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Hybrid Projective Nonnegative Matrix Factorization
with Drum Dictionaries for Harmonic/Percussive

Source Separation
Clément Laroche, Matthieu Kowalski, Hélène Papadopoulos, Member, IEEE, and

Gaël Richard, Fellow Member, IEEE

Abstract—One of the most general models of music signals
considers that such signals can be represented as a sum of two
distinct components: a tonal part that is sparse in frequency and
temporally stable, and a transient (or percussive) part composed
of short term broadband sounds. In this paper, we propose a novel
hybrid method built upon Nonnegative Matrix Factorisation
(NMF) that decomposes the time frequency representation of
an audio signal into such two components. The tonal part is
estimated by a sparse and orthogonal nonnegative decomposition
and the transient part is estimated by a straightforward NMF
decomposition constrained by a pre-learned dictionary of smooth
spectra. The optimization problem at the heart of our method
remains simple with very few hyperparameters and can be
solved thanks to simple multiplicative update rules. The extensive
benchmark on a large and varied music database against four
state of the art harmonic/percussive source separation algorithms
demonstrate the merit of the proposed approach.

Index Terms—nonnegative matrix factorization, projective
nonnegative matrix factorization, audio source separation, har-
monic/percussive decomposition.

I. INTRODUCTION

In a musical context, the goal of source separation is
to decompose the original music signal into the individual
sources as played by each instrument. This problem is par-
ticularly challenging in the so-called underdetermined case
where the analysed signal gathers multiple instruments on a
single channel. However, the number of potential applications
has motivated the growing and sustained effort of the audio
community to obtain efficient solutions in the general case [1]
or for more focused tasks such as singing voice (e.g. main
melody) [2], [3], bass [4] or drum separation [5], [6].

In many cases, one of the essential building blocks of an
audio signal processing algorithm consists in decomposing the
incoming signal into a number of semantically meaningful
components. For example, [7], [8] decompose the signal into
periodic and aperiodic components, [9]–[12] rather aim at
separating the signal into harmonic (or tonal) and percussive
(or noise) components, while others will aim for a more
general decomposition under the form of a Sinusoidal +
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Transient + Noise (STN) model [13]. Indeed, such decom-
positions bring clear advantages for a number of specific
applications. For instance numerous multi-pitch estimation
models [14], instrument recognition [15], tempo estimation
[16] and melody extraction [17], [18] algorithms are much
more efficient on harmonic or periodic components. Similarly,
drum transcription algorithms [19], [20] are more accurate
when the harmonic components have been removed from the
analysed signal.

In this paper, we focus on the specific problem of Har-
monic/Percussive Source Separation (HPSS). We adopt here
the same terminology as in other related works (in particular
[9], [10]) for the definition of the harmonic components which
may be slightly misleading since it also includes sounds that
are quasiperiodic but slightly inharmonic. Also, similarly to
[10], we will assess the merit of the proposed HPSS algorithms
on a task of pitched/unpitched instrument separation. Herein,
pitched instruments refers to musical instruments such as
piano, guitar or tuba while unpitched instruments include
drums or percussions.

The main motivation of our work is to propose a new
model that will be sufficiently flexible and robust to efficiently
operate on complex and varied music signals and that can
easily scale up to large datasets. The HPSS technique proposed
in this article exploits a NMF framework but with an improved
robustness due in particular to the limited number of hyper-
parameters needed. As stated in [10], harmonic instruments
have sparse basis functions whereas percussive instruments
have much flatter spectra. We propose to extract harmonic
components – well localized in frequency – by a sparse and
orthogonal decomposition, while the percussive part – with a
flat spectrum – is represented by a non-orthogonal component
as a sum of smooth spectra.

In short, our contributions are threefold:
1) First, we introduce a Hybrid Projected Nonnegative Ma-

trix Factorization (HPNMF) method that decomposes
an audio signal into sparse and orthogonal components
(to represent pitched instruments) and wide-spectra non-
orthogonal components (to capture percussive instru-
ments). The optimization problem at the heart of our
method remains simple with very few hyperparameters
and can be solved thanks to simple multiplicative update
rules. Here, the term hybrid is used in the sense that the
proposed approach combines both a supervised decom-
position constrained by a dictionary and an unsupervised
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part.
2) Second, we present a blind semi-supervised extension

by using fixed drum dictionaries obtained in a learning
phase. The main advantage of this alternative scheme
is that it gives a better representation of the percussive
components.

3) Finally, we conduct an extensive benchmark against four
state of the art harmonic/percussive methods on a large
and varied music database.

The paper is organized as follows. In Section II, we present
some recent works on NMF and we list some recent state
of the art methods for HPSS. The proposed HPNMF is then
introduced in Section III while we describe our experimental
protocol and the results obtained on synthetic and real au-
dio signals in Section IV. A comparative evaluation is then
given in Section V. Finally, some conclusions are drawn in
Section VI.

II. RELATED WORK

A. Nonnegative Matrix Factorization

The NMF is a widely used rank reduction method. The
goal of NMF is to approximate a data matrix V ∈ Rn×m

+

as V ≈ Ṽ = WA with W ∈ Rn×k
+ , A ∈ Rk×m

+ , k
being the rank of factorization typically chosen such that
k(n+m) << nm [21]. As the data matrix V is usually
redundant, the product WA is a compressed form of V . In
audio signal processing, the input data is usually a Time-
Frequency (TF) representation such as a short time Fourier
transform (STFT) or a constant-Q transform spectrogram. The
matrix W is a dictionary or a set of patterns that codes the
frequency information of the data. A is the activation matrix
and contains the expansion coefficients that code the temporal
information.

The NMF decomposition has been applied with great suc-
cess in various audio signal processing tasks such as automatic
transcription [22], [23], audio source separation [24], [25],
multi-pitch estimation [26] and instrument recognition [27].
When the signals are composed of many sources, the plain
NMF does not give convincing results for the task of source
separation1. To obtain decompositions that are interpretable
and semantically meaningful, it is often necessary to impose
a specific structure in the model. This can be done either by
exploiting prior information or training data in a supervised
way, or incorporating physical knowledge in an unsupervised
fashion. Also physical and musical structures can be directly
enforced by exploiting specific mathematical properties of the
decomposition.

