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Abstract. Irrespective of the dark matter (DM) candidate, several potentially observable
signatures derive from the velocity distribution of DM in halos, in particular in the Milky
Way (MW) halo. Examples include direct searches for weakly-interacting massive parti-
cles (WIMPs), p-wave suppressed or Sommerfeld-enhanced annihilation signals, microlensing
events of primordial black holes (PBHs), etc. Most current predictions are based on the
Maxwellian approximation which is not only theoretically inconsistent in bounded systems,
but also not supported by cosmological simulations. A more consistent method sometimes
used in calculations for direct WIMP searches relies on the so-called Eddington inversion
method, which relates the DM phase-space distribution function (DF) to its mass density
profile and the total gravitational potential of the system. Originally built upon the isotropy
assumption, this method can be extended to anisotropic systems. We investigate these in-
version methods in the context of Galactic DM searches, motivated by the fact that the MW
is a strongly constrained system, and should be even more so with the ongoing Gaia survey.
We still draw conclusions that apply to the general case. In particular, we illustrate how
neglecting the radial boundary of the DM halo leads to theoretical inconsistencies. We also
show that several realistic configurations of the DM halo and the MW baryonic content en-
tail ill-defined DFs, significantly restricting the configuration space over which these inversion
methods can apply. We propose consistent solutions to these issues. Finally, we compute
several observables inferred from constrained Galactic mass models relevant to DM searches
(WIMPs or PBHs), e.g. moments and inverse moments of the DM speed and relative speed
distributions.
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1 Introduction

The tremendous progress made on both direct and indirect particle dark matter (DM)
searches over the past few decades has yielded an incredible wealth of data, calling for
predictions as reliable as possible in order to draw robust conclusions on models (see re-
views on DM models and search strategies in e.g. Refs. [1–10]). Galactic DM searches are
among the most promising because the Milky Way (MW) is a local and constrained system.
However, most associated theoretical predictions are still based on simplifying assumptions
for the DM distributions in real space and/or phase space, despite regular improvements in
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modeling techniques and observational constraints. Therefore, it is usually difficult to fig-
ure out the level of uncertainties associated with these assumptions. The fact that different
studies use different assumptions makes it even more difficult to self-consistently exploit the
genuine complementarity between the constraints or discovery avenues, which now becomes
crucial as experiments have started to probe significant parts of the parameter space allowed
for popular particle DM scenarios. It is worth emphasizing that designing constrained and
theoretically sound models for the DM distribution in real space and phase space in target
systems is crucial for any astrophysical DM search, irrespective of the DM scenario.

The Gaia mission [11, 12] is currently shedding new and unprecedented light on the
distribution of DM in the Milky Way (MW), complementary to other stellar surveys (see e.g.
Refs. [13, 14]). The Gaia data will increase the accuracy in predictions of DM-related observ-
ables, provided reliable methods ensure their use in a sensible way. The overall challenge is
to better control not only the spatial distribution of DM, but also its full phase-space distri-
bution function (DF henceforth), which are the major sources of uncertainties in predictions
for DM searches. This will likely not be an easy task [15], and there is room for significant
theoretical improvement over the techniques currently used in DM searches. The phase-space
DF enters the calculations of many important DM-related observables that depend directly
on the DM velocity distribution—for example the direct DM detection rate, averaged p-wave-
suppressed or Sommerfeld-enhanced annihilation cross sections, the microlensing event rate
of compact DM objects, etc. Moreover, since the spatial distribution of DM is the integral of
the phase-space DF over momentum space, it is clear that a common framework is necessary
to make self-consistent comparisons between direct and indirect Galactic DM searches in the
broad sense, as both should exhibit some correlations (largely ignored so far, except in a few
studies, e.g. Ref. [16]).

In this paper, we wish to investigate the status of some theoretical approaches that
attempt to self-consistently predict the DM phase-space DF from the full content of the
target system by virtue of the (steady-state) Boltzmann equation, the Jeans theorem, and
the Poisson equation, i.e. from first principles—we will place ourselves in the context of
collisionless cold DM from now on. These methods go beyond the simplistic approximation
of a Maxwell-Boltzmann distribution, well suited to get fast order-of-magnitude estimates,
but known for long not to apply to bounded systems [17], and not to comply with dynamical
constraints on the MW. These methods are complementary to data-driven approaches (e.g.
Ref. [18]). Other approaches rely on fits from hydrodynamic cosmological simulations, but
except for the essential physical insight provided by generic features found in simulations
(e.g. Refs. [19, 20]), the blind extrapolation of these fits to describe a single, specific, and
constrained object like the MW is questionable; not to mention the uncertainties induced by
the empirical assumptions in the description of baryonic effects and by the limited resolution.
Cosmological simulations are still very important tools to test prediction methods as they
provide a framework in which all the gravitational constituents are dynamically correlated
[21].

A well-known example and a priori self-consistent phase-space DF prediction from
the gravitational system content is the so-called Eddington inversion method [22] (and its
anisotropic extensions, like the Osipkov-Merritt models [23, 24]), which we discuss exten-
sively in this paper. This approach has already been used in the context of direct particle
DM searches (see e.g. Refs. [25–32]), as well as indirect searches (see e.g. Refs. [33–36]). A
net benefit from this method is that it can make use of evolved and constrained Galactic
mass models (e.g. Refs. [14, 37–39]), providing a much more sensible theoretical description
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of the phase space. However, its validity range has not been studied in detail in the context
of DM searches, especially in a complex system like the MW, whose gravitational potential is
dominated by the baryons in the central regions. In this work, we will show that it actually
cannot apply to all DM-baryon pair configurations, leading to ill-defined phase-space DFs
even for rather conventional Galactic mass models. This is the manifestation of gravitation-
ally unstable DFs, and of the fact that some degrees of freedom are missing to fully describe
the system. We carefully delineate the DM-baryon parameter space where the Eddington-
like calculations may apply. We also discuss several other theoretical issues that have been
overlooked in the literature, such as the impact of the radial boundary of the system, which
should not be neglected to guarantee the existence of a closed system of equations, but may
in turn induce divergences in the velocity distribution. We propose ways to circumvent these
issues, and provide results for some observables specific to DM searches in the framework of
the Galactic mass model of Ref. [39] (see App. A), namely radial profiles of the moments of
the DM speed (direct DM searches, microlensing event rate for compact DM objects, etc.)
and of the (two-body) relative DM speed (p-wave-suppressed and Sommerfeld-enhanced an-
nihilation) distributions. We stress that although we focus on the MW in this paper, the
general aspects of this study are still relevant to the use of the Eddington formalism to de-
scribe the DM phase-space DF of any other bounded system (with or without baryons). We
also emphasize that this study focuses on the theoretical self-consistency of the formalism
itself, which is a first important step with, as we will see, quantitative consequences. It is
very likely that several assumptions inherent to this theoretical description, like steady state,
spherical symmetry, or the fact that potential effects coming from large substructures or
recent mergers are neglected (e.g. the Large or Small Magellanic Cloud), will break down
at some level, inducing another layer of systematic uncertainties. However, more detailed
comparisons between the theoretical errors addressed here and other systematic uncertainties
are left to a forthcoming dedicated paper[21].1

The paper is organized as follows. In Sec. 2, we review the Eddington-inversion for-
malism and some of its anisotropic extensions. In Sec. 3, we explain in detail the issues
mentioned above and their physical consequences—the divergences induced by the radial
boundary and the inability of the formalism to describe some DM-baryon configurations
allowed by kinematic constraints. In that section, we discuss some possible ways out that
allow one to recover a self-consistent description of the phase space. In Sec. 4, we illustrate
our results by calculating a series of observables relevant to particle DM direct and indirect
searches. These results can be straightforwardly used for predictions in these fields. Finally,
we conclude in Sec. 5.

2 Eddington’s inversion method and its anisotropic extensions

In this section, we review the basic concepts that will be useful throughout the discussion.
Though mostly reviewing standard knowledge [40], we will also point out several technical
details that are often overlooked or unclear in the literature.

2.1 Jeans’ theorem and spherical systems

The Jeans theorem states that any steady-state solution of the collisionless Boltzmann equa-
tion can be written as a function of isolating integrals of motion [40, 41]. In the particular

1Preliminary results based on tests on hydrodynamic cosmological simulations show that, surprisingly
enough, the formalism performs rather well on “Milky Way-like” virtual galaxies.
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case of a system with spherical symmetry, the energy and the modulus of the angular mo-
mentum are such integrals of motion. Consequently, the phase-space DF of such a system
can be written f(~r,~v) ≡ f(E , L), where L = |~r×~v| is the modulus of the angular momentum
per unit mass, and

E = Ψ(r)− v2

2
(2.1)

is the relative energy per unit mass—we assume all the DM particles in the system to be
identical. In Eq. (2.1), v is the velocity, and

Ψ(r) = Φ0 − Φ(r) (2.2)

is the (positive-definite) relative gravitational potential, where Φ(r) is the solution to Pois-
son’s equation going to 0 at infinity. The constant Φ0 is the value of Φ(r) at some reference
radius—usually taken to be the physical boundary of the system—called Rmax in the fol-
lowing. This ensures that the potential is positive-definite over the system except at the
boundary where it vanishes. It will sometimes prove convenient to distinguish the bary-
onic (ΨB) and DM (ΨD) contributions to the potential that we introduce here through the
following equation,

Ψ(r) = ΨD(r) + ΨB(r) . (2.3)

For the full system or for each component, and provided the mass profile or the density profile
are known, the relative potential Ψ can be related to the mass distribution of the system (or
its individual components) through Poisson’s equation, and reads

Ψ(r) =

∫ Rmax

r
dr′

Gm(r′)

r′2
, (2.4)

where the mass inside the sphere of radius r is related to the mass density ρ through

m(r) = 4π

∫ r

0
dr′ ρ(r′)r′2 . (2.5)

Like for the potential, the mass can be split into several components, e.g. a baryonic compo-
nent (mB) and a DM one (mD). We stress that the DM potential ΨD can be calculated from
Eq. (2.4) only when the DM content is specified from its density profile ρ; we will see later
that in some cases, we can only self-consistently get the potential from the DF, where the
radial coordinate r only emerges by solving the Poisson equation given below in Eq. (2.9).
In contrast, the baryonic potential will invariably be defined from Eq. (2.4) from now on.

We limit our study to systems with spherical symmetry, therefore when dealing with a
non-spherical density component ρ(~x) (e.g. baryons which often have an approximate axial
symmetry in galaxies) we compute the corresponding mass inside a radius r via

m(r) =

∫
|~x|≤r

d3~x ρ(~x) , (2.6)

and its “spherically symmetrized potential” using Eq. (2.4). This approximation can be
relaxed in principle, though the consistent treatment of an axisymmetric distribution is much
more involved (see Sec. 2.4). In the following, all non-spherical components such as the bulge
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and disks in the model of Ref. [39] (see App. A), will be “spherically symmetrized” relying
on Eq. (2.6).

The DF is therefore related to the mass density via

ρ(r) =

∫
d3~v f(r,~v) =

∫
d3~v f(E , L) . (2.7)

Note that in Eq. (2.7), the DF is normalized to the total mass of the component of interest.
We keep this convention in the following. We can further define the velocity distribution f~v
and the speed distribution fv as follows:

f~v(~v, r) ≡
f(E , L)

ρ(r)
(2.8a)

fv(|~v|, r) ≡ v2

∫
dΩv f~v(~v, r) , (2.8b)

where dΩv encodes the angular content of the velocity distribution. From the above definition,
both f~v and fv carry the usual units and are normalized to unity. We stress that the DF
introduced in Eq. (2.7) is implicitly assumed to further satisfy Poisson’s equation

∆Ψi = −4πGρi(r) = −4πG

∫
d3~v fi(E , L) = −4πG

∫ Ψ

0
dE ′

√
2(Ψ− E ′) fi(E ′, L) , (2.9)

which will turn out to be important later on. When ρi(r) is specified, the above equation
reduces to Eq. (2.4) if the boundary condition Ψi(Rmax) = 0 is considered (here, this will
always be the case for the baryonic component). Otherwise, Eq. (2.9) will have to be solved
explicitly to compute the potential. The i index makes it clear that although the energy E
depends on the full potential Ψ =

∑
i Ψi and thereby on all the gravitational components

of the system, the Poisson equation only relates the individual components to their own
phase-space DF.

