disc
mass Md contained within the computational domain of Md ∼ 0.002
M�, whereas Md ∼ 0.02 for f = 8.

To trigger the RWI within the disc, we proceed in two steps. We
first make a pressure bump form and evolve as a result of the radial
viscosity transition given by equation (1) or (7), until the amplitude
of the density bump is five times the initial surface density. In the
upper left and upper right panels of Fig. 1, we plot for the radiative
case the resulting surface density and temperature profiles at that
time, which corresponds to t ∼ 380 orbits at the location of the
pressure bump. The lower left panel of Fig. 1 shows the Toomre Q
parameter,

Q = 
cs

πG�

as a function of radius. As expected, the Toomre parameter is max-
imal in the active region due to the higher temperature there, and
minimal at the location of the pressure bump, with values ranging
from Q ∼ 15 for f = 1 down to Q ∼ 2 for f = 8. Finally, the lower
right panel of Fig. 1 displays the radial profile of the function:

L = �

ω

( p

�γ

)2/γ

(8)

where ω is the vertical component of the vorticity. According to
linear theory (Lovelace et al. 1999; Li et al. 2000, 2001), we expect
the disc to be unstable to the RWI at the location where the function
L presents a maximum in its radial profile, namely at the location
of the pressure bump from the lower right panel of Fig. 1. This is
also valid when an isothermal equation of state is adopted, with the
maximum in the L function corresponding to a minimum of the
potential vorticity in that case.

The RWI is triggered by adding a 10−2cs amplitude white noise
to the radial component of the velocity, which subsequently leads
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Figure 1. Radial profiles of the surface density (upper left panel), temperature (upper right panel), Toomre parameter (lower left panel), and L function defined
as L = (�/ω)(p/�γ )2/γ . These profiles correspond to the initial conditions in radiative disc models for f = 1, 2, 4, 8. The vertical dashed line shows the
location of the viscosity transition.

to the formation of vortices at the surface density maximum after
∼10 orbits.

2.3 Boundary conditions

To avoid wave reflection at the edges of the computational do-
main, we employ damping boundary conditions (de Val-Borro et al.
2006) using wave killing zones for R < 1.5 and R> 12 where
the surface density, internal energy, and velocity components are
relaxed towards their values at the end of the first step (see Sec-
tion 2.2), namely prior to the addition of the random perturba-
tion. As will be discussed later in the paper, interaction with a
massive vortex can make the disc become globally eccentric. In
that case, results from previous studies (Papaloizou 2005, Kley
& Dirksen 2006) suggest that the boundary conditions we adopt
are well suited to hydrodynamical simulations of eccentricity pro-
toplanetary discs. We note that in test simulations employing an
outflow boundary condition at the inner edge, significant growth
of the disc eccentricity was not observed, due to the overesti-
mated loss of material and radial kinetic energy through the inner
boundary, which is in agreement with the results of Papaloizou
(2005).

2.4 Diagnostics

To estimate the vortex strength, we calculate the Rossby number
Ro which is defined as the dimensionless vertical component of the

vorticity relatively to the background flow:

Ro = ez · (∇ ∧ (v − R
Keφ))

2
K (Rv)
(9)

Strength of the vortex can be estimated by measuring Ro at vortex
center. Regarding other vortex characteristics, its aspect ratio χ v can
be determined by first locating the vortex boundary that we define
as the contour where � = 0.5 max (�). Assuming that the shape
of this contour is close to that of an ellipse, we can then estimate
the vortex aspect ratio simply as χ v = a/b, where a and b are the
semimajor and semiminor axes of the ellipse, respectively.