Supervised algorithms exploit prior information or training
data in order to guide the decomposition process. Prior in-
formation can be used to impose constraints on the template
and/or the activation matrices to enforce a specific structure
that will be semantically meaningful. For example, information
from the scores or from midi signals can be used to initialize

1For polyphonic music signals, the plain NMF decomposition will usually
include dictionary elements which cannot be considered as constitutive source
elements (e.g. such as musical notes) and therefore will not be efficient for
musical source separation.

the learning process [22]. Such approaches require a well or-
ganized prior information that is not always available. Training
data can be exploited and incorporated in supervised schemes
by building dictionary/pattern matrices W that are trained on
some specific databases. Various training processes have been
proposed. A common procedure to build such a dictionary is
to perform a NMF on a large training set. The resulting Wtrain

matrix extracted from the decomposition can then be used as
the dictionary matrix W in the separation [28]. The dictionary
matrix can also be created by extracting template spectra from
isolated audio samples. This technique was used for drum
transcription with satisfying results [29], but selecting the right
atoms from the dictionary is a complex and tedious task. Most
of the supervised methods that use a trained dictionary require
minimum tuning from the user and have shown interesting
results for their applications. However, improvement of the
performance is obtained only if the trained dictionary matches
the target instruments in the test-set.

Unsupervised algorithms in the NMF framework rely on
parametric physical models of the instruments – or mathemat-
ical models of physical observations –, and they design activa-
tion and template vectors that integrate specific constraints de-
duced from the characteristics of the processed signals. For in-
stance, harmonic instruments tend to be temporally smooth and
are slowly varying over time. Enforcing temporal smoothness
of the activation matrix A was proven to improve the quality
of the decomposition [30]. As another example, Hayashi et
al. [31] propose a NMF where a criterion that promotes the
periodicity of the time-varying amplitude associated with each
basis spectrum is appended to the objective function of NMF.
Parametric models allow for a straightforward integration of
musical or physical knowledge, but may rely on numerous
parameters that are difficult to estimate and may lead to
computationally expensive algorithms.

Finally, mathematical properties of the decomposition can
be underlined such as the orthogonality between the nonnega-
tive basis functions (or patterns). The Projective NMF (PNMF)
and the Orthogonal NMF (ONMF) are typical examples of
such techniques. The PNMF has been used with success in im-
age processing [32] for feature extraction and clustering [33].
It reveals interesting properties in practice: a higher efficiency
for clustering than the NMF [32] as well as the generation
of a much sparser decomposition [33]. These inherent prop-
erties are particularly interesting for audio source separation
as shown in [10]. The main advantage of these approaches
compared to other unsupervised methods is that orthogonality
is obtained as an intrinsic property of the decomposition; and
for positive bases, orthogonality is intimately connected to
sparseness. Concurrently, these methods avoid a tedious and
often unsatisfactory hyperparameter tuning stage. However
such decompositions cannot be applied straightforwardly to
music audio signals with success. Indeed, they do not have
a sufficient flexibility to properly represent the complexity of
an audio scene composed of multiple and concurrent harmonic
and percussive sources.
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B. Harmonic/Percussive Source Separation

Several dedicated solutions for HPSS have already been
proposed in the litterature. In [9], the harmonic (resp. per-
cussive) component is obtained by applying a Median Filter
(MF) on the horizontal – or time (resp. vertical – or frequency)
– dimension of the audio signal spectrogram. This approach is
particularly effective considering its simplicity but is more lim-
ited on complex signals that exhibit smooth onsets, vibratos,
tremolos or glides. The MF [9] is a state of the art, versatile
and computationally efficient method. It is widely used in the
Music Information Retrieval (MIR) community and is thus a
good baseline for comparison.

Another method, dedicated to drums removal from a poly-
phonic audio signal, consists in discarding time/frequency
regions of the spectrogram that show a percussive magnitude
evolution, according to a predefined parametric model [34].
Although efficient, this procedure relies on the availability of a
side information (e.g. drum onset localization) and is therefore
not fully automatic and does not easily scale to large datasets.
A similar approach has been proposed by Park et al. in [35].

Other unsupervised HPSS methods [10], [35] exploit Non-
negative Matrix Factorization (NMF) with specific constraints
to distinguish the harmonic part from the percussive compo-
nents. More specifically, the scheme presented in [10] is based
upon the assumption that percussive instruments are transient
sounds with a smooth and rather flat spectral envelope, and
that pitched (or harmonic) instruments are tonal sounds with
harmonic sparse spectra. A frequency regularity constraint and
a temporal sparsity constraint are applied during the opti-
mization process to extract the percussive components. Vice-
versa a temporal regularity constraint and a frequency sparsity
constraint are applied to extract the harmonic instruments.
Let’s consider the magnitude spectrogram V composed of T
frames, F frequency bins, the model is written as follow:

VFT ≈ VP + VH =WPF,Rp
APF,Rp

+WHF,Rh
AHF,Rh

where the parameters Rh and Rp denote the number of har-
monic and percussive components respectively. The harmonic
sounds are modelled by assuming smoothness in time and
sparseness in frequency. The Temporal SMoothness (TSM) is
defined as follow:

TSM =
F

Rh

Rh∑
rh=1

1

σ2
AHrh

T∑
t=2

(AHrh,t−1 −AHrh,t)
2 (1)

The value σAHrh
=

√
1
T

∑T
t=1A

2
Hrh,t

is a normalization term
added to make the global objective function independent from
the norm of the signal. Spectral SParseness (SSP) is designed
using the same constraint as in [30]:

SSP =
T

Rh

Rh∑
rh=1

F∑
f=1

|
WHf,rh

σWHrh

| (2)

with σWHrh
=

√
1
F

∑F
f=1W

2
Hf,rh

. Similarly for the percus-
sive part, the authors used a constraint of Temporal Sparseness
(TSP) on the activation matrix and a constraint of Spectral
Smoothness (SSM) on the dictionary matrix. This CoNMF

algorithm gives good results compared to other state of the art
methods but we will show here that the results heavily depend
on the training database. Its efficiency requires a tedious fine
tuning of several optimization parameters during a training
phase. As a result, if this method remains very efficient in
controlled situations, it lacks robustness when applied on a
wide variety of music signals. We compare the proposed
method to the CoNMF as it is one of the most recent schemes
available for HPSS.