There is no general classification of the solutions of the collisionless Boltzmann equation.
Therefore, further assumptions on the properties of the phase space are needed. In the
following, we recall the main equations of the Eddington inversion formalism—which allows
one to derive a phase-space DF for a given galactic mass model and for particular assumptions
on the anisotropy of the system—before discussing in detail theoretical issues that may arise
from the method.

2.2 Eddington’s inversion for an isotropic system

We first set about describing the simplest case of a spherically symmetric and isotropic DM
distribution. In that case, the angular momentum is irrelevant, and the dependence of the
DF on integrals of motion simplifies to an energy dependence, f ≡ f(E). Such a DF is
referred to as ergodic. Using Eq. (2.1) as a change of variables to eliminate the velocity, we
can rewrite Eq. (2.7) as

ρ(r) = 4π
√

2

∫ Ψ(r)

0
f(E)

√
Ψ(r)− E dE . (2.10)

Note that we only consider self-gravitating systems, which means all particles in the system
are gravitationally bound to it and have E ≥ 0. As a result, f(E < 0) = 0. This translates
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into a lower bound of E = 0 in the integral in Eq. (2.10). For general systems that are not
self-gravitating, the lower bound would be E = −∞.

Since Ψ is a monotonically decreasing function of r in a realistic stationary system, one
can define ρ as a function of Ψ instead of r. Differentiating Eq. (2.10) with respect to Ψ, one
obtains

dρ

dΨ
=
√

8π

∫ Ψ

0

f(E)√
Ψ− E dE . (2.11)

This is an Abel equation, which can be inverted to give Eddington’s formula [22, 40]:

f(E) =
1√
8π2

d

dE

∫ E
0

dΨ√
E −Ψ

dρ

dΨ
. (2.12)

A more convenient form of Eddington’s formula that does not explicitly feature a derivative
with respect to E can be obtained after integrating by parts:

f(E) =
1√
8π2

{
1√
E

[
dρ

dΨ

]
Ψ=0

+

∫ E
0

dΨ√
E −Ψ

d2ρ

dΨ2

}
(2.13)[

=
2√
8π2

{
1

2
√
E

[
dρ

dΨ

]
Ψ=0

+
√
E
[

d2ρ

dΨ2

]
Ψ=0

+

∫ E
0

dΨ
√
E −Ψ

d3ρ

dΨ3

}]
.

This is the form we will use and discuss extensively in the following (the last line in brack-
ets corresponds to an additional integration by parts, which will prove insightful later on).
Integrating Eq. (2.11), one can reconstruct the density profile from the DF:

ρ(Ψ) = ρ(Ψ = 0) + 4π
√

2

∫ Ψ

0
dE
√

Ψ− E f(E) , (2.14)

where ρ(Ψ = 0) = ρ(r = Rmax) is the density at the boundary of the system, very often
neglected in the literature whereas it is an important ingredient to test the self-consistency
of the chain of calculations (one must obviously recover the initial input density profile from
integrating the DF). Indeed, the Abel inversion is performed on dρ/dΨ rather than ρ. We also
emphasize the importance of the term ∝ 1/

√
E in Eq. (2.13) to get a consistent reconstruction

of ρ up to the radial boundary Rmax of the system, except in the special limit Rmax →∞. As a
potentially important technical consequence, the self-consistent normalization of the velocity
or speed distributions f~v/v defined in Eq. (2.8) is no longer guaranteed—neglecting the term

∝ 1/
√
E therefore imposes to normalize the distributions f~v/v by hand. An illustration is

presented in Fig. 1, where the dashed curves show the reconstructed profiles when neglecting
ρ(Ψ = 0), the dotted curves further neglect the term of the DF ∝ 1/

√
E , all compared with

the fully reconstructed profiles (solid lines).
As a side remark, note that ρ and Ψ need not be related for the Eddington inversion

to work. For instance, if the system contains DM and baryons, ρ refers to the DM density,
whereas Ψ = ΨD + ΨB is the total potential. In that case, Ψ cannot be determined from the
sole knowledge of the DM density. That ρ and Ψ can be independent will have consequences
in terms of physical self-consistency of the derived DF, as will be discussed in Sec. 3.2.

2.3 Anisotropic extensions

When the system features some degree of anisotropy, the density profile and the total gravita-
tional potential are no longer sufficient to determine the DF because the angular momentum
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Figure 1: Initial density profiles with different inner slopes γ = 0.25, 0.5, 1 (see App. A) taken from
Ref. [39] and their reconstruction from Eq. (2.14). The black circles show the original profiles, the
solid lines the full reconstructions based on Eq. (2.14), the dashed lines neglect the constant term of
Eq. (2.14), and the dotted lines neglect both the latter and the 1/

√
E term in the calculation of the

DF f(E) [see Eq. (2.13) and Sec. 3.1].

~L enters the game, and an ansatz for f(E , ~L) is required to account for the dependence of
the DF on these new degrees of freedom—for the spherically symmetric systems considered
here, the phase space is only extended by the modulus |~L| = L. An anisotropic system is
usually characterized in terms of an anisotropy parameter [42]:

β(r) = 1−
σ2
θ + σ2

φ

2σ2
r

, (2.15)

where σr, σθ and σφ are the velocity dispersions in spherical coordinates. If orbits in the
system of interest are mostly tangential, we have σ2

r � σ2
θ + σ2

φ and β < 0, |β| � 1. If

orbits are mostly radial, we get σ2
r � σ2

θ + σ2
φ and β = 1. In the following, we describe two

simple ansätze that provide semi-analytical solutions from the Abel inversion procedure in
the anisotropic case, and briefly discuss more sophisticated approaches.

2.3.1 Constant anisotropy

A simple extension of the Eddington method deals with systems having a constant anisotropy
parameter β(r) = β0. The simplest ansatz for the DF that separates the effects of energy
and angular momentum takes the following form [40, 43, 44]:

fβ0(E , L) = G(E)L−2β0 . (2.16)
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The function G is related to the density profile through

χ ≡ r2β0ρ = λ(β0)

∫ Ψ

0
G(E) (Ψ− E)

1
2
−β0 dE , (2.17)

where

λ(β0) = 2
3
2
−β0π

3
2

Γ(1− β0)

Γ(3/2− β0)
, (2.18)

where Γ is the Gamma function (Euler integral of the second kind). This leads to the Abel
equation

dnχ

dΨn
= λ(β0)

(
1

2
− β0

)
!

∫ Ψ

0
G(E)(Ψ− E)

1
2
−β0−n dE , (2.19)

where

(
1

2
− β0

)
! ≡


(

1

2
− β0

)
...

(
1

2
− β0 − (n− 1)

)
for β0 <

1

2

1 for
1

2
6 β0 < 1

, (2.20)

and

n =

[
3

2
− β0

]
, (2.21)

with [x] the floor of x. The solution of this equation can be expressed as

G(E) =
sin((n− 1/2 + β0)π)

πλ(β0) (1/2− β0)!

d

dE

∫ E
0

dΨ
dnχ

dΨn
(E −Ψ)n−3/2+β0 , (2.22)

We note that in the isotropic limit β0 → 0, the expression of G in Eq. (2.22) boils down
to the Eddington DF given in Eq. (2.12) as expected. If β0 is a half-integer, the integral in
Eq. (2.22) boils down to a derivative [45]. This allows one to analytically express the DF of
any system with a half-integer anisotropy [46].

2.3.2 Osipkov-Merritt model

Another extension of the Eddington formalism is the Osipkov-Merritt DF [23, 24] which
describes a system where the anisotropy parameter is no longer constant, but takes the
following radial dependence:

β(r) =
r2

r2 + r2
a

, (2.23)

where ra is a free parameter referred to as the anisotropy radius. This model is isotropic in
the inner regions r � ra, while it exhibits a full radial anisotropy in regions r � ra. It cannot
describe tangential anisotropy. The full isotropic case is recovered in the limit ra →∞. This
expression is derived by assuming that the DF no longer factorizes out its dependence on
energy and angular momentum, but mixes them through a variable Q,

f(E , L) = fOM(Q) , (2.24)
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where Q = E − L2

2r2
a

. By solving

ρ(r) =

∫
d3~v fOM(Q) , (2.25)

one readily obtains

ρ(r) =
r2

a

r2 + r2
a

ρOM(r) , (2.26)

where

ρOM(r) = ρOM (Ψ(r)) = 4π
√

2

∫ Ψ

0
fOM(Q)

√
Ψ−QdQ . (2.27)

The Abel equation is then

dρOM

dΨ
=
√

8π

∫ Ψ

0

fOM√
Ψ−Q dQ , (2.28)

and its solution

fOM(Q) =
1√
8π2

d

dQ

∫ Q

0

dΨ√
Q−Ψ

dρOM

dΨ
. (2.29)

The expression of fOM is identical to that of the standard Eddington DF in Eq. (2.13) when
Q and ρOM are identified with E and ρ, respectively (in the isotropic limit ra → ∞, both
expressions match).

2.3.3 Other possibilities

The two methods discussed above are the simplest ones accounting for anisotropy in the
velocity distribution, as they depend only on one free parameter (β0 or ra). Other DFs
involving more free parameters can be found in the literature, such as a straightforward
generalization of both constant anisotropy and Osipkov-Merritt models [45],

f(E , L) = G(Q)L−2β0 . (2.30)

Motivated by the anisotropy profiles β(r) observed in N-body simulations, some authors have
also considered linear combinations of the constant anisotropy DF and the Osipkov-Merritt
DF [30]

f(E , L) = wfOM(Q) + (1− w)G(E)L−2β0 , (2.31)

while others have looked at different functional forms [47]:

f(E , L) = F (E)

(
1 +

L2

2L2
0

)−β∞+β0

L−2β0 . (2.32)

Models of Refs. [30, 47] both contain a set of three free parameters ({w, ra, β0} or {L0, β0, β∞})
calibrated on simulations. Irrespective of the different proposals to cope with anisotropy in
the DM velocity field, we stress that the latter is still hardly constrained by kinematic ob-
servations of visible matter.
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2.4 Beyond spherical symmetry

In this study, we will not go beyond spherical symmetry except to approximately integrate
the effects of some non-spherical components like the baryonic bulge and disks [see Eq. (2.6)
and discussion below]. Here, for the sake of completeness, we just review some more involved
theoretical methods that can be used to cope with this delicate problem. When dealing with
a system that is not spherically symmetric, the energy and the angular momentum might not
be the most convenient variables to work with. The authors of Refs. [40, 48] promote instead
the angle-action variables as a phase-space coordinate system. The components of the action
vector ~J are integrals of motion and the angle vector ~Θ is the Hamiltonian conjugate of ~J .
A crucial property of the actions is their constancy in a slowly varying potential. In such a
potential, a DF of the form f( ~J) is then also a constant. This property was used as a starting
point in Ref. [49] to compute a phase-space model of the Milky Way, assuming baryons are
slowly accreted onto an initially spherical dark halo. This led, in this theoretical framework,
to the exclusion of an adiabatic compression of the dark halo [50], favoring instead heating
at its center and the presence of a ∼2 kpc core [51] in agreement with a detailed study of the
bar/bulge dynamics [52].

The philosophy behind this technique is opposite to Eddington’s since here the starting
point is the DF, from which the potential is computed through an iterative procedure, while
in the Eddington case one starts with the potential and the density and derives the DF from
there. Just like there is a lot of freedom when choosing the functional form of the DF in
the anisotropic extensions of the Eddington inversion method, there is also some freedom
in choosing the functional form of the action-dependent DF. Assumptions must therefore
be made on its dependency with respect to each action and this may introduce theoretical
uncertainties in the calculation which are difficult to evaluate. Nevertheless, this method
constitutes the state of the art of Galactic phase-space modeling and it captures details
beyond the reach of the Eddington formalism.