Other diagnostic quantities include:

(i) The reynolds stress αR which is given by:

αR = 2

3

〈�δvRδvφ〉
〈�c2

S〉
(10)

where denotes an azimuthal average over the entire disc,
δvR = vR− vR, δvφ = vR− vφ

(ii) The gravitational stress αG which is given by:

αG = 2

3

〈∫ ∞
−∞(4πG)−1gRgφdz〉

〈�c2
s 〉

(11)

where gR ang gφ are the radial and azimuthal components of the
self-gravitational acceleration. The vertical integration is performed
by changing the square of the smoothing parameter b2 to b2 + η2

where η is such that z = ηR (Baruteau, Meru & Paardekooper 2011).
Following Bae et al. (2014), η is varied evenly by 0.01 from zero to
one.
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3 EVO LUTION IN ISOTHERMAL D ISCS

We begin our description of the evolution of vortices in self-
gravitating discs by examining the results of the isothermal sim-
ulations. In the isothermal limit, we note that because the pressure
bump acts as a trap for the vortex, vortex migration is not expected
in that case (Paardekooper et al. 2010).

In these runs, the growth timescale of the RWI is typically
tgrowth∼ 5 orbits, this value is found to be nearly independent of
whether self-gravity is taken into account or not. The most unsta-
ble azimuthal wavenumber mmax of the RWI, however, is found
to be slightly higher in the case where self-gravity is included.
For the model with f = 1, for example, mmax = 6 in the simu-
lation without self-gravity, where mmax = 7 if self-gravity is in-
cluded. This is exemplified in the first panel of Fig. 2 which shows,
for this model, a snapshot of the disc surface density at t = 5
orbits.

The non-linear evolution of the RWI in simulations with self-
gravity, however, significantly differs from that in runs where self-
gravity is not considered. In the case where self-gravity is dis-
carded, a long-lived vortex with aspect ratio χ ∼ 4–5 develops,
whereas when self-gravity is included, two different modes of evo-
lution are obtained, depending on the disc mass. For models with
f = 1, 2, a single vortex that is formed ultimately decays due to
the mechanism described in Regály & Vorobyov (2017), whereas
for f ≥ 4, a vortex with a turbulent core undergoes gravitational
contraction. We now describe in more details these two modes of
evolution.

We use the run with f = 1 to illustrate the first mode of evo-
lution that we find. For this calculation, contours plots of the sur-
face density at four representative times are displayed in Fig. 2.
The second panel corresponding to t = 500 reveals that at that
time, the initial vortices have merged to form a single vortex with
χ ∼ 5. At t = 1000, however, we see that the vortex aspect ratio has
considerably increased while the azimutal surface density contrast
has decreased. The surface density structure at t = 1500 (fourth
panel) suggests that the vortex stretches out until it completely dis-
sipates in the background flow. This process is further illustrated
in Fig. 3 where we show the time evolution of the Toomre pa-
rameter at vortex center Qv (upper panel), vortex aspect ratio χ v

(middle panel), and Rossby number of the vortex Ro (Lower panel).
The continuous decrease in |Ro| in the time period between 600
and 1200 orbits confirms that the vortex weakens as vortex stretch-
ing occurs. At t ∼ 1200, Ro ∼ 0 which indeed indicates that the
vortex has been almost entirely suppressed at that time. A new
elongated vortex whose evolution is very similar to that described
above eventually emerge at later times, thereby giving rise to cy-
cles of vortex formation-dissipation. One such cycle is illustrated
by the sequence of snapshots at four successive times that is pre-
sented in Fig. 6. We note that similar vortex mode oscillations
have also been reported in previous non self-gravitating simula-
tions of vortices forming at a viscosity transition (Regály et al.
2012).

The mechanism of vortex decay that is observed in the simula-
tions may arise for two reasons.

First, the vortex excites spiral density waves that can turn into
shocks once the vortex amplitude becomes high enough. This not
only causes the vortex to lose energy through shock dissipation, but
also can significantly alter the background vortensity (i.e. the ratio
between the vertical component of the vorticity and the disc surface
density) profile. The gap-opening criterion of Crida et al. (2006)
predicts that the vortex should be able to carve a gap in the disc

provided that P < 1, where P is the gap opening parameter which
is given by:

P = 1.1
( qv

h3

)−1/3
+ 50ν

qvRv
v

(12)

where Rv is the radial position of the vortex, qv is the vortex-to-star
mass ratio, and 
v the angular velocity at this location. For the runs
with f = 1 and f = 2, we estimate that at the time where the vortex
begins to decay qv ∼ 1.3 × 10−4 and qv ∼ 2.8 × 10−4, respectively.
This gives P ∼ 0.85 for the run with f = 2, whereas P ∼ 1.1 in the
case with f = 1. Therefore, we expect the background vortensity
profile to be only weakly altered in the simulation with f = 1, while
the background vortensity gradient might be significantly smoothed
out by the vortex in the run with f = 2. Compared to the case of
a gap carved by a planet, however, we note that for a vortex the
aforementioned gap-opening criterion may also depend strongly on
the vortex aspect ratio, since we expect elongated vortices to be
much less efficient in modifying the background vortensity profile
than nearly circular ones. For the simulations including self-gravity,
we show in the upper panel of Fig. 4 the vortensity profile at the
time where the vortex begins to decay, and which can be different
for distinct models. For the non self-gravitating case, the vortensity
profiles at the same times are also plotted for comparison in the
lower panel of Fig. 4. Contrary to our own expectation, the non
self-gravitating vortex seems to be more efficient in changing the
background vortensity profile than the self-gravitating one. This is
confirmed by inspecting the time evolution of the Reynolds stresses,
which is presented in Fig. 5. We see that the stresses are slightly
higher in the non self-gravitating case, which demonstrates that the
spiral waves induced by the non self-gravitating vortex are more
efficient in changing the background vortensity profile. This is con-
sistent with the non self-gravitating vortex having a smaller aspect
ratio, thereby exciting stronger spiral wakes. Despite its ability to
modify the background, the non self-gravitating vortex appears to
remain fairly stable over the course of the simulation, such that we
can conclude that the mechanism of vortex decay that is observed
in the self-gravitating simulations is not related to spiral shocks
induced by the vortex.

Secondly, vortex decay can occur due to the self-gravitational
torque of the vortex, as described in Regály & Vorobyov (2017).
These authors showed that the contribution of the self-gravitational
torque acting on the leading part of the vortex is negative, whereas
the trailing part of the vortex undergoes a positive torque. This,
combined with the effect of Keplerian shear, leads to the vortex
being continuously stretched out until it completely dissipates in the
background flow. Such a mechanism is estimated to be responsible
for vortex decay in discs with masses Mdisc/M� � 0.005 (Regály &
Vorobyov 2017), which is equivalent to Q � 50 at the location of
the viscosity transition in the unperturbed disc phase. Here, our runs
with f = 1, 2 in which vortex stretching arises have Q ∼ 30 and Q
∼ 15 in the unperturbed disc, respectively, which is consistent with
the estimation of Regály & Vorobyov (2017).

Simulations with Q ≤ 7 and which correspond to models with
f = 4, 8 resulted in a different outcome. As mentionned earlier, the
vortex undergoes gravitational collapse in that case. To illustrate
how evolution proceeds in that case, we use the run with f = 4 and
for which the vortex structure in terms of surface density and Rossby
number at different times is presented in Fig. 7. Similar to the run
with f = 1, merging of initial vortices gives rise to a single vortex
whose structure is strongly affected by self-gravity. At t = 650, one
can see that the vortex is indeed significantly elongated due to a
mechanism presented in Regály & Vorobyov (2017), with an aspect
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Figure 2. Upper panel: contours of the scaled surface density �/�in at different times for the isothermal run with f = 1 and with self-gravity included. Lower
panel: same but in the case where self-gravity is not included.
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Figure 3. Upper panel: Evolution of the Toomre parameter at vortex centre,
averaged over 100 orbital periods at vortex location, for the isothermal runs
with, from top to bottom, f = 1, 2, 4, 8. The solid lines correspond to
simulations including self-gravity, whereas the dashed lines correspond to
non self-gravitating runs. Middle panel: same but for the vortex aspect ratio
χ v. Lower panel: same but for the Rossby number calculated at vortex
centre.
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Figure 4. Upper panel: Radial profile of the disc vortensity prior vortex
decay occuring, for the isothermal simulations that include self-gravity.
Lower panel: Vortensity profile at the same times but for runs that do not
include the effect of self-gravity.