Kernel Additive Modelling (KAM) [36] is a framework
which focuses on the underlying local features [37] such
as repetitivity, common fate (sound components that change
together are perceived as belonging together) and continuity
of the sources to separate them from mixtures. To model these
regularities within the spectrograms of the sources, KAM uses
kernel local parametric models which have their roots in local
regression [38]. In the case of audio signals, it is supposed that
the value of the spectrogram of a source j at a given TF point
(f, t) is close to its values as other TF bins given a specific
proximity kernel Ij(f, t)

∀(f ′, t′) ∈ Ij(f, t), sj(f, t) ≈ sj(f ′, t′).

Through different proximity kernels Ij(f, t), different
sources can then be modeled. The KAM framework offers
a large degree of flexibility in the incorporation of prior
knowledge about the local dynamics of the sources to be
separated. KAM has been used with promising results in the
context of HPSS [39] and we include this method in our
benchmark.

Finally, the supervised approach NMPCF [40] simultane-
ously decomposes the spectrogram of the signal and the drum-
only data (obtained from prior learning) in order to determine
common basis vectors that capture the spectral and temporal
characteristics of drum sources. The shared dictionary matrix
retrieves the drum signal. However it must be chosen care-
fully in order to obtain good results. The percussive part of
the decomposition is constrained while the harmonic part is
completely unconstrained. As a result, the harmonic part may
capture too much energy from the percussive instruments and
the decomposition would not be satisfactory. Nevertheless, the
NMPCF is a recent supervised method and represents a good
benchmark for our comparison.

III. HYBRID PROJECTIVE NMF (HPNMF)

In this section we first briefly present the mathematical
models of PNMF and ONMF and then detail our HPNMF
algorithm HPNMF.

A. PNMF and ONMF in a nutshell

The aim of the PNMF is to approximate the data matrix by
its nonnegative subspace projection, i.e. finding a non negative
projection matrix P ∈ Rn×n

+ such that V ≈ Ṽ = PV . In [41]
Yuan et al. expound the method as an ”adaptation” of the
Singular Value Decomposition to nonnegative matrices. They
propose to seek P as an approximative projection matrix under
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the form P =WWT with W ∈ Rn×k
+ with k 6 n. The PNMF

problem reads:

min
W>0

‖V −WWTV ‖2 (3)

PNMF is similar to the NMF problem and can be simply
obtained by replacing the activation matrix A by WTV .
It is shown in [33] that the PNMF gives a much sparser
decomposition than the NMF.

The ONMF [32] problem aims to find a dictionary matrix
W with orthogonal components. It consists in solving the
following optimization problem:

min
W>0,A>0

‖V −WA‖2 s.t. WTW = Ik (4)

In this method, orthogonality between nonnegative basis func-
tions is enforced during the optimization process. In theory,
it seems that the PNMF and the ONMF lead to similar
decompositions, as the W matrix estimated by the PNMF is
almost orthogonal (i.e., ‖WTW−Ik‖2 is small) [41]. However
in practice, enforcing orthogonality of the basis functions at
every iteration is a too strong constraint to decompose audio
signals [42].

On the one hand, the sparsity of the dictionary matrix is an
interesting property for the decomposition of audio signals and
especially for the representation of harmonic instruments with
very localized spectral components. It is worth mentioning that
despite it is only a consequence of the orthogonality property,
it is in fact the sparseness property of the resulting dictionary
that makes PNMF appropriate for representing harmonic in-
struments. On the other hand, the dictionary sparsity is not
appropriate for representing percussive signals which cannot
be described with a few localised spectral components.

B. Principle of the HPNMF

The main motivation for our HPNMF model was then
to extend the previous PNMF approach so it can handle
both harmonic and percussive instruments in a joint model.
Since PNMF is well adapted to model harmonic components
(represented as a time-varying weighted sum of a few sparse
spectral elements), the main idea is to extend PNMF by adding
a model suitable to represent percussive components which
will be represented as a time-varying weighted sum of a few
dense spectral elements, such as broadband noise. To that aim,
we propose to add a standard NMF decomposition term to the
PNMF.

We can expect that most of the harmonic components will
be represented by the orthogonal part while the percussive ones
will constitute the regular NMF components. Using a similar
model to our preliminary work [42], let V be the magnitude
spectrogram of the input data. The model is then given by:

V ≈ Ṽ = VH + VP (5)

with VH the spectrogram of the harmonic part and VP the
spectrogram of the percussive part. VH is approximated by
the PNMF decomposition while WP is decomposed by some
NMF components as:

V ≈ Ṽ =WHW
T
HV +WPAP (6)

The data matrix is approximated by an almost orthogonal
sparse part that codes the harmonic instruments VH =
WHW

T
HV and a non-constrained NMF part that codes the

percussive instruments VP = WPAP . The main advantage
of the HPNMF relies in the fact that the method has few
parameters compared to the CoNMF [10] and the NMPCF [40]
methods while still obtaining similar results [42].

C. Using Regularized NMF for the Harmonic Part

In order to properly evaluate the performance of the PNMF
for the harmonic extraction, we also design an algorithm where
the harmonic part is modelled with a regularized term. Let V
be the magnitude spectrogram of the input data, the model is
then given by:

V ≈ Ṽ =WHAH +WPAP (7)

The optimization problem is therefore:

min
WH,WP ,AP

D(V |Ṽ ) + kTSMTSM + kSSPSSP , (8)

where D(x|y) is a measure of fit, which is a scalar cost
function, between the data matrix V and the estimated matrix
Ṽ . The constraints TSM and SSP are from equation (1) and
(2) respectively. The hyperparameters kTSM and kSSP control
the amount of temporal smoothness and spectral sparseness.
This model replaces the PNMF components by a Regularized
NMF (RegNMF) to extract the harmonic part. It requires prior
tuning of the variables kTSM and kSSP.

D. Optimization Algorithm

We compare in Section IV-E the Euclidean distance (Euc),
the Kullback Leiber (KL) divergence and the Itakura Saito (IS)
divergence which are three commonly used divergences in the
NMF framework – the three divergences are reminded in the
Appendix.

