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Abstract: In this paper, we are interested in Bayesian inverse problems where either the data
fidelity term or the prior distribution is Gaussian or driven from a hierarchical Gaussian model.
Generally, Markov chain Monte Carlo (MCMC) algorithms allow us to generate sets of samples
that are employed to infer some relevant parameters of the underlying distributions. However,
when the parameter space is high-dimensional, the performance of stochastic sampling algorithms
is very sensitive to existing dependencies between parameters. In particular, this problem arises
when one aims to sample from a high-dimensional Gaussian distribution whose covariance matrix
does not present a simple structure. Another challenge is the design of Metropolis–Hastings
proposals that make use of information about the local geometry of the target density in order
to speed up the convergence and improve mixing properties in the parameter space, while not
being too computationally expensive. These two contexts are mainly related to the presence of
two heterogeneous sources of dependencies stemming either from the prior or the likelihood in the
sense that the related covariance matrices cannot be diagonalized in the same basis. In this work,
we address these two issues. Our contribution consists of adding auxiliary variables to the model in
order to dissociate the two sources of dependencies. In the new augmented space, only one source of
correlation remains directly related to the target parameters, the other sources of correlations being
captured by the auxiliary variables. Experiments are conducted on two practical image restoration
problems—namely the recovery of multichannel blurred images embedded in Gaussian noise and the
recovery of signal corrupted by a mixed Gaussian noise. Experimental results indicate that adding
the proposed auxiliary variables makes the sampling problem simpler since the new conditional
distribution no longer contains highly heterogeneous correlations. Thus, the computational cost of
each iteration of the Gibbs sampler is significantly reduced while ensuring good mixing properties.

Keywords: data augmentation; auxiliary variables; MCMC; Gaussian models; large scale problems;
Bayesian methods

1. Introduction

In a wide range of applicative areas, we do not have access to the signal of interest x ∈ RQ, but
only to some observations z ∈ RN related to x through the following model:

z = D(Hx), (1)
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where H ∈ RN×Q is the observation matrix that may express a blur or a projection and D is the noise
model representing measurement errors. In this paper, we are interested in finding an estimator x̂ of x
from the observations z. This inverse problem arises in several signal processing applications, such as
denoising, deblurring, and tomography reconstruction [1,2].

The common Bayesian procedure for signal estimation consists of deriving estimators from the
posterior distribution that captures all information inferred about the target signal from the collected
data. Given the observation model (1), the minus logarithm of the density posterior distribution reads:

(∀x ∈ RQ) J (x) = − log p(x|z) = Φ(Hx; z) + Ψ(Vx). (2)

Hereabove, Φ is the neg-log likelihood that may take various forms depending on the noise
statistical model D. In particular, if D models an additive Gaussian noise with covariance Λ−1,
it reduces (up to an additive constant) to the least squares function Φ(Hx; z) = 1

2‖Hx − z‖2
Λ.

Other common choices can be found for instance in [3,4]. Moreover, Ψ(V·) is related to some prior
knowledge one can have about x, and V ∈ RM×N is a linear transform that can describe, for example,
a frame analysis [5] or a discrete gradient operator [6]. Within a Bayesian framework, it is related to a
prior distribution of density p(x) whose logarithm is given by log p(x) = −Ψ(Vx).

Monte Carlo inference approaches allow us to have a good description of the target space from a
set of samples drawn from a distribution [7–12]. In particular, these samples can be used to infer useful
statistics such as the mean and the variance. In the context of Bayesian estimation, these techniques
appear useful to compute, for example, the minimum mean square error (MMSE) estimator, which is
equivalent to the posterior mean. In this case, the MMSE estimator is approximated using the empirical
average over the generated samples from the posterior distribution. When the exact expression of the
posterior density is intractable, Markov chain Monte Carlo (MCMC) algorithms have been widely
used to approximate it [13]. These techniques are random variable generators that allow us to draw
samples from complicated distributions. Perhaps the most commonly used MCMC algorithm is
the Metropolis–Hastings (MH), which operates as follows [14]: from a given proposal distribution,
we construct an irreducible Markov chain whose stationary distribution is the sought posterior law
(i.e., samples generated by the algorithm after a suitable burn-in period are distributed according to
desired posterior law). At each iteration t, a decision rule is applied to accept or reject the proposed
sample given by the following acceptance probability:

α(x(t), x̃(t)) = min

(
1,

p(x̃(t)|z)g(x(t)|x̃(t))
p(x(t)|z)g(x̃(t)|x(t))

)
, (3)

where x̃(t) is the proposed sample at iteration t, generated from a proposal distribution with
density g(.|x(t)) that may depend on the current state x(t). Note that when more than one
unknown variable needs to be estimated (e.g., acquisition parameters or prior hyperparameters),
one can iteratively draw samples from the conditional posterior distribution for each variable
given the remaining ones using an MH iteration. This is known as the hybrid Gibbs sampler [15].
High-dimensional models—often encountered in inverse problems (e.g., in multispectral remote sensing
applications [16])—constitute a challenging task for Bayesian inference problems. While many popular
sampling algorithms have been widely used to fit complex multivariable models in small-dimensional
spaces [17–22], they generally fail to explore the target distribution efficiently when applied to large-scale
problems, especially when the variables are highly correlated. This may be due to the poor mixing
properties of the Markov chain or to the high computational cost of each iteration [17].

In this work, we propose a novel approach based on a data augmentation strategy [23] which
aims at overcoming the limitations of standard Bayesian sampling algorithms when facing large-scale
problems. The remainder of this paper is organized as follows. In Section 2, we discuss the main
difficulties encountered in standard sampling methods for large-scale problems. We show how the
addition of auxiliary variables to the model can improve their robustness with respect to these issues.
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The core of our contribution is detailed in Section 3. We first give a complete description of the
proposed approach in the case of Gaussian noise, and we study its extension to scale mixtures of
Gaussian models. Furthermore, we demonstrate how the proposed approach can facilitate sampling
from Gaussian distributions in Gibbs algorithms. Then, some computational issues arising in the
proposed Bayesian approach are discussed. Sections 4 and 5 are devoted to the experimental validation
of our method. In Section 4, we show the advantages of the proposed approach in dealing with
high-dimensional models involving highly correlated variables over a dataset of multispectral images
affected by blur and additive Gaussian noise. In Section 5, we test the performance of our method
in sampling from large-scale Gaussian distributions through an application to image recovery under
two-term mixed Gaussian noise. Finally, we give some conclusions and perspectives in Section 6.

2. Motivation

2.1. Sampling Issues in High-Dimensional Space

MCMC sampling methods may face two main difficulties when applied to large-scale inverse
problems. First, except for particular cases (e.g., circulant observation matrix), the structure of the
observation model that links the unknown signal to the observations usually makes the estimation
of the parameters of the posterior distribution quite involved. Second, even with simple models,
the posterior distribution may still be difficult to sample from directly or to explore efficiently using
standard sampling algorithms. As a specific case, this problem arises for Gaussian distributions if the
problem dimension is too high [24]. It can also arise in MH algorithms when sophisticated proposal
rules are employed with the aim of coping with both the high dimensionality and the strong correlation
existing between the target parameters [22]. In what follows, we will give more details about these
two contexts.

2.1.1. Sampling from High-Dimensional Gaussian Distribution

Let us focus on the problem of sampling from a multivariate Gaussian distribution with a given
precision matrix G ∈ RQ×Q. This problem emerges in many applications, such as linear inverse
problems involving Gaussian or hierarchical Gaussian models. More precisely, let us consider the
following linear model:

z = Hx + w, (4)

where w is RN-valued, and let us assume that conditionally to some latent variables, w and x are
drawn from Gaussian distributions N (0N , Λ−1), and N (mx, G−1

x ), respectively, where mx ∈ RQ,
Λ ∈ RN×N , and Gx ∈ RQ×Q are positive semi-definite matrices. In the following, when not mentioned,
the Gaussian law can be degenerated; that is, the precision matrix is semi-definite positive but not
with full rank. In this case, (···)−1 denotes the generalized inverse. The parameters of these Gaussian
distributions may be either fixed or unknown (i.e., involving some unknown hyperparameters such as
regularization or acquisition parameters). It follows that the posterior distribution of x is Gaussian,
with mean m ∈ RQ and precision matrix G ∈ RN×N defined as follows:

G = H>ΛH + Gx (5)

m = G−1
(

H>Λz + Gxmx

)
. (6)

A common solution to sample from N (m, G−1) is to use the Cholesky factorization of the
covariance or the precision matrix G [25]. However, when implemented through a Gibbs sampler, this
method is of limited interest. First, the precision matrix G may depend on the unknown parameters
of the model and may thus take different values along the algorithm. Thereby, spending such high
computational time at each iteration of the Gibbs sampler to compute the Cholesky decomposition
of the updated matrix may be detrimental to the convergence speed of the Gibbs sampler. Another
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concern is that when dealing with high dimensional problems, we generally have to face not only
computational complexity issues but also memory limitations. Such problems can be alleviated
when the matrix presents some specific structures (e.g., circulant [26,27] or sparse [28]). However, for
more complicated structures, the problem remains critical, especially when H>ΛH and Gx cannot
be diagonalized in the same basis. Other recently proposed algorithms for sampling Gaussian
distributions in high dimension follow a two-step perturbation-optimization approach [24,29–33],
which can be summarized as follows:

• Perturbation: Draw a Gaussian random vector n1 ∼ N (0Q, G).
• Optimization: Solve the linear system Gn2 = n1 + H>Λz + Gxmx.

The solution to the above linear system can be approximated using iterative methods such as
conjugate gradient algorithms, leading to an approximate sample of the sought distribution [30,31].
This issue has been considered in [32] by adding a Metropolis step in the sampling algorithm. In [24,33],
the authors propose to reduce the computational cost by sampling along mutually conjugate directions
instead of the initial high-dimensional space.