ratio estimated to χ ∼ 18. Contrary to models with Q ≥ 15, how-
ever, the ellipsoidal vortex does not dissipate but rather strenghens
at later times, which is confirmed by inspecting in Fig. 3 the evolu-
tion of Ro that is continuously decreasing for 900 <t < 1100. This
decrease in Ro is accompanied by a decrease in χ , thereby sug-
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Figure 5. Upper panel: Time evolution of the Reynolds αR and gravitational stresses αG for the isothermal simulations that include self-gravity. The horizontal
dashed line corresponds to the value for the viscous stress parameter employed in the dead zone. Lower panel: Time evolution of the Reynolds stress αR for
the runs without self-gravity.
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vortex formation–dissipation that are obtained at the end of the simulation.

gesting self-gravitational contraction of the vortex. As the vortex
contracts, the surface density at vortex centre increases, which is
unambiguously supported by looking at the vortex surface density
maps at t = 900 and t = 1150 in Fig. 7. Inspection of contours of the
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Figure 7. Upper panel: contours of the Rossby number at different times
for the isothermal run with f = 4 and with self-gravity included. Lower
panel: contours of the scaled surface density �/(f�in) at different times for
the same run.

Rossby number at t = 1150 also shows that gravitational instabilities
can develop within the vortex core. For simulations including self-
gravity, gravitational stresses αG together with Reynolds stresses αR

are plotted as a function of time in the upper panel of Fig. 5. We see
that the gravitational stresses continuously increase up to αG ∼ αR,
which unambiguously confirms that the vortex core is subject to
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Figure 8. Upper panel: snapshot of the disc surface density at t = 1370
for the isothermal run with f = 8 and including self-gravity and the indirect
term of the gravitational potential. Lower panel: same but in the case where
the indirect term is discarded.

gravitational instabilities. In appendix we show that this result is
robust regarding both the numerical resolution that is adopted and
the amplitude of the density bump at the end of the first step (see
Section 2.2)

As the vortex grows, spiral waves launched by the vortex become
stronger and stronger. In Fig. 7, one can clearly see these strong
wakes extending from either side of the vortex in the surface density
map corresponding to t = 1430. These spiral waves contribute to
the further gravitational collapse of the vortex by allowing gas
accretion onto it. Such a process occurs until a point in time where
the vortex becomes strong enough for the spiral waves to turn into
shocks, which makes the vortex lose energy and decay through
shock dissipation (Les & Lin 2015). The released mass from the
vortex subsequently enables the RWI to be relaunched at the location
of the pressure bump, which gives rise to the formation of a new
vortex whose evolution follows a similar cycle.

In disc models with f = 8, we find that the vortex is massive
enough to make the disc become globally eccentric, as revealed
by looking at contours of the surface density which are plotted at
t = 1370 in the upper panel of Fig. 8. One possibility to estimate
the eccentricity growth within the disc is to compute radial kinetic
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Figure 9. Evolution of the total radial kinetic energy, for the isothermal
runs with, from bottom to top, f = 1, 2, 4, 8. The solid lines correspond to
simulations including self-gravity, whereas the dashed lines correspond to
non self-gravitating runs.

energy (Kley & Dirksen 2006, Teyssandier & Ogilvie):

Ek = 1

2

∫ 2π

0
�v2

RRdRdθ, (13)

whose time evolution is plotted for each run in Fig. 9. Rapid growth
of Ek is observed for f = 8, and this does not depend whether or not
self-gravity is included. This implies that self-gravity is not the main
engine for driving the instability. Instead, it appears that the growth
of the disc eccentricity arises from the effect of the indirect term
of the gravitational potential. When the vortex is massive enough,
we indeed expect the barycentre of the system to be significantly
shifted away from the star, which can cause the development of
m = 1 gravitational instabilities (Adams, Ruden & Shu 1989). The
typical growth rate timescale of such instabilities is expected to not
exceed the orbital period as long as Q � 3, which is indeed the
case in our runs with f = 8. Moreover, neither growth of the kinetic
energy nor growth of the disc eccentricity occured in simulations
that were carried out without the indirect term included, as can be
observed in the lower panel of Fig. 8 which shows contours of the
disc surface density at t = 1370 for the run with f = 8 but in the case
where the indirect term for the gravitational potential is discarded.
This clearly demonstrates that the indirect term plays a dominant
role in triggering the development of the eccentric instability.

