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ABSTRACT
We search for continuous gravitational waves (CGWs) produced by individual supermas-
sive black hole binaries in circular orbits using high-cadence timing observations of PSR
J1713+0747. We observe this millisecond pulsar using the telescopes in the European Pulsar
Timing Array with an average cadence of approximately 1.6 d over the period between 2011
April and 2015 July, including an approximately daily average between 2013 February and
2014 April. The high-cadence observations are used to improve the pulsar timing sensitivity
across the gravitational wave frequency range of 0.008−5μHz. We use two algorithms in
the analysis, including a spectral fitting method and a Bayesian approach. For an independent
comparison, we also use a previously published Bayesian algorithm. We find that the Bayesian
approaches provide optimal results and the timing observations of the pulsar place a 95 per
cent upper limit on the sky-averaged strain amplitude of CGWs to be �3.5 × 10−13 at a
reference frequency of 1 μHz. We also find a 95 per cent upper limit on the sky-averaged strain
amplitude of low-frequency CGWs to be �1.4 × 10−14 at a reference frequency of 20 nHz.
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1 IN T RO D U C T I O N

Millisecond pulsars (MSPs) are old neutron stars that are spun
up to periods �30 ms during a mass accretion phase in binary
systems through a so-called recycling process (Alpar et al. 1982;
Radhakrishnan & Srinivasan 1982). They are among the most stable
known rotators in the universe and the long-term stability, on a time-
scale of >10 yr, of the rotation of some of them is comparable to that
of an atomic clock (e.g. Petit & Tavella 1996; Hobbs et al. 2012).
Due to their high rotational stability, the timing measurements of
MSPs can be obtained with a significant accuracy (e.g. Kaspi, Taylor
& Ryba 1994). Therefore, pulsars have been identified as excellent
tools for searching for gravitational waves (GWs) (see Detweiler
1979; Hellings & Downs 1983; Jenet et al. 2005).

Pulsar timing is sensitive to low-frequency GWs, from nHz to
μHz (see Detweiler 1979; Hellings & Downs 1983; Jenet et al.
2005), the natural frequency range of inspiralling supermassive
black hole binaries (SMBHBs). Forming as a consequence of galaxy
mergers, SMBHBs are expected to form frequently across cosmic
history (e.g. Volonteri, Haardt & Madau 2003). The superposition
of GW signals from this cosmic population results in a stochastic
GW background (Rajagopal & Romani 1995; Jaffe & Backer 2003;
Sesana, Vecchio & Colacino 2008), although particularly nearby
massive systems are likely to result in individually resolvable sig-
nals rising above the background level (Sesana, Vecchio & Volonteri
2009). The lower frequency limit of GWs that pulsar timing is sen-
sitive to is 1/Tobs, where Tobs is the total observation span, indicating
that a longer time-baseline of data helps to probe the low-frequency
GWs. The upper frequency limit depends on the data sampling pat-
tern since the observations are not evenly sampled. Most of the
previous pulsar-based GW studies have used the traditional aver-
aged Nyquist frequency N/(2Tobs) as the upper limit, where N is
the number of observations (e.g. Yardley et al. 2010; Arzoumanian
et al. 2014; Yi et al. 2014; Zhu et al. 2014; Babak et al. 2016). To be
consistent with previous studies and compare the results, we restrict
our search analysis to the same frequency range. We note that the
upper frequency limit for an unevenly sampled data set can be much
larger than the averaged Nyquist frequency (see Eyer & Bartholdi
1999; VanderPlas 2017), but determining the sensitivity in this fre-
quency range is complicated. In order to probe these low-frequency
GWs, high-precision timing of MSPs with sub-microsecond timing
accuracy is essential. Pulsar Timing Arrays (PTAs) – the European
PTA (EPTA; Desvignes et al. 2016), the Parkes PTA (PPTA; Rear-
don et al. 2016), and the North American Nanohertz Observatory
for Gravitational Waves (NANOGrav; Arzoumanian et al. 2015)
– provide a unique way to obtain such a high timing accuracy by
observing a collection of highly stable MSPs with good cadence
over a long-term period. The International PTA (IPTA), a collabo-
ration of the three individual PTAs, observes about 50 MSPs in total
with a time baseline range of ∼ (4.5−27) yr and an approximately
weekly to monthly cadence, including short-term daily observation
campaigns (see Verbiest et al. 2016).

The limits on the amplitude, or the strain, of GWs produced
by individual SMBHBs have been previously investigated through
pulsar timing in several studies (e.g. Lommen & Backer 2001; Jenet
et al. 2004). Babak et al. (2016) used 41 MSPs in the first EPTA
data release (Desvignes et al. 2016) and estimated the sky-averaged
strain amplitude of continuous gravitational waves (CGWs) to be in
the range of (0.6−1.5)× 10−14 at a frequency of 5−7 nHz. By using
20 MSPs in the first PPTA data release (Manchester et al. 2013),
Zhu et al. (2014) estimated the upper limit on the strain amplitude
of CGWs to be 1.7 × 10−14 at a frequency of 10 nHz. Arzoumanian

et al. (2014) used the observations of 17 MSPs reported in Demorest
et al. (2013) and placed the upper limit on the strain of CGWs to be
3 × 10−14 at a frequency of 10 nHz.

Using a spectral fitting method, Yardley et al. (2010) constrained
the upper limit on the strain amplitude of CGWs to be about
∼1 × 10−13 at a frequency of ∼9 nHz based on 18 MSPs ob-
served by the PPTA. Following the same method, Yi et al. (2014)
estimated the upper limit on the strain amplitude of CGWs based
on high-cadence observations of PSR B1937+21. They found that
the timing of this pulsar constrains an upper limit on the strain
amplitude of �1.5 × 10−11 and �5 × 10−14 at 10−7 Hz for ran-
dom and optimal source location and polarization of individual
GW sources, respectively. In the timing analysis, they noticed an
unmodelled periodic noise in the timing residuals (i.e. the differ-
ence between the observed and model-predicted time of arrivals of
pulses) of PSR B1937+21 with an amplitude of 150 ns at a fre-
quency of 3.4 yr−1. Yi et al. (2014) subtracted this periodic signal
by fitting a sinusoid and then used the whitened residuals in the
GW search analysis. It has been previously reported in other stud-
ies that this pulsar exhibits a high level of red timing noise (see
Caballero et al. 2016; Lentati et al. 2016) and a significant disper-
sion measure (DM) variation (e.g. Kaspi et al. 1994; Manchester
et al. 2013; Arzoumanian et al. 2015; Desvignes et al. 2016), where
DM accounts for the frequency-dependent time delay of the radio
pulses due to electrons in the interstellar medium along the line
of sight. Therefore, the noise and the DM variation of the pul-
sar may have perhaps generated this particular periodic signal that
was seen in the data. Babak et al. (2016) excluded PSR B1937+21
in their GW analysis due to its complicated high level of timing
noise. We note that PSR J1713+0747 exhibits a much lower level
of timing noise and DM variation across our observation time span
(see Arzoumanian et al. 2015; Desvignes et al. 2016). We thus em-
phasize that PSR J1713+0747 is a better choice compared to PSR
B1937+21 for these types of single-pulsar timing-based GW search
analyses. We also note that single-pulsar GW search analyses can-
not conclusively detect GWs, rather produce upper limits on strain
amplitudes.