2.1.2. Designing Efficient Proposals in MH Algorithms

Non-Gaussian models arise in numerous applications in inverse problems [34–37]. In this context,
the posterior distribution is non-Gaussian and does not generally follow a standard probability model.
In this respect, MH algorithms are good tools for exploring such posteriors, and hence for drawing
inferences about models and parameters. However, the challenge for MH algorithms is constructing a
proposal density that provides a good approximation of the target density while being inexpensive to
manipulate. Typically, in large-scale problems, the proposal distribution takes the form of a random
walk (RW); that is, in each iteration, the proposal density g(.|x(t)) in (3) is a Gaussian law centered at the
current state x(t) and with covariance matrix ε2Q(x(t)). Moreover, ε is a positive constant whose value
is adjusted so that the acceptance probability in (3) is bounded away from zero at convergence [17].
Other sampling algorithms incorporate information about the derivative of the logarithm of the target
distribution to guide the Markov chain toward the target space where samples should be mostly
concentrated. For instance, when the target density is differentiable, one can use Langevin-based
algorithms where the mean of the Gaussian proposal density is replaced with one iteration of a
preconditioned gradient descent algorithm as follows [20,22,38–41]:

x̃(t) ∼ N
(

x(t) − ε2

2
Q(x(t))−1∇J (x(t)), ε2Q(x(t))−1

)
. (7)

In (7), ∇J is the gradient of J , ε is a positive constant, and Q is a symmetric definite positive
matrix that captures possible correlations between the coefficients of the signal. Note that some
advanced versions of Langevin-based algorithms have been proposed to address problems with
non-smooth laws [42,43]. It is worth noting that the choice of the scale matrices

(
Q(x(t))

)
t

may deeply
affect the efficiency of the aforementioned algorithms [22]. In fact, an inappropriate choice of Q may
alter the quality of the Markov chain, leading to very correlated samples and thereby biased estimates.
Moreover, computationally cheap matrices are also preferable, especially in high-dimensional spaces.
In the case of low-dimensional problems and when the coefficients of the signal are not highly
correlated, the standard RW and Metropolis-adapted Langevin algorithm (MALA) obtained for
Q ≡ IQ achieve overall good results. For instance, in the context of denoising problems with
uncorrelated Gaussian noise, when the coefficients of the signal are assumed to be statistically
independent in the prior, they can either be sampled independently using RW or jointly by resorting
to MALA. However, these algorithms may be inaccurate for large-scale problems, especially when
the coefficients of the signal exhibit high correlations [22]. In this case, the design of a good proposal
often requires consideration of the curvature of the target distribution. More sophisticated (and thus
more computationally expensive) scale matrices should be chosen to drive the chain in the directions
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that reflect the dependence structure. Optimally, the curvature matrix should be chosen such that it
adequately captures two kinds of dependencies: correlation over the observations specified by the
observation model, and correlation between different coefficients of the target signal specified by the
prior law. For instance, Q can be set to the Hessian matrix of the minus logarithm of the posterior
density in the current state [20,21], or to the Fisher matrix (especially when the Hessian matrix is not
definite positive [22,41]) or to the empirical covariance matrix computed according to the previous
states of the Markov chain [44]. When the minus-log of the target density can be expressed as in (2),
good candidates of the curvature matrix take the following form:

Q = H>ΛH + V>ΩV , (8)

where Λ and Ω are semi-definite positive matrices. Feasible numerical factorization of Q can be
ensured if H>ΛH and V>ΩV are diagonalizable in the same basis. Otherwise, the use of the
full matrix (8) in the scheme (7) remains generally of limited interest, especially for large-scale
problems where the manipulation of the resulting proposal generally induces a high computational
complexity altering the convergence speed. Alternatively, under mild conditions on the posterior
density, the Majorize–Minimize strategy offers a high flexibility for building curvature matrices with a
lower computational cost (e.g., diagonal matrices, bloc-diagonal matrices, circulant, etc.) [40]. However,
it should be pointed out that MH algorithms with too-simple preconditioning matrices resulting from
rough approximations of the posterior density may fail to explore the target space efficiently. Therefore,
the scale matrix Q should be adjusted to achieve a good tradeoff between the computational complexity
induced in the algorithm and the accuracy/closeness of the proposal to the true distribution.

2.2. Auxiliary Variables and Data Augmentation Strategies

It is clear that the main difficulty arising in the aforementioned sampling problems is due to the
intricate form of the target covariance matrix making difficult the direct sampling or the construction
of a good MH proposal that mimics the local geometry of the target law. More specifically, there
are generally heterogeneous types of dependencies between the coefficients of the signal, coming
either from the likelihood or from the prior information. For instance, the observation matrix H in the
likelihood may bring high dependencies between distant coefficients, even if the latter are assumed to
be statistically dependent in the prior law. One solution is to address the problem in another domain
where H can be easily diagonalized (i.e., the coefficients of the signal become uncorrelated in the
likelihood). However, if one also considers the prior dependencies, this strategy may become inefficient,
especially when the prior covariance matrix cannot be diagonalized in the same basis as H, which is the
case in most real problems. One should therefore process these two sources of correlations separately.

To improve the mixing of sampling algorithms, many works have proposed the elimination of
one of these sources of correlation directly related to x by adding some auxiliary variables to the initial
model, associated with a given conditional distribution such that simulation can be performed in
a simpler way in the new larger space. Instead of simulating directly from the initial distribution,
a Markov chain is constructed by alternately drawing samples from the conditional distribution of
each variable, which reduces to a Gibbs sampler in the new space. This technique has been used in
two different statistical literatures: data augmentation [45] and auxiliary variables strategies [46]. It is
worth noting that the two methods are equivalent in their general formulation, and the main difference
is often related to the statistical interpretation of the auxiliary variable (unobserved data or latent
variable) [23]. In the following, we will use the term data augmentation (DA) to refer to any method
that constructs sampling algorithms by introducing auxiliary variables. Some DA algorithms have
been proposed in [47–53]. Particular attention has been focused on the Hamiltonian MCMC (HMC)
approach [22,54], which defines auxiliary variables based on physically-inspired dynamics.

In the following, we propose to alleviate the problem of heterogeneous dependencies by resorting
to a DA strategy. More specifically, we propose to add some auxiliary variables u ∈ RJ with
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predefined conditional distribution of density p(u|x, z) = p(u|x) so that the minus logarithm of
the joint distribution density p(x, u|z) can be written as follows:

J (x, u) = J (u|x) + J (x) , (9)

where J (u|x) = − log p(u|x) up to an additive constant. Two conditions should be satisfied by
p(x, u|z) for the DA strategy to be valid:

(C1)
∫
RJ p(x, u|z) du = p(x|z),

(C2)
∫
RQ p(x, u|z) dx = p(u|z),

where p(u|z) should define a valid probability density function (i.e., nonnegative and with integral
with respect to u equal to 1). In fact, the importance of Condition (C1) is obvious, because the latent
variable is only introduced for computational purposes and should not alter the considered initial
model. The need for the second requirement (C2) stems from the fact that p(x, u|z) should define the
density of a proper distribution. Note that

• the first condition is satisfied thanks to the definition of the joint distribution in (9), provided that
p(u|x, z) is a density of a proper distribution;

• for the second condition, it can be noticed that if the first condition is met, Fubini–Tonelli’s theorem
allows us to claim that∫

RJ

(∫
RQ

p(x, u|z) dx
)

du =
∫
RQ

(∫
RJ

p(x, u|z) du
)

dx =
∫
RQ

p(x|z) dx = 1. (10)

This shows that p(u|z) as defined in (C2) is a valid probability density function.

Instead of simulating directly fromPx|z, we now alternatively draw (in an arbitrary order) samples
from the conditional distributions of the two variables x and u of respective densities Px|u,z and Pu|x,z.
This simply reduces to a special case of a hybrid Gibbs sampler algorithm with two variables, where
each iteration t is composed of two sampling steps which can be expressed as follows:

• Sample u(t+1) from Pu|x(t),z;

• Sample x(t+1) from Px|u(t+1),z.

Under mild technical assumptions [9,55], the constructed chain
(

x(t), u(t)
)

t>0
can be proved to

have a stationary distribution Px,u|z. The usefulness of the DA strategy is mainly related to the fact that
with an appropriate choice of p(u|x, z), drawing samples from the new conditional distributions Px|u,z
and Pu|x,z is much easier than sampling directly from the initial distribution Px|z. Let us emphasize
that, for the sake of efficiency, the manipulation of p(u|x, z) must not induce a high computation cost in
the algorithm. In this work, we propose the addition of auxiliary variables u to the model such that the
dependencies resulting from the likelihood and the prior are separated; that is, J (u|x) is chosen in such
a way that only one source of correlations remains related directly to x in p(x, u|z), the other sources
of correlations only intervening through the auxiliary variables u and z. Note that the advantage
of introducing auxiliary variables in optimization or sampling algorithms has also been illustrated
in several works in the image processing literature, related to half quadratic approaches [26,56–60].
This technique has also been considered in [61] in order to simplify the sampling task by using a
basic MH algorithm in a maximum likelihood estimation problem. Finally, in [62], a half-quadratic
formulation was used to replace the prior distribution, leading to a new posterior distribution from
which inference results are deduced.

The contribution of our work is the proposal of an extended formulation of the data augmentation
method that was introduced in [60] in the context of variational image restoration under uncorrelated
Gaussian noise. Our proposal leads to a novel acceleration strategy for sampling algorithms in
large-scale problems.
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3. Proposed Approach

In this section, we discuss various scenarios typically arising in inverse problems and we explain
how our approach applies in these contexts.

3.1. Correlated Gaussian Noise

Let us consider the linear observation model (4) when the noise term w is assumed to be Gaussian,
additive, and independent from the signal that is w ∼ N (0N , Λ−1), with Λ ∈ RN×N a symmetric
semi-definite positive precision matrix that is assumed to be known. In this context, the minus
logarithm of the posterior density takes the following form:

(∀x ∈ RQ) J (x) =
1
2
(Hx− z)> Λ (Hx− z) + Ψ(Vx). (11)

Simulating directly from this distribution is generally not possible, and standard MCMC methods
may fail to explore it efficiently due to the dependencies between signal coefficients [22]. In particular,
the coupling induced by the matrix H>ΛH may hinder the construction of suitable proposals when
using MH algorithms. For example, when V = IQ and Ψ(x) = ∑Q

i=1 ψi(xi), RW and standard
MALA algorithms may behave poorly, as they do not account for data fidelity dependencies, while a
preconditioned MALA approach with full curvature matrices may exhibit high computational load
due to the presence of heterogeneous dependencies [39].

In the following, we propose the elimination of the coupling induced by the linear operators
(H, Λ) by adding auxiliary variables. Since the data fidelity term is Gaussian, a natural choice is to
define p(u|x, z) as a Gaussian distribution with mean Ax and covariance matrix C:

p(u|x, z) =
det(C)−1/2

(2π)J/2 exp
(
−1

2
‖C−1/2 (u−Ax) ‖2

)
, (12)

where C ∈ RJ×J is a symmetric positive definite covariance matrix and A ∈ RJ×Q. Then, the joint
distribution satisfies the two conditions (C1) and (C2) defined in Section 2, and its minus logarithm
has the following expression:

(∀x ∈ RQ)(∀u ∈ RJ) J (x, u) =
1
2

(
x>Yx + z>Λz + u>C−1u− 2x>

(
H>Λz + A>C−1u

))
+ Ψ(Vx), (13)

with
Y = H>ΛH + A>C−1A. (14)

The expression in (12) yields the sampling scheme:

(∀t ∈ N) u(t+1) = Ax(t) + C1/2n(t), (15)

with n(t) ∼ N (0J , IJ). The efficiency of the DA strategy is thus highly related to the choice of the
matrices A and C. Under the requirement that C is positive definite, the choice of (A, C) is subjective
and is related to specifying the source of heterogeneous dependencies that one wants to eliminate in
the target distribution based on the properties of H, Λ, V, and Ψ. More specifically, one should identify
if the main difficulty stems from the structure of matrix H>ΛH or only from the non-trivial form of
the precision matrix Λ. In what follows, we will elaborate different solutions according to the type of
encountered difficulty.