4 EVO LUTI ON IN N ON-I SOTHERMAL D IS CS

4.1 Models with β cooling

In the context of classical gravitational instabilities, it is now widely
accepted that the outcome of such instabilities strongly depends
on the thermodynamical state of the disc. Assuming a β cooling
prescription for the cooling timescale τ cool = β
−1, the disc tends
indeed to achieve a self-regulated state with constant Q value for β

� 10, whereas lower values for β give rise to disc fragmentation.
Results from the previous section naturally lead to the question of
how self-gravitating vortices evolve in discs where the isothermal
assumption is relaxed. In order to investigate whether or not the
evolution of such vortices can be interpreted in the same way as
classical gravitational instabilities, we have performed for the case
with f = 4 additional non-isothermal simulations with β cooling.
Simulations that employ a more realistic prescription for cooling
will be presented in the next section. Fig. 10 displays, from top to
bottom, the time evolution of the Toomre parameter at vortex centre
Qv, vortex aspect ratio χ v, Rossby Ro number for β = 0.01, 0.1,
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Figure 10. Upper panel: Evolution of the Toomre parameter at vortex
centre, averaged over 100 orbital periods at vortex location, for the run with
f = 4 and employing the β cooling prescription. The solid lines correspond
to simulations including self-gravity, whereas the dashed lines correspond
to non self-gravitating runs. Middle panel: same but for the vortex aspect
ratio χ v. Lower panel: same but for the Rossby number calculated at vortex
centre.

1. In non self-gravitating discs, we can see that there is a tendency
for the strength of the vortex to increase with β, which is consistent
with the results of Les & Lin (2015) who find that the vortex lifetime
increases with the cooling timescale.

In self-gravitating discs, the continuous increase in χ v and sub-
sequent vortex dissipation that is observed in the run with β = 1
suggest that the self-gravitating torque is at work in that case. We
note in passing that models with f = 1 (not shown here) also resulted
in a similar outcome for 0.01 ≤ β ≤ 1. In the case where β ≤ 0.1, the
results are consistent with the isothermal simulations, with the vor-
tex ultimately collapsing due to the effect of self-gravity. Contrary to
the isothermal case, however, we can see that the Toomre parameter
at vortex centre reaches an almost constant value Qv ∼ 1.5 prior to
the vortex collapsing at t ∼ 2000 orbits (see upper panel of Fig. 10),
which is very similar to the value corresponding to a disc reaching a
steady gravito-turbulent state. Inspection of Fig. 11 that shows con-
tours of the Rossby number and surface density at t = 1200 for both
models reveals that gravito-turbulence can indeed develop within
the vortex core for β ≤ 0.1. The corresponding alpha parameters αR

and αG asssociated with the Reynolds and gravitational stresses are
shown as a function of time in Fig. 12. During this gravito-turbulent
stage, we see that αR ∼ αG, which is consistent with previous stud-
ies of gravito-turbulent discs (Gammie 2001; Baruteau et al. 2011).
The gravito-turbulence operating in the vortex core may be possibly
responsible for the vortex collapse observed at later times through
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Figure 11. Upper panel: contours of the Rossby number at t = 1200 and
for the runs employing the β cooling prescription with β = 0.01, 0.1. Lower
panel: contours of the scaled surface density �/(f�in).
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the development of secular gravitational instabilities. This occurs
because the anomalous viscosity generated by the hydrodynamic
turbulence tends to remove rotational support (Lin & Kratter 2016).
For a 2D, self-gravitating, isothermal disc, the dispersion relation
for axisymmetric modes with wavenumbers k is given by (Gammie
1996):

s = νk2(2πG|k| − c2
s k

2)


2 + c2
s k

2 − 2πG�|k| (14)