The HPNMF model gives the following cost function:

min
WH,WP ,AP≥0

D(V |WHWT
HV +WPAP) . (9)

A solution to this problem can be obtained by iterative multi-
plicative update rules following the same strategy as in [41],
[43] which consists in splitting the gradient with respect to one
variable (here WH for example) ∇WHD(V |Ṽ ) in its positive
[∇WHD(V |Ṽ )]+ and negative parts [∇WHD(V |Ṽ )]−. The
multiplicative updates for HPNMF are then given by:

WH ←WH ⊗
[∇WHD(V |Ṽ )]−

[∇WHD(V |Ṽ )]+

where ⊗ is the Hadamard product or element-wise product.
Details of the equations for the Euc distance, KL and IS
divergences are given in the appendices VI-A, VI-B and VI-C
respectively. The optimization of the HPNMF algorithm is
done sequentially, as described in Algorithm 1.
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Input: V ∈ Rm×n
+

Output: WH ∈ Rm×k
+ , WP ∈ Rm×e

+ and AP ∈ Re×n
+

Initialization;
while i ≤ number of iterations do

WP ←WP ⊗
[∇WPD(V |Ṽ )]−

[∇WPD(V |Ṽ )]+

AP ← AP ⊗
[∇APD(V |Ṽ )]−

[∇APD(V |Ṽ )]+

WH ←WH ⊗
[∇WHD(V |Ṽ )]−

[∇WHD(V |Ṽ )]+

i = i+ 1
end
VP =WPAP and VH =WHW

T
HV

Algorithm 1: HPNMF algorithm with multiplicative up-
date rules.

E. HPNMF with a Fixed Dictionary
A fully unsupervised HPNMF model does not allow for

a satisfying harmonic/percussive source separation [42]. To
alleviate this problem, we use here a fixed drum dictionary
Wp for the percussive part of the HPNMF. This dictionary
is created using the drum database ENST-Drums [44]. In
this database three professional drum players specialized in
a specific type of music have been recorded. Each drummer
used a specific drum set from a small one (two toms and two
cymbals) to a full rock drum kit (four toms and five cymbals).

Compared to the state of the art approaches that enforce
the spectral flatness of the percussive part [9], [10], the main
advantage of the HPNMF is that it can better take into
account percussive instruments that do not have a pure flat
spectrum. For example, the bass drum and the toms may
have clear harmonics in the low frequency range and these
characteristics can be captured by some learned basis functions
of the dictionaries.

The specific drum dictionary is built by directly applying
a NMF on a large portion of the ENST-Drums database,
following the strategy for dictionary learning proposed in [28].
Our motivation is that such a dictionary will capture drum-
specific spectral information which will be particularly useful
to guide the decomposition. For such approaches, the choice
of an optimal rank of factorization remains a delicate design
choice. Although automatic rank estimation methods exist, we
preferred in this work to rely on empirical rank determination
techniques (see section IV). Finally, it should be noted that the
templates of the dictionary do not represent a single element
of the drum kit so it is not possible to perform direct drum
transcription.

The HPNMF algorithm with the fixed dictionary matrix is
described in Algorithm 2.

F. Signal reconstruction
The percussive signal xp(t) is synthesized using the mag-

nitude percussive spectrogram VP = WPAP . To reconstruct
the phase of the percussive part, we use a generalized Wiener
filter [45] that will create a percussive mask as:

MP =
V 2
P

V 2
H + V 2

P
(10)

Input: V ∈ Rm×n
+ and WtrainRm×kP

+

Output: WH ∈ Rm×kH
+ and AP ∈ RkP×n

+

Initialization;
while i ≤ number of iterations do

AP ← AP ⊗
[∇APD(V |Ṽ )]−

[∇APD(V |Ṽ )]+

WH ←WH ⊗
[∇WHD(V |Ṽ )]−

[∇WHD(V |Ṽ )]+

i = i+ 1
end
VP =WtrainAP and VH =WHW

T
HV

Algorithm 2: HPNMF with the fixed drum dictionary
matrix.

We use the percussive mask to retrieve the associated drum
signal:

xp(t) = STFT−1(MP ⊗X) (11)

where X is the complex spectrogram of the mixture and
STFT−1 is the inverse Short Time Fourier Transform.

Similarly for the harmonic part, we obtain:

MH =
V 2
H

V 2
M + V 2

P
(12)

and:
xh(t) = STFT−1(MH ⊗X) (13)

IV. EXPERIMENTAL VALIDATION OF THE HPNMF

In this section we conduct a set of experiments to assess
the merits of the proposed method. We first perform a test
on a synthetic signal to validate the model of HPNMF in
section IV-A. We then set-up the HPNMF to perform efficient
source separation by quantifying the influence of the rank of
factorization in section IV-D, the effect of different divergences
in section IV-E and finally the performance of the separation
with different types of dictionaries in section IV-F.

A. Synthetic Tests

To illustrate how the HPNMF works (Algorithm 1), we
use a simple synthetic signal. The test signal models a mix
of harmonic and percussive components. The harmonic part
is simulated by a sum of sine waves that overlap in time
and frequency. The first signal simulates a C(3) with fun-
damental frequency f0 = 131 Hz, the other one a B(4) with
f0 = 492 Hz. To simulate the percussive part, we add 0.1 s
of Gaussian white noise for the first two seconds. For the last
two seconds, we add 0.3 s of Gaussian white noise filtered
by a high-pass filter. The signal is 5 s long and the sampling
rate is 4000 Hz. We compute the STFT with a 512 sample-
long (0.128 s) Hann analysis window and a 50% overlap. The
spectrogram of the signal is represented in Figure 1. As our
input signal has four sources, we expect that one source can
be represented by one component and therefore, that a model
of rank 4 (k = 4) should adequately model the signals. More
precisely, for the NMF and the PNMF we chose k = 4 and for
the HPNMF the rank of the harmonic part is kH = 2 and the
rank of the percussive part is kP = 2. The choice of the rank
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of factorization is an important variable of the problem. In this
case, we select it in order to illustrate the performance of the
method. We will further discuss the importance of the choice
of the rank of factorization in Section IV-D. We compare
the HPNMF with the PNMF and the NMF using the KL
distance with multiplicative update rules as stated in [46]. The
three algorithms are initialized with the same random positive
matrices Wini ∈ Rn×k and Aini ∈ Rk×m

+ .
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Fig. 1: Spectrogram of the synthetic test signal.