PSR J1713+0747 is one of the most precisely timed pulsars by
PTAs (Arzoumanian et al. 2015; Desvignes et al. 2016; Reardon
et al. 2016). It is regularly observed by all the telescopes involved
in PTAs, providing a timing stability of ∼100 ns based on the recent
NANOGrav data release which contains over 9 yr of observations
(Arzoumanian et al. 2015). Zhu et al. (2015) reported a timing
stability of ∼92 ns based on 21 yr of observations of the pulsar.
Shannon & Cordes (2012) investigated the stability of the pulsar
and reported that single pulses show an rms phase fluctuation (the
so-called pulse jitter) of ∼40 ns, which limits the timing precision.
Recently, Liu et al. (2016a) analysed the single pulses of the pul-
sar in detail with data collected by the Large European Array for
Pulsars (LEAP; Bassa et al. 2016) project and confirmed that the
pulsar shows two modes of systematic subpulse drifting (Edwards
& Stappers 2003). The IPTA undertook a 24 hcontinuous global
observation campaign of this pulsar using nine telescopes around
the world (Dolch et al. 2014). Dolch et al. (2016) showed that the
data set in this campaign is sensitive to CGWs with a frequency
between 0.01 and 1 mHz. Following Yardley et al. (2010), Dolch
et al. (2016) estimated the upper limit on the strain amplitude of
CGWs produced by the sources located in the direction of the pulsar
to be ∼10−11 at a frequency of 0.01 mHz.

The high-cadence observations are important to understand the
noise, and the GW signal if it is present, in pulsar timing data.
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Since the observations are unevenly sampled, decreasing the relative
cadence of the data will increase the noise level across the power
spectrum of the timing residuals. The paper is organized as follows.
In Section 2, we present our observations and data processing.
We describe the timing analysis of the pulsar in Section 3 and
present our timing measurements and residuals. We then present our
analysis carried out to obtain the upper limit on the strain amplitude
of CGWs in Sections 4.1 and 4.2 using a spectral fitting and a
Bayesian approach, respectively. For an independent comparison,
we use the algorithm described in Babak et al. (2016) on our data
set and present the results in Section 4.3. We apply our limits on
SMBHB candidates in Section 4.4 and investigate any possibilities
of detecting them. Finally in Section 5, we summarize our results.

2 O BSERVATIONS AND DATA PROCESSING

PSR J1713+0747 was observed using the Lovell Telescope (LT) at
the Jodrell Bank Observatory between 2011 April and 2015 July
with an average cadence of about 4.5 d. Between 2013 February
and 2014 April, the pulsar was observed more frequently with an
average cadence of approximately every 2 d. All the LT observations
were carried out at L-band (with a centre frequency of 1532 MHz)
and the data were recorded using the ‘ROACH’ pulsar backend (see
Bassa et al. 2016). In addition to these high-cadence LT observa-
tions, we included the observations of the pulsar obtained from three
other telescopes – Effelsberg Telescope (EFF) in Germany, Nançay
Radio Telescope (NRT) in France, and Westerbork Synthesis Radio
Telescope (WSRT) in the Netherlands – in the analysis to further
improve the cadence. The EFF observations were recorded using
the ‘PSRIX’ backend (see Lazarus et al. 2016) and carried out at two
centre frequencies, 1347 and 2627 MHz. Both single- and multi-
beam L-band receivers were used at EFF alternatively throughout
our observation time span. The NRT observations were made at cen-
tre frequencies of 1484, 1524, and 2539 MHz using the ‘NUPPI’
backend (see Cognard & Theureau 2006; Cognard et al. 2013). The
WSRT observations in this analysis were recorded using the ‘PuMa
II’ backend (see Karuppusamy, Stappers & van Straten 2008) and
observed at three centre frequencies 350, 1380, and 2200 MHz. All
these backends used DSPSR to perform coherent dedispersion and
folding (van Straten & Bailes 2011). We note that these observations
were obtained using newer backends and are different from the data
sets reported in the EPTA data release (Desvignes et al. 2016). To be
consistent with all observations, we selected the beginning and the
end time of each data set to be equal to that of the LT observations,
but we note that the NRT observations started four months after the
beginning of the LT observations. The details of the bandwidths,
data span, and the number of observations in each data set is given
in Table 1. Combining the data from all four telescopes, 952 obser-
vation epochs were included in our analysis with a resulting average
cadence of about 1.6 d. We also note that the combination of data
from other telescopes improved the average cadence of the pulsar
to approximately daily within the period between 2013 February
and 2014 April, including 420 time of arrivals (TOAs) in total, in
which it was monitored more frequently using the LT.

We processed the data using the pulsar analysis software package
PSRCHIVE1 (Hotan, van Straten & Manchester 2004; van Straten, De-
morest & Oslowski 2012). PSR J1713+0747 is well known to show a
frequency-dependent pulse profile shape variation (see Dolch et al.
2014; Arzoumanian et al. 2015; Zhu et al. 2015), even within a

1http://psrchive.sourceforge.net/

frequency range of a wide-band receiver (∼400 MHz). This may
add an extra uncertainty in the measured TOA if it is obtained
through the standard bandwidth-averaged TOA generating method
(Taylor 1992). We also note that the scintillation of the pulsar may
lead to significant changes in the bandwidth-averaged pulse profile
shape due to attenuation of the intensity of the different parts of the
frequency band in different observations. Therefore, we use broad-
band TOA measurement techniques (see Liu et al. 2014; Pennucci,
Demorest & Ransom 2014) on LT and NRT observations. Each
epoch was first folded for the entire observation duration using a
previously published timing model of the pulsar (Desvignes et al.
2016), while keeping the full frequency resolution across the band-
width. This gives better signal to noise (S/N) in frequency-channel-
dependent pulse profiles. We then sum neighbouring frequency
channels together to form eight equal width sub-bands to further
improve the S/N. We then use the software2 introduced in Pennucci
et al. (2014) along with 2D eight sub-band noise-free templates to
generate TOAs. The telescope-dependent 2D templates were cre-
ated by using the results of the frequency-dependent pulse profile
evolution analysis (Perera et al. in preparation) which was based
on the high-resolution observations reported in Dolch et al. (2014).
We note that these TOAs improved the weighted rms of the timing
residuals of LT observations alone by a factor of 2 compared to
that obtained using the standard bandwidth-averaged TOA method
(Taylor 1992).

The EFF and WSRT backends use bandwidths a factor of more
than 2 smaller (see Table 1) and, therefore, the frequency-dependent
profile variation becomes less significant. Thus, we use the standard
technique (Taylor 1992) for the remaining data.