This level of detail might not be required in the context of DM searches though, as one
is mostly interested in evaluating the astrophysical uncertainties relevant to complementary
observables of interest in a self-consistent framework. The Eddington formalism actually pro-
vides such a framework, while being in practice more flexible than the angle-action approach.
Moreover, global dynamical constraints are easier to account for in the Eddington approach
from a technical point of view. However, as we will show in the following, the Eddington
inversion is not a self-regulated approach as it does not prevent from getting unstable or
ill-defined phase-space configurations, whereas action-angle methods are a priori immune to
these defects. It is therefore important to delineate as rigorously as possible the domain
of application of the Eddington inversion. Ultimately, more systematic comparisons with
action-angle methods should help further reduce the theoretical uncertainties and provide
complementary understanding of the potential failures of the Eddington inversion, but this
goes beyond the scope of this paper.

3 Some issues of the Eddington formalism

In this section, we discuss in detail two issues that we have identified in the Eddington
inversion method, and which have been overlooked in the literature focused on DM searches.
The first one concerns the impact of the spatial boundary of the dark halo, which is usually
neglected while this leads to theoretical inconsistency and also potentially to mistreatments
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of the tail of the DM velocity distribution. The second one is related to the fact that some
perfectly licit DM-baryons configurations may actually lead to unstable DFs.

We recall that the main benefits of the Eddington formalism (including its anisotropic
extensions) in the context of DM searches is precisely to provide a self-consistent and con-
strained framework to compute both density-dependent and velocity-dependent observables.
A noticeable strength is to be able to use a kinematically constrained Galactic mass model
and self-consistently propagate the associated uncertainties to the DM observables. However,
the two issues mentioned above and further detailed in this section jeopardize this possibility.

In the following, all concrete calculations of the DFs will be made using the best-fit
Galactic mass models of Ref. [39] (McM17 models henceforth), unless specified otherwise.
The nominal model is featured by an NFW DM halo and a baryonic component made of a
stellar bulge, stellar disks, and gaseous disks, all of these components being constrained from
recent kinematic data. The parameters of these models are summarized in App. A.

3.1 Radial-boundary-induced divergence, the escape speed, and some regular-
ization procedures

3.1.1 Characterization of the spatial-boundary-induced divergence

A generic issue with the Eddington DF is the presence of a divergence in the limit E → 0
due to the term (dρ/dΨ)Ψ=0 × 1/

√
E present in Eq. (2.13). This derivative is evaluated

at the radial boundary of the system and does not vanish for conventional halo profiles,
unless the boundary is sent to infinity. However, this boundary must be finite just because
of the presence of neighboring galaxies. It is precisely what allows us to make a realistic
interpretation of an escape speed, which has some impact on e.g. direct searches of low-mass
WIMPs [32].

This diverging term ∝ 1/
√
E is actually very often dropped without deep justifications.

However, this jeopardizes the self-consistency of the approach, since the reconstructed DM
density profile then significantly departs from the initial one, unless one is interested in
describing only the inner parts of the Galaxy (see Fig. 1 and the green curve in Fig. 5, as
well as a more extended discussion on the density profile in Sec. 3.1.2). More specifically,
the reconstructed density differs from the initial one by ∼ 10% above 0.1Rmax, i.e. ∼ 2rs,
and the difference increases even more at larger radii. Even if these numbers do not look
dramatic, they still undermine the appealing aspects of this framework as a consistent and
global framework for DM-signal predictions, as one loses control on the input mass model
uncertainties. On the other hand, sending the boundary to infinity spoils control on the tail
of the velocity distribution.

Since the speed distribution fv(v, r) is directly related to the DF through Eq. (2.8), the
divergence when E → 0 translates into a divergence in velocity space when v2 → 2ψ(r), i.e.
at the escape speed and at any position in the system. In Fig. 2 (left panel), we illustrate this
divergence in the speed distribution evaluated at a radius r = 20 kpc (solid red line) in our
default halo model with a radial extension set to Rmax = 500 kpc. This divergence is the sign
that the system under consideration is artificially compressed in phase space. A population
of particles is squeezed near the escape speed, while we would expect a stable DF to verify
f(E → 0)→ 0. The right panel of Fig. 2 shows the pathological DF f(E) as a function of E
(solid red curve), where the divergence occurs at E → 0.

This divergence is present whenever the derivative (dρ/dΨ)Ψ=0 is non-zero, which is
always the case for conventional halo profiles with finite boundaries unless one modifies the
asymptotic behavior at the boundaries. This issue is therefore intimately related to the
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spatial extension of the system, since the troublesome derivative is evaluated at Ψ = 0
(equivalently r = Rmax). The gravitational potential being defined up to a constant, the
position r = Rmax where Ψ vanishes is a matter of choice. For example, taking Rmax → ∞
solves the issue and the DF satisfies f(E → 0) → 0, as shown by the blue solid curve in
the right panel of Fig. 2. This actually matches with the boundary condition of having the
gravitational potential ψ(r) = −φ(r)→ 0 as r →∞ when solving the Poisson equation. The
speed distribution is then regularized—see the blue solid curve in the left panel of Fig. 2.
The DF obtained for this idealized–though unrealistic–choice of Rmax is fully consistent with
the mass model and is a solution of the collisionless Boltzmann equation by construction.

This leads to the following interpretation of the divergence showing up at finite radial
extensions: particles that could have probed infinite distances in agreement with the conven-
tional infinite boundary condition are now prevented from radially escaping the system and
have their phase space compressed accordingly.

However, choosing Rmax → ∞ is physically problematic in this context. DM halos
always have a finite extension due to the gravitational influence of other neighboring halos
(like the dark halo of M31 in the case of our Galaxy), or the host halo if the system under
consideration is a subhalo. Taking this finite extension into account is crucial for DM searches
as its fixes the definition of the escape speed of the system

vesc(r) =
√

2(φ(Rmax)− φ(r)) . (3.1)

The value of the escape speed at the position of the Solar System is for instance a major
ingredient when making predictions for direct WIMP searches in the low-mass region [32].
The escape speed is also a target observable that can be inferred from stellar surveys [18, 53].
Finally, in the particular case of the MW, the closest neighbor is the Andromeda galaxy
which is about 800 kpc away from the Galactic center. Consequently the Galactic halo
cannot extend much farther than Rmax ∼ 500 kpc, which we take as our reference value from
now on. 2

In the left panel of Fig. 3, we compute the relative change in the escape speed when
increasing the value of Rmax. One can see that the escape speed at r = 8 kpc increases by up
to 10% (∼ 50km/s) when the radial boundary moves further out. The relative increase gets
bigger as the position is farther away from the center of the halo, though lower in absolute
value. It is therefore important to be as consistent as possible when one wants to relate the
concept of escape to the phase-space DF.

The discussion above focused on the isotropic case, but the situation is very similar
in the anisotropic case with a constant anisotropy parameter β. Sending Rmax to infinity
removes the diverging term in G(E) [see Eq. (2.16)], and the DF is regularized at the cost of
changing the escape speed. However, the situation is different in the Osipkov-Merritt case, as
the troublesome derivative is (dρOM/dΨ)Ψ=0 with ρOM defined in Eq. (2.26). One can check
that if the density behaves as a power-law at large radii ρ ∝ r−b—as is almost always the
case—then dρOM/dr ∝ r1−b and dΨ/dr ∝ r1−b, meaning that the derivative (dρOM/dΨ)Ψ=0

goes to a constant as Rmax goes to infinity. Consequently, in the Osipkov-Merritt model, not
only does considering an infinite system affect the escape speed, but it also does not remove
the phase-space divergence, as illustrated in the right panel of Fig. 3. Moreover, for this
model the divergence in the speed distribution (Eq. 2.8) does not occur at vesc but appears
in the peak of the distribution due to the angular integral. This makes it more difficult to
regularize the DF.

2Note that Rmax is almost twice as large as the estimated virial radius R200 ∼ 250 kpc.
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Figure 2: Left panel: Velocity distribution functions (i) for the NFW profile of Ref. [39] at a radius
of 20 kpc, for three situations regarding the status of the divergence at the escape velocity; and (ii)
for the regularization à la King given in Eq. (3.11). The red, blue, green, and yellow lines represent
the DFs obtained by keeping the divergence, sending the boundary of the system to infinity, removing
the divergence, and using the regularization à la King, respectively. Right panel: Corresponding
DFs as a function of the energy E . DFs are in units of ρs(4πGN ρs r
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left panel of Fig. 2, for the Osipkov-Merritt model.

In the following, we discuss different ways of getting rid of this divergence in order to
obtain physically viable solutions.
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3.1.2 Regularization through the density profile

The most simple solution to the boundary-induced divergence is to slightly modify the DM
density profile in such a way that it is still consistent with the kinematic constraints which it
was derived from, and that (dρ/dr)r=Rmax vanishes—this is not the case with standard NFW,
αβγ, or Einasto profiles. If such a solution exists, then the Eddington formalism fully applies
and provides a self-consistent description of the phase space up to the spatial boundary of
the DM halo. Therefore, since the bulk of the kinematic constraints pertains to the inner
50 kpc of the Galaxy [39], we need to make sure that both the input DM mass profile and
gravitational potential are not affected in this range. The kinematics of satellite galaxies can
also be used to constrain the MW mass within ∼ 300 kpc with larger uncertainties (see e.g.
Ref. [54]), but not farther, so the modified mass profile should not depart too much from the
initial one and remain consistent with these bounds.

Modifications of standard functional forms of the density profile can be found in the
literature. For instance, the authors of Ref. [55] (see also Ref. [56]) account for tidal stripping
of the outer parts of a halo with an exponential suppression. However, this modified profile
has (dρ/dΨ)Ψ=0 6= 0 and therefore leads to a diverging DF once we set a radial boundary.
Instead, we propose the following alternative density profile to model the halo:

ρ̃ = ρ−ΨD

(
dρ

dΨD

)
Ψ=0

. (3.2)

The corresponding DM component, the gravitational potential of which is ΨD, is consistently
obtained from the Poisson equation (with the vanishing condition at the radial boundary
Rmax), which then reduces to

Ψ̃D(r) = G

∫ Rmax

r
dr′

m̃D(r′)

r′2
(3.3)

where m̃D(r) = 4π

∫ r

0
dr′ r′2 ρ̃(r′) .

This potential is the one to be used in the Eddington inversion along with the modified
density profile ρ̃ (the baryonic component is left unchanged). That new density profile ρ̃,
defined in Eq. (3.2), flattens at the edge of the system, i.e.

(dρ̃/dΨ̃)Ψ̃=0 = [(dρ̃/dr)(dΨ̃/dr)−1]r=Rmax = 0 .

This flattening at r → Rmax can be thought of as the border with the homogeneous back-
ground or with neighboring self-gravitating systems (though physical space cannot be filled
up with spheres). This functional form is actually guided by the reconstructed density profile
obtained when removing the divergence by hand, as discussed in Sec. 3.1.3.

This prescription needs slight modifications when dealing with anisotropic systems since
the diverging term takes a different form in that case. In the constant-β case this term is
proportional to (dχ/dΨ)Ψ=0 where χ = r2β0ρ, therefore we propose the following profile:

ρ̃ = ρ− ΨD

r2β0

(
dnχ

dΨn
D

)
ΨD=0

, (3.4)

where χ is defined in Eq. (2.17) and n is given in Eq. (2.21). For the Osipkov-Merritt models

ρ̃ = ρ− ΨD

1 + r2/r2
a

(
dρOM

dΨD

)
ΨD=0

. (3.5)
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Figure 4: Left panel: Density profile ρ in the standard NFW case (black line) compared to
the modified profiles for the isotropic, Osipkov-Merritt, β = ±0.3 (red, blue, green and magenta,
respectively) defined in Eqs. (3.2), (3.4), (3.5). The bottom panel shows the relative difference between
the original and the modified profile. Right panel: Same as for left panel, for the mass profile.

In these two cases, the gravitational potential is consistently calculated from Eq. (3.3). Note
that in the anisotropic case, the modified profile depends on the anisotropy variable (β0 or
ra) specific to the model.