The results of the decomposition are presented in Figure 2.
The dictionary and activation matrices show the separation
performance of the three methods. The NMF does not separate
correctly the four components. By looking at the columns 2
and 3 of the dictionary matrix W in Figure 2, the filtered
Gaussian white noise and the C(3) are separated in the same
components which does not correspond to the expected result.
For the PNMF, the orthogonal components do not succeed
to represent the two noises correctly. They are extracted in
the same component and the total reconstruction error of the
PNMF is high. In this example, the HPNMF extracts the four
components with the highest accuracy and is more efficient
than the other methods. The two harmonic components are
extracted in the orthogonal part (i.e., the columns 1 and 2 of
the dictionary matrix) while the percussive components are
extracted by the NMF part (columns 3 and 4). The HPNMF
then outperforms the other two methods and shows the poten-
tial of the proposed algorithm for harmonic/percussive source
separation.

B. Protocol and Details of the Test Database of Real Signals

We run several tests on the public SiSEC database from [47]
to study the impact of the learned dictionaries in the HPNMF
(Algorithm 2). This database is composed of polyphonic real-
world music excerpts. Each music signal contains percussive
and harmonic instruments as well as vocals. It consists of
four recordings whose duration range from 14 to 24 s. Our
goal is to perform a harmonic/percussive decomposition. Thus,
following [10], we do not consider the vocal part and we
build mixture signals only from the percussive and harmonic
instruments. All the signals are sampled at 44.1kHz. We
compute the STFT with a 1024 and 2048 sample-long Hann
window with a 50% overlap. Four tests are run on these data:

1) The first test compares the HPNMF and the RegNMF in
Section IV-C.
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Fig. 2: Results of the decomposition of the NMF (top),
PNMF (middle) and HPNMF (bottom).

2) The second test aims at assessing the robustness of the
HPNMF with respect to the rank of the PNMF part in
Section IV-D.

3) The third test estimates which of the three divergences
(Euc, KL and IS respectively) gives the best har-
monic/percussive decomposition results in Section IV-E.

4) The last test shows the influence of the dictionary on the
separation performance in Section IV-F.

Note that the SiSEC database used for tuning the proposed
method is different from the one in the evaluation phase in
order to prevent any possible over-training. In order to evaluate
and compare the results we then compute Signal to Distortion
Ratio/Signal to Interference Ration/Signal to Artefact Ratio
(SDR/SIR/SAR) that are common metrics for blind source
separation with the BSS-Eval toolbox [48]. The SIR measures
the rejection of interference between the two sources, the
SAR measures the rejection of artefacts and finally the SDR
measures the global separation quality.

C. Comparison Between the HPNMF and the Regularized
NMF

Here the two methods are going to be tested using the same
drum dictionary, with the same rank of factorization (the rank
of factorization of the harmonic part is set to kH = 150) and
the optimization is made with the IS divergence.

The HPNMF does not require further tuning whereas the
two hyper-parameters of the regularized method (see Eq. (8))
need to be optimised on a development database. The develop-
ment database was created using five songs from the Medley-
dB [49]. The five songs were chosen in order to be acoustically
homogeneous to the songs from the SiSEC database (2 pop
songs, 2 rock songs, 1 rap song). This optimization process
gives a set of values for the hyper-parameters that maximize
the average SDR, SIR and SAR results. In our case we found
that kTSM = 0.5 and kSSP = 0.2 were the most appropriate
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set of hyper-parameters. However, it is not guaranteed that
these fixed values maximize the score on each specific song.
In Figure 3 each box-plot is made of a central line indicating
the median of the data, upper and lower box edges indicating
the 1st and 3rd quartiles while the whiskers indicate the
minimum and maximum values. Figure 3 shows the results
of the decomposition on the SiSEC database. The results of
the HPNMF for the SDR and SIR are above the regularized
NMF. The average SDR is about 0.8dB higher and the average
SIR is more than 2dB greater.

Fig. 3: Decomposition results for the percussive (left
bar)/harmonic (right bar) decomposition of the HPNMF and

the Regularized NMF on the SiSEC database.

An explanation is that the parameters of the harmonic
part on the RegNMF, although optimal on the development
database, are not tuned to the test database. The values of
the temporal regularity and spectral sparsity constraints are
too low, and therefore, some of the percussive instruments are
extracted in the harmonic part.

As an example, we display in Figure 4 the decomposition
results between the RegNMF and the HPNMF. The harmonic
estimation of the RegNMF is not accurate and some percussive
components are present. The value for the parameters obtained
on the development database are not optimal for this particular
song. Here, the results of the percussive part are very similar
between the two algorithms. As the dictionary used to decom-
pose the data is the same for the two approaches, such results
are to be expected. The RegNMF is overall less robust than
the HPNMF.

D. Robustness with Respect to the Rank of the Harmonic Part

In the HPNMF algorithm with a fixed drum dictionary, the
only parameter is the rank of factorization of the harmonic
part. In this experiment, we use the HPNMF algorithm with
the fixed dictionary obtained from the STFT of a drum signal
as described in Section III-E. The algorithms are implemented
using the multiplicative update rules given in the appendix A,
B and C and they are all initialized with the same random
nonnegative matrices.

The average SDR values of the harmonic and percussive
separation results are displayed in Figure 5 (results with
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Fig. 4: Comparison between the ground truth, the HPNMF
and the RegNMF on the SiSEC database.

SIR/SAR exhibit similar behaviours and are therefore not
displayed here). We can observe that when the rank of factor-
ization is small (6 ≤ kH ≤ 50), the Euclidean distance and the
KL divergence do not give satisfactory results and it is only at
kH >= 100 that they stabilize for both algorithms. With the IS
divergence, the results seem to be more or less independent
to the rank of factorization. This may be explained by the
size and relative simplicity of the audio pieces of the SiSEC
database. Indeed, the audio excerpts are short (≤ 30 seconds)
and have a low rank harmonic content that is well represented
with a few orthogonal basis functions.
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Fig. 5: Optimization of the rank of factorization with the
three divergences (6 ≤ kH ≤ 500).