3 TI MI NG THE PULSAR

We fit a previously published timing model (Desvignes et al. 2016)
to our observed TOAs and update the solution by minimizing the
chi-square of timing residuals using the pulsar timing software pack-
age TEMPO2 (Edwards, Hobbs & Manchester 2006; Hobbs, Edwards
& Manchester 2006). Since the pulsar is in a binary orbit, the timing
model includes Keplerian and post-Keplerian (PK) parameters (see
Lorimer & Kramer 2005). We combine TOAs from different tele-
scopes/backends by fitting for time offsets or ‘JUMPs’ in the timing
model to account for any systemic delays between the data sets (e.g.
Verbiest et al. 2016). Note that some of our observations were ob-
tained simultaneously using all/several telescopes as a part of LEAP
observations (Bassa et al. 2016). Therefore, these simultaneous ob-
servations further help in constraining the ‘JUMPs’ between the
relevant data sets in the timing analysis. We note that the interfer-
ometric delay measurements between telescopes were not used for
these LEAP observations to correct their relative time offsets. We
determine the white noise of the pulsar by using the ‘TEMPONEST’3

(Lentati et al. 2014) plugin that is based on a Bayesian analysis. We
include white noise parameters EFAC, Ef, and EQUAD, Eq, for each
telescope/backend separately in our timing model, which are related

to a TOA with uncertainty σ t in microseconds as σ =
√

E2
q + E2

F σ 2
t

(see Lentati et al. 2014; Verbiest et al. 2016). We use uniform and
log-uniform prior distributions for EFACs and EQUADs in the fit,
respectively. We note that our parallax measurement is barely con-
sistent with those reported in other studies (see Zhu et al. 2015;
Desvignes et al. 2016; Verbiest et al. 2016). This could be due to

2https://github.com/pennucci/PulsePortraiture
3https://github.com/LindleyLentati/TempoNest
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Table 1. Details of observations used in the analysis. Two 1.347 GHz Effelsberg data sets have been included in the analysis: the data obtained using the
multibeam receiver (denoted as ‘m’) and the single-beam receiver (denoted as ‘s’). The observation length varies and typical values for data sets are given. In
total, 952 observation epochs were included in the analysis, resulting in an average cadence of about 1.6 d. The last column shows EFAC and log10[EQUAD(s)]
determined for each data set in the timing model given in Table 2.

Data set Backend Centre freq Bandwidth Channel size Phase Obs. length Data span No. of Ef,
(MHz) (MHz) (MHz) bins (min) TOAs log10[Eq(s)]

LT ROACH 1532 400 1 2048a 10/30/60 4/2011–7/2015 336 1.00, −6.81

NRT NUPPI 1484 512 4 2048 42 8/2011–7/2015 193 1.23, −6.98
1524 512 16 2048 45 1/2013–5/2015 20 1.11, −7.31
2539 512 4 2048 52 8/2011–12/2014 37 1.34, −6.57

EFF PSRIX 1347m 200 1.56 1024 28 4/2011–5/2015 56 1.25, −6.59
1347s 200 1.56 1024 28 5/2011–5/2013 27 1.42, −6.83
2627 200 1.56 1024 30 4/2011–6/2015 41 1.06, −6.22

WSRT PuMaII 350 70 0.156 256 25/40/60 4/2011–7/2015 87 1.11, −9.80
1380 160 0.312 512 25/45 4/2011–7/2015 123 0.97, −6.47
2200 160 0.312 512 25/40 4/2011–12/2014 32 0.67, −7.09

Note. aNote that there were only 512 pulse phase bins in the early LT observations (i.e. before 2011 July – MJD 55754). Therefore, we fit for an additional
‘JUMP’ in the timing analysis to correct for the time delay of these TOAs.

different data lengths used in different analyses (e.g. 4.3 yr of data
in our work compared to 17.7 yr of data in Desvignes et al. 2016),
or some covariance between parameters. Therefore, we use their
parallax of 0.90(3) and keep it fixed.

The observing frequencies of our data sets span ∼350−2627MHz
(see Table1). This broad frequency range allows us to fit for the
DM and its first two time derivatives, ˙DM(≡dDM/dt) and ¨DM(≡
d2DM/dt2), in the timing model, and we measure a ¨DM with a 3.5σ

significance. The pulsar showed a significant DM event towards
the end of 2008 (see Arzoumanian et al. 2015; Zhu et al. 2015;
Desvignes et al. 2016). However, the TOAs in our data sets begin in
2011 and therefore no effect from this event is seen in the analysis
and we see no evidence for any subsequent events. The timing
residuals shown in Fig. 1 are based on the timing model given in
Table 2. We note that these results were obtained without including
red and stochastic DM noise modelling of the pulsar in the timing
analysis.

The measurements of the two PK parameters, range r and shape
s, correspond to the Shapiro delay (i.e. the extra time delay of the
signal due to the gravitational potential of the binary companion),
which leads to measurements of the mass of the pulsar mp = 1.41(6)
M� and the companion mc = 0.301(8) M� with a 2σ uncertainty.
We find that these measurements are consistent with the values
reported in previous studies within their uncertainties (see Zhu et al.
2015; Desvignes et al. 2016; Verbiest et al. 2016).

PSR J1713+0747 exhibits some low-level red noise and stochas-
tic DM noise in longer data sets (e.g. Zhu et al. 2015; Caballero
et al. 2016; Lentati et al. 2016). The length of our data set is perhaps
not long enough to perform a proper noise analysis of the pul-
sar to measure the appropriate parameters significantly. However,
for comparison, we determine the red and DM stochastic noise
parameters of the pulsar based on our data set using ‘TEMPONEST’
(see Lee et al. 2014; Lentati et al. 2014). We include a power-law
DM to model a stochastic DM variation component in addition to

˙DM and ¨DM in the timing model. To model an additional achro-
matic red noise process, we include a power-law red noise model
and fit for all white and red noise terms along with the param-
eters given in the timing model simultaneously. We find that the
timing measurements are consistent with those obtained without
including these additional noise parameters in the timing model.
We find the amplitude and the spectral index of the power-law DM

variation are log ADM = −14.4 ± 2.5 and γ DM = 2.3 ± 1.8, re-
spectively, while those of the power-law red noise of the pulsar are
log Ared = −14.9 ± 1.7 and γ red= 2.0 ± 1.7, respectively. Note that
these noise parameters are poorly constrained due to our short data
span, but consistent with those estimated in previous studies for this
pulsar within the uncertainties (see Caballero et al. 2016; Desvignes
et al. 2016; Verbiest et al. 2016). We estimate the Bayes factor (i.e.
B = evidence[H1]/evidence[H0], where H1 is the model including
the red and DM stochastic noise and H0 is the model excluding
these noise terms) to be log10(B) = 8.8(2), indicating that the noise
model is preferred (Kass & Raftery 1995).

Note that we use the Solar system ephemeris DE421 model
(Folkner, Williams & Boggs 2009) in our timing analysis (see
Table 2). For an additional comparison, we use the more recent
DE4364 model in the timing analysis and confirm that the timing
and noise parameters are very similar to those obtained with the
DE421 model. We also confirm that the GW search results obtained
from the two models are similar and consistent with each other.