The modified density and mass are compared to the original ones in Fig. 4. The modified
density differs from the original one in the outer part of the halo, and underestimates the
original profile by up to 40% at ∼ 0.8Rmax (30% at R200) in the isotropic case, which
translates into a difference in the mass of only 15% at r = Rmax (10% at R200). The
inner, dynamically constrained part of the profile is therefore kept mostly unchanged by the
prescription when the system is isotropic. The introduction of a constant anisotropy causes
a departure from the isotropic result in a systematic way that depends on the sign of β0.
The difference in density and mass is higher in the β0 > 0 case than in the isotropic and
β0 < 0 cases, which is consistent with the expectation for more radial orbits. The difference
for Osipkov-Merritt models is even bigger: the mass difference reaches 50% at R200. These
differences can be understood in terms of the anisotropy of the system. Our prescription
removes matter at the edge of the halo to flatten the density profile at Rmax. However,
if the particles at Rmax are mostly on radial orbits, as is the case in the Osipkov-Merritt
models where β(Rmax) ' 1, they also contribute to the density in the inner part of the halo.
Therefore in a system with a high positive β, removing matter in the outskirts also removes
matter in the inner regions.

To summarize, we found that slight modifications of the density profile are enough to
get rid of the boundary-induced divergence in the isotropic case and in the case of tangen-
tial anisotropy, while keeping the overall mass model consistent with the constrained initial
configuration. Indeed, the error induced on the Galactic mass at large radii is of order
∼ 10% in these cases. Therefore, such modifications preserve the self-consistency of the for-
malism, and do not affect the density- and velocity-dependent observables related to DM
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searches calculated in the inner ∼50-100 kpc of the MW. Errors of & 10% are expected in
the outskirts, but should be negligible e.g. when integrated over the line of sight, like in the
case of p-wave suppressed or Sommerfeld-enhanced annihilation calculations. On the other
hand, this regularization procedure fails in the case of significant radial anisotropy, like in
the Osipkov-Merritt model, unless the anisotropy radius is taken very large (isotropy limit).

3.1.3 Regularization through the phase-space distribution

The problem of the spatial boundaries in self-gravitating systems is rather classical when
one takes the DF as the fundamental characterizing function. A well-known example is the
so-called King model [17, 57–61], meant to consistently describe bounded pseudo-isothermal
systems (and applied to globular clusters). For the boundary-induced divergence at stake in
our study, one can apply a similar procedure by (i) cutting the non-physical diverging term
in the phase-space DF f(E); (ii) numerically deriving the modified gravitational potential
from the Poisson equation fed by the new DF and appropriate boundary conditions (this is
an important step which also defines the new mapping between the potential and the radial
coordinate); and (iii) integrating the new DF to get the modified density profile. Although
much more involved than the regularization through the density presented in Sec. 3.1.2, this
method ensures to get a well-behaved solution consistent with both the Boltzmann equation
and the Poisson equation. It is particularly well-suited to describe bounded systems like
galaxies [62], and also to account for tidal effects induced by either neighboring systems like
dwarf galaxies [36, 63, 64], or hosted systems, like DM subhalos [65, 66]. In the present
context, one still needs then to make sure that the modified density profile does not depart
too much from the initial density profile, at least within the inner 50-100 kpc of the MW,
not to spoil its consistency with kinematic data.

Before inspecting possible ways of cutting the initial DF f(E), let us review the full
chain of calculations. Let us call F (Ẽ) the modified DF after truncation, where

Ẽ = Ψ̃− ṽ2

2
(3.6)

is the new energy associated with the system, Ψ̃ the new potential, and ṽ the new velocity
coordinate. A priori, tilde quantities are different from non-tilde quantities that pertain to
the initial configuration. However, since F (Ẽ) is known (inferred from a modification of f(E)
that we shall discuss later), we can fully determine the DM component of the gravitational
potential from the Poisson equation

∆Ψ̃D = −4πGN ρ̃(Ψ̃) = −4πGN

∫
d3~̃v F (Ẽ)

= −4πGN

[
ρ̃0 + 4π

√
2

∫ Ψ̃

0

√
Ψ̃− E F (E) dE

]
, (3.7)

where though the density profile ρ̃ is still undetermined, it is accessed through the integral
of the DF over the potential. Note that Ψ̃ = Ψ̃D + Ψ̃B, and that only the DM component is
modified, such that we actually take Ψ̃B = ΨB. An important point here is that the mapping
between the radial coordinate and Ψ̃ is only defined through the Laplacian operator ∆ on
the left-hand side, not on the right-hand side. Therefore, one needs appropriate boundary
conditions to solve this equation consistently with the physical system at hand. In the
present context, we are in principle forced to demand that Ψ̃(Rmax) = 0, and since we do
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not want a significant departure from the initial potential in the inner parts of the Galaxy,
we further impose that dΨ̃/dr(0) = dΨ/dr(0). Besides, note that we allow for the presence
of a constant ρ̃0 in the above equation, which is a free parameter and cannot be recovered
from the equation itself. This freedom in choosing the value of the density at the boundary
of the system is inherent to the Eddington formalism as previously seen in Eq. (2.14)—note
that it can be neglected here as the density profile is no longer an input in the regularization
procedure, but an output. Finally, we stress that the above differential equation has to be
solved numerically.

We now discuss some possible forms for the modified DF F , which are to be considered
as ansätze aimed at recovering the non-diverging part of the initial DF while ensuring that
F (Ẽ → 0)→ 0. We first consider the Eddington DF computed for a finite system with radial
extension Rmax. The initial DF is given in Eq. (2.13) and diverges as E → 0. One way of
modifying that DF to get a well-behaved distribution is simply to remove the diverging term
∝ 1/

√
E . The modified DF is then

F (Ẽ) = f(Ẽ)− 1√
8π2

1√
Ẽ

(
dρ

dΨ

)
Ψ=0

=
1√
8π2

∫ Ẽ
0

d2ρ

dΨ2

dΨ√
Ẽ −Ψ

. (3.8)

Such an ansatz makes sense only if Ẽ spans the same range as E (note that ρ and Ψ are
non-tilde quantities). This is possible only if the condition Ψ̃max = Ψ̃(r = 0) = Ψ(r = 0) is
obeyed, which is in contradiction with the presumed boundary condition to solve Eq. (3.7),
i.e. Ψ̃(Rmax) = 0. The latter condition must therefore be traded for the former in that case,
and the spatial boundary of the system is no longer Rmax, but a new R̃max. In practice,
though, we find that R̃max ≈ Rmax, such that the above ansatz can still be applied.

Since in the initial DF the diverging term becomes important only as E → 0, we expect
the modified potential to remain close to the original one which allows us to estimate the
modified density from the Abel equation

dρ̃

dΨ̃
=
√

8π

∫ Ψ̃

0

F (E)√
Ψ̃− E

dE . (3.9)

Assuming Ψ̃ ≈ Ψ and ρ̃(Ψ̃ = 0) ≈ ρ(Ψ = 0), we get

ρ̃ ≈ ρ−Ψ

(
dρ

dΨ

)
Ψ=0

. (3.10)

The modification of the constant-β DF is very similar, except the modification is only per-
formed on the energy-dependent part of the DF G(E) in Eq. (2.16). The modification of
the Osipkov-Merritt models is identical to the isotropic case with the change E → Q. How-
ever, Fig. 3 shows that removing the divergence by hand leads to a huge modification of
the speed distribution. As a result, the Osipkov-Merritt DF is very hard to regularize in a
self-consistent way.

Note that the above expression for ρ̃ is similar to the one proposed in Eq. (3.2), except
that the potential that appears is the DM only potential rather than the total potential. The
density and mass shown in Fig. 4 are therefore also relevant for the modified DF discussed
here.

We now turn to a truncation of the DF more fundamentally inspired from the King
model [17]. The original approach focused on making isothermal spheres finite in phase
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space but was later generalized to generic mass distributions (see e.g. [62]). It was also very
recently used to implement a realistic tidal truncation of satellite DM halos [63]. The spirit
of the method is slightly different from what was presented just above in the sense that we
no longer start from a diverging and ill-defined DF, but from a well-behaved DF describing a
self-gravitating system with spatial boundaries sent to infinity (thereby resembling the King
model, which starts from the Maxwellian DF that describes the infinite isothermal sphere). In
the isotropic case, this initial DF is precisely the Eddington function f(E) given in Eq. (2.13),
taking the gravitational potential Ψ(r) = −φ(r) as the solution to Poisson’s equation with
the boundary condition φ(r → ∞) → 0. We then implement a truncation in energy related
to the desired radial boundary Rmax from a procedure similar to the one introduced above:
(i) cut the phase-space volume in energy below a cutoff Ec = Ψ0 = Ψ(Rmax); (ii) define a new
phase-space DF F (Ẽ ≡ E − Ψ0) from f(E) above the cutoff, with the expected asymptotic
behavior F (Ẽ → 0) → 0; (iii) determine the new associated gravitational potential Ψ̃ from
Eq. (3.7) (as previously, this defines the new mapping between the radial coordinate and the
potential); (iv) integrate the new DF to get the modified density profile ρ̃.

According to this procedure, the ansatz for the modified DF F that relates a cutoff in
energy to a radial cutoff is then defined as

F (Ẽ) =

{
f(Ẽ + Ψ0)− f(Ψ0) for Ẽ > 0

0 for Ẽ < 0
(3.11)

This DF is continuous and satisfies F (Ẽ = 0) = 0 by construction. The associated grav-
itational potential Ψ̃ is solution of the Poisson equation Eq. (3.7), with initial conditions
to be specified. If we set the cutoff in the initial DF to Ec = Ψ0 = Ψ(Rmax), then
Ψ̃max = Ψmax −Ψ(Rmax) by construction, which by no means guarantees that Ψ̃ vanishes at
Rmax. In practice though, we find that the radius R̃max at which Ψ̃(R̃max) = 0 is very close
to Rmax, though slightly larger. To get Ψ̃(Rmax) = 0 directly from the Poisson equation, one
would instead need to tune the initial cutoff potential Ψ0 until equality is reached—in the
same vein, we find in that case that Ψ0 ≈ Ψ(Rmax).

Note that unlike removing the diverging term “by hand”, the King approach may lead
to a physical interpretation in terms of tidal cut, since it has been shown in numerical
simulations that tidal stripping tends to remove particles based on heir energy rather than
their angular momentum [67]. In the present context, such stripping could have resulted
from gravitational interactions with the neighboring galaxies. We show the dark halo profile
reconstructed from the DF of Eq. (3.11) after solving Eq. (3.7) in Fig. 5, where the difference
in setting the cutoff discussed just above is illustrated explicitly.

3.1.4 Regularization of the boundary-induced divergence: Summary

Here we summarize the pros and cons of the regularization procedures implemented above
to remove the radial boundary-induced divergence of the phase-space DF as E → 0 or equiv-
alently v → vesc. For the isotropic case, we saw that the technically easiest way to remove
the divergence while ensuring the self-consistency of the Eddington inversion method was
to slightly modify the input density profile around the radial boundary Rmax in such a way
that the dynamics is unaffected in the central regions of the Galaxy. In that case, one can
straightforwardly find the new gravitational potential Ψ̃D by directly integrating the Poisson
equation over the radial coordinate from Eq. (2.4). The regularization through modifications
of the DF is more involved as it requires to calculate Ψ̃D by numerically solving the Poisson
equation. This is the only way to recover a mapping between the potential and the radial
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Figure 5: Same as Fig. 4, showing the profiles resulting from DFs regularized à la King, based on
the ansatz of Eq. (3.11). Left panel: reconstructed density profiles compared with the initial one.
Right panel: corresponding dark halo mass profiles.

coordinate, and then to compute the resulting modified density profile. Both methods give
similar distortions to the initial density profile, which lie within the current statistical and
systematic uncertainties on the dark halo mass profile. Ultimately, the best, while much more
involved approach, would be to start from well-defined DF and profile before performing the
likelihood analysis to account for the kinematic constraints and to get best-fitting Galactic
mass models, similar to the action-angle analyses (e.g. [50]). This goes beyond the scope of
this paper.