For Q ∼ 1.5 and h = 0.05, s is positive for perturbations whose
scalelength L = 2π /k are such that L � H. The corresponding
maximum growth rate smax is given by (Lin & Kratter 2016):

smax = 27α

16Q4

 (15)

For α = αR + αG ∼ 10−3, smax ∼ 3 × 10−4
 that corresponds to a
growth time of ∼500 orbits. This is very similar to the characteristic
time for vortex collapse inferred from the simulations. However, we
caution the reader that the estimation given by equation (15) results
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Figure 13. Dust density distribution resulting from the model of Lyra &
Lin (2013) and for vortex parameters corresponding to the self-gravitating
run with f = 4 and using the β cooling prescription with β = 0.1.

from a linear analysis of secular instabilities that is valid for viscous,
Keplerian self-gravitating discs such that it is not clear whether
or not it applies to embedded vortices. Moreover, the averaging
procedure may also have some impact on the values obtained for
αR and αG. In fact, we tested the effect of employing an averaging
procedure over the vortex surface only and found that stresses are
a factor ∼1.3 higher compared to the case where the average is
performed over the entire disc. Nevertheless, we can conclude from
the above that the slow collapse that is observed is characteristic of
secular gravitational instabilities.

4.2 Consequences on dust trapping

The gravito-turbulence arising in the vortex may also have a major
impact on dust trapping. To examine this issue in more details,
we employ the model described in Lyra & Lin (2013), assuming a
GNG model for the vortex. It has been recently shown that vortices
developing at sharp viscosity transitions in self-gravitating discs
can be well described by such a model (Regály & Vorobyov 2017).
According to the model of Lyra & Lin (2013), the dust distribution
within the vortex core is given by:

ρd (x) = ρd,max exp

(
−x2b2

v

2H 2
v

)
(16)

where we set x = (R − Rv)/bv with bv the vortex semiminor axis.
Hv is the dusty vortex scaleheight which is given by:

Hv = H

f (χ )

√
δ

St + δ
(17)

where St is the Stokes number, f(χ ) is a scale function [see equation
(35) in Lyra & Lin 2013] and δ is the dimensionless turbulent
diffusion coefficient for which we assume δ = αR + αG. Focusing
on the model with β = 0.1, we plot for St = 0.005, 0.05 the
expected dust distribution at three consecutive times in Fig. 13. Dust
grains are initially concentrated close to the vortex centre but as the
vortex core becomes gravito-turbulent, increase in the Reynolds and
gravitational stresses causes the dust to diffuse away from the vortex
centre. We can see that small dust grains with St = 0.005 can even
be expelled from the vortex due to turbulent diffusion. Assuming a
particle density of ρd = 0.8g · cm−3, this would correspond to dust
particles with typical radius ad ∼ 1.5 cm.
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Figure 14. Upper panel: evolution of the Toomre parameter at vortex cen-
tre, for the radiative runs with, from top to bottom, f = 1, 2, 4, 8. The solid
lines correspond to simulations including self-gravity, whereas the dashed
lines correspond to non self-gravitating runs. Lower panel: time evolution
of the vortex radial position for the same runs.

4.3 Radiative disc models

We now consider how the evolution of vortices proceeds in a ra-
diative disc, employing a more realistic treatment for the cooling
term. For a viscosity function that depends explicitly on tempera-
ture [see equation (7)] and gas cooling function given by equation
(4), Faure et al. (2015) have reported cycles of formation, migration,
and disruption of vortices forming at a pressure maximum. Provided
that the vortex does not significantly alter the background vorticity
profile, migration of vortices is a priori not expected in that case
(Paardekooper et al. 2010). Faure et al. (2015) suggest that vortex
migration is associated with a baroclinic term in the vorticity equa-
tion, possibly arising from a strong azimuthal temperature gradient.
As the cold vortex migrates and penetrates within the much warmer
active region, it becomes progressively eroded through diffusion
effects, until the released mass gives rise to a new vortex which
follows the same evolution.