4 PULSAR SENSI TI VI TY TO I NDI VI DUAL G W
S O U R C E S

The GW signal produced by an SMBHB can be seen in the pulsar
timing residuals if the pulsar has a sufficiently precise timing solu-
tion and the strain amplitude of the particular GW is large enough
to produce a detectable signal in the timing residuals that can be
distinguished from the timing noise. The sinusoidal GW signature
in timing residuals produced by an SMBHB in a circular orbit has
two terms due to its binary evolution, namely the ‘Earth term’,
which has a high-frequency behaviour, and the ‘pulsar term’, which
has a low-frequency behaviour (see Jenet et al. 2004). We use the
GW model given in Babak et al. (2016), and briefly describe the
relevant expressions here in Appendix A. In this study, we mainly
assume non-evolving SMBHBs (i.e. the long-term evolution of the
binary is negligible compared to the light traveltime between the
pulsar and the Earth), so that both the pulsar and Earth terms have
the same frequency. We note that the sources might or might not be
evolving at the high frequencies relevant to this study depending on

4https://naif.jpl.nasa.gov/pub/naif/JUNO/kernels/spk/de436s.bsp.lbl
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Figure 1. The timing residuals of PSR J1713+0747. The weighted rms of
the residuals is 219 ns. For clarity of the plot, the residuals of the differ-
ent telescopes are shown in separate panels. The ∼1.4 GHz observations
are presented in black, and the low- and high-frequency observations are
presented in blue and red colours, respectively. Note that each panel shows
different scale in residuals. The average cadence of observations is 1.6 d
across the entire data span, while the very-high-cadence observation period
between 2013 February and 2014 April achieved an approximately daily
observation cadence. Note that the WSRT 350 MHz data set has compara-
bly large uncertainties and thus its weight in the timing analysis is small,
although it contributes to the significance of the DM parameters.

the mass of the SMBHB. However, Babak et al. (2016) showed that
the GW upper limits are insensitive on the assumed source model
(as we will also confirm this in Section 4.3), which indicates this
working assumption is valid. By searching for the embedded GW
periodic signal in timing residuals, we would be able to estimate the
sensitivity limit of the pulsar on the strain amplitude of the CGWs
produced by SMBHBs. We followed two different methods. First,
we used computationally inexpensive spectral fitting method given
in Yardley et al. (2010). We then undertook a computationally ex-
pensive more advanced Bayesian approach using the ‘TEMPONEST’
plugin in TEMPO2. For an independent comparison, we finally use
a previously developed algorithm for the first EPTA data release
based on Bayesian analysis (Babak et al. 2016), including evolving
SMBHBs. We find both Bayesian analyses give consistent upper

Table 2. The timing model parameters of PSR J1713+0747 constrained
using our data set given in Table 1. The binary parameters were measured
using the T2 binary model given in TEMPO2. We keep the parallax fixed at
the value 0.90(3) reported in Desvignes et al. (2016). The position, spin
frequency, and DM are given for the reference epoch of MJD 56000.

Timing parameter

Data span (MJD) 55643–57221
Number of TOAs 952
Weighted rms timing residual (μs) 0.219
Reduced χ2 value 0.97
Right ascension (RA) (J2000) 17:13:49.5340822(7)
Declination (DEC)(J2000) +07:47:37.48181(2)
Proper motion in RA (mas yr−1) 4.913(4)
Proper motion in DEC (mas yr−1) −3.955(8)
Spin frequency, f (s−1) 218.811840 381 872 0(3)
Spin frequency 1st time derivative, ḟ (s−2) −4.08356(7) × 10−16

Reference epoch (MJD) 56000
Parallax, π (mas) 0.9
Dispersion measure, DM (cm−3 pc) 15.99191(4)
Dispersion measure 1st time derivative,

˙DM(cm−3 pc yr−1)
−1.0(2) × 10−4

Dispersion measure 2nd time derivative,
¨DM (cm−3 pc yr−2)

2.8(8) × 10−5

Orbital period, Pb (d) 67.8251309805(6)
Epoch of periastron, T0 (MJD) 48741.9740(2)
Projected semi-major axis, x (lt-s) 32.34241993(5)
Longitude of periastron, ω (deg) 176.201(1)
Orbital eccentricity, e 7.49404(6) × 10−5

Orbital inclination, i (deg) 70.4(8)
Longitude of ascending node, � (deg) 96(3)
Companion mass, mc (M�) 0.301(3)
Clock correction procedure TT(BIPM2015)
Solar system ephemeris model DE421
Units TCB

limits on the strain amplitude, while the spectral method does not
provide optimal results, rather it provides slightly larger upper lim-
its. As discussed in Ellis, Jenet & McLaughlin (2012), this spectral
fitting method is incoherent and thus provides non-optimal results.
For completeness, we first discuss the spectral fitting method and
then the Bayesian approaches.

4.1 Spectral fitting method

As mentioned before, here we use the spectral fitting method given
in Yardley et al. (2010). The definition of the GW signal given in
Yardley et al. (2010) [see equation (4) therein] represents a reduced
form and thus misses some parameters (e.g. orbital inclination i,
initial phase φ0 of the GW signal) compared to the full expression
given in Appendix A. We notice that this reduced form provides a
few factors poor results in the upper limit estimates. Therefore, we
use the full GW expression.

We first obtain the power spectrum of the timing residuals of PSR
J1713+0747 shown in Fig. 1. The power spectrum of an unevenly
sampled data set can be obtained by using the Lomb–Scargle (LS)
periodogram (Lomb 1976; Scargle 1982). However, the original
LS periodogram does not account for the uncertainties of the data.
When generating the power spectrum from timing residuals, it is
important to include the uncertainties to avoid any biases of the
power in the spectrum to less-weighted residuals. Therefore, we
use the Generalized Lomb–Scargle periodogram (GLSP) formalism
introduced in Zechmeister & Kürster (2009), which accounts for the
uncertainties of the data points by including weights and also fits
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Figure 2. The power spectrum of the timing residuals of the pulsar given in
Fig. 1. The top panel shows the spectrum generated using the entire data set
across the full data span, including (solid curve) and excluding (dotted curve)
the low-frequency WSRT 350 MHz data set. For the clarity of the plot, we
shifted the dotted curve down by a factor of 0.1. We note that both curves
are very similar, indicating that the GLSP method accounts for the less-
weighted WSRT 350 MHz data correctly in the periodogram. The middle
panel represents the power spectrum generated using the timing residuals
after subtracting the waveforms of the red and stochastic DM power-law
noise terms as described in Section 3. The bottom panel shows the spectrum
for the very-high-cadence period of the observations after accounting for
all noise parameters in the timing model. Note that the upper bound of
the frequency range is extended beyond 3.5 μs with this very-high-cadence
observations. The y-axis represents the normalized power (see Zechmeister
& Kürster 2009 for details). The vertical dashed and dash–dotted lines
represent the frequencies of 1 yr−1 and the orbital period of 67.8 d of the
pulsar, respectively.

for a floating mean. The power spectrum of our timing residuals is
given in Fig. 2. We note that since the periodogram is weighted by
the uncertainties, the low-frequency WSRT 350 MHz residuals with
large uncertainties (see Fig. 1) do not contribute significantly. This
can be clearly seen in the top panel in Fig. 2, where the spectrum is
calculated including (solid curve) and excluding (dotted curve) the
WSRT 350 MHz data, respectively. Note that we shifted the dotted
curve down by a factor of 0.1 for clarity of the figure.