For anisotropic systems, we saw that both methods may apply to tangential anisotropy
(β < 0), but fail for radial anisotropy (both β > 0 and the Osipkov-Merritt models). In the
latter case, the only way to get finite results is to remove the diverging term (∝ 1/

√
E or

∝ 1/
√
Q) by hand, but this is at the cost of a meaningful and self-consistent normalization

of the phase-space DF. Therefore, we are then left with a theory that is no longer a self-
consistent inversion of the integral Eq. (2.7), whose DF must be normalized to unity (or ρ
or ρ̃) by hand and is no longer simply related to the DM density profile. Although such a
DF might be perfectly licit as a description of a gravitational system, its theoretical status
appears unclear to us.

3.2 Positivity and stability issues

We now move to another kind of issues that may arise in the Eddington formalism: the
potential breakdown of the inversion, very often due to the presence of baryonic components.
More concretely, it turns out that some perfectly sound configurations of Galactic mass
models may lead to ill-defined DFs through this method, which are the manifestation of
unstable configurations in phase space. In these cases, Eddington-like inversions can no
longer be used to self-consistently describe the DM halo, because some degrees of freedom
are likely missing to make full physical sense of the DM component (axisymmetry, action-
angles coordinates, etc.). We stress that the potential breakdown of the Eddington formalism
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may only manifest itself in some regions of the phase space. This is actually barely checked
in the context of predictions for direct DM searches. A typical signature of such a breakdown
is a DF exhibiting negative values in specific regions of phase space, which will be discussed
in Sec. 3.2.1. More subtle while complementary considerations linked to the stability of
gravitational systems will be discussed in Sec. 3.2.

3.2.1 Positive distribution functions

A trivial requirement for a DF to be well-behaved is positivity everywhere, i.e. f(~r,~v) > 0
for any (~r,~v). Although most dark halo shapes are fully Eddington invertible for DM-only
systems (e.g. [68]), there is in general no guarantee that Eddington’s inversion leads to a DF
positive all over the halo for any given pair of DM density profile ρ and total gravitational
potential Ψ = ΨD+ΨB. We will inspect below the specific case of cored profiles, but it usually
turns out that the presence of a baryonic component, which breaks the plain correlation
between the density and the potential, may drive the DF negative in some regions of the
system.

Sufficient conditions for positivity were identified in Refs. [69, 70] for the Osipkov-Merritt
models, in the general case of multi-component systems. From Eq. (2.29) we can identify a
necessary condition for the positivity of fOM, which is

dρOM

dΨ
> 0 for 0 6 Ψ 6 Ψmax. (3.12)

In this equation, ρOM corresponds to the DM while Ψ = ΨD + ΨB is the total potential
(from the DM plus baryons). If this necessary condition is satisfied, a sufficient condition for
positivity is [69, 70]

d

dΨD

[
dρOM

dΨD

(
dΨ

dΨD

)−1√
Ψ

]
≥ 0 ∀ 0 6 Ψ 6 Ψmax. (3.13)

One can readily see that these conditions are also valid for isotropic systems as well as single
component systems. All McM17 halo profiles verify this condition.

Let us return to the isotropic case and inspect it in detail. Most standard single-
component mass distributions (e.g. NFW, Einasto, etc.) have well-defined ergodic DFs [68].
Yet, some well-motivated profiles do lead to a negative DF. Troublesome profiles can be
identified using Eq. (2.11). If the derivative dρ/dΨD cancels for some values of ΨD, then
Eq. (2.11) forces f to take negative values. This is expected to happen if the DM profile
if very flat somewhere, as is the case for cored distributions for instance. In the case of
single-component systems, the left-hand side of Eq. (2.11) can be written

dρ

dΨD
=

dr

dΨD

dρ

dr
= − r2

GmD(r)

dρ

dr
, (3.14)

where the mass mD(r) is related to the density ρ(r) through Eq. (2.5). Let us now consider
as an example the following class of cored DM density profiles:

ρ(r) = ρs

[
1 +

(
r

rs

)α]−β/α
, (3.15)

with α > 0 and β > 0. In the limit r → 0 (equivalently ΨD → Ψmax) we have dρ/dr ∝ rα−1

and m ∝ r3, therefore dρ/dΨD ∝ rα−2. The asymptotic value of the derivative is then non-
zero only if α 6 2. Consequently, for any single-component system with a density profile
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given by Eq. (3.15) and with α > 2, the Eddington method leads to a negative ergodic DF.
We stress that

0 < α 6 2 is a necessary condition (isotropic case) (3.16)

to get a positive DF for a DM-only system. However, it is certainly not sufficient for a multi-
component system. Since the argument is based on the asymptotic behavior of dρ/dΨD as
r → 0, our result holds for Osipkov-Merritt models as well since the associated anisotropy
goes to zero when r � ra. In the constant anisotropy case the situation is different because
an artificial slope 2β0 is present in the Abel equation given in Eq. (2.19). Consequently, if the
density profile ρ has an inner slope −γ, the pseudo-density χ has an inner slope 2β0−γ. Note
that a requirement for Eddington’s method and its extensions to work is that the generalized
density (ρ, ρOM, χ depending on the model) is a growing function of Ψ. Therefore,

2β0 ≤ γ is a necessary condition (anisotropic β0 case) (3.17)

to get a positive constant-anisotropy DF. This forbids for instance any cored system to have
a constant, positive anisotropy, and in general sets an upper limit on the constant anisotropy
a system can feature. This is a subset of a more general slope-anisotropy inequality [71, 72].

Adding a baryonic component to the system can affect these results. If the DM profile
follows Eq. (3.15) and the baryonic profile is cored, the low-radius behavior of dρ/dΨ (with
Ψ = ΨD + ΨB the total potential) is unchanged with respect to that of dρ/dΨD. Therefore,
the positivity condition remains α 6 2. If the baryonic density profile is cuspy with inner
slope −γB (e.g. γB = 1 for a Hernquist profile), the result is modified. The mass is now
dominated by the baryonic component as r → 0, and we have dρ/dΨ ∝ rα−2+γB . The
necessary condition for positivity becomes

0 < α 6 2− γB (3.18)

i.e. baryons reduce the parameter space providing a positive DF.

3.2.2 Stable distribution functions

We would like to stress here that positivity is not strong enough a criterion for a DF to give
a satisfactory description of a DM halo. Indeed, some (ρ,Ψ) pairs satisfying the positivity
conditions can still lead to a DF that is an unstable solution of the collisionless Boltzmann
equation. Some conditions for stability against different kinds of perturbations are reviewed
in Ref. [40]. A result of interest for us is Antonov’s second law [73–75] which guarantees
the stability of an ergodic DF f against non-radial modes if df/dE > 0. A complementary
result is the Doremus-Feix-Baumann theorem [76, 77], which ensures stability against radial
modes if df/dE > 0. Consequently, a sufficient condition for the stability of ergodic DFs
f(E) against all perturbations is

df

dE (E) > 0 for all E . (3.19)

We now investigate the consequences of this condition on DM density profiles. In practice we
use profiles of the form of Eq. (3.2) in order to get rid of the divergence discussed in Sec. 3.1.
Note that we previously established that this divergence is a sign of an artificial compression
of the phase space, but it can also be viewed as an unstable configuration as it violates the
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stability criterion given in Eq. (3.19). We wish to find a more convenient criterion involving
the density profile and the potential rather than the DF itself. We recall the expression of
the DF when the boundary term is zero:

f(E) =

∫ E
0

d2ρ

dΨ2

1√
E −Ψ

dΨ . (3.20)

From this expression we see that df/dE > 0, ∀E only if d2ρ/dΨ2 > 0, ∀Ψ. Moreover, starting
from the Abel equation in Eq. (2.11) and performing an integration by parts, we get

dρ

dΨ
= 2
√

8π

∫ Ψ

0

√
Ψ− E df

dE dE , (3.21)

which implies that d2ρ/dΨ2 > 0, ∀Ψ only if df/dE > 0, ∀E . To summarize, we have

df

dE > 0, ∀E ⇐⇒ d2ρ

dΨ2
> 0, ∀Ψ . (3.22)

Therefore, the stability criterion takes the very simple following form: d2ρ/dΨ2 > 0, ∀Ψ.
From Eq. (3.20), it is obvious that this criterion is also a sufficient condition for positivity.
From now on, we consider Eq. (3.22) as defining the range of applicability of the Eddington
formalism since a system that violates this condition could lead to unstable phase-space
configurations or a negative DF.

The stability criterion of Eq. (3.22) can be extended in part to non-isotropic spherical
systems with a DF of the form f(E , L). It is shown in Ref. [78] that systems satisfying
∂f/∂E > 0 for all (E , L) are stable against radial perturbations. This is directly applicable
to the constant-β (Eq. 2.16) and Osipkov-Merritt (Eq. 2.24) models, resulting in

dG

dE > 0, ∀E (3.23a)

dfOM

dQ
> 0, ∀Q . (3.23b)

However, the response of anisotropic systems to non-radial perturbations is much more com-
plex, due to the possibility of radial-orbit instabilities, so that no simple stability criteria are
known. Analytical studies are usually involved (e.g. [79–82]), and the stability properties of
anisotropic systems are very often investigated thanks to numerical simulations (e.g. [83–85]),
which is far beyond the scope of this work. In the following, we rely on the criterion given
in Eq. (3.23), which should be understood as necessary rather than sufficient.

We investigated the stability of the phase-space configurations obtained by Eddington-
inverting realistic and kinematically constrained McM17 MW dark halos [39]. Shown in the
top left panel of Fig. 6 are the isotropic DFs for each mass model, both with and without
the baryonic contribution to the potential Ψ. To simplify the discussion, the DFs are shown
without the diverging term discussed in Sec. 3.1, and without any regularization plugged in.
Indeed, we will see that in these examples, instabilities manifest themselves mostly in the
central regions of the Galaxy, i.e. E/Ψmax & 0.5. The dark halos shown in the figure mostly
differ in the inner slope γ of the density profile. In the absence of baryons (dashed lines),
all the DFs satisfy the stability criterion given in Eq. (3.19) and are therefore stable. We
explicitly verified that the models also satisfy the condition in Eq. (3.22) by plotting the
second-order derivative d2ρ/dΨ2 in the top right panel of Fig. 6.
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Figure 6: Top left panel: Ergodic distribution functions for several mass models from Ref. [39].

The DFs are in units of (4πGN)−3/2ρ
−1/2
s r−3

s . Top right panel: Second derivative of the density ρ
with respect to the total potential Ψ. The derivative is in units of (4πGN)−2ρ−1

s r−4
s . Bottom panel:

Third derivative d3ρ/dΨ3 in units of (4πGN)−3ρ
−3/2
s r−6

s .

The situation changes when baryons are added to the potential. Then the DFs flatten
at high energy (toward the central regions), and may even turn into a dip, as is the case of the
DM core (γ = 0, solid magenta line), which violates the stability criterion in Eq. (3.19). The
derivative d2ρ/dΨ2 takes negative values in that case and the stability criterion in Eq. (3.22)
is also violated as expected. This mass model is therefore very likely to correspond to
an unstable phase-space configuration.3 The presence of a dip in the ergodic DF has direct
consequences in the speed distribution defined in Eq. (2.8). In the left panel of Fig. 7, we show

3More precisely, the initial assumption of ergodicity cannot accommodate this density-potential pair; one
would need to increase the number of degrees of freedom in phase space to find a stable DF.
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the speed distributions for the different mass models at r = 0.01 kpc, i.e. corresponding to
regions where the energy range probes the dip. The speed distribution of the unstable model
(magenta line) exhibits a very strong double-peak feature: a very large peak at v ∼ 450 km/s,
and a much smaller one at v ∼ 50 km/s. The phase-space distribution is somewhat artificially
forced to large velocities to allow for a kinetic pressure strong enough to prevent the halo from
collapsing to a cusp—hardly a stable configuration in the isotropic case. The appearance of
such a double-peak feature is characteristic of a troublesome configuration, and we stress
that it has to be checked all over the halo (equivalently all over the available energy range).
Indeed, the same problematic model would have given a perfectly licit speed distribution at
larger radii (where the energy range would not probe the dip in the DF). We note, however,
that it is not straightforward to firmly analyze this feature in terms of instability since it is
also present in the γ = 0.25 case, which satisfies the stability criterion, while clearly exhibiting
a transition to a double-peak distribution. This can be seen in the blue curve of Fig. 7. In
fact, as can readily be guessed from Eq. (2.13) (the part in brackets) and from both the top
right and the bottom panels of Fig. 6, a way to select better-behaved speed distributions
(without double-peak feature) is simply to impose an additional criterion based on the third
derivative instead of the second:

d3ρ

dΨ3
> 0, ∀Ψ . (3.24)

In the following, we will remain agnostic about the origin of this two-peak behavior and just
stick to the stability criterion of Eq. (3.22), keeping in mind that Eq. (3.24) could further be
applied to remove controversial cases. We therefore keep the McM17 γ = 0.25 case as viable,
while we reject the γ = 0 case.