For our non-isothermal models with f = 1, .., 8, the upper panel of
Fig. 14 shows the Toomre parameter at vortex centre as a function
of time. Similar to the isothermal case, the run with f = 8 and in
which self-gravity is not included resulted in the growth of the disc
eccentricity due to the development of a strong m = 1 gravitational
instability, whereas for the other non self-gravitating models with f
≤ 4, Qv exhibits an oscillating behaviour due to the aforementionned
vortex cycles. In the case where self-gravity is included, however,
Qv rather reaches a constant value which suggests that self-gravity
can stabilize the vortex against baroclinic effects. Here, the cooling
timescale is estimated to be τ cool ∼ 1/bT3 ∼ 1/α
 ∼ 16Torb which
would correspond to β ∼ 100 using the standard β parametrization.
The results of these radiative runs therefore suggest that the vortex’s
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fate is strongly influenced by the details of thermodynamics, since
a non-isothermal model with β cooling would give rise to vortex
decay for β = 100. We show in Fig. 15 contour plots of the nor-
malized surface density (upper row) and temperature perturbation
relative to the azimuthally-averaged temperature (lower row) for
various runs namely: (i) for the case with f = 1 and without self-
gravity included, prior inward migration of the vortex proceeding
and (ii) for the self-gravitating discs with f = 2, 4, 8, once the vortex
has reached a quasi-equilibrium structure. Comparing the density
maps for the two self-gravitating models with f = 4 and f = 8, it is
clear that the vortex becomes denser in more massive discs. As the
disc mass increases, however, the temperature inside the vortex also
increases, as revealed by inspecting the temperature contours for
the two models, which consequently leads to the vortex reaching a
constant Qv value.

The lower panel of Fig. 14 shows for each model the radial
position of the vortex Rv as a function of time. It is immediately
evident that the vortex cycles are suppressed when self-gravity is
taken into account. Consistently with previous simulations of self-
gravitating vortices (Zhu & Baruteau 2016), the vortex is observed
to even migrate outward in self-gravitating runs with f ≥ 4. From
the maps of the relative temperature perturbation in Fig. 15, we
can envision two possible mechanisms that are responsible for the
vortex outward migration. First, one can see that the vortex’s inner
wave tends to be eroded in runs with f ≤ 2, mainly at the location
which corresponds to the transition T ∼ TMRI. In models with f ≥ 4,
however, the inner wave is much less sheared out, probably because
the vortex core is warmer in that case. We note that the inward
migration of the non self-gravitating vortex may be partly due to
this process, since it tends to increase the asymmetry between the
inner and outer waves of the vortex.

Changes in the structure of the outer wake with disc mass can
also be identified from these temperature maps, but become more
apparent when looking at the Fourier components of the surface
density. For the various runs with self-gravity included, the m = 10
component of the surface density �m is plotted as a function of
x = (R − Rv)/Rv in Fig. 16. We choose such a value for m because
in the context of planetary migration, the outer Lindblad torque
peaks approximately at m ∼ 10 for a disc with h = 0.05 (Ward
1997). As the disc mass increases, there is a clear trend for the disc
response in the outer disc to decrease and for the vortex to become
more asymmetric. This tends to reinforce the effect of the vortex’s
inner wave, and to favor consequently the outward migration of the
vortex.

5 D I SCUSSION AND CONCLUSION

In this paper, we have presented the results of 2D hydrodynamical
simulations that examine the role of self-gravity on the long-term
evolution of vortices. These vortices form through the development
of the RWI at a pressure bump, which is assumed to be located at
the inner edge of a dead zone, where there is a sharp transition in
the viscosity parameter α. We focused on the case of massive pro-
toplanetary discs where the Toomre parameter at the location of the
pressure bump is initially Q ≤ 30, and considered both isothermal
and non-isothermal equations of state.