In contrast to PSR B1937+21 (see Yi et al. 2014), Fig. 2 shows
that the timing residuals of PSR J1713+0747 do not present any
significant unmodelled periodic signals. However, as mentioned in
Section 3, we also estimated DM stochastic and red noise param-
eters in the timing analysis. For comparison, the middle panel in
Fig. 2 shows the power spectrum after subtracting the time-domain

waveforms of these noise terms in the timing model, resulting in
a slightly lower spectral power at low frequencies compared to the
previous case. The power spectrum of the residuals, after subtract-
ing the waveforms of additional DM and red noise terms, on the
data within the very high-cadence observing period is shown in the
bottom panel of Fig. 2. No noticeable red noise is seen within this
short, but high-cadence, time span. The significant power drop at
the yearly period (i.e. a frequency of ∼3 × 10−8 Hz) in Fig. 2 is
common for all three cases and it is due to fitting for the pulsar
position in the timing model. Similarly, the power absorption at
∼1.7 × 10−7 Hz is due to fitting for the orbital period, Pb = 67.8 d.

We then use the same method outlined in previous studies (see
Yardley et al. 2010; Yi et al. 2014) to build the detection threshold
using the power spectrum of timing residuals. To remove any spu-
rious effects from any apparent unmodelled signals and noise in the
timing residuals, we smooth the spectrum given in Fig. 2 (top panel)
and fit a polynomial. We find that a third-order polynomial function
is sufficient to fit the data. We then scale this polynomial by a factor
α in power in the spectrum. It is determined by simulating 104 data
sets with TOAs having uncertainties of 100 ns and cadence that
matches the observed data. We then obtain the power spectrum of
each realization and calculate the mean power. We label the mean
power of the ith spectrum as mi. We increase α starting from 1
and count the number of power spectra that have any power value
greater than αmi. We set a 1 per cent false alarm rate and increase α

until the number of spectra satisfies this threshold. We find that the
best α for our data set is 10.1, and scale the polynomial in power
accordingly, in order to build the detection threshold.

We then divide the frequency range of the observed spectrum into
100 equal bins in logspace. We inject the pulsar and Earth terms at
the same frequency, according to the model given in Appendix A, for
a given hs in the observed TOAs (see equation A1). We fit our timing
model of the pulsar to the new GW-injected TOAs using TEMPO2
and obtain timing residuals. The power spectrum of the timing
residuals is then compared with the detection threshold at the given
frequency for a detection (see Yardley et al. 2010; Yi et al. 2014 for
more details). For each hs, we perform 1000 trials using randomly
selected φS, θS, φ0, ψ , and i and then count the number of detections
(see Appendix A for definitions of these parameters). We increase hs

until the signals of 95 per cent of trials are detected and then record
the particular hs as the upper limit for that given frequency bin.
We repeat this process for all frequency bins. This gives the 95 per
cent upper limit on the sky-averaged strain amplitude of CGWs
produced by SMBHBs. We present our upper limit curve in Fig. 3
[see panels (a) and (b)]. For an optimal sky location, we assume all
the SMBHBs are located in the direction of the pulsar (±10◦ in the
direction of the pulsar), and repeat the same procedure as before.
As shown in the figure, the optimal upper limit is a factor of a few
better than the sky-averaged result.

4.2 Bayesian approach using TEMPONEST

The spectral fitting method described above is an incoherent ad hoc
method that does not provide optimal results. It does not include
the noise processes of the pulsar (i.e. red and DM stochastic noise)
and it is not straightforward to implement them in the model. If
the noise modelling is included in the analysis, then we need to fit
for noise properties each time the GW signal is injected and thus
the fitting method becomes computationally inefficient. Therefore,
we use the Bayesian approach described in Lentati et al. (2014)
where the noise properties of the pulsar are constrained using the
‘TEMPONEST’ plugin. Since we assume that the GW is produced by
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Figure 3. The 95 per cent upper limit on the GW strain amplitude produced
by SMBHBs based on the timing observations of PSR J1713+0747. Panel
(a) shows the results obtained from all methods described in Section 4.
For clarity, we plot the results obtained from each method in the following
panels (i.e. from spectral fitting, and Bayesian analysis using TEMPONEST and
the algorithm given in Babak et al. 2016, respectively). The dotted curves
in panels (b) and (c) show the upper limits for the optimal case where all
the sources are assumed to be located in the same direction as the pulsar.
For comparison, we overplot the upper limits obtained from the data within
the high-cadence observation time span between 2013 February and 2014
April [orange curves in panel (c)]. Panel (d) shows the upper limits obtained
from the algorithm given in Babak et al. (2016) assuming evolving sources,
for only the Earth term (green) and also for the combined Earth and pulsar
terms (blue).

an SMBHB in a circular orbit, the signal that can be embedded in
the data of a single pulsar is sinusoidal. Therefore, we fit for an
additional simple sinusoidal signal while fitting for white noise (i.e.
EFACs and EQUADs), and power-law stochastic DM and red noise
parameters of the pulsar simultaneously using ‘TEMPONEST’. The
timing model parameters are marginalized over during the fit (see
Lentati et al. 2014 for details about this procedure). The plugin uses
Bayesian inference tool MULTINEST to determine this joint parameter
space and nested Markov Chain Monte Carlo method for sampling
(Feroz & Hobson 2008; Feroz, Hobson & Bridges 2009; Feroz et al.
2013). We use log-uniform prior distributions for amplitudes of the
power-law DM stochastic and red noise, and for the frequency
of the sinusoidal signal. We use uniform prior distributions for
spectral indices of the power-law noise terms, and the amplitude and
the phase of the sinusoidal signal. The fit results in approximately
4 × 104 samples in the posterior probability distribution. Each
sinusoidal signal sample includes information about its amplitude
[r(t)], initial phase (φ0), and the frequency (fg). We then convert
the amplitudes of these GW signals to strain amplitudes (hs) using
equation (A1) for randomly selected φS, θS, φ0, ψ , and i (i.e. the
polar coordinates of the GW source, initial phase of the signal,
GW polarization angle, and orbital inclination, respectively – see
Appendix A for details). We divide the frequency range of these
GWs (which is equal to the frequency range used in Section 4.1)
into 100 equal bins and then obtain the 95 per cent upper limit on
the strain amplitude of corresponding signals in each bin. Fig. 3
shows our results [see panels (a) and (c)]. The optimal upper limit
is again obtained by considering all sources to be located along
the direction of the pulsar [see panel (c) in Fig. 3] as described in
Section 4.1.

As mentioned above, Fig. 3 shows that the Bayesian approach
provides better limits compared to the spectral fitting method. We
also applied this method to the data within the high-cadence obser-
vation time span and obtained the upper limit on the strain amplitude
[panel (c) of Fig. 3].