Alternative I: Eliminate the Coupling Induced by Λ

Let us first consider the problem of eliminating the coupling induced by matrix Λ. This problem
is encountered for example for Model (5) with circulant matrices H and Gx and with Λ 6= IN , which
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induces further correlation when passing to the Fourier domain. In this context, we propose the
elimination of the correlations induced by Λ by setting

Y =
1
µ

H>H , (16)

where µ > 0 is such that µ‖Λ‖S < 1, where ‖ · ‖S denotes the spectral norm. This is equivalent to
choosing A and C such that

A>C−1A = H>
(

1
µ

IN −Λ

)
H. (17)

Note that the condition over µ allows toguarantees that C is positive definite. Under (16),
the minus logarithm of the conditional distribution of x given z and u reads, up to an additive constant:

(∀x ∈ RQ)(∀u ∈ RJ) J (x|u) = 1
2µ
‖Hx‖2 − x>

(
H>Λz + A>C−1u

)
+ Ψ(Vx). (18)

Let us discuss the application of the hybrid Gibbs sampling algorithm from Section 2 to this
particular decomposition. The sampling scheme (15) yields:

(∀t ∈ N) A>C−1u(t+1) = A>C−1Ax(t) + A>C−1/2n(t) , (19)

where n(t) ∼ N (0J , IJ). Since A and C satisfy (17), this leads to:

(∀t ∈ N) A>C−1u(t+1) = H>
(

1
µ

IN −Λ

)
Hx(t) + A>C−1/2n(t). (20)

We can remark that for every t ∈ N, A>C−1/2n(t) follows the centered Gaussian distribution with

covariance matrix H>
(

1
µ

IN −Λ

)
H. It follows that

(∀t ∈ N∗) A>C−1u(t) = H>v(t) , (21)

where
(∀t ∈ N) v(t+1) ∼ N

(
ΓHx(t), Γ

)
, (22)

and Γ =
1
µ

IN −Λ is definite positive by construction. Then, the resulting algorithm can be viewed as

a hybrid Gibbs sampler, associated to the minus logarithm of the conditional distribution of x given z
and a new auxiliary variable v ∼ N (ΓHx, Γ):

(∀x ∈ RQ) J (x|v) = 1
2µ
‖Hx− µ (Λz + v) ‖2 + Ψ(Vx). (23)

The main steps of the proposed Gibbs sampling algorithm are given in Algorithm 1. The appealing
advantage of this algorithm with respect to a Gibbs sampler which would be applied directly to
Model (5) when H and Gx are diagonalizable in the same domain is that it allows easy handling of the
case when Λ is not equal to a diagonal matrix having identical diagonal elements.
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Algorithm 1 Gibbs sampler with auxiliary variables in order to eliminate the coupling induced by Λ.

Initialize: x(0) ∈ RQ, v(0) ∈ RN , µ > 0 such that µ‖Λ‖S < 1

1: for t = 0, 1, . . . do

2: Generate v(t+1) ∼ N
(

ΓHx(t), Γ
)

where

Γ =
1
µ

IN −Λ

3: Generate x(t+1) ∼ Px|v(t+1),z

4: end for

Note that minimizing (23) can be seen as a restoration problem with an uncorrelated noise
of variance µ. It can be expected that Step 3 in Algorithm 1 can be more easily implemented in the
transform domain where H and V are diagonalized, when this is possible (see Section 5 for an example)

Alternative II: Eliminate the Coupling Induced by H>ΛH

In a large class of regularized models, H and V have different properties. While H almost reflects
a blur, a projection, or a decimation matrix, V may model a wavelet transform or a discrete gradient
operator. Such difference in their properties induces a complicated structure of the posterior covariance
matrix. To address such cases, we propose the elimination of the source of correlations related to x

through H>ΛH + A>C−1A, by setting Y =
1
µ

IQ, so that A and C satisfy

A>C−1A =
1
µ

IQ −H>ΛH, (24)

where µ > 0 is such that µ‖H>ΛH‖S < 1, so that C is positive definite. It follows that the minus
logarithm of the conditional distribution of x given z and u is defined up to an additive constant as

(∀x ∈ RQ)(∀u ∈ RJ) J (x|u) = 1
2µ
‖x‖2 − x>

(
H>Λz + A>C−1u

)
+ Ψ(Vx). (25)

Let us make the following change of variables within the Gibbs sampling method:

(∀t ∈ N∗) v(t) = A>C−1u(t).

According to (15) and (24), we obtain

(∀t ∈ N) v(t+1) =

(
1
µ

IQ −H>ΛH
)

x(t) + A>C−1/2n(t) , (26)

where n(t) ∼ N (0J , IJ). Let us define Γ =
1
µ

IQ−H>ΛH, which is positive definite. Since A>C−1/2n(t)

follows a zero-mean Gaussian distribution with covariance matrix Γ, then

(∀t ∈ N) v(t+1) ∼ N
(

Γx(t), Γ
)

, (27)

and the new target conditional distribution reads

(∀x ∈ RQ) J (x|v) = 1
2µ
‖x− µ(v + H>Λz)‖2 + Ψ(Vx). (28)

The proposed Gibbs sampling algorithm is then summarized by Algorithm 2.
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Algorithm 2 Gibbs sampler with auxiliary variables in order to eliminate the coupling induced by
H>ΛH.

Initialize: x(0) ∈ RQ, v(0) ∈ RQ, µ > 0 such that µ‖H>ΛH‖ < 1

1: for t = 0, 1, . . . do

2: Generate v(t+1) ∼ N
(

Γx(t), Γ
)

where

Γ =
1
µ

IQ −H>ΛH

3: Generate x(t+1) ∼ Px|v(t+1),z

4: end for

It can be seen that heterogeneous dependencies initially existing in (11), carried by the likelihood
and the prior operators, are now dissociated in the new target distribution (28). Likelihood-related
correlations are no longer attached directly to the target signal. They intervene in the conditional law
only through the auxiliary variable v and the observation z. In other words, the original problem
reduces to solving a denoising problem where the variance of the Gaussian noise is µ. Thereby, the new
target distribution (28) is generally easier to sample from compared with the initial one. In particular,
one can sample the components independently when the coefficients of the signal are independent
in the prior. Otherwise, if Ψ is a smooth function, one can use a Langevin-based MCMC algorithm.
For instance, it may be possible to construct an efficient curvature matrix that accounts for the prior
correlation and that can be easily manipulated.

Table 1 summarizes the two different cases we have presented here. We would like to emphasize
that the approach we propose for adding auxiliary variables according to the structure of the matrix H
and Λ is sufficiently generic so that it covers a wide diversity of applications.

Table 1. Different alternatives for adding auxiliary variables.

Problem Proposed Auxiliary Variable Resulting Conditional Density
Source p(x|z, v) ∝ exp(−J (x|v))

Λ v ∼ N
((

1
µ

IN −Λ

)
Hx,

1
µ

IN −Λ

)
J (x|v) = 1

2µ
‖Hx− µ (Λz + v) ‖2 + Ψ(Vx)

H>ΛH v ∼ N
((

1
µ

IQ −H>ΛH
)

x,
1
µ

IQ −H>ΛH
)

J (x|v) = 1
2µ
‖x− µ(v + H>Λz)‖2 + Ψ(Vx)

It is worth noting that the auxiliary variable could be introduced in the data fidelity term as
well as in the prior information. The derivation of the proposed method in (13) allows us to identify
classes of models for which our approach can be extended. Obviously, the key requirement is that
the term which should be simplified can be written as a quadratic function with respect to some
variables. Hence, without completely relaxing the Gaussian requirement, we can extend the proposed
method to Gaussian models in which some hidden variables control the mean and/or the variance.
This includes, for example, scale mixture of Gaussian models [63,64] such as the alpha-stable family
(including the Cauchy distribution), the Bernoulli Gaussian model and the generalized Gaussian
distributions, and also Gaussian Markov random fields [55]. In Section 3.2, we will investigate the
case of the scale mixture of Gaussian models. When both the likelihood and the prior distribution
are Gaussian conditionally to some parameters, the proposed method can be applied to each term as
explained in Section 3.3.

Another point to pay attention to is the sampling of the auxiliary variable v. In particular, in
Algorithm 2, we should be able to sample from the Gaussian distribution whose covariance matrix is

of the form
(

1
µ

IQ −H>ΛH
)

, which is possible for a large class of observation models as discussed in

Section 3.4.
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3.2. Scale Mixture of Gaussian Noise

3.2.1. Problem Formulation

Let us consider the following observation model:

(∀i ∈ {1, . . . , N}) zi = [Hx]i + wi , (29)

such that for every i ∈ {1, . . . , N}, {
wi = 0 if σi = 0

wi ∼ N (0, σ2
i ) if σi > 0

, (30)

where (σ1, . . . , σN) are independent random variables distributed on R+ according to Pσ. Different
forms of the mixing distribution Pσ lead to different noise statistics. In particular, the Cauchy noise is
obtained when σ2

1 , . . . , σ2
N are random variables following an inverse Gamma distribution. Let σ =

[σ1, . . . , σN ]
>. By assuming that x and σ are independent, the joint posterior distribution of x and σ is

given by:
p(x, σ | z) = p(x | z)p(σ | z). (31)

In such a Bayesian estimation context, a Gibbs sampling algorithm is generally adopted to sample
alternatively from the distributions Px|σ,z and Pσ|x,z.

In the following, we assume that the set S0 = {σ1 = σ2 = . . . = σN = 0} has a zero probability
given the vector of observations z. Note that by imposing such rule, we ensure that at each iteration t
of the Gibbs algorithm, σ(t) 6= 0N almost surely.

Since sampling from Px|σ,z is supposed to be intractable, we propose the addition of auxiliary
variables v ∈ RJ that may depend on the variables of interest x and σ according to a given conditional
distribution density p(v|x, σ, z) = p(v|x, σ) which satisfies the following conditions:

1.
∫
RJ p(x, σ, v|z)dv = p(x, σ|z),

2.
∫
RQ

∫
RN p(x, σ, v|z) dxdσ = p(v|z),

where p(v|z) should be a valid probability density function.
Using the same arguments as in Section 2.2, these two properties are satisfied provided that

p(v|x, σ, z) defines a proper probability density function. It follows that the initial two-step Gibbs
iteration is replaced by the following three sampling steps. First, sample v(t+1) from Pv|x(t),σ(t),z then

sample x(t+1) from Px|σ(t),v(t+1),z, and finally sample σ(t+1) from Pσ|x(t+1),v(t+1),z.

3.2.2. Proposed Algorithms

Let D(σ) be the diagonal matrix whose diagonal elements are given by

(∀i ∈ {1, . . . , N}) D(σ)i,i =

{
0 if σi = 0

(σi)
−2 if σi > 0.

(32)

Note that, since S0 has zero probability, we almost surely have

‖D(σ)‖S > 0. (33)

• Suppose first that there exists a constant ν > 0 such that

(∀t > 0) (∀i ∈ {1, . . . , N}) ν 6 σ
(t)
i . (34)
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Then, results in Section 3.1 with a Gaussian noise can be extended to scale mixture of Gaussian
noise by substituting—at each iteration t—D(t) for Λ, and by choosing µ < ν2 in Algorithm 1
and µ‖H‖2

S < ν2 in Algorithm 2. The only difference is that an additional step must be added to
the Gibbs algorithm to draw samples of the mixing variables σ1, . . . , σN from their conditional
distributions given x, v, and z.