For isothermal discs, we find three different modes of evolution
depending on the initial value for Q.

i) For Q ≥ 15, self-gravity makes a large-scale vortex decay due
to the self-gravitational torque of the vortex, as predicted by Regály
& Vorobyov (2017). Once the vortex has completely dissipated in
the background flow, a new vortex emerges at the location of the

pressure bump, which follows the same evolution, giving rise to
cycles of vortex formation-dissipation.

ii) Isothermal models with 3 � Q � 7 result in the formation of
an elongated vortex with aspect ratio χ ∼ 20−30 and whose core
is found to be turbulent due to the development of gravitational
instabilities. At later times, however, the vortex strengthens due to
gravitational collapse but is ulimately found to decay once the spiral
waves launched by the vortex become too strong. Eventually, a new
vortex can emerge at the location of the pressure bump and which
follows a similar evolution.

iii) More massive discs with Q� 3 become globally eccentric due
to the growth of a m = 1 mode in the disc. In that case, it appears
that destabilization of the system is not caused by the effect of
self-gravity but rather occurs because the vortex is massive enough
to significantly shift the barycentre of the system away from the
central star.

Vortex decay is also observed in β cooling discs with β ≥ 1 due to
the combined effect of self-gravity and Keplerian shear. In models
with β ≤ 0.1, gravito-turbulence can operate in the vortex core in
models with 3 � Q � 7, with the core maintaining a constant Qv

value. Similar to the isothermal case, the vortex collapses at later
times, possibly because anomalous viscosity arising from gravito-
turbulence within the disc tends to remove rotational support.

Regarding radiative disc models where the viscosity depends on a
switch to disc temperature, non self-gravitating simulations resulted
in cycles of vortex formation-migration-disruption, in good agree-
ment with previous work (Faure et al. 2015). Including self-gravity
however, causes the vortex cycles to be completely suppressed. This
was found to occur because the vortex tends to be warmer and more
asymmetric in self-gravitating discs. In that case, a quasi-steady
state is reached for which the vortex lasts for O(103) orbits and has
aspect ratio of χ v ∼ 3–4.

Our results suggest that self-gravity makes difficult forming long-
lived vortices at a pressure bump, both in isothermal disc and non-
isothermal discs that employ the β cooling prescription. In a radia-
tive disc model where is implemented a better treatment of ther-
modynamics, however, self-gravity can give rise to a stable vortex
structure with aspect ratio χ v ∼ 3–4. Strong vortices with aspect
ratio χ < 4 are known to be destroyed by the elliptical instability
(Lesur & Papaloizou 2009; Richard et al. 2013). Moreover, we note
that in this work vortices are formed on a timescale correspond-
ing to ∼10 orbits, which is comparable to the elliptical instability
growth timescale in 3D discs. Therefore, it is not clear whether or
not a vortex formed at a pressure bump might be able to survive
the elliptical instability, and 3D simulations are clearly required to
investigate this issue in more details. 3D simulations including self-
gravity and that examine the possible role of the elliptical instability
on the evolution of vortices, together with the effect of self-gravity
on the elliptical instability will be presented in a future study (Lin
& Pierens 2018).

APPENDI X: NUMERI CAL I SSUES

To assess the impact of numerics on the results presented in this
paper, we performed a suite of additional simulations for various
resolutions and different amplitudes for the initial density bump.
The upper panel of Fig. 17 shows, for the self-gravitating model
with f = 4, the time evolution of the Toomre parameter at vor-
tex centre Qv for runs with our nominal resolution (792 × 1280),
increased grid resolution (1584x2560), and lower grid resolution
(396 × 640). These three simulations exhibit different relaxation
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Figure 16. m = 10 Fourier component of the surface density as a function
of x = (R − Rv)/Rv for the radiative runs with self-gravity.

phases, but all ultimately resulted in vortex growth, with a very
similar corresponding growth timescale.

We plot in the lower panel of Fig. 17 Qv as a function of time
for the same model and nominal grid resolution, but for runs which
differ by the amplitude of the density bump at the end of the first step
(see Section 2.2), and therefore by the initial value for the Toomre
parameter Qbump at the location of the pressure bump. The case
Qbump = 15 corresponds to a situation where the initial amplitude
of the density bump is zero, such that the vortex forms as soon
as the density bump is strong enough for the RWI criterion to be
satisfied. We see that the duration of the relaxation phase is longer
in that case, but vortex collapse ultimately occurs, consistent with
that found in our reference model and in the model with Qbump = 3.
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