4.3 Using previously published Bayesian algorithm

In order to further validate our results, we use the algorithm pre-
sented in Babak et al. (2016). In this Bayesian analysis, we use
POLYCHORD (Handley, Hobson & Lasenby 2015) to fit for the CGW
signal (i.e. hs, φS, θS, φ0, ψ , i, and fg) and the noise parameters
(i.e. EFACs, EQUADs, power-law stochastic DM, and red noise
processes). Similar to the method in Section 4.2, the timing model
parameters are marginalized over during the fit. In addition to differ-
ent tools used in the two Bayesian approaches, Babak et al. (2016)
are capable of using both evolving and non-evolving sources in the
search analysis, whereas the method in Section 4.2 uses only non-
evolving sources. The underlying algorithm utilizes the GW model
described in Appendix A, and the details of the fitting procedure is
described in Babak et al. (2016) and Taylor (2017). In the search for
evolving sources, we use three extra parameters in the model – the
chirp mass of the system, distance to the pulsar, and the initial phase
of the pulsar term. For the distance to the pulsar, we use the Gaussian
prior centred at the best currently known value with the measured
uncertainty of 1.05(7) kpc (Chatterjee et al. 2009). As mentioned
above, we use POLYCHORD (nested sampling) in this analysis, which
is the next incarnation of the MULTINEST. It is supposed to be more
robust for the multimodal likelihood surfaces embedded in the large
dimensional parameter space and more efficient for some problems.
However, we find no benefit of the new implementation, rather both
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Table 3. The SMBHB candidates considered in this analysis based on three
studies: (1) CRTS (Graham et al. 2015), (2) PTF data base (Charisi et al.
2016), and (3) Pan-STARRS1 Medium Deep Survey (Liu et al. 2015, 2016b).
Note that the expected GW frequencies from these sources fall in the regime
that our pulsar timing analysis can be probed.

Study Candidates z
Period

(yr)
Frequency

(nHz)

1 111 0.1−2.7 1.8−6.7 9.5−35.7
2 33 0.3−3.1 0.3−2.1 29−177
3 3 1.2−2.2 1.2−1.5 41−54

samplers give very consistent results. The posterior distributions for
the noise parameters obtained by the TEMPONEST (described in the
Section 4.2) and the method used here are very similar. We also note
that the results obtained from evolving and non-evolving sources are
consistent with each other. We present the upper limit on the strain
amplitude of CGWs in Fig. 3 [see panels (a) and (d)] separately for
the Earth term only, as well as for the combined Earth and pulsar
terms. Fig. 3 shows that these results are consistent with the results
obtained from the Bayesian approach described in Section 4.2.

4.4 Application to proposed SMBHB candidates

It is thought that quasars contain SMBHs and SMBHBs in their
nuclei. Although SMBHBs are not resolvable optically by direct
imaging, candidates can be identified through periodicity in their
optical, radio, and X-ray fluxes. The quadrupole torque produced by
a binary induces a periodicity in the accretion flow from a circumbi-
nary disc related to its orbital period (Artymowicz & Lubow 1994;
MacFadyen & Milosavljević 2008; Roedig et al. 2011). This might
result in periodic luminosity variations (e.g. Sesana et al. 2012).
By searching for periodicities in observations of quasars, SMBHB
candidates have been identified in many surveys. In this study, we
consider those identified by the Catalina Real-time Transient Survey
(CRTS) (Graham et al. 2015), Palomar Transient Factory (PTF) data
base (Charisi et al. 2016), and Pan-STARRS1 Medium Deep Survey
(Liu et al. 2015, 2016b), which identified 111, 33, and 3 candidate
SMBHBs, respectively (see Table 3). We note that the periodicities
of all these candidate sources are expected to produce GWs in the
frequency range between approximately 10−8−10−7Hz, which falls
into the frequency range that our timing of PSR J1713+0747 can
probe. Therefore, we estimated these expected signals [using equa-
tion (A10) and assuming equal mass SMBHs (i.e. q = M2/M= 1)
in binary systems1] and compared them with our timing-derived
upper limit on the strain amplitude (see Fig. 4). The lower limit
of these expected signals shown in the figure is estimated by as-
suming a mass ratio of q = M2/M1 = 0.1. As seen in Fig. 4, the
strain amplitudes of the predicted GW signals from these sources
are lower (by more than a factor of 4 for the strongest ones) than
the sky-averaged sensitivity curve for PSR J1713+0747. We note
that none of these candidates are located in the direction of the
pulsar. Thus, using the actual sky locations of these sources in the
GW search analysis will not improve the sensitivity significantly
compared to the sky-averaged sensitivity presented in Fig. 4 (see
the dotted curves in Fig. 3 for upper limits based on optimal sky
location). This indicates that we cannot expect to detect GW signals
produced by these candidates in our timing results yet.

Figure 4. The 95 per cent upper limit on the sky-averaged strain amplitude
of CGWs. The colour code of the curves is the same as that given in Fig. 3. For
clarity, only the limits obtained from Bayesian approaches are plotted. The
dashed and dotted lines show the theoretically expected strain amplitude
from SMBHBs with equal masses of 109 and 108 M� at a distance of
the Virgo cluster, 16.5 Mpc, respectively. The circles, squares, and crosses
show the expected GW strain amplitude produced by the SMBHB candidates
reported in Graham et al. (2015), Charisi et al. (2016), and Liu et al. (2016b),
respectively (see Table 3 for more information). Note that the expected strain
amplitudes are estimated using equation (A10) given in Appendix A.

5 C O N C L U S I O N S

We used high-cadence observations of PSR J1713+0747 to place
upper limits on the strain amplitude of CGWs produced by indi-
vidual SMBHBs in circular orbits. Based on the typical frequency
range used in previous studies, 1/Tobs and N/(2Tobs) (e.g. Yardley
et al. 2010; Yi et al. 2014), we used our observations to probe
GWs produced within a frequency range between 7.8 × 10−9 and
5 × 10−6 Hz, covering the high-frequency μHz regime. We used
three independent methods in the analysis, including a spectral
fitting method and more advanced Bayesian approaches. As men-
tioned in previous studies (see Yardley et al. 2010; Ellis et al. 2012)
and also shown in Fig. 3, the spectral fitting method does not pro-
vide optimal results due to its simple incoherent fitting procedure
and absence of proper noise modelling of the pulsar. We find that
the independent Bayesian analyses are consistent, and also about a
factor of 5 better compared to the spectral fitting method. Based on
our results, we found a 95 per cent upper limit on the sky-averaged
strain amplitude of CGWs to be �3.5 × 10−13 at a reference fre-
quency of 1 μHz. For an optimal sky location, the 95 per cent upper
limit on the strain amplitude is improved to be �2.1 × 10−13 at
the same reference frequency. We also found that our timing results
place upper limits on the sky-averaged and optimal strain amplitude
of low-frequency CGWs to be �1.4 × 10−14 and �1.1 × 10−14 at
a reference frequency of 20 nHz, respectively. This low-frequency
limit is approximately three orders of magnitude better compared to
the result presented in Yardley et al. (2010) for this pulsar. We also
compared our limits with the expected GWs produced by SMBHB
candidates, and found that the limits are not yet constraining these
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sources. However, we will be able to confirm or reject the binary
hypothesis for those candidates in the future with better limits in-
cluding more observations.