• Otherwise, when ν > 0 satisfying (34) does not exist, results in Section 3.1 remain also valid
when, at each iteration t, for a given value of σ(t), we replace Λ by D(σ(t)). However, there is
a main difference with respect to the case when ν > 0, which is that µ depends on the value of
the mixing variable σ(t) and hence can take different values along the iterations. Subsequently,
µ(σ) will denote the chosen value of µ for a given value of σ. Here again, two strategies can be
distinguished for setting

(
µ(σ(t))

)
t∈N

, depending on the dependencies one wants to eliminate

through the DA strategy.

Alternative I: Eliminate the Coupling Induced by D(σ(t))

A first option is to choose, at each iteration t, µ(σ(t)) positive such that

µ(σ(t)) =
ε

‖D(σ(t))‖S
= ε

(
min(σ(t)

i )i∈I(t)
)2

, (35)

with ε ∈]0, 1[ and
I(t) =

{
i ∈ {1, . . . , N} | σ

(t)
i > 0

}
. (36)

The auxiliary variable is then drawn as follows:

v(t+1) ∼ N
(

Γ(σ(t))Hx(t), Γ(σ(t))
)

, (37)

where Γ(σ(t)) =
1

µ(σ(t))
IN −D(σ(t)) is positive definite by construction. The minus logarithm of the

posterior density p(x|σ, v, z) is given by

(∀x ∈ RQ) J (x|σ, v) =
1

2µ(σ)
‖Hx− µ(σ)

(
v + D(σ)z

)
‖2 + Ψ(Vx). (38)

Alternative II: Eliminate the Coupling Induced by H>D(σ(t))H

Similarly, in order to eliminate the coupling induced by the full matrix H>D(σ(t))H, µ(σ(t)) can
be chosen at each iteration t ∈ N so as to satisfy

µ(σ) =
ε

‖H‖2
S‖D(σ)‖S

=
ε

‖H‖2
S

(
min(σ(t)

i )i∈I(t)
)2

, (39)

with ε ∈]0, 1[ and I(t) is given by (36). Then, the auxiliary variable is drawn as

v(t+1) ∼ N
(

Γ(σ(t))x(t), Γ(σ(t))
)

, (40)

where Γ(σ(t)) =
1

µ(σ(t))
IQ −H>D(σ(t))H is positive definite. The minus logarithm of the posterior

density p(x|σ, v, z) then reads

(∀x ∈ RQ) J (x|σ, v) =
1

2µ(σ)
‖x− µ(σ)

(
v + H>D(σ)z

)
‖2 + Ψ(Vx). (41)
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It is worth noting that σ and v are two dependent random variables conditionally to both x and z.
The resulting Gibbs samplers, corresponding to Alternatives I and II, respectively, are summarized in
Algorithms 3 and 4.

Algorithm 3 Gibbs sampler with auxiliary variables in order to eliminate the coupling induced by
D(σ) in the case of a scale mixture of Gaussian noise.

Initialize: x(0) ∈ RQ, v(0) ∈ RN , σ(0) ∈ RN
+ , 0 < ε < 1, µ(σ(0)) = ε

(
min(σ(0)

i )i∈I(0)
)2

1: for t = 0, 1, . . . do

2: Generate

v(t+1) ∼ N
(

Γ(σ(t))Hx(t), Γ(σ(t))
)

where Γ(σ(t)) =
1

µ(σ(t))
IN −D(σ(t))

3: Generate x(t+1) ∼ Px|v(t+1),σ(t),z

4: Generate σ(t+1) ∼ Pσ|x(t+1),v(t+1),z

5: Set µ(σ(t+1)) = ε
(

min(σ(t+1)
i )i∈I(t+1)

)2

6: end for

Algorithm 4 Gibbs sampler with auxiliary variables in order to eliminate the coupling induced by
H>D(σ)H in the case of a scale mixture of Gaussian noise.

Initialize: x(0) ∈ RQ, v(0) ∈ RQ, σ(0) ∈ RN
+ , 0 < ε < 1, µ(σ(0)) = ε ‖H‖−2

S

(
min(σ(0)

i )i∈I(0)
)2

1: for t = 0, 1, . . . do

2: Generate

v(t+1) ∼ N
(

Γ(σ(t))x(t), Γ(σ(t))
)

where Γ(σ(t)) =
1

µ(σ(t))
IQ −H>D(σ(t))H

3: Generate x(t+1) ∼ Px|v(t+1),σ(t),z

4: Generate σ(t+1) ∼ Pσ|x(t+1),v(t+1),z

5: Set µ(σ(t+1)) = ε‖H‖−2
S

(
min(σ(t+1)

i )i∈I(t+1)

)2

6: end for

3.2.3. Partially Collapsed Gibbs Sampling

It can be noted that it is generally complicated to sample from Pσ|x,v,z due to the presence of µ(σ)

and D(σ) in the conditional distribution of v. One can replace this step by sampling from Pσ|x,z; that
is, directly sampling σ from its marginal posterior distribution with respect to v and conditionally to x
and z. In this case, we say that we are partially collapsing v in the Gibbs sampler. One of the main
benefits of doing so is that, conditionally to x and z, σ has independent components. However, as σ is
sampled independently from v, the constructed Markov chain

(
x(t), σ(t), v(t))

t>0 may have a transition
kernel with an unknown stationary distribution [65]. This problem can also be encountered when the
auxiliary variable v depends on other unknown hyperparameters changing along the algorithm, such
as prior covariance matrix or regularization parameter when the auxiliary variable is added to the
prior instead of the likelihood. However, there are some rules based on marginalization, permutation,
and trimming that allow the conditional distributions in the standard Gibbs sampler to be replaced
with conditional distributions marginalized according to some variables while ensuring that the target
stationary distribution of the Markov chain is maintained. The resulting algorithm is known as the
Partially Collapsed Gibbs Sampler (PCGS) [65]. Although this strategy can significantly decrease the
complexity of the sampling process, it must be implemented with care to guarantee that the desired
stationary distribution is preserved. Applications of PCGS algorithms can be found in [66–68].

Assume that, in addition to x, σ, v, we have a vector Θ ∈ RP of unknown parameters to be
sampled. Note that p(x, σ, Θ, v|z) should be integrable with respect to all the variables. Following [65],
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we propose the use of a PCGS algorithm that allows us to replace the full conditional distribution
Pσ|x,v,Θ,z with its conditional distribution Pσ|x,Θ,z without affecting the convergence of the algorithm
to the target stationary law. Algorithm 5 shows the main steps of the proposed sampler. It should be
noted that, unlike the standard Gibbs algorithm, permuting the steps of this sampler may result in a
Markov chain with an unknown stationary distribution.

Algorithm 5 PCGS in the case of a scale mixture of Gaussian noise.

Initialize: x(0) ∈ RQ, v(0) ∈ RQ, σ(0) ∈ RN
+ , Θ(0) ∈ RP

1: for t = 0, 1, . . . do

2: For all i ∈ {1, . . . , N}, generate σ
(t+1)
i ∼ Pσi |x(t),Θ(t),z

3: Generate Θ(t+1) ∼ PΘ|x(t),σ(t+1),z

4: Set µ(σ(t)) and Γ(σ(t))

5: Generate v(t+1) ∼ Pv|x(t),σ(t+1),Θ(t+1),z

6: Generate x(t+1) ∼ Px|v(t+1),σ(t+1),Θ(t+1),z

7: end for

3.3. High-Dimensional Gaussian Distribution

The proposed DA approach can also be applied to the problem of drawing random variables
from a high-dimensional Gaussian distribution with parameters m and G as defined in (5) and (6).
The introduction of auxiliary variables can be especially useful in facilitating the sampling process in a
number of problems that we discuss below. In order to make our presentation clearer, an additional
index will be added to the variables v and µ, introduced in Section 2.

• If the prior precision matrix Gx and the observation matrix H can be diagonalized in the same
basis, it can be of interest to add the auxiliary variable v1 in the data fidelity term. Following
Algorithm 1, let µ1 > 0 such that µ1‖Λ‖S < 1 and

v1 ∼ N
((

1
µ1

IN −Λ

)
Hx,

1
µ1

IN −Λ

)
. (42)

The resulting conditional distribution of the target signal x given the auxiliary variable v1 and the
vector of observation z is a Gaussian distribution with the following parameters:

G̃ =
1

µ1
H>H + Gx, (43)

m̃ = G̃−1
(

H>Λz + Gxmx + H>v1

)
. (44)

Then, sampling from the target signal can be performed by passing to the transform domain
where H and Gx are diagonalizable (e.g., Fourier domain when H and Gx are circulant) .

Similarly, if it is possible to write Gx = V>ΩV, such that H and V can be diagonalized in the
same basis, we suggest the introduction of an extra auxiliary variable v2 independent of v1 in
the prior term to eliminate the coupling introduced by Ω when passing to the transform domain.
Let µ2 > 0 be such that µ2‖Ω‖S < 1 and let the distribution of v2 conditionally to x be given by

v2 ∼ N
((

1
µ2

IN −Ω

)
Vx,

1
µ2

IN −Ω

)
. (45)
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The joint distribution of the unknown parameters is given by

p(x, v1, v2|z) = p(x|z)p(v1|x, z)p(v2|x, z). (46)

It follows that the minus logarithm of the conditional distribution of x given z, v1, and v2 is
Gaussian with parameters:

G̃ =
1

µ1
H>H +

1
µ2

V>V (47)

and
m̃ = G̃−1

(
H>Λz + Gxmx + H>v1 + V>v2

)
. (48)

• If Gx and H are not diagonalizable in the same basis, the introduction of an auxiliary variable
either in the data fidelity term or the prior allows us to eliminate the coupling between these two
heterogeneous operators. Let µ1 > 0 such that µ1‖H>ΛH‖S < 1 and

v1 ∼ N
((

1
µ1

IQ −H>ΛH
)

x,
1

µ1
IQ −H>ΛH

)
. (49)

Then, the parameters of the Gaussian posterior distribution of x given v1 read:

G̃ =
1

µ1
IQ + Gx , (50)

m̃ = G̃−1
(

H>Λz + Gxmx + v1

)
. (51)

Note that if Gx has some simple structure (e.g,. diagonal, block diagonal, sparse, circulant, etc.),
the precision matrix (50) will inherit this simple structure.