We now wish to characterize in more detail the instability when baryons contribute to
the potential. We write the mass of the system as m = mD + mB and the gravitational
potential as Ψ = ΨD + ΨB. Then the derivative that appears in the stability criterion can
be written

d2ρ

dΨ2
=

(
mD

mD +mB

)2 [ d2ρ

dΨ2
D

− dρ

dΨD

d

dΨ

(
mB

mD

)]
. (3.25)

From this expression, we get the sufficient condition for stability:

d2ρ

dΨ2
D

/
dρ

dΨD
>

d

dΨ

(
mB

mD

)
. (3.26)

The quantities appearing on the left-hand side of Eq. (3.26) only refer to DM, while baryons
appear on the right-hand side through their mass mB = mB(r) and the total potential Ψ. In
the absence of baryons, mB = 0 and Eq. (3.26) simplifies to d2ρ/dΨ2

D > 0 which is exactly
the stability criterion in the DM-only case. Let us discuss the right-hand term in more
detail. The baryonic mass is present in the ratio mB/mD and in the potential Ψ, so we do
not expect it to be the most important parameter here. Rather, the spatial extension of the
baryonic distribution with respect to the DM one is the relevant factor. To illustrate this,
we show the ratio mB/mD as a function of Ψ in the right panel of Fig. 7. We show the
isolated contribution of the bulge and the disk, as well as the total baryonic contribution.
We can see that the bulge-to-DM ratio is steeper than both the disk-to-DM and baryons-to-
DM ratios. The bulge-only configuration is therefore more likely to be inconsistent with the
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ergodic assumption than the disk-only configuration and the full mass model, even though
the baryonic mass is much less important in that case.

We also investigated the effects on the second derivative d2ρ/dΨ2 of changing the bulge
characteristic mass density ρ0,b and radius rb (see Eq. A.1), while keeping the disks pa-
rameters fixed. Results are shown in Fig. 8, where we plot rb/rs as a function of ρ0,b/ρs.
The bulge parameters are scaled to the dark halo parameters. The points correspond to the
McM17 mass models [39] for γ = 0, 0.25, 0.5. Those three models have nearly identical
values for the bulge parameters, the difference in coordinates only comes from the change in
the halo parameters ρs and rs. The red shaded areas are the portions of parameter space
where d2ρ/dΨ2 goes negative, i.e. the Eddington DF violates the stability criterion. We can
see in Fig. 8 that the γ = 0 mass model point is inside the γ = 0 excluded area, while the
γ = 0.25 and γ = 0.5 models are in their allowed regions. This is in agreement with the right
panel of Fig. 6, where the γ = 0 case is explicitly shown to violate the stability criterion.
This figure further allows one to easily check whether one’s favorite Galactic mass model can
be Eddington inverted.

3.2.3 Positive and stable distribution functions: summary

In this section, we have discussed several theoretical issues that arise when trying to infer
the DF of a galactic system in a self-consistent way with the Eddington formalism and its
most simple anisotropic extensions. We have established its validity range, and provided
prescriptions to deal with these issues. These prescriptions can be readily used to ensure a
self-consistent application of Eddington-like inversions.

We have first discussed in Sec. 3.2.1 the conditions to get a DF positive over the whole
energy range—this is mostly relevant to systems with both DM and baryons. For a DM profile
of the αβγ type [see Eq. (A.5)], we isolated a rather simple necessary condition on the index
α given in Eq. (3.18), which forces the transition between the asymptotic indices γ and β to
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be smoother and smoother as the baryonic distribution steepens in the very central parts of
the Galaxy—this also applies to the anisotropic Osipkov-Merritt model, which actually tends
to the isotropic case when r � ra. For constant-anisotropy models, a necessary condition
exists in terms of β0, given in Eq. (3.17).

We have then discussed in Sec. 3.2.2 more fundamental features which can be related
to the (in)stability of gravitational systems. We have shown that the Eddington inver-
sion can only provide a well-behaved DF when the condition given in Eq. (3.22) is fulfilled.
An even more stringent condition providing an unambiguous speed distribution is given in
Eq. (3.24). In contrast to the positivity issue though, stability conditions cannot be derived
in the anisotropic cases, except for the very special case of radial perturbations. In that case,
the stability conditions are given in Eq. (3.23).

Finally, we showed in Fig. 8 how to quickly check whether realistic Galactic mass models
are Eddington-invertible, only from the bulge-to-halo ratio of the scale densities. This figure
can be used as a preliminary diagnosis before going into more involved calculations. In any
case, all the discussion developed in this section fully applies to the general case, for systems
with or without baryons.

4 Impact on predictions for dark matter searches

In this section, we study the impact of the issues discussed in the previous sections on predic-
tions for DM searches. We shall obviously focus on velocity-dependent observables, and more
particularly on observables related to both direct DM searches and indirect DM searches:
the moments (and inverse moments) of the DM speed (relevant to direct DM searches, DM
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capture by stars, or PBH microlensing), and the moments (an inverse moments) of the
two-DM-particle relative speed (relevant to p-wave-suppressed or Sommerfeld-enhanced DM
annihilation). We will embed the former observables in a direct-search class, while the latter
will define the indirect-search class, to make more explicit contact with the WIMP phe-
nomenology. We shall make quantitative comparisons between the self-consistent Eddington
approach (whenever applicable) and the Maxwellian approximation, which is most commonly
used in this context. Note that the Maxwell-Boltzmann (MB) DF or velocity distribution is
consistent with the collisionless Boltzmann equation only if the underlying density profile is
an infinite isothermal sphere that also dominates the potential. It is therefore by no means
theoretically consistent with the input dark halo profile we will consider in the following
calculations, but is usually assumed to provide a “reasonable” approximation. Like in the
isothermal sphere, we will still use the link between the 3D velocity dispersion σ and the
circular velocity as follows: √

2

3
σ = vcirc(r) =

√
GNm(r)

r
, (4.1)

with m(r) consistently derived from the mass model. Therefore, the dispersion velocity
associated with the MB DF will be radial dependent in the following.

4.1 Direct-search-like observables

Let us define a generic function for the moments of the DM speed in the Galactic frame:

Ξn(vmin, vmax, r) ≡ ω−1(r)

∫
vmin6|~v|6vmax

d3~v |~v|n f~v(~v, r) (4.2a)

ω(r) ≡
∫

d3~v f~v(~v, r) , (4.2b)

where f~v(~v, r) is the velocity distribution in the Galactic frame, generically defined in the
context of the Eddington inversion by Eq. (2.8), and ω(r) ensures the normalization of
the distribution to unity over the full available range in velocity [1 by construction in the
Eddington formalism, except if some terms are neglected—see discussion below Eq. (2.14)].

Direct searches for WIMP dark matter are typically sensitive to the inverse moment of
the velocity, expressed as the following integral:

η(vmin) =

∫
vmin6v6v⊕+vesc

d3~v
f~v,⊕(~v)

v
, (4.3)

where f~v,⊕ is the WIMP velocity distribution in the rest frame of the Earth. The speed
vmin is the minimal speed a DM particle must have to induce a detectable recoil in the
detector. Consequently, low-threshold experiments are sensitive to the high-velocity tail of
the distribution. For low-mass DM candidates (noted χ for convenience), with masses much
lower than the target nucleus mass, the minimal speed is vmin ∝ 1/mχ and can be close to the
maximal speed in the laboratory frame vmax = v⊕+vesc, where the Earth speed in the Galactic
frame v⊕ is close to the Sun speed v� ∼ 240 km/s. Giving an accurate description of the tail
of the speed distribution in the Galactic frame is therefore critical, and the regularization of
the divergence associated with Rmax is crucial in this context. We compare the prediction
of the self-consistent Eddington inversion to the MB approximation. In the context of direct
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searches, the MB distribution in the Galactic frame is usually truncated at the escape speed
[86], either sharply,

f shm
~v (~v) =

1

Nshm
e−v

2/v2circ Θ(vesc − v) , (4.4)

where Θ is the Heaviside step function, or smoothly,

f s̃hm
~v (~v) =

1

N
s̃hm

(
e−v

2/v2circ − e−v2esc/v2circ
)
. (4.5)

The respective normalizations are Nshm = (πv2
circ)

3/2[erf(z)− 2z/
√
π exp(−z2)] and N

s̃hm
=

(πv2
circ)

3/2[erf(z)−2z/
√
π (1+2z2/3) exp(−z2)], and z = vesc/vcirc. Note that the sharply-cut

MB distribution is obviously non-physical due to the step at vesc. We consider it nonetheless
since it has been used extensively in the direct searches literature. These deformed MB
velocity distributions are usually dubbed standard halo model (SHM). In the following, we
will pick the values of vcirc at r = R� consistently with the McM17 models used in this study.

Our comparison of η for the various cases should not depend significantly on the frame
of reference up to a Galilean shift in velocity, so for simplicity we consider the Galactic frame
rather than the Earth frame (which is the frame relevant for direct searches)—our vmin should
thereby be shifted by the Sun speed in the Galactic frame ∼ v� to get values more relevant
to direct WIMP searches. We consider the McM17 NFW model for illustration (see Sec. A)
and the different regularization methods discussed in Sec. 3.1, and assume

η(vmin) ' Ξ−1(vmin, vesc, R�) . (4.6)

We compare the predictions inferred from the SHM and the Eddington inversion for
η(vmin) in the left and right panels of Fig. 9 for the isotropic and Osipkov-Merritt cases,
respectively. Generically, predictions derived from the Eddington inversion differ significantly
from that of the SHM over the whole range of vmin, as already noticed in the literature
[25, 26, 30–32]—the main difference with previous studies comes from our rigorous treatment
of the issues emphasized in Sec. 3, and the selection of stable configurations only. Differences
are especially striking when vmin is large due to the different shapes predicted in the tail
of the speed distribution. The smoothly-cut MB distribution is closer to the Eddington
prediction than the sharply-cut MB distribution, but it is also very discrepant near vesc. We
also make the comparison with the Osipkov-Merritt models. 4 The difference between the
SHM and these models are much larger than in the isotropic case. This is an illustration of
the difficulty to regularize the Osipkov-Merritt models, for which none of the prescriptions
are fully satisfactory (see Sec. 3.1). Either the divergence is not removed (Rmax → ∞ case)
or the underlying density profile is significantly modified.

Thus, irrespective of the regularization and the anisotropy, the prediction of the self-
consistent approach systematically differs from the SHM. We are able to quantify the the-
oretical uncertainties associated with the treatment of the divergence, which is especially
important for large values of vmin. This is critical for low-mass DM candidates in direct
searches. For the sake of completeness, we also compare the Eddington inversion and MB
results obtained for the observables proportional to η̄ ≡ Ξ−1(0, vmax, r), which could be re-
lated to the capture of DM in stars or planets (e.g. [87–93]), and to 〈v〉 = Ξ1(0, vesc, r), which

4We do not show the constant-β case as the regularization is very similar to the isotropic case.
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Figure 9: Left panel: η integral as a function of vmin. The various curves shown are the sharply-cut
SHM (solid magenta), the smoothly-cut SHM (dashed magenta), and the predictions of the Eddington
formalism for an isotropic system, with the regularizations of the phase-space divergence discussed in
Sec. 3.1, namely setting Rmax to infinity (green), removing the diverging term (red), modifying the
density profile (blue), regularizing à la King with Ec = Ψ(Rmax) (yellow) or with Ψ̃(Rmax) = 0 (cyan).
Right panel: Same as left panel, for the Osipkov-Merritt model.

could be related to the microlensing event rate of compact DM objects (e.g. [94, 95])—the
latter is simply the mean speed across the Galaxy.