Optimizing the HPNMF is a simple process because the
method is robust to the rank of the harmonic part. For the rest
of the article, the rank of factorization will be set to kH =
150 for all methods.
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E. Influence of the Divergence

In this section we discuss the influence of the divergence
in the results of the HPNMF algorithm. It has been estab-
lished that the IS divergence is well suited for audio signal
decomposition [50] as it is scale invariant. This means that the
TF points with low energy of the spectrogram have the same
relative importance as the high energy ones. This invariance
is interesting for audio signals which have a wide dynamic
range. Indeed music signals are composed of very localized
components with low energy (transients) and quasi-sinusoidal
parts of higher energy (tonal), which contribute both to the
timbre and the perceived quality of the signal. However, it
should be noted that it does not always lead to superior
separation performance [10].

We here perform a comparison of the three divergences on
the SiSEC database ( We also compare two different window
lengths (1024 samples and 2048 samples) for the Fourier
transform (see Figures 6 and 7).
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Fig. 6: Average SDR, SIR and SAR of the estimated sources
on the SiSEC database with a window size of 1024 samples.
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Fig. 7: Average SDR, SIR and SAR of the estimated sources
on the SiSEC database with a window size of 2048 samples.

The best results are obtained with the IS divergence and
the window length of 2048 samples (see Figure 7) with +2dB
in terms of SDR compared to the KL divergence and +1dB
compared to the Euclidean distance. Similarly in terms of

SIR the results are around 1dB higher for the IS divergence
compared to the other divergences.

Figure 6 shows that with a window of 1024 samples, the
average separation scores are around 2dB below in terms of
SDR and 1dB below in terms of SIR for the IS and KL
divergence compared to the results of Figure 7. A smaller
window size leads to a lower frequency resolution which
lowers the separation scores as the percussive and harmonic
components are not as well separated in the TF domain.

Thus, we will use the HPNMF algorithm with the IS
divergence and a window size of 2048 samples for the STFT.

F. Influence of the Dictionary

We discuss below the different methods used to construct
the drum dictionary. As the dictionary is fixed, the estimation
of the optimal learning parameters is crucial. In particular, it
is important to find a good trade of for the size of the learning
dataset to capture sufficient information to decompose any
signal at a reasonable cost. Two types of audio recordings are
available: the first type contains drum hits of the independent
elements of the drum kit and the other type of audio files are
drum phrases. For each drummer, we created three signals of
different lengths (6 min, 12 min, 30 min) which gave us a total
of 9 audio signals. Finally, we compute the STFT of these 9
signals and we execute a NMF on each of the spectrograms to
obtain various dictionaries. The rank of the decomposition is
chosen as 6 ≤ kP ≤ 500. In total, 108 dictionaries are created.

Several tests are then carried out in order to evaluate the
influence of:
• the dataset (drummer number 1, 2 or 3),
• the length of the audio signal,
• the factorization rank.
We show on the Figure 8 the SDR, SIR and SAR results

averaged between the harmonic and percussive parts on all the
factorization ranks for each drummer. We note that the results
of the drummer 2 are the highest which may be explained by
the fact that the drums sounds are here quite similar to the
drums sounds found in the SiSEC recordings. The drummer 1
plays on a very small drum set the resulting dictionary does not
contain enough information to well represent the instruments
of the test signals. Conversely, the drummer 3 uses a large
drum set with many elements that are not necessarily present in
most recordings of the SiSEC database. The dictionary created
is not sufficiently representative of the drum of the SiSEC
songs.

In the remainder of this paper, all experiments are performed
using the dictionaries built on the audio files of the drummer
2 dataset.

Figure 9 shows the influence of the length of the audio
signals on the separation results. Above 6 min of training
data, the quality of the decomposition decreases. In this case,
it seems that when the training signals are too long, the dictio-
nary created by the NMF become very specific to the training
signal. In fact, the amount of information to decompose is
too large and in order to minimize the reconstruction error
(i.e., the value of the cost function), the NMF will favour the
basis functions capturing the maximum energy possible. These
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Fig. 9: Mean SDR SIR and SAR results for the dictionaries
learned with different signal lengths on the SiSEC database

(dictionary trained on drummer 2 data).

basis functions of the resulting dictionary do not contain drum-
specific information, but rather atoms specific to the training
signal.

Finally, Figure 10 shows the results as a function of the rank
of factorization. For kP > 100, the results in terms of SDR
are close to 0dB. In this case the dictionary does not match
the drums of the test songs and the harmonic and percussive
sounds of the original signal are decomposed in the harmonic
part of the HPNMF. This causes a high SAR because, although
the decomposition is not satisfactory, the separated signals do
not contain artifacts. In our tests, the optimal value of the rank
of factorization is kP = 12. This value is specific of course
to the records of the ENST-Drums [44] database and to our
evaluation database (in this case, the SiSEC database).

For the rest of the article, we will use a dictionary con-
structed using a 6 min long audio signal from the drummer 2
with kP = 12.

V. STATE OF THE ART BENCHMARK

In this section, we compare the proposed method with the
four state of the art methods presented in Section II-B on
a large evaluation database. We first illustrate the database
used for evaluation in Section V-A and then we describe
the implementation of the state of the art methods used for
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Fig. 10: Mean SDR SIR and SAR results for various rank
of factorization on the SiSEC database (dictionary trained on

drummer 2 data - 6 min long signals).

comparison in Section V-B. Section V-C details the results of
the benchmark on the database while Section V-D presents the
results on a sub-database. Finally, Section V-E outlines partial
conclusions from the results.

A. Database

We use the Medley-dB [49] database that is composed of
polyphonic real-world music excerpts. It contains 122 music
signals, among which 89 of them contain percussive instru-
ments. Because our goal is to perform a harmonic/percussive
decomposition, the vocal part is omitted, following the same
protocol as in [10]. All the signals are sampled at 44.1kHz.

In our tests, the training database of the HPNMF and the
NMPCF are only composed of drums sounds. The database
Medley-dB [49] contains a wide variety of percussive in-
struments that are not in the training database ENST-Drums
[44]. We will thus asses the robustness of the supervised
methods when decomposing a signal that contains a percussive
instrument that is not in the training database.