Otherwise, if Gx does not present any specific structure, one could apply the proposed DA method
to both data fidelity and prior terms. It suffices to introduce an extra auxiliary variable v2 in the prior
law, additionally to the auxiliary variable v1 in (49). Let µ2 > 0 be such that µ2‖Gx‖S < 1 and

v2 ∼ N
((

1
µ2

IQ −Gx

)
x,

1
µ2

IQ −Gx

)
. (52)

Then, the posterior distribution of x given v1 and v2 is Gaussian with the following parameters:

G̃ =
1
µ

IQ (53)

and
m̃ = µ

(
v1 + v2 + H>Λz + Gxmx

)
, (54)

where
µ =

µ1µ2

µ1 + µ2
. (55)

3.4. Sampling the Auxiliary Variable

It is clear that the main issue in the implementation of all the proposed Gibbs algorithms arises in
the sampling of the auxiliary variable v. The aim of this section is to propose efficient strategies for
implementing this step at a limited computational cost, in the context of large-scale problems.
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For the sake of generality, we will consider that v follows a multivariate Gaussian distribution

with a covariance matrix of the form Γ =
1
µ

IQ − H>ΛH, where µ > 0 satisfies µ‖H>ΛH‖S < 1.

Our first suggestion is to set µ such that

µ‖H‖2
S < β <

1
‖Λ‖S

, (56)

with β > 0. For example, one can set µ 6
ε

‖H‖2
S‖Λ‖S

and β =

√
ε

‖Λ‖S
, where 0 < ε < 1. This allows us

to verify the requirement µ‖H>ΛH‖S < 1. Moreover, it leads to

1
µ

IQ −H>ΛH =
1
β

(
β

µ
IQ −H>H

)
+ H>

(
1
β

IN −Λ

)
H. (57)

Thus, the sampling step of the auxiliary variable at iteration t ∈ N can be replaced by the three
following steps:

(1) Generate n(t+1) ∼ N
(

0N ,
1
β

IN −Λ

)
,

(2) Generate y(t+1) ∼ N
(

0Q,
1
λ

IQ −H>H
)

with λ =
µ

β
6

√
ε

‖H‖2
S

,

(3) Compute v(t+1) =

(
1
µ

IQ −H>ΛH
)

x(t+1) +
1√

β
y(t+1) + H>n(t+1),

Hereabove, y(t+1) and n(t+1) are independent random variables. One can notice that the sampling
problem of the auxiliary variables is now separated into two independent subproblems of sampling
from large-scale Gaussian distributions. The first sampling step can usually be performed efficiently.
For instance, if Λ is diagonal (e.g., when the model is a scale mixture of Gaussian variables), coefficients
n(t+1)

i , i ∈ {1, . . . , N}, can be drawn separately. Let us now discuss the implementation of the second
sampling step, requiring sampling from the zero mean Gaussian distribution with covariance matrix
1
λ

IQ −H>H.

• In the particular case when H is circulant, sampling can be performed in the Fourier domain.
More generally, since H>H is symmetric, there exists an orthogonal matrix N such that NH>HN>

is diagonal with positive diagonal entries. It follows that sampling from the Gaussian distribution

with covariance matrix
1
λ

IQ −H>H can be fulfilled easily within the basis defined by the matrix N.

• Suppose that H satisfies HH> = νIN with ν > 0, which is the case, for example, of tight frame
synthesis operators or decimation matrices. Note that νλ 6

√
ε < 1. We then have:

1
λ

IQ −H>H =

(
1√
λ

IQ −
√

λH>H
)2

+ (1− λν)H>H. (58)

It follows that a sample from the Gaussian distribution with covariance matrix
1
λ

IQ −H>H can
be obtained as follows:

y(t+1) =

(
1√
λ

IQ −
√

λH>H
)

y(t+1)
1 +

√
1− λνH>y(t+1)

2 , (59)

where y(t+1)
1 ∈ RQ and y(t+1)

2 ∈ RN are independent Gaussian random vectors with covariance
matrices equal to IQ and IN , respectively.
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• Suppose that H = MP with M ∈ RN×K and P ∈ RK×Q. Hence, one can set λ > 0 and λ̃ > 0 such that

λ‖P‖2 < λ̃ <
1
‖M‖2 . (60)

For example, for µ =
ε

‖P‖2
S‖M‖2

S‖Λ‖S
, we have λ =

√
ε

‖P‖2
S‖M‖2

S
. Then, we can set λ̃ =

ε1/4

‖M‖2
S

. It

follows that
1
λ

IQ −H>H =
1
λ̃

(
λ̃

λ
IQ − P>P

)
+ P>

(
1
λ̃

IK −M>M
)

P. (61)

It appears that if it is possible to draw merely random vectors y(t+1)
1 and y(t+1)

2 from the Gaussian

distributions with covariance matrices
λ̃

λ
IQ − P>P and

1
λ̃

IK −M>M, respectively (for example,

when P is a tight frame analysis operator and M is a convolution matrix with periodic boundary

condition), a sample from the Gaussian distribution with a covariance matrix
1
λ

IQ −H>H can be
obtained as follows:

y(t+1) =
1√
λ̃

y(t+1)
1 + P>y(t+1)

2 . (62)

4. Application to Multichannel Image Recovery in the Presence of Gaussian Noise

We now discuss the performance of the proposed DA strategies in the context of restoration of
multichannel images (MCIs). Such images are widely used in many application areas, such as medical
imaging and remote sensing [69–71]. Several medical modalities provide color images, including
cervicography, dermoscopy, and gastrointestinal endoscopy [72]. Moreover, in the field of brain
exploration with neuro-imaging tools, multichannel magnetic resonance images are widely used
for multiple sclerosis lesion segmentation [73]. Indeed, the multicomponent images correspond to
different magnetic resonance intensities (e.g., T1, T2, FLAIR). They contain different information on
the underlying tissue classes that enable discrimination of the lesions from the background. Multiple
channel components typically result from imaging a single scene by sensors operating in different
spectral ranges. For instance, about a dozen radiometers may be on-board remote sensing satellites.
Most of the time, MCIs are corrupted with noise and blur arising from the acquisition process and
transmission steps. Therefore, restoring MCIs is of primary importance as a preliminary step before
addressing analysis tasks such as classification, segmentation, or object recognition [74]. Several works
dedicated to MCI processing rely on wavelet-based approaches [70,75]. In this section, we propose the
adoption of a Bayesian framework for recovering the wavelet coefficients of deteriorated MCI, with
the aim of analyzing the performance of the aforementioned hybrid Gibbs samplers.

4.1. Problem Formulation

Let us consider the problem of recovering a multicomponent image with B components ȳ1, . . . , ȳB
in RR (the images being columnwise reshaped) from some observations z1, . . . , zB which have
been degraded by spatially-invariant blurring operators B1, . . . , BB and corrupted by independent
zero-mean additive white Gaussian noises having the same known variance σ2. As already stated,
here we propose addressing the restoration problem in a transform domain where the target images
are assumed to have a sparse representation. Let us introduce a set of tight frame synthesis operators
F∗1 , . . . , F∗B [76] such that

(∀b ∈ {1, . . . , B}) ȳb = F∗b x̄b , (63)
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where for every b ∈ {1, . . . , B}, F∗b is a linear operator from RK to RR with K > R and x̄b is the vector
of frame coefficients of the image ȳb. Each frame transform operator decomposes the image into M
oriented subbands at multiple scales with sizes Km, m ∈ {1, . . . , M}, such that ∑M

m=1 Km = K:

(∀b ∈ {1, . . . , B}) x̄b = (x̄b,1,1, . . . , x̄b,1,K1 , . . . ,
x̄b,m,1, . . . , x̄b,m,Km , . . . ,
x̄b,M,1, . . . , x̄b,M,KM )>.

(64)

Then, the problem can be formulated as (4), that is:

z = Hx + w , (65)

where w ∼ N (0N , σ2IN), x = [x>1 , . . . , x>B ]
> ∈ RQ, z = [z>1 , . . . , z>B ]

> ∈ RN , H = BF∗ ∈ RN×Q with
N = BR, Q = KB,

F∗ =


F∗1 0 . . . 0
0 F∗2 0 0
. . . . . . . . . . . .
0 0 0 F∗B

 , (66)

and

B =


B1 0 . . . 0
0 B2 0 0
. . . . . . . . . . . .
0 0 0 BB

 . (67)

We propose exploitation of the cross-component similarities by jointly estimating the frame
coefficients at a specific orientation and scale through all the B components. In this respect, for
every m ∈ {1, . . . , M}, for every k ∈ {1, . . . , Km}, let xm,k = (xb,m,k)16b6B ∈ RB be the vector of
frame coefficients for a given wavelet subband m at a spatial position k through all the B components.
Note that this vector can be easily obtained through xm,k = Pm,kx, where Pm,k ∈ RB×Q is a sparse matrix
containing B lines of a suitable permutation matrix. To promote the sparsity of the wavelet coefficients
and the inter-component dependency, following [70], we assume that for every m ∈ {1, . . . , M},
the vectors xm,1, . . ., xm,Km are realizations of a random vector following a generalized multivariate
exponential power (GMEP) distribution with scale matrix Σm, shape parameter βm, and smoothing
parameter δm. Thus, the minus-log of the prior likelihood is given up to an additive constant by

− log p(x|Σ1, . . . , ΣM) =
M

∑
m=1

Km

∑
k=1

ψm(‖Σ−1/2
m (Pm,kx− am)‖) , (68)

where for every m ∈ {1, . . . , M}, am ∈ RB, and for all t ∈ R, ψm(t) = 1
2 (t2 + δm)βm .

Our goal is to compute the posterior mean estimate of the target image as well as the unknown
regularization parameters using MCMC sampling algorithms accelerated thanks to our proposed DA
strategies. In the following, we will denote by Θ the vector of unknown regularization parameters to
be estimated jointly with x in the Gibbs sampling algorithm.

4.2. Sampling from the Posterior Distribution of the Wavelet Coefficients

One can expect that the standard sampling algorithms fail to efficiently explore the target posterior
not only because of the high dimensionality of the problem, but also because of the anisotropic nature
of the wavelet coefficients. In fact, the coefficients belonging to different scales are assumed to
follow GMEP priors with different shapes βm, m ∈ {1, . . . , M}. For instance, coefficients belonging
to the low-resolution subband are generally assumed to be driven from a Gaussian distribution
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(i.e., βm = 1), while GMEP priors with very small shape parameter (i.e., βm 6
1
2

) are generally
assigned to high-resolution subbands at the first level of decomposition in order to promote sparsity.
Therein, one can better explore the directions of interest separately by using different amplitudes than
sampling them jointly. However, the observation matrix causes high spatial dependencies between the
coefficients, and thus hinders processing the different wavelet subbands independently.

The DA approaches we introduced in Section 3 allow this preconditioning problem to be tackled
by adding auxiliary variables to the data fidelity term. More specifically, following Algorithm 2,
we propose the introduction of an auxiliary variable v ∈ RQ such that:

v ∼ N
(

1
σ2

(
1
µ

IQ −H>H
)

x,
1
σ2

(
1
µ

IQ −H>H
))

, (69)

where µ‖B‖2
S‖F‖2

S < 1.
Since the set of hyperparameters Θ is independent of the auxiliary variable v when conditioned

to x, each iteration t ∈ N of the proposed Gibbs sampling algorithm contains the following steps:

(1) Sample v(t+1) from Pv|x(t),z.

(2) Sample x(t+1) from Px|v(t+1),Θ(t),z.

(3) Sample Θ(t+1) from PΘ|x(t+1),z.