Our results are illustrated in Figs. 10 and 11 for η̄ (for which we set r = R�) and
〈v〉, respectively. For η̄, we see significant differences between the Eddington inversion and
the Maxwellian approximation, decreasing from ∼ 40% to ∼ 10% as vmax spans the full
dynamical range—we also see that isotropic DFs are poorly sensitive to the radial cutoff
treatment, in contrast to anisotropic DFs, where radial orbits come into play. For the mean
speed 〈v〉, the only regions where the Maxwellian approximation provides results similar to
the Eddington inversion are the outer parts of the Galaxy. The departure between the two
prediction increases as the radius gets smaller, with up to an order of magnitude of difference
at the center of the Galaxy. This should therefore be considered seriously in predictions of
related observables. The negative β case leads to a mean speed curve closer to the Maxwellian
case, as expected for more circular orbits (the mean speed then tends to the circular speed).
Note that the Maxwellian results are obviously similar for all Galactic models when both the
DM and baryons are included, as these models are constrained from rotation curves; they
consequently separate from each other when only the DM halo is considered (the DM mass
profiles may vary significantly in regions dominated by the baryons). The results obtained
for the moments of the relative speed in Sec. 4.2 exhibit the same behavior.

4.2 Indirect-search-like observables

Other DM-related signals are related to moments (or inverse moments) of the relative speed
instead of the speed. This concerns signals related to two-body processes, whose most striking
example is the self-annihilation of DM. We therefore define a new moment function for the
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Figure 10: Same as Fig. 9 for η̄ ≡ Ξ−1(0, vmax, R�).

relative speed ~vr = ~v2 − ~v1 between two DM particles,

Πn(vmin, vmax, r) ≡ κ−1(r)

∫ vmax

vmin

d3~v1

∫ vmax

vmin

d3~v2 |~vr|n f~v(~v1, r) f~v(~v2, r) (4.7a)

κ(r) ≡
∫

d3~v1

∫
d3~v2 f~v(~v1, r) f~v(~v2, r) , (4.7b)

where the velocity distribution f~v is conventionally defined by Eq. (2.8) in the context of
Eddington’s inversion formalism, and the function κ(r) ensures the correct normalization to
unity in the relevant range of individual speed [1 by construction in the Eddington formalism,
except if some terms are neglected—see discussion below Eq. (2.14)].

Indirect searches for self-annihilating DM are sensitive to the following moments

〈|~vr|n〉(r) = Πn(0, vesc, r) (4.8)

Searches for p-wave annihilation typically probe the (relative) velocity dispersion (n = 2),
though in some interaction models the annihilation cross-section can be modified by non-
perturbative effects [96] that lead to the so-called Sommerfeld enhancement, which induces
a dependency on the n = −1 moment—as well as the n = −2 moment at resonances. Note
that in practice it proves convenient to perform the following change of variable to express
the integrals in terms of the center-of-mass velocity ~vc and relative velocity ~vr (e.g. [97]):{

~vc = (~v1 + ~v2)/2
~vr = ~v2 − ~v1.

(4.9)

As a result, Eq. (4.8) can be rewritten

〈vnr 〉 =

∫
d3~vr |~vr|n Fr(~vr, r) , (4.10)
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Figure 11: Mean speed profiles for the Standard Halo Model and the Eddington formalism for the
isotropic (top left panel), Osipkov-Merritt (top right panel) and β0 = −0.3 (bottom panel) cases. Here
we show the DM-only (thin line) and DM+baryons (thick line) cases, for the McM17 mass models
providing well-behaved Eddington-inverted DFs.

where Fr is the relative velocity DF, which is defined as

Fr(~vr, r) ≡ κ−1(r)

∫
d3~vc f~v(~v1, r) f~v(~v2, r) . (4.11)

The full derivation of Fr(~vr, r) is given in App. B in the Eddington formalism and its
anisotropic extensions discussed above. To our knowledge, the computation of Fr(~vr, r) in
the general anisotropic case is an original result. An alternative treatment for the Osipkov-
Merritt models is presented in Ref. [36].
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We show the predictions for the relative speed moments inferred from the (smoothly-
truncated) SHM and the isotropic Eddington inversion in Fig. 12. Following our discussion
regarding the stability of the DFs, we only consider here mass models leading to stable
solutions of the Boltzmann equation. The velocity distribution in the Eddington case have
been computed without the diverging term, i.e. using Eq. (3.20). We recall that this is
in practice similar to assuming a flattened density profile at the outskirts of the halo, as
in Eq. (3.2). One can see in Fig. 12 that, for both the SHM and the Eddington model,
the moments with and without baryons converge at large radii. This is because the total
mass, and therefore the gravitational dynamics, is then fully dominated by DM, and baryons
become irrelevant. Though similar in shape, predictions from the two models are numerically
quite different. For the n > 0 moments, the Eddington model’s predictions typically exceed
the SHM’s. At the center of the Galaxy, the two models differ by at least an order of
magnitude, up to three orders of magnitude. The hierarchy of the moments with respect
to the value of DM inner slope γ is also reverted. While the cuspiest mass model (γ = 1)
leads to the largest prediction for the SHM, it is the model closest to the core (γ = 0.25) that
dominates the Eddington result. We stress that even locally at r = R� ∼ 8 kpc, and for all n,
there are sizable differences between the Eddington formalism and the Maxwell-Boltzmann
approximation. Therefore, since the Eddington formalism turns out to better capture the
dynamical properties of the DM halo than the SHM [21], the latter should only be used to
make very rough estimates of p-wave annihilating DM signals, even when isotropy is assumed.

We also compared the (isotropic) SHM with some of the anisotropic extensions of the
Eddington formalism. The prediction of the Osipkov-Merritt model is shown in Fig. 13 for a
particular choice of the anisotropy radius ra = rs. Note that the value of rs depends on the
underlying mass model (see Tab. 1). The result is close to the isotropic case at radii r � ra,
as expected from the behavior of the anisotropy parameter Eq. (2.23). At large radii however,
the slope of the moments steepens significantly. The steepening starts roughly where r ' ra

which is where the system begins to be strongly anisotropic. We stress again the fact the
regularization of the diverging term changes considerably the underlying density profile in
the Osipkov-Merritt case, as seen from Fig. 4. The behavior of 〈vnr 〉 beyond r = ra should
therefore be treated with caution. We also studied the constant anisotropy case, focusing on
β0 = −0.3. We considered a negative anisotropy to get a well-defined DF for all the mass
models of relevance here. The corresponding relative speed moments are shown in Fig. 14.
They differ from the isotropic ones at all radii, unlike the Osipkov-Merritt ones, which is not
surprising since the constant anisotropy is non zero everywhere.

Regardless of the assumption made on the anisotropy, the Eddington formalism gener-
ically predicts huge differences with respect to the SHM. The various anisotropic models we
used allow us to bracket the theoretical uncertainty on the Eddington method.

5 Conclusion

In this paper, we have reviewed the Eddington inversion formalism, and a few of its generic
extensions to anisotropic systems. This formalism is powerful to consistently include the dy-
namical correlations featured by a self-gravitating system in the DM-search-related velocity-
dependent observables, from a mass model constrained on real data. It represents a strong
improvement over the Maxwellian approximation from both the theoretical and quantitative
points of view, and should therefore become a “next-to-minimal” standard approach to re-
fine the predictions and better quantify the dynamical uncertainties in DM-search predictions
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Figure 12: Moments of the relative velocity distribution, for the Standard Halo Model and the
Eddington formalism (isotropic case). Here we show the DM-only (thin line) and DM+baryons (thick
line) cases, for several mass models from Ref. [39].

pertaining to (sub)Galactic scales. It is also more appealing theoretically than blindly using
ad-hoc fits from cosmological simulations, which likely hide environmental dependencies or
other artifacts. Though not as evolved nor as adaptable to a large variety of potential-density
pairs as the action-angle formalism [48], Eddington’s inversion method still provides a de-
cent description of galactic DM halos [21] from a minimal set of physical assumptions and a
moderate level of technicalities–pending the breakdown of some assumptions (e.g. spherical
symmetry, steady state, smoothness of the dark halo, etc.) that induces additional system-
atic errors which remain to be quantified. Inspecting the self-consistency of this approach is
therefore particularly important at the time of a boost in astrometric precision made possible
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Figure 13: Same as Fig. 12, for the Osipkov-Merritt model with ra = rs.

by the Gaia mission [12], which should provide much better constraints on the DM content of
the MW and its satellites. This is of special relevance in the context of intense DM searches,
as the Eddington-like inversion methods are well suited to better control and further reduce
the astrophysical uncertainties in the signal predictions—e.g. in direct [25, 27, 31], indirect
[33–36], or combined [16] WIMP searches, but not only.

After carefully inspecting the Eddington inversion formalism in Sec. 2, however, we
noticed several theoretical issues related to (i) the radial boundary of the dark halo, impor-
tant to make sense of the constraints on the escape speed [32], and (ii) to the stability of
the phase-space DF, which have been overlooked in the DM-related literature, but which
are actually expected to arise very often when Eddington inverting Galactic mass models
with a baryonic component. We have described and addressed these issues in Sec. 3, and
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Figure 14: Same as Fig. 12, for the constant-β model with β0 = −0.3.

provided generic methods to cure some of the potential inconsistencies. For the divergence
induced in the phase-space DF in the limit of v → vesc (see Sec. 3.1), after explaining why
the diverging term ∝ 1/

√
E should actually not be dropped, we defined two ways of getting

a non-anomalous phase-space DF without spoiling too much the initial mass model, based
either on a priori modifications of the DM profile or on new converging ansätze for the DF it-
self. Properly describing the boundary of the system is particularly important to characterize
the theoretical uncertainties affecting DM-search observables depending on the high-velocity
tail of the DM velocity distribution, like the direct detection rate of GeV- or subGeV-mass
WIMPs. The proposed regularization methods proved efficient in all cases, except in the
case of the anisotropic Osipkov-Merritt model, which cannot consistently accommodate ra-
dial boundaries. As for the stability issue (see Sec. 3.2), we recovered stability criteria for
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both the isotropic case [see Eq. (3.22)] and the anisotropic case [see Eq. (3.23), a criterion
for stability against radial perturbations only]. The former criterion could be complemented
by Eq. (3.24) to ensure a smoother velocity distribution, while this restricts the phase-space
volume beyond the requirement of stability only. We also analyzed these stability condi-
tions to get selection criteria for a Galactic halo based on its relative baryonic content—see
Eq. (3.26) and Fig. 8. This allows one to quickly check whether one’s favorite Galactic mass
model is Eddington invertible or not. The main conclusion of this part is that Eddington’s
inversion (and its anisotropic extensions) cannot blindly apply to any density-potential pair.
Particular attention should be given to moderately cuspy or cored halo profiles, which are
more likely to exhibit ill-defined DFs.