B. Implementation of the State of the Art Methods

The HPNMF with the fixed dictionary is bench-
marked against the methods described in Section II-B: the
CoNMF [10], the MF [9] the NMPCF [40] and the KAM
[39]. We have re-implemented the CoNMF and the NMPCF
and we have used the optimal parameters recommended by
the authors in their respective articles. The MF and KAM
implementations are taken from [51] and [39] respectively,
and we used the standard parameters for a HPSS task.

C. Results

Table I shows the SDR, SIR and SAR results of the five
methods on the selected 89 songs of the original Medley-dB
database [49].

On average, the HPNMF and KAM obtain the highest
separation scores compared to the other methods for the
percussive, harmonic and mean SDR (≈ +1.5dB). The mean
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HPNMF Harmonic Percussive Mean
SDR 4.5 -2.5 1.0
SIR 10.8 1.2 6.0
SAR 9.3 8.0 8.6
MF Harmonic Percussive Mean

SDR 3.5 -6.2 -1.3
SIR 7.5 0.5 4.0
SAR 8.9 -1.2 3.8

CoNMF Harmonic Percussive Mean
SDR 3.7 -4.8 -0.5
SIR 10.3 -3.3 3.5
SAR 6.3 8.1 7.2

NMPCF Harmonic Percussive Mean
SDR 3.5 -4.7 -0.6
SIR 8.9 -3.1 2.9
SAR 7.5 7.0 7.3
KAM Harmonic Percussive Mean
SDR 5.0 -3.0 1.0
SIR 8.2 6.6 7.4
SAR -0.1 13.6 6.7

TABLE I: SDR, SIR, SAR for percussive/left,
harmonic/middle, mean/right separation results on the

database for the five methods.

SAR is +1.6dB higher for the HPNMF while the KAM
achieves +1.4db mean SIR. The audio examples confirm the
results as the separated sources from the KAM technique have
a significant amount of artefacts. It should be noted that some
songs of the database contain percussive instruments that are
not present in the learning database ENST-Drums, such as
the tambourine, the bongo, the gong and electronic drums.
Because the dictionary is fixed, these percussive instruments
are not correctly decomposed by the HPNMF. Some songs are
well separated while others obtain much lower results since
the percussive part is not well decomposed. These particular
songs negatively impact the overall scores of our method.

The NMPCF, also based on trained data, is more robust than
the HPNMF because the dictionary that extracts the drums is
not fixed. It allows more flexibility and the results are more
consistent even if some percussive instruments are not in the
learning database. However, the mean score is lower than the
proposed method. Moreover, the harmonic part in HPNMF
is fully unconstrained and can capture percussive components
which are not well described by the WP dictionary.

The results of the MF are lower than the other methods.
A wide variety of harmonic instruments in the database have
really strong transients and rich harmonic spectra (distorted
electric guitar, glockenspiel etc.). Similarly, some percussive
instruments have sparse basis functions localized in the low
frequency range (bass drum, bongo, toms etc.), which can
explain why the MF fails to extract these instruments in the
appropriate harmonic/percussive parts. On average, it is able to
correctly separate the percussive part (with relatively high SDR
and the highest SIR), but it shows a very low SAR compared
to the other methods. Similar outcomes have been observed
in [10].

The CoNMF algorithm results are lower than those of the
HPNMF. Some transients of the harmonic instruments are
decomposed in the percussive part, and some percussive in-
struments (mainly in the low frequency range) are decomposed
in the harmonic part. The parameters used for the CoNMF are

not the optimal for the Medley-dB database. The value of the
four parameters estimated in [10] are not tuned for a wide
variety of audio signals.

Figure 11 shows the decomposition results on a specific
song of the Medley-dB database. The parameters of the
CoNMF are not tuned for this song and the algorithm does not
extract the percussive and harmonic parts correctly. The NM-
PCF and the MF still contain a significant amount of harmonic
components in the percussive part. These two methods do not
produce a clean separation. Finally, the HPNMF provide the
best decomposition on this specific signal.
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Fig. 11: Percussive (right)/Harmonic (left) ground truth and
estimation results for the five methods (all the spectrogram

have the same amplitude range).

D. Results on a Genre Specific Database

The individual results on most of the songs of the database
are similar to the average results. However, some interesting
results were found on specific genres of music. Here we
present the results on the 14 songs of the ”Electronic/Fusion”
sub-database. These songs for the most part have a lot of
silence and some solos played by only one instrument. Also,
the electronic drum often repeats the same pattern during the
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whole song resulting in a very redundant drum part. The SDR,
SIR and SAR results on the sub-database are displayed in
Table II.

The MF method gives competitive outcomes, with a low
variance for the percussive estimation and a good overall
mean. The MF obtains consistent results as well throughout the
database and the decomposition on the genre specific database
are significantly better than the ones on the whole database.
It reflects the fact that the HPSS task from that musical genre
is easier.

The results of the NMPCF are the lowest of the five meth-
ods. The unconstrained harmonic part of the NMPCF extract
most of the energy of the original signal and the information
is unequally distributed in the harmonic and percussive layers.

The CoNMF does not obtain satisfying results on the sub-
database either. The parameters are estimated on a training
database of another genre. Because of that, the value of
the parameters are not set correctly and similarly to the
NMPCF, the information is not distributed in the appropriate
harmonic/percussive parts.

Finally, the KAM algorithm also under-performs on this
genre specific database compared to HPNMF. More specifi-
cally, the KAM method is particularly outperformed on silence
segments and on solo-instrumental parts.

On the sub-database, the HPNMF clearly outperforms the
other methods. Similarly to Section V-C, the percussive de-
composition of the HPNMF has high variance because some of
the instruments are not in the learning database. However, the
mean of the percussive decomposition is significantly higher
than the CoNMF and the NMPCF. Furthermore, the harmonic
decomposition and the mean results of the HPNMF are clearly
better than the ones of the other methods. The HPNMF is
an effective algorithm to extract the redundant drum parts.
Likewise, as the drum dictionary is fixed, it is unlikely the
percussive part would be able to extract harmonic components.
As the columns of WH are orthogonal, it is also unlikely for
the harmonic part to extract percussive components. Contrary
to the other algorithms, when the harmonic or percussive
instruments are playing alone, the HPNMF does not extract
any information in the percussive nor the harmonic parts.