If B is circulant (by assuming periodic boundary conditions of the blur kernel), the first sampling
step can be easily done by passing to the Fourier domain. In particular, if F is orthonormal (that
is, FF∗ = F∗F = IQ), samples of the auxiliary variables can be obtained by first drawing Gaussian
random variables in the Fourier domain and then passing to the wavelet domain. Otherwise, if F is a
non-orthonormal transform, sampling can be performed using our results stated in (59) and (62).

Note that in the new augmented space, the restoration problem reduces to a denoising problem
with zero-mean Gaussian noise of variance µ, and the posterior density reads:

p(x|z, v, Θ) ∝
M

∏
m=1

Km

∏
k=1

exp (−Jm,k(Pm,kx|v)) , (70)

where

(∀c ∈ RB) Jm,k(c|v) =
1

2µσ2 ‖c− µPm,kv− µ

σ2 Pm,kH>z‖2 + ψm(‖Σ−1/2
m (c− am)‖). (71)

It follows that we can draw samples of vectors xm,k, m ∈ {1, . . . , M}, k ∈ {1, . . . , Km} in an
independent manner. Thus, the resolution of the initial high-dimensional problem of size Q = KB
reduces to the resolution of K parallel subproblems of size B. This is particularly interesting in the case
of MCIs where we generally have K � B.

Instead of processing all the different wavelet coefficients at the same time, the proposed method
allows each subproblem to be dealt with independently. This avoids sampling problems related to
the heterogeneous prior distribution. Different sampling algorithms may be chosen according to the
properties of the target distribution in each subproblem. Specifically, for each sampling subproblem,
we propose to use either RW or MALA algorithms [17,77].

In the following, we will discuss the practical implementation of the third step of the Gibbs
algorithm; namely, sampling from the posterior distribution of Θ.
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4.3. Hyperparameters Estimation

4.3.1. Separation Strategy

For every m ∈ {1, . . . , M}, βm controls the shape of the GMEP distribution, allowing for heavier
tails than the Laplace distribution (βm < 0.5) and approaching the normal distribution when βm tends
to 1. In this work, we assume that for every m ∈ {1, . . . , M}, βm and δm are fixed. Actually, the shape
parameter is set to different values with respect to the resolution level, spanning from very small
values (βm < 0.5) in order to enforce sparsity in the detail subbands at the first levels of decomposition
to relatively higher values (0.5 < βm < 1) for detail subband at higher resolution levels, whereas a
Gaussian distribution is generally assigned to the low-frequency subband. Furthermore, we set δm to a
positive small value, ensuring that (78) is differentiable [70]. As already mentioned, the scale matrices
(Σm)1≤m≤M will be estimated. Let us define PΣm the prior distribution of the scale matrix for each
subband m ∈ {1, . . . , M} and p(Σm) its related density. The associated posterior density reads

p(Σm|x) ∝ p(Σm)det(Σm)
−Km/2 exp

(
−

Km

∑
k=1

ψm(‖Σ−1/2
m (Pm,kx− am)‖)

)
. (72)

When βm = 1, the GMEP prior reduces to a Gaussian distribution. In this case, a common choice
of PΣm is an inverse Wishart distribution and (72) is also an inverse Wishart distribution [78]. However,
when 0 < βm < 1, (72) does not belong to classical families of matrix distributions. In that respect,
rather than estimating the scale matrices directly, we resort to a separation strategy. More specifically,
we propose the independent estimation of the standard deviations and the correlation terms. Let us
decompose the scale matrix for each subband m ∈ {1, . . . , M} as follows [79]:

Σm = Cβm ,δm Diag(sm)
−1RmDiag(sm)

−1 , (73)

where Rm ∈ RB×B is the correlation matrix (whose diagonal elements are equal to 1 and the remaining
ones define the correlation between the coefficients and have absolute value smaller than 1), sm ∈ RB is
a vector formed by the square root of the precision parameters (the inverse of standard deviations), and
Cβm ,δm is a multiplicative constant that depends on βm and δm [70]. The advantage of this factorization
can be explained by the fact that the estimation of the correlation matrix will not alter the estimation of
the variances. For every m ∈ {1, . . . , M}, we decompose the precision vector as follows:

sm = (Cβm ,δm)
1/2γ

1/(2βm)
m nm , (74)

where γm is positive and nm ∈ RB is a vector of positive coefficients whose sum is equal to 1. Then,
nm can be seen as the vector containing positive normalized weights of all the B components in the
subband m.

For simplicity, let us assume that the different components of the image have the same correlation
and weights in all subbands; i.e., R = Rm and nm = n for every m ∈ {1, . . . , M}. Furthermore, let us
suppose that n is known. We then have

Θ = {R, γ1, . . . , γM}. (75)

4.3.2. Prior and Posterior Distribution for the Hyperparameters

One can construct the correlation matrix R by sampling from an inverse Wishart distribution.
Specifically, let C ∼ IW(A, c) where A is an appropriate positive definite matrix of RB×B and
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c > 0. Then, we can write R = ∆C∆, where ∆ is the diagonal matrix whose elements are given by
∆i,i = C−1/2

i,i , for every i ∈ {1, . . . , B}. Following [79], we can show that the prior density of R reads:

p(R) ∝ det(R)−
B+1+c

2

B

∏
i=1

(R−1A)
− ν

2
i,i . (76)

In the following, we will use the notation R ∼ SS(A, c) to denote this prior. In particular,
when A = IB, individual correlations have the marginal density p(ρi,j) = (1− ρ2

i,j)
c−B−1

2 for every

(i, j) ∈ {1, . . . , B}2 such that i 6= j, which can be seen as a rectangular Beta distribution on the interval
[−1, 1] with both parameters equal to (c− B + 1)/2. For c = B + 1, we obtain marginally uniformly
distributed correlations, whereas by setting B 6 c < B + 1 (or B + 1 < c), we get marginal priors
with heavier (or lighter) tails than the uniform distribution—that is, distributions that promote high
correlation values around the extremity of the intervals (or near-zero values), respectively [79]. Thus,
the posterior distribution of R is given by

p(R|x, γ1, . . . , γM) ∝ det(R)−
B+1+c+Q

2 exp (−Ψ(x))
B

∏
i=1

(R−1A)
− c

2
i,i , (77)

where

Ψ(x) =
M

∑
m=1

Km

∑
k=1

ψm
(
γ

1/(2βm)
m ‖R−

1
2 Diag(n)(Pm,kx− am

)
‖). (78)

Here we propose to sample from (77) at each iteration t ∈ N using an MH algorithm with
proposal SS(Ã, c̃), where Ã is set to the current value of R at iteration t and c̃ is chosen to achieve
reasonable acceptance probabilities.

For every m ∈ {1, . . . , M}, we assume a Gamma prior for γm; that is, γm ∼ G(aγm , bγm), where
aγm > 0 and bγm > 0 [80]. Then, the posterior distribution of γm is given by:

p(γm|x, R) ∝ γ
aγm+ Km

2βm −1
m exp (−bγm γm) exp

(
−1

2 ∑Km
k=1

(
γ

1
βm
m ‖R−

1
2 Diag(n)(Pm,kx− am)‖2 + δm

)βm
)

. (79)

Note that if δm = 0, then (79) reduces to a Gamma distribution with parameters:

ãγm = aγm +
Km

2βm
, (80)

ãγm = bγm +
Km

∑
k
‖R−

1
2 N(Pm,kx− am)‖2βm . (81)

When δm > 0, sampling from (79) will be performed using an independent MH algorithm with a
Gamma proposal of parameters (80) and (81).

4.3.3. Initialization

We propose to set the prior distributions of R, γ1, . . . , γM using empirical estimators from the
degraded image. In particular, a rough estimator of R can be computed from the subband containing
the low-resolution wavelet coefficients at the highest level of decomposition. In the case when F is
orthonormal, the variance of wavelet coefficients of the original image are approximately related to
those of the degraded image through:

(∀b ∈ {1, . . . , B})(∀m ∈ {1, . . . , M}) var([Fbzb]m) = αmvar([xb]m) + σ2, (82)

where [.]m designates the wavelet coefficients belonging to the subband m and αm is a positive constant
which depends on the subband index m and on the blur matrix. Expression (82) is derived from the
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considered observation model (65) by assuming a constant approximation of the impulse response
of the blur filter in each wavelet subband. Note that αm can be calculated beforehand as follows.
Given noise-free data, we compute the original empirical variance for each wavelet subband. Then,
we calculate again the new variances of the subbands when the data is blurred using matrix B.
The coefficients αm are finally estimated for each wavelet subband by computing the ratio of the two
variances by a linear regression. When αm is not too small with respect to 1, estimators of var([xb]m)

can be reliably computed from αm and var([Fbzb]m) using (82). We propose the use of this method
to compute estimators of the variances in subbands at the highest levels of decomposition and then
deduce the variances of the remaining subbands by using some properties of multiresolution wavelet
decompositions. Note that each detail subband m corresponds to a given orientation l (horizontal,
vertical, diagonal) and a given scale j (related resolution level). Actually, the variances of the detail
subbands can be assumed to follow a power law with respect to the scale of the subband, which can be
expressed as follows [81]:

log var([xb]m) = $l j + vl , (83)

where $l and vl are constants depending on the orientation l of the subband m. Once the variances of
subbands in the two highest levels of decomposition have been computed using (82), we can calculate
$l and vl for each orientation l using the slope and the intercept of these variances from a log plot
with respect to the scale j. The remaining variances are then estimated by using (83). We then deduce
from these variances an empirical estimator of n, and set the parameters of the prior distributions of
γ1, . . . , γM.

4.4. Experimental Results

In these experiments, we consider the Hydice hyperspectral (https://engineering.purdue.edu/
~biehl/MultiSpec/hyperspectral.html) data composed of 191 components in the 0.4 to 2.4 µm region
of the visible and infrared spectrum. The test image was constructed by taking only a portion of size
256× 256 and B = 6 components of Hydice using the channels 52, 67, 82, 97, 112, and 127. Hence,
the problem dimension was N = 393, 216. The original image was artificially degraded by a uniform
blur of size 5× 5 and an additive zero-mean white Gaussian noise with variance σ2 = 9 so that the
initial signal-to-noise ratio (SNR) was 11.16 dB. We performed an orthonormal wavelet decomposition
using the Symlet wavelet of order 3, carried out over three resolution levels, hence M = 10 and Q = N.
For the subband corresponding to the approximation coefficients (m = 10), we chose a Gaussian prior
(i.e., βm = 2, δm = 0). For the remaining subbands (m ∈ {1, . . . , M− 1}), we set δm = 10−4. Moreover,
we set βm = 0.2 for the detail subbands corresponding to the lowest level of decomposition, βm = 0.4
for the second level of decomposition, and βm = 0.5 for the third level of decomposition.