Compared to the upper limits of PSR B1937+21 on GWs pre-
sented in Yi et al. (2014), our study shows that PSR J1713+0747 pro-
vides better sky-averaged upper limits across the entire frequency
range. The poor limits of PSR B1937+21 may have been due to
excess noise caused by the known significant DM variation and the
high level of red noise in the timing data (see Yi et al. 2014; Ca-
ballero et al. 2016; Lentati et al. 2016). As mentioned in Section 4.1,
we also note that Yi et al. (2014) used a simplified GW model and
it worsens the upper limits by factor of a few compared to that
obtained from the full definition of the GW model that we used in
our study. The impact of the presence of low-frequency noise in the
timing data on their sensitivity to the strain amplitude of GWs was
investigated by Caballero et al. (2016) using a subset of the EPTA
data over a longer time span of about 17 yr. They showed that the
sensitivity reduces by a factor of up to ∼5 at nHz frequencies while
at the higher frequencies that our data set is most sensitive, the
impact of noise is minimal.

In comparison, the sensitivity limits on CGWs estimated in our
analysis at low frequencies are consistent in general with those esti-
mated by PTA studies (see Arzoumanian et al. 2014; Zhu et al. 2014;
Babak et al. 2016). These PTA studies combined data from several
pulsars in their analysis over long-term observations to obtain their
sensitivities compared to single-source data over a short-term ob-
servation in our analysis. Our study indicates the importance of
collecting more high-cadence observations from good pulsars in
PTAs to improve the timing precision and then obtain better GW
limits even at low frequencies.

The precision of the timing model (improving the TOA uncer-
tainty) can be improved with time by extending the timing baseline,
using larger telescopes and modern backends to observe the pulsar
(see Lorimer & Kramer 2005). Therefore, in the future, we can im-
prove the timing precision by including more data in our analysis
and thus improve the sensitivity limits of pulsar timing to GWs
produced by SMBHBs.
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Nançay radio observatory is operated by the Paris Observatory, asso-
ciated with the French Centre National de la Recherche Scientifique
(CNRS). We acknowledge financial support from ‘Programme Na-
tional de Cosmologie et Galaxies’ (PNCG) of CNRS/INSU, France.
The Westerbork Synthesis Radio Telescope is operated by the
Netherlands Institute for Radio Astronomy (ASTRON) with sup-
port from The Netherlands Organisation for Scientific Research,
NWO. Part of this work is based on observations with the 100 mte-
lescope of the Max-Planck-Institut für Radioastronomie (MPIfR)
at Effelsberg. The LEAP is supported by the ERC Advanced Grant
‘LEAP’, Grant Agreement Number 227947 (PI M. Kramer).

KL acknowledges the financial support by the European Re-
search Council for the ERC Synergy Grant BlackHoleCam under
contract no. 610058. SO acknowledges support from the Alexander
von Humboldt Foundation and Australian Research Council grant

Laureate Fellowship FL150100148. AS is supported by the Royal
Society. GJ and GS acknowledge support from the Netherlands
Organization for Scientific Research, NWO (TOP2.614.001.602).
SRT is supported by the NANOGrav project, which receives support
from National Science Foundation Physics Frontier Center award
number 1430284. We thank Chiara Mingarelli and Kejia Lee for
useful comments on the manuscript.

REFERENCES

Alpar M. A., Cheng A. F., Ruderman M. A., Shaham J., 1982, Nature, 300,
728

Artymowicz P., Lubow S. H., 1994, ApJ, 421, 651
Arzoumanian Z. et al., 2014, ApJ, 794, 141
Arzoumanian Z. et al., 2015, ApJ, 813, 65
Babak S. et al., 2016, MNRAS, 455, 1665
Bassa C. G. et al., 2016, MNRAS, 456, 2196
Caballero R. N. et al., 2016, MNRAS, 457, 4421
Charisi M., Bartos I., Haiman Z., Price-Whelan A. M., Graham M. J., Bellm

E. C., Laher R. R., Márka S., 2016, MNRAS, 463, 2145
Chatterjee S. et al., 2009, ApJ, 698, 250
Choudhury T. R., Padmanabhan T., 2005, A&A, 429, 807
Cognard I., Theureau G., 2006, in On the present and future of pulsar

astronomy, 26th meeting of the IAU, Joint discussion 2, 16-17 August,
2006, Prague, Czech Republic

Cognard I., Theureau G., Guillemot L., Liu K., Lassus A., Desvignes G.,
2013, in Cambresy L., Martins F., Nuss E., Palacios A., eds, SF2A-2013:
Proceedings of the Annual meeting of the French Society of Astronomy
and Astrophysics. p. 327

Demorest P. B. et al., 2013, ApJ, 762, 94
Desvignes G. et al., 2016, MNRAS, 458, 3341
Detweiler S., 1979, ApJ, 234, 1100
Dolch T. et al., 2014, ApJ, 794, 21
Dolch T. et al., 2016, J. Phys: Conf. Ser., 716, 012014
Edwards R. T., Stappers B. W., 2003, A&A, 407, 273
Edwards R. T., Hobbs G. B., Manchester R. N., 2006, MNRAS, 372, 1549
Ellis J. A., Jenet F. A., McLaughlin M. A., 2012, ApJ, 753, 96
Eyer L., Bartholdi P., 1999, A&AS, 135, 1
Feroz F., Hobson M. P., 2008, MNRAS, 384, 449
Feroz F., Hobson M. P., Bridges M., 2009, MNRAS, 398, 1601
Feroz F., Hobson M. P., Cameron E., Pettitt A. N., 2013, preprint (arXiv:

1306.2144)
Folkner W. M., Williams J. G., Boggs D. H., 2009, Interplanet. Netw. Prog.

Rep., 178, 1
Graham M. J. et al., 2015, MNRAS, 453, 1562
Handley W. J., Hobson M. P., Lasenby A. N., 2015, MNRAS, 453, 4384
Hellings R. W., Downs G. S., 1983, ApJ, 265, L39
Hobbs G. B., Edwards R. T., Manchester R. N., 2006, MNRAS, 369, 655
Hobbs G. et al., 2012, MNRAS, 427, 2780
Hotan A. W., van Straten W., Manchester R. N., 2004, Publ. Astron. Soc.

Aust., 21, 302
Jaffe A. H., Backer D. C., 2003, ApJ, 583, 616
Jenet F. A., Lommen A., Larson S. L., Wen L., 2004, ApJ, 606, 799
Jenet F. A., Hobbs G. B., Lee K. J., Manchester R. N., 2005, ApJ, 625, L123
Karuppusamy R., Stappers B., van Straten W., 2008, PASP, 120, 191
Kaspi V. M., Taylor J. H., Ryba M., 1994, ApJ, 428, 713
Kass R. E., Raftery A. E., 1995, J. Am. Stat. Assoc., 90, 773
Komatsu E. et al., 2009, ApJS, 180, 330
Lazarus P., Karuppusamy R., Graikou E., Caballero R. N., Champion D. J.,

Lee K. J., Verbiest J. P. W., Kramer M., 2016, MNRAS, 458, 868
Lee K. J., Jenet F. A., Price R. H., 2008, ApJ, 685, 1304
Lee K. J., Wex N., Kramer M., Stappers B. W., Bassa C. G., Janssen G. H.,

Karuppusamy R., Smits R., 2011, MNRAS, 414, 3251
Lee K. J. et al., 2014, MNRAS, 441, 2831
Lentati L., Alexander P., Hobson M. P., Feroz F., van Haasteren R., Lee K.