Finally, we have explicitly computed some DM-search velocity-dependent observables to
explicitly compare the Eddington inversion predictions with those derived in the Maxwellian
approximation, in the framework of the McM17 constrained Galactic mass models [39]. In
particular, we have computed observables that depend on the speed moments (and inverse
moments), and on the relative speed moments (and inverse moments). The former ones
regard the direct WIMP detection rate, and the latter ones regard p-wave self-annihilation of
DM. For the self-annihilation case, we have derived a convenient way to express the relative
velocity distribution function for anisotropic systems, reviewed in App. B. We have seen that
the differences are quite sizable in all observables, which somewhat quantifies the associated
level of theoretical uncertainties. We will actually show in a forthcoming study that the
Eddington inversion methods provide a significantly better description of the true DF than
the Maxwellian approximation in zoomed-in cosmological simulations with baryons [21]. This
further motivates applications of this approach to exploit the upcoming Gaia-constrained
mass models in the context of DM searches.
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A Galactic mass models used in this study

For definiteness, we used a selection of mass models from Ref. [39] (the McM17 model hence-
forth), featuring a stellar bulge, two stellar disks, two gas disks and a DM halo. The bulge
profile reads

ρb =
ρ0,b

(1 + r′/r0)α
exp

[
−
(
r′/rb

)2]
, (A.1)

where

r′ =
√
R2 + (z/q)2. (A.2)
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Table 1: Dark matter mass models from Ref. [39].

(α, β, γ) ρs rs ρ� R�

[M�/kpc3] [kpc] [M�/kpc3] [kpc]

(1, 3, 0) 9.09× 107 7.7 1.03× 107 8.21

(1, 3, 0.25) 5.26× 107 9.6 1.01× 107 8.20

(1, 3, 0.5) 3.19× 107 11.7 1.01× 107 8.21

(1, 3, 1) 8.52× 106 19.6 1.01× 107 8.21

The variable q determines the oblateness of the bulge, ρ0,b is a scale density, and r0 and rb

are scale lengths. The stellar disks are modeled by exponential profiles:

ρ∗,d(R, z) =
Σ0

2zd
exp

(
−|z|
zd
− R

Rd

)
, (A.3)

with scale height zd, scale length Rd and central surface density Σ0. The HI and H2 gas disks
are described by

ρg,d(R, z) =
Σ0

4zd
exp

(
−Rm

R
− R

Rd

)
sech2(z/2zd). (A.4)

Finally, the DM halo is characterized by a generalized αβγ profile [98]

ρDM(x) = ρs x
−γ (1 + xα)(γ−β)/α (A.5)

with x = r/rs, where rs is the scale radius. An NFW profile is recovered with (α, β, γ) =
(1, 3, 1). The author of Ref. [39] uses instead α = 1 and β = 3, and fits the data for specific
values of γ. For completeness, we also give the NFW gravitational potential:

φnfw(r) = −4πGρs r
2
s x
−1 ln (1 + x) . (A.6)

The best-fit parameters for the McM17 model are given in Tables 1 and 2.

B Relative velocity distribution function

Here we provide the full derivation of the moments of the relative speed relevant for DM
observables involving two-body processes. The nth moment reads

〈vnr 〉 =

∫
d3~vr |~vr|n Fr(~vr, r) , (B.1)

where the relative velocity distribution function at Galactic radius r already introduced in
Eq. (4.11) is expressed as an integral over the center-of-mass velocity as follows:

Fr(~vr, r) = κ−1(r)

∫
d3~vc f~v(~v1, r) f~v(~v2, r). (B.2)

The normalization function κ(r) has been defined in Eq. (4.7).
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Table 2: Baryonic mass model from Ref. [39], for the NFW DM profile (γ = 1, see Tab. 1).

Parameter Value

Bulge ρ0,b 9.84× 1010 M� kpc−3

r0,b 0.075 kpc

rb 2.1 kpc

q 0.5

α 1.8

Stellar disks Σ0,thin 8.96× 108 M� kpc−2

Rd,thin 2.5 kpc

zd,thin 0.3 kpc

Σ0,thin 1.83× 108 M� kpc−2

Rd,thick 3.02 kpc

zd,thick 0.9 kpc

Gas disks Σ0,HI 5.31× 107 M� kpc−2

Rd,HI 7 kpc

Rm,HI 4 kpc

zd,HI 0.085 kpc

Σ0,H2 2.18× 109 M� kpc−2

Rd,H2 1.5 kpc

Rm,H2 12. kpc

zd,H2 0.045 kpc

B.1 Isotropic system

For an isotropic system, f~v(~v) = f~v(v). Going from ~v1 and ~v2 to center-of-mass and relative
velocities, {

~vc = (~v1 + ~v2)/2
~vr = ~v2 − ~v1,

(B.3)

one can write

〈vnr 〉 = 8π2

∫ vmax
r

vmin
r

dvr v
2
r Fr(~vr, r)~v

n
r . (B.4)

Let us define the angle

θ ≡ (~vc, ~vr) (B.5a)

and µ ≡ cos θ . (B.5b)

From Eq. (B.3), we get 
~v1 = ~vc −

~vr

2

~v2 = ~vc +
~vr

2
,

(B.6)
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hence the associated moduli

v1 = |~v1| =
√
v2

c +
v2

r

4
− vc vr µ (B.7a)

v2 = |~v2| =
√
v2

c +
v2

r

4
+ vc vr µ. (B.7b)

In the Galactic frame, we have v1 6 vesc, which gives the lower and upper bounds on µ,
|µ| 6 µ0, where

µ0(r, vr, vc) =
v2

esc − v2
c − v2

r /4

vcvr
. (B.8)

Eq. (B.3) also implies that 0 6 vc 6 vesc and 0 6 vr 6 2vesc.
Finally, we note that the product f~v(~v1, r) f~v(~v2, r) is conserved in the transformation

µ → −µ. Thanks to this symmetry, it is sufficient to perform the integral over µ between 0
and µ0.

The final expression for the relative velocity DF is therefore

Fr(~vr, r) = 4πκ−1(r)

∫ vesc

0
dvc v

2
c

∫ µ0

0
dµ f~v(v1, r) f~v(v2, r), (B.9)

If f~v(~v, r) is determined self-consistently and normalized to 1 by construction, then the nor-
malization function κ(r) = 1. However, when modifying the DF, typically to account for
the divergence discussed in Sec. 3.1, one needs to compute κ(r) for each value of r and
renormalize the relative velocity DF by hand.

One can also define the distribution function for the relative speed vr = |~vr|. For an
isotropic system, this reads

F 1D
r (vr, r) = 4πv2

rFr(~vr, r). (B.10)

This allows one to readily compute the average of any observable O(vr) via

〈O〉vr(r) = κ−1(r)

∫ 2 vesc(r)

0
dvr F

1D
r (vr, r)O(vr). (B.11)

B.2 Anisotropic extensions

For an anisotropic system, the DF no longer depends on the position and velocity only, but
it also depends on the modulus of the angular momentum, L: f ≡ f(v, L, r). In this case, it
is still convenient to perform a change of variables from ~v1, ~v2 to ~vc, ~vr, provided one uses
the appropriate coordinate systems to describe the quantities of interest.

The anisotropy of the system is characterized by the specific direction defined by the
radial unit vector ~er. Physically, the outer integral on ~vc is equivalent to fixing vc = |~vc| and
defining the angle

αc ≡ (~vc, ~er) (B.12)

in the coordinate system associated with ~er, which is illustrated in the left panel of Fig. 15.
Once ~vc is fixed, the system is invariant under any rotation about ~er, so the associated angular
integral directly gives a factor 2π.
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Figure 15: Coordinate systems for the derivation of the relative velocity DF for an anisotropic
system. Left panel: Frame associated with ~r, in which we define ~vc. Right panel: Coordinate
system associated with ~vc.

To define ~vr, we then use the frame defined by ~vc, illustrated in the right panel of
Fig. 15. There is no loss of generality by assuming that ~er is orthogonal to ~ey. Therefore, in
this frame, the vectors of interest read

~vc = vc ~ez, (B.13a)

~er = cosαc ~ez + sinαc ~ex, (B.13b)

~vr = vr (cos θ ~ez + sin θ cosφ ~ex + sin θ sinφ ~ey) . (B.13c)

In the frame fixed by ~vc, the situation is the same as in the isotropic case, and we can use
the integral bounds derived in the previous section. The DF for the modulus of the relative
velocity is then given by

F 1D
r (vr, r) = 2π κ−1(r) v2

r

∫ vesc

0
dvc v

2
c

∫ 1

−1
dµc

∫ 2π

0
dφ

∫ µ0

−µ0
dµ f~v(v1, L1, r)f~v(v2, L2, r) ,

(B.14)

where µc = cosαc and µ = cos θ. The velocity moduli v1 and v2 are defined in Eq. (B.7),
and

L2
1 =

∣∣∣∣~r × (~vc −
~vr

2

)∣∣∣∣2
= r2

[
v2

r

4
(1− µ2) sin2 φ+

{
−vr

2
µc

√
1− µ2 cosφ−

√
1− µ2

c(vc −
vr

2
µ)
}2
]
,(B.15a)

L2
2 =

∣∣∣∣~r × (~vc +
~vr

2

)∣∣∣∣2
= r2

[
v2

r

4
(1− µ2) sin2 φ+

{vr

2
µc

√
1− µ2 cosφ−

√
1− µ2

c(vc +
vr

2
µ)
}2
]
. (B.15b)

References

[1] J. L. Feng, Dark Matter Candidates from Particle Physics and Methods of Detection,
Ann. Rev. Astron. Astrophys. 48 (Sept., 2010) 495–545, [1003.0904].

– 40 –

https://doi.org/10.1146/annurev-astro-082708-101659
https://arxiv.org/abs/1003.0904


[2] J. Lavalle and P. Salati, Dark matter indirect signatures, Comptes Rendus Physique 13 (July,
2012) 740–782, [1205.1004].

[3] T. Bringmann and C. Weniger, Gamma ray signals from dark matter: Concepts, status and
prospects, Physics of the Dark Universe 1 (Nov., 2012) 194–217, [1208.5481].

[4] R. Essig et al., Dark Sectors and New, Light, Weakly-Coupled Particles, ArXiv e-prints (Oct.,
2013) , [1311.0029].

[5] L. E. Strigari, Galactic searches for dark matter, Phys. Rept. 531 (Oct., 2013) 1–88,
[1211.7090].

[6] K. Freese, M. Lisanti and C. Savage, Colloquium: Annual modulation of dark matter, Reviews
of Modern Physics 85 (Oct., 2013) 1561–1581, [1209.3339].

[7] T. R. Slatyer, Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the
bound on s -wave dark matter annihilation from Planck results, Phys. Rev. D 93 (Jan., 2016)
023527, [1506.03811].

[8] H. Liu, T. R. Slatyer and J. Zavala, Contributions to cosmic reionization from dark matter
annihilation and decay, Phys. Rev. D 94 (Sept., 2016) 063507, [1604.02457].

[9] B. Carr, F. Kühnel and M. Sandstad, Primordial black holes as dark matter, Phys. Rev. D 94
(Oct., 2016) 083504, [1607.06077].

[10] A. M. Green, Astrophysical uncertainties on the local dark matter distribution and direct
detection experiments, Journal of Physics G Nuclear Physics 44 (Aug., 2017) 084001,
[1703.10102].

[11] Gaia Collaboration, T. Prusti, J. H. J. de Bruijne, A. G. A. Brown, A. Vallenari, C. Babusiaux
et al., The Gaia mission, Astron. Astroph. 595 (Nov., 2016) A1, [1609.04153].

[12] and A. G. A. Brown, A. Vallenari, T. Prusti and J. H. J. de Bruijne and, Gaia data release 2.
summary of the contents and survey properties, Astron. Astroph. (apr, 2018) , [1804.09365].

[13] M. J. Reid, K. M. Menten, A. Brunthaler, X. W. Zheng, T. M. Dame, Y. Xu et al.,
Trigonometric Parallaxes of High Mass Star Forming Regions: The Structure and Kinematics
of the Milky Way, Astrophys. J. 783 (Mar., 2014) 130, [1401.5377].

[14] T. Piffl, J. Binney, P. J. McMillan, M. Steinmetz, A. Helmi, R. F. G. Wyse et al., Constraining
the Galaxy’s dark halo with RAVE stars, MNRAS 445 (Dec., 2014) 3133–3151, [1406.4130].

[15] J. Binney, Self-consistent modelling of our galaxy with gaia data, ArXiv e-prints (June, 2017) ,
[1706.01374].

[16] D. G. Cerdeño, M. Fornasa, A. M. Green and M. Peiró, How to calculate dark matter direct
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