We ran the Gibbs sampling Algorithm 2 with a sufficient number of iterations to reach stability.
The obtained samples of the wavelet coefficients after the burn-in period were then used to compute
the empirical MMSE estimator for the original image. Table 2 reports the results obtained for the
different components in terms of SNR, PSNR (peak signal-to-noise ratio), BSNR (blurred signal to noise
ratio), and SSIM (structural similarity). It can be noticed that the values of both the objective metrics
and the perceptual ones were significantly improved by our method for all the spectral components.
For instance, the PSNR values were increased on average by around 4.15 dB, and the SSIM by around
0.23. The achieved gains indicate that the MMSE estimator yielded good numerical results. This can
also be corroborated by Figure 1, showing the visual improvements for the different components
of the multichannel image. One can observe that all the recovered images were correctly deblurred.
Furthermore, small objects were enhanced in all the displayed components.

https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html


Entropy 2018, 20, 110 23 of 35

Table 2. Restoration results. SNR: signal-to-noise ratio; BSNR: blurred SNR; PSNR: peak SNR; MMSE:
minimum mean square error; SSIM: structural similarity.

b = 1 b = 2 b = 3 b = 4 b = 5 b = 6 Average

Initial

BSNR 24.27 30.28 31.73 28.92 26.93 22.97 27.52

PSNR 25.47 21.18 19.79 22.36 23.01 26.93 23.12

SNR 11.65 13.23 13.32 13.06 11.81 11.77 12.47

SSIM 0.6203 0.5697 0.5692 0.5844 0.5558 0.6256 0.5875

MMSE

BSNR 32.04 38.33 39.21 38.33 35.15 34.28 36.22

PSNR 28.63 25.39 23.98 26.90 27.25 31.47 27.27

SNR 14.82 17.50 17.60 17.66 16.12 16.38 16.68

SSIM 0.7756 0.8226 0.8156 0.8367 0.8210 0.8632 0.8225

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1. From top to bottom: Original images–Degraded images–Restored images. (a) b = 2; (b) b = 4;
(c) b = 6; (d) b = 2; (e) b = 4; (f) b = 6; (g) b = 2; (h) b = 4; (i) b = 6.

We propose to compare the performance of the Gibbs sampler with auxiliary variables when
the posterior law of the wavelet coefficients is explored using either RW or MALA [17,77] algorithms.
We also compared the speed of our proposed approaches with standard RW and MALA without
the use of auxiliary variables. Figure 2 shows the evolution—with respect to the computational
time—of the scale parameter γm in the horizontal subband for the first level of decomposition using
the various algorithms. The results associated with the proposed algorithms appear in solid lines,
while those associated with standard algorithms without use of auxiliary variables are in dashed
lines. It can be observed that the proposed algorithms reached stability much faster than the standard
methods. Indeed, since the problem dimension is large, the stepsize ε in the standard algorithms was
constrained to take very small values to allow appropriate acceptance probabilities, whereas in the new
augmented space the subproblems dimension was smaller allowing large moves to be accepted with
high probability values. Note that the MALA algorithm with auxiliary variables exhibited the best
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performance in terms of convergence speed. We summarize the obtained samples using the proposed
algorithms by showing the marginal means and standard deviations of the hyperparameters in Table 3.
It can be noted that the two proposed algorithms provided similar estimation results.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

10
0

Time (s.)

γ
(t
)

1

 

 

RW

MALA

RW

MALA

Figure 2. Trace plot of the scale parameter in subband m = 1 as time (horizontal subband in the first
level of decomposition) with (dashed lines) and without (continuous line) auxiliary variables MALA:
Metropolis-adapted Langevin algorithm; RW: random walk.

Table 3. Mean and variance estimates of hyperparameters.

RW MALA

γ̂1
(γ1 = 0.71)

Mean 0.67 0.67
Std. (1.63 × 10−3) (1.29 × 10−3)

γ̂2
(γ2 = 0.99)

Mean 0.83 0.83
Std. (1.92 × 10−3) (2.39 × 10−3)

γ̂3
(γ3 = 0.72)

Mean 0.62 0.61
Std. (1.33 × 10−3) (1.23 × 10−3)

γ̂4
(γ4 = 0.0.24)

Mean 0.24 0.24
Std. (1.30 × 10−3) (1.39 × 10−3)

γ̂5
(γ5 = 0.40)

Mean 0.37 0.37
Std. (2.10 × 10−3) (2.42 × 10−3)

γ̂6
(γ6 = 0.22)

Mean 0.21 0.21
Std. (1.19 × 10−3) (1.25 × 10−3)

γ̂7
(γ7 = 0.0.07)

Mean 0.08 0.08
Std. (0.91 × 10−3) (1.08 × 10−3)

γ̂8
(γ8 = 0.13)

Mean 0.13 0.13
Std. (1.60 × 10−3) (1.64 × 10−3)

γ̂9
(γ9 = 0.07)

Mean 0.07 0.07
Std. (0.83 × 10−3) (1 × 10−3)

ˆγ10

(γ10 = 7.44 × 10−4 )
Mean 7.80 × 10−4 7.87 × 10−4

Std. (1.34 × 10−5) (2.12 × 10−5)

det(R̂)

det(R) = 5.79 × 10−8
Mean 1.89 × 10−8 2.10 × 10−8

Std. (9.96 × 10−10) ( 2.24 × 10−9)

It is worth noting that for larger-dimensional problems (i.e., larger values of B), one could further
improve the efficiency of the proposed algorithm by exploiting the parallel structure of the sampling tasks.
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5. Application to Image Recovery in the Presence of Two Mixed Gaussian Noise Terms

5.1. Problem Formulation

In this second experiment, we consider the observation problem defined in (29), where H
corresponds to a spatially invariant blur with periodic boundary conditions and the noise is a two-term
mixed Gaussian variable; i.e., for every i ∈ {1, . . . , N}, wi ∼ N (0, σ2

i ) such that

σi ∼ (1− β)δκ1 + βδκ2 , (84)

where κ1, κ2 are positive, 0 < β < 1 is the probability that the variance of the noise σi equals κ2, and δκ1

and δκ2 denote the discrete measures concentrated at the values κ1 and κ2, respectively. Model (84) can
approximate, for example, mixed impulse Gaussian noise arising in radar, acoustic, and mobile radio
applications [82,83]. In this case, the impulse noise is approximated with a Gaussian one with a large
variance κ2 � κ1, and β represents the probability of occurrence of the impulse noise. In the following,
we assume without loss of generality that κ2 > κ1. We address the problem of estimating x, σ, β, κ1,
and κ2 from the observations z.

5.2. Prior Distributions

We propose to use conjugate priors for the unknown variances, namely inverse Gamma
distributions; i.e., κ2

i ∼ IG(ai, bi), i ∈ {1, 2}, where ai and bi are positive constants. Here, a1, a2,
b1, and b2 are set in practice to small values to ensure weakly informative priors. For the occurrence
probability β, we chose a uniform prior distribution (i.e., β ∼ U (0, 1)). Furthermore, the target image
was assumed to follow a zero-mean Gaussian prior with a covariance matrix G−1

x = γ−1 (L>L
)−1

known up to a precision parameter γ > 0; i.e.,

p(x|γ) ∝ γ−Q/2 exp
(
−γ

2
‖Lx‖2

)
. (85)

Different covariance matrices may be chosen depending on which properties one wants to impose
on the estimated image. In this example, we propose to enforce smoothness by setting L = δIQ −∇2,
where ∇2 is the circulant convolution matrix associated with a Laplacian filter and δ > 0 is a small
constant that aims to ensure the positive definiteness of the prior covariance matrix. We further assume
that the regularization parameter γ follows an inverse Gamma prior with parameters aγ > 0 and
bγ > 0. The resulting hierarchical model is displayed in Figure 3.

z

x σ

γ κ1 κ2 β

Figure 3. Hierarchical model for image deblurring under two-term mixed Gaussian noise.

Posterior Distributions

Given the observation model and the prior distribution, we can deduce that the posterior
distribution of the target signal given σ, β, κ2

1, κ2
2, γ, and z is also Gaussian with mean m and

precision matrix G given by:
G = H>DH + γL>L, (86)

m = G−1H>Dy, (87)
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where D is the diagonal matrix with diagonal elements Di,i = σ−2
i , i ∈ {1, . . . , N}.

The posterior distributions of the remaining unknown parameters are given by:

• (∀i ∈ {1, . . . , N}) σi|x, β, κ2
1, κ2

2, z ∼ (1− pi)δκ1 + piδκ2 where pi =
ηi

1 + ηi
such that

ηi =
β

1− β
exp

(
−1

2

(
κ−2

2 − κ−2
1

)
([Hx]i − zi)

2
)

κ1

κ2
, (88)

• β|x, z, σ, κ2
1, κ2

2 ∼ B (n2 + 1, n1 + 1), where B is the Beta distribution and n1 and n2 are the
cardinals of the sets {i ∈ {1, . . . , N}, | σi = κ1} and {i ∈ {1, . . . , N}, | σi = κ2}, respectively, so
that n1 + n2 = N,

• κ2
1|x, σ, β, z ∼ IG

(
a1 +

n1
2 , b1 + ∑i|σi=κ1

([Hx]i − zi)
2

2

)
,

• κ2
2|x, σ, β, z ∼ IG

(
a2 +

n2
2 , b2 + ∑i|σi=κ2

([Hx]i − zi)
2

2

)
,

• γ|x ∼ G
(

Q
2
+ aγ,

1
2
‖Lx‖2 + bγ

)
.

5.3. Sampling from the Posterior Distribution of x

In the Gibbs algorithm, we need to draw samples from the multivariate Gaussian distribution of
parameters (86) and (87) changing along the sampling iterations. In particular, even if H and L are
circulant matrices, sampling cannot be done in the Fourier domain because of the presence of D. In the
sequel, we will use the method proposed in Section 3.3 to sample from this multivariate Gaussian
distribution. More specifically, we exploit the flexibility of the proposed approach by resorting to
two variants. In the first variant, we take advantage of the fact that L and H are diagonalizable in
the Fourier domain, and we propose to add the auxiliary variable to the data fidelity term in order
to get rid of the coupling caused by D when passing to the Fourier domain. In the second variant,
we introduce auxiliary variables for both the data fidelity and the prior terms in order to eliminate the
coupling effects induced by all linear operators in the posterior distribution of the target image.

5.3.1. First Variant

We introduce the variable v whose conditional distribution—given the set of main parameters

of the problem—is the Gaussian distribution of mean
(

1
µ

IN −D
)

Hx and covariance matrix(
1
µ

IN −D
)

, where µ = ε‖D‖−1
S with 0 < ε < 1. In practice, we set ε = 0.99. It follows that

the new conditional distribution of the target signal is

x|σ, β, κ2
1, κ2

2, γ, v, z ∼ N (m̃, G̃−1) , (89)

where m̃ and G̃ are defined as follows:

G̃ =
1
µ

H>H + γL>L, (90)

m̃ = G̃−1H>
(

H>Dz + v
)

. (91)

It is worth noting that the auxiliary variable v depends on x, and also on σ through µ and
D, but does not depend on β, κ1, κ2, γ when conditioned to x, σ, and z. Thus, we propose to use
the partially collapsed Gibbs sampling algorithm in order to collapse the auxiliary variables in the
sampling step of σ. At each iteration t ∈ N, the proposed algorithm goes through the following steps
in an ordered manner:
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AuxV1

(1) Sample (κ2
1)

(t+1) from Pκ2
1 |x(t),σ(t),β(t),z.