J., Shannon R. M., 2014, MNRAS, 437, 3004
Lentati L. et al., 2016, MNRAS, 458, 2161

MNRAS 478, 218–227 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/478/1/218/4990951 by Biblio Planets user on 08 M
arch 2019

http://www.epta.eu.org
http://dx.doi.org/10.1038/300728a0
http://dx.doi.org/10.1086/173679
http://dx.doi.org/10.1088/0004-637X/794/2/141
http://dx.doi.org/10.1088/0004-637X/813/1/65
http://dx.doi.org/10.1093/mnras/stv2092
http://dx.doi.org/10.1093/mnras/stv2755
http://dx.doi.org/10.1093/mnras/stw179
http://dx.doi.org/10.1093/mnras/stw1838
http://dx.doi.org/10.1088/0004-637X/698/1/250
http://dx.doi.org/10.1051/0004-6361:20041168
http://dx.doi.org/10.1088/0004-637X/762/2/94
http://dx.doi.org/10.1093/mnras/stw483
http://dx.doi.org/10.1086/157593
http://dx.doi.org/10.1088/0004-637X/794/1/21
http://dx.doi.org/10.1088/1742-6596/716/1/012014
http://dx.doi.org/10.1111/j.1365-2966.2006.10870.x
http://dx.doi.org/10.1088/0004-637X/753/2/96
http://dx.doi.org/10.1051/aas:1999102
http://dx.doi.org/10.1111/j.1365-2966.2007.12353.x
http://dx.doi.org/10.1111/j.1365-2966.2009.14548.x
http://arxiv.org/abs/1306.2144
http://dx.doi.org/10.1093/mnras/stv1726
http://dx.doi.org/10.1093/mnras/stv1911
http://dx.doi.org/10.1086/183954
http://dx.doi.org/10.1111/j.1365-2966.2006.10302.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21946.x
http://dx.doi.org/10.1071/AS04022
http://dx.doi.org/10.1086/345443
http://dx.doi.org/10.1086/383020
http://dx.doi.org/10.1086/431220
http://dx.doi.org/10.1086/528699
http://dx.doi.org/10.1086/174280
http://dx.doi.org/10.1080/01621459.1995.10476572
http://dx.doi.org/10.1088/0067-0049/180/2/330
http://dx.doi.org/10.1093/mnras/stw189
http://dx.doi.org/10.1086/591080
http://dx.doi.org/10.1111/j.1365-2966.2011.18622.x
http://dx.doi.org/10.1093/mnras/stu664
http://dx.doi.org/10.1093/mnras/stt2122
http://dx.doi.org/10.1093/mnras/stw395


GWs limits from J1713+0747 high-cadence data 227

Liu K. et al., 2014, MNRAS, 443, 3752
Liu T. et al., 2015, ApJ, 803, L16
Liu K. et al., 2016a, MNRAS, 463, 3239
Liu T. et al., 2016b, ApJ, 833, 6
Lomb N. R., 1976, Ap&SS, 39, 447
Lommen A. N., Backer D. C., 2001, ApJ, 562, 297
Lorimer D. R., Kramer M., 2005, Handbook of Pulsar Astronomy. Cam-

bridge Univ. Press, Cambridge
MacFadyen A. I., Milosavljević M., 2008, ApJ, 672, 83
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APPENDIX A : G W MODEL

The sinusoidal signal produced by a non-evolving GW source in
the timing residuals of a pulsar is given by

r(t) = re(t) − rp(tp). (A1)

Here, tp = t − D(1 + �̂ · p̂)/c, where D is the distance to the pul-
sar, c is the speed of light, �̂ is the unit vector along the direction of
GW propagation, and p̂ is the unit vector along the direction of the
radio waves propagating from the pulsar. We use the astrometry-
derived pulsar distance of 1.05(7) kpc (Chatterjee et al. 2009), which
is consistent with the distance derived from the measured DM and
the parallax (see Desvignes et al. 2016). The Earth and pulsar terms
are given by

re(t) = hs

ω
{(1 + cos2 i)F+[sin(ωt + φ0)]

+ 2 cos iF×[cos(ωt + φ0)]} (A2)

and

rp(tp) = hs

ω
{(1 + cos2 i)F+[sin(ωtp + φ0)]

+ 2 cos iF×[cos(ωtp + φ0)]}, (A3)

where hs is the strain amplitude of the GW signal, fg = ω/2π is
the frequency of the GW signal, i is the inclination angle of the
SMBHB orbit with respect to the line of sight, and φ0 is the initial
phase of the signal. The ‘antenna beam patterns’ are given by

F+ = 1

2

(m̂ · p̂)2 − (n̂ · p̂)2

1 + �̂ · p̂
(A4)

and

F× = (m̂ · p̂)(n̂ · p̂)

1 + �̂ · p̂
. (A5)

For a Cartesian coordinate system (x, y, z), we can define all above
unit vectors as

m̂ = (sin φS cos ψ − sin ψ cos φS cos θS)x̂

− (cos φS cos ψ + sin ψ sin φS cos θS)ŷ + (sin ψ sin θS)ẑ,

(A6)

n̂ = (− sin φS sin ψ − cos ψ cos φS cos θS)x̂

+ (cos φS sin ψ − cos ψ sin φS cos θS)ŷ + (cos ψ sin θS)ẑ,

(A7)

�̂ = −(sin θS cos φS)x̂ − (sin θS sin φS)ŷ − cos θSẑ, and (A8)

p̂ = (sin θ cos φ)x̂ + (sin θ sin φ)ŷ + cos θ ẑ, (A9)

where θS and φS are the usual polar coordinates of the GW source
location in the sky, θ and φ are the usual polar coordinates of the
pulsar, and ψ is the GW polarization angle. The derivation of the
above expressions are given in previous studies in detail (see Lee,
Jenet & Price 2008; Sesana & Vecchio 2010; Lee et al. 2011; Zhu
et al. 2014; Babak et al. 2016). The GW strain amplitude is defined
as

hs = 2
(GMc)5/3

c4DL(z)
(πfg)2/3, (A10)

where Mc = (M1M2)3/5(M1 + M2)−1/5 is the chirp mass of the system
with individual masses of M1 and M2, and G is the gravitational
constant. The luminosity distance DL to the source is given by

DL(z) = (1 + z)
c

H0

∫ z

0

dz′

E(z′)
, (A11)

where z is the redshift to the source, H0 is Hub-
ble’s constant (=72 km s−1 Mpc−1), and E(z) = H (z)/H0 =√

� + �m(1 + z)3 (see Stavridis, Arun & Will 2009). We use
� = 0.7 and �m = 0.3 in this work (see Choudhury & Padman-
abhan 2005; Komatsu et al. 2009).
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