E. Discussion

Each of the tested methods has its own advantages and
drawbacks. The MF is the easiest and the fastest method to im-
plement and it is relatively straightforward to tune. The results
of the MF can be competitive when the harmonic instruments
have smooth transients (i.e., sustained instruments such as
the flute, the violin) and when the percussive instruments
have flat spectra (i.e., cymbal, snare drum). However, when
the harmonic instruments have strong transients (glockenspiel,
piano) and the percussive instruments have sparse spectra (bass
drum, bongo) the MF does not give good results.

The CoNMF is based on the same hypothesis than the MF
and has the same issue. Fine tuning of the hyper-parameters
can alleviate the problem mentioned above but it is a tedious
process and is not possible in the case of blind source
separation. Our tests on a large database show that the CoNMF

HPNMF Harmonic Percussive Mean
SDR 3.9 1.6 2.8
SIR 6.8 4.8 5.8
SAR 8.2 7.4 7.8
MF Harmonic Percussive Mean
SDR 1.2 -3.8 -1.3
SIR 2.7 3.7 3.2
SAR 8.5 -1.3 3.6

CoNMF Harmonic Percussive Mean
SDR 1.7 -1.6 0.1
SIR 4.7 -0.2 2.4
SAR 6.5 8.0 7.2

NMPCF Harmonic Percussive Mean
SDR 1.1 -1.4 -0.1
SIR 4.0 -0.1 1.9
SAR 5.9 8.0 7.0
KAM Harmonic Percussive Mean
SDR 1.5 -2.2 -0.3
SIR 3.6 6.5 5.0
SAR 9.8 1.5 5.7

TABLE II: SDR, SIR and SAR scores on the
”Electronic/Fusion” sub-database for the five methods.

is not robust enough for a wide variability of the analysed
signals.

Contrary to the results obtained in [10], our evaluation
on a larger dataset shows that the NMPCF algorithm gives
competitive results compared to the MF and the constrained
NMF. However, as it uses training to guide the decomposition
process, it requires a wide variety of information to perform
on a large scale test. If the training database cannot contain
sufficient information, the results cannot be satisfying.

The KAM algorithm gives competitive results compared
to the proposed method. However it is prone to excessive
artefacts in the decomposition results which are more uncom-
fortable to listen to2. Also the KAM is more computationally
intensive than other methods an it require twice the time to
process that same signal.

On a large scale test, the proposed method outperforms
the other methods. It is able to extract the harmonic and the
percussive instruments with higher scores for the SDR and
SAR. Using prior dictionary learning with a physical model on
the harmonic instruments thus helps to separate sources with
much better accuracy even if similarly to [10] our method may
suffer in the case of significant mismatch between the train
and test subsets (e.g. in particular when some instruments are
absent from the training subset).

VI. CONCLUSION

In this article, we have proposed a novel hybrid method built
upon Nonnegative Matrix Factorisation NMF that decomposes
the time frequency representation of an audio signal into a
tonal part, estimated by a sparse and orthogonal nonnegative
decomposition, and a transient part, estimated by a straight-
forward NMF decomposition constrained by a pre-learned
dictionary of smooth spectra.

An extensive evaluation on a large diverse database has
demonstrated that the HPNMF is a very promising model
for harmonic/percussive decomposition. Indeed, the HPNMF

2Audio examples are available at https://goo.gl/MzS8bP
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outperforms four other state of the art methods on the medley-
dB database [49]. A main advantage of the proposed method
is that it is robust since it has very few hyperparameters to
tune, and the optimization problem can be solved thanks to
simple multiplicative update rules.

Another contribution of this work is that carrying out an
evaluation on a large database allowed us to compare more
accurately the performance of the four state-of-the-art methods
on a large variety of music signals, and to get new insight
about their potential for HPSS.

In future work, we plan to improve the dictionary learning
process. We can say that the information from the drum
dictionary built from the database ENST-Drums [44] is not
sufficient to perform a harmonic/percussive source separation
on a large scale. Depending on the style of music, some drums
share similarities. A possible improvement would be to build
genre specific drum dictionaries. In this way, the computation
time would be reasonable as the amount of information could
be reduced, and the templates of the dictionary could be a lot
more focused on specific types of drums.

APPENDIX

A. Euclidean Distance

The euclidean distance gives us the problem:

min
W1,W2,A2≥0

‖V −W1W
T
1 V +W2A2‖2

The gradient with respect to W1 gives the update:
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Similarly, the gradient with respect to W2 gives:
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Finally, the gradient with respect to A2 gives:
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B. Kullback Leiber Divergence

The Kullback Leiber divergence gives us the problem:

min
W1,W2,A2≥0

V (log(V )− log(Ṽ )) + (V − Ṽ )

The gradient with respect to W1 gives:

[∇W1
D(V |Ṽ )]−i,j = (ZV TW1)i,j + (V ZTW1)i,j
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D(V |Ṽ )]+i,j =

∑
k

(WTV )j,k + (
∑
k

Vi,k)(
∑
a

Wa,j)
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[∇A2D(V |Ṽ )]+ = 2WT
2 W1W

T
1 V +WT

2 W2A2

C. Itakura Saito Divergence

The Itakura Saito divergence gives us the problem:

min
W1,W2,A2≥0

V

Ṽ
− log(

V

Ṽ
)− 1.

The gradient with respect to W1 gives:

[∇W1D(V |Ṽ )]−i,j = (ZV TW1)i,j + (V ZTW1)i,j

with Zi,j = ( V
W1WT

1 V+W2A2
)i,j . The positive part of the

gradient is:

[∇W1D(V |Ṽ )]+i,j = (φV TW1)i,j + (V φTW1)i,j

with

φi,j = (
I

W1WT
1 V +W2A2

)i,j

and I ∈ Rf×t;∀i, j Ii,j = 1.
Similarly, the gradient with respect to W2 gives:

[∇W2D(V |Ṽ )]− = V AT
2

and:

[∇W2
D(V |Ṽ )]+ =W1W

T
1 V A

T
2 +W2A2A

T
2

Finally, the gradient with respect to A2 gives:

[∇A2D(V |Ṽ )]− =WT
2 V

and:

[∇A2
D(V |Ṽ )]+ = 2WT

2 W1W
T
1 V +WT

2 W2A2
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