(2) Sample (κ2
2)

(t+1) from Pκ2
2 |x(t),σ(t),β(t),z.

(3) Sample β(t+1) from Pβ|x(t),σ(t),(κ2
1)

(t+1),(κ2
2)

(t+1) .

(4) Sample γ(t+1) from Pγ|x(t) .

(5) Sample σ(t+1) from Pσ|x(t),β(t+1),(κ2
1)

(t+1),(κ2
2)

(t+1),z.

(6) Set µ(t+1) = ε min
(

σ
(t+1)
i

)−2

16i6N
and sample v(t+1) from Pv|x(t),σ(t+1) .

(7) Sample x(t+1) from Px|σ(t+1),γ(t+1),v(t+1),z.

5.3.2. Second Variant

Another strategy is to introduce two independent auxiliary variables v1 and v2 in RQ following
Gaussian distributions of means Γ1x and Γ2x and covariance matrices Γ1 and Γ2, respectively, where

Γ1 =
1

µ1
−H>DH (92)

and
Γ2 =

1
µ2
− L>L. (93)

In practice, we set µ1 = ε‖H‖−2
S ‖D‖

−1
S and µ2 = ε‖L‖−2

S , where ε = 0.99. Then, the posterior
distribution of x conditioned to σ, β, κ2

1, κ2
2, γ, v1, v2, and z is Gaussian with mean m̃ and precision

matrix G̃ defined as

G̃ =

(
1

µ1
+

γ

µ2

)
IQ (94)

and
m̃ = µ1µ2 (γµ1 + µ2)

−1
(

H>Dy + v1 +
√

γv2

)
. (95)

The auxiliary variable v1 depends implicitly on σ through D and µ, but does not depend on the
remaining parameters when conditioned to x, σ, and z. Similarly, v2 does not depend on σ, β, κ2

1, κ2
2,

v1, γ when conditioned to x and z. We propose a PCGS algorithm that allows to collapse v1 in the
sampling step of σ. Each iteration t ∈ N of the proposed PCGS algorithm is composed of the following
arranged sampling steps.

AuxV2

(1) Sample (κ2
1)

(t+1) from Pκ2
1 |x(t),σ(t),β(t),z.

(2) Sample (κ2
2)

(t+1) from Pκ2
2 |x(t),σ(t),β(t),z.

(3) Sample β(t+1) from Pβ|x(t),σ(t),(κ2
1)

(t+1),(κ2
2)

(t+1) .

(4) Sample γ(t+1) from Pγ|x(t) .

(5) Sample σ(t+1) from Pσ|x(t),β(t+1),(κ2
1)

(t+1),(κ2
2)

(t+1),z.

(6) Sample v(t+1)
2 from Pv2|x(t) .

(7) Set µ
(t+1)
1 = ε‖H‖−2

S min
(

σ
(t+1)
i

)−2

16i6N
and sample v(t+1)

1 from Pv1|x(t),σ(t+1) .

(8) Sample x(t+1) from P
x|σ(t+1),γ(t+1),v(t+1)

1 ,v(t+1)
2 ,z

.
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Note that since H and L are circulant matrices and D is diagonal, sampling the auxiliary variables
in the proposed methods can be easily performed following Section 3.4.

5.4. Experimental Results

We consider a set of three test images denoted by x̄1, x̄2, and x̄3, of size 512× 512. These images
were artificially degraded by a spatially-invariant blur with point spread function h and further
corrupted with mixed Gaussian noise. The Gibbs algorithms were run for 6000 iterations and a burn-in
period of 4000 iterations was considered. Estimators of the unknown parameters were then computed
using the empirical mean over the 2000 obtained samples. Visual results are displayed in Figure 4 as
well as estimates of hyper-parameters using AuxV1.

(a) (b) (c)

(d) (e)

100200300400500
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200
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500
100200300400500

100

200

300

400

500

(f)

(g) (h) (i)

Figure 4. Visual results. From top to bottom: Original images–Degraded images—Restored images.
(a) x̄1 (512× 512); (b) x̄2 (512× 512); (c) x̄3 (512× 512); (d) z1: SNR = 13.46 dB, κ1 = 13, κ2 = 40,
β = 0.35 h: Gaussian 39× 39 std. 4; (e) z2: SNR = 8.50 dB, κ1 = 5, κ2 = 100, β = 0.25, h: Uniform 5× 5;
(f) z3: SNR = 7.37 dB, κ1 = 12, κ2 = 70, β = 0.4 h: Gaussian 15× 15 std. 1.8; (g) x̂1: SNR = 19.35 dB,
κ̂1 = 12.98, κ̂2 = 39.80 β̂ = 0.35, γ̂ = 4.8× 10−3; (h) x̂2: SNR = 22 dB, κ̂1 = 5.10, κ̂2 = 100.13 β̂ = 0.25,
γ̂ = 1.8 × 10−3; (i) x̂3: SNR = 18.74 dB, κ̂1 = 12.08, κ̂2 = 69.89 β̂ = 0.39, γ̂ = 4.7 × 10−3.

We focus now on image x̄1 in order to compare the two variants of our proposed method with
the Reversible Jump Perturbation Optimization (RJPO) algorithm [32]. For this method, we used the
conjugate gradient algorithm as a linear solver at each iteration whose maximal number of iterations
and tolerance were adjusted to correspond to an acceptance probability close to 0.9. We used the
same initialization for all compared algorithms. Figures 5–8 display samples of hyperparameters
as a function of iteration or time. By visually examining the trace plots, we can notice that all
algorithms were stabilized after an appropriate burn-in period. In particular, RJPO and AuxV1 showed
approximately the same iterative behavior, while AuxV2 required about 3000 iterations to reach
iconvergence. This corresponds to twice the burn-in length of RJPO and AuxV1. However, each
iteration of the RJPO is time consuming since an iterative algorithm is run until convergence at each
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iteration. Adding auxiliary variables to the model allows the signal to be sampled in a computationally
efficient way in the enlarged state space, so that the computational cost of each iteration was highly
reduced for both proposed algorithms, and the total time needed to converge was noticeably shortened
compared with RJPO. Regarding the stabilization phase, we consider samples generated after the
burn-in period (namely, the last 2000 samples for each algorithm). First, we aimed to study the
accuracy of estimators of the unknown variables from these samples. More specifically, we computed
empirical estimators of the marginal posterior mean and standard deviation of the target parameters
as well as those of a randomly chosen pixel xi. Table 4 reports the obtained results. It can be noted
that parameters β, κ1, and κ2 were correctly estimated by all the algorithms, while the remaining
parameters had similar estimated values. Second, in order to evaluate the mixing properties of the
chains at convergence, we computed an empirical estimation of the mean square jump in stationary
state from the obtained samples. This indicator can be seen as an estimation of the average distance
between two successive samples in the parameter space. It was computed after the burn-in period
t0 = 5000 using P = 2000 last samples as follows:

MSJ =

√√√√ 1
P− 1

P−1

∑
t=1
‖xt+t0 − xt0+t+1‖2 . (96)

Note that maximizing the mean square jump is equivalent to minimizing a weighted sum of the
1-lag autocorrelations. In Table 5, we show estimates of the mean square jump per second in stationary
state, which is defined as the ratio of the mean square jump and the computational time per iteration.
This can be seen as an estimation of the average speed of the algorithm for exploring the parameter
space at convergence. We also compared the statistical efficiency of the different samplers with respect
to RJPO, defined as the mean square jump per second of each sampler over the mean square jump per
second of RJPO. We can notice that the speed improvement of the proposed algorithms came at the
expense of a deterioration of the quality of the generated samples. In fact, both proposed algorithms
yielded lower values of mean square jump than the RJPO algorithm, which indicates that correlation
between successive samples was increased. Furthermore, AuxV1 appeared to have better mixing
properties compared with AuxV2. However, the generation of every sample in RJPO is very costly, so
its efficiency remained globally poorer compared with AuxV1 and AuxV2. The best trade-off between
convergence speed and mixing properties of the chain was achieved by the proposed AuxV1 algorithm.

Table 4. Mean and variance estimates. RJPO: Reversible Jump Perturbation Optimization.

RJPO AuxV1 AuxV2

γ̂

(γ = 5.30 × 10−3)
Mean 4.78 × 10−3 4.84 × 10−3 4.90 × 10−3

Std. (1.39 × 10−4) (1.25 × 10−4) (9.01 × 10−5)

κ̂1
(κ1 = 13)

Mean 12.97 12.98 12.98
Std. ( 4.49 × 10−2) (4.82 × 10−2) (4.91 × 10−2)

κ̂2
(κ1 = 40)

Mean 39.78 39.77 39.80
Std. (0.13) (0.14) (0.13)

β̂

(β = 0.35)
Mean 0.35 0.35 0.35
Std. (2.40 × 10−3) (2.71 × 10−3) ( 2.72 × 10−3)

x̂i
(xi = 140)

Mean 143.44 143.19 145.91
Std. (10.72) (11.29) (9.92)
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Figure 5. Chains of γ versus iteration/time.
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Table 5. Mixing results for the different proposed algorithms. First row: Time per iteration. Second
row: Estimates of the mean square jump in stationarity. Third row: Estimates of the mean square jump
per second in stationarity. Fourth row: Relative efficiency to RJPO.

RJPO AuxV1 AuxV2

T(s.) 5.27 0.13 0.12
MSJ 15.41 14.83 4.84

MSJ/T 2.92 114.07 40.33
Efficiency 1 39 13.79

6. Conclusions

In this paper, we have proposed an approach for sampling from probability distributions in
large-scale problems. By adding some auxiliary variables to the model, we succeeded in separately
addressing the different sources of correlations in the target posterior density. We have illustrated
the usefulness of the proposed Gibbs sampling algorithms in two application examples. In the first
application, we proposed a wavelet-based Bayesian method to restore multichannel images degraded
by blur and Gaussian noise. We adopted a multivariate prior model that takes advantage of the
cross-component correlation. Moreover, a separation strategy has been applied to construct prior
models of the related prior hyperparameters. We then employed the proposed Gibbs algorithm with
auxiliary variables to derive optimal estimators for both the image and the unknown hyperparameters.
In the new augmented space, the resulting model makes sampling much easier since the coefficients of
the target image are no longer updated jointly, but in a parallel manner. Experiments carried out on
a set of multispectral satellite images showed the good performance of the proposed approach with
respect to standard algorithms. Several issues could be investigated as future work, such as the ability
of the proposed algorithm to deal with inter-scale dependencies in addition to the cross-channel ones.
In the second application, we have applied the proposed method to the recovery of signals corrupted
with mixed Gaussian noise. When compared to a state-of-the-art method for sampling from high
dimensional scale Gaussian distributions, the proposed algorithms achieve a good tradeoff between
the convergence speed and the mixing properties of the Markov chain, even if the generated samples
are not independent. Note that the proposed method can be applied to a wide class of applications in
inverse problems—in particular, those including conditional Gaussian models either for the noise or
the target signal.
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