
HAL Id: hal-01797063
https://hal.science/hal-01797063v1

Submitted on 9 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Virtue of Gentleness: Improving Connection
Response Times with SYN Priority Active Queue

Management
Tristan Braud, Martin Heusse, Andrzej Duda

To cite this version:
Tristan Braud, Martin Heusse, Andrzej Duda. The Virtue of Gentleness: Improving Connection
Response Times with SYN Priority Active Queue Management. IFIP Networking 2018 Conference
(IFIP Networking 2018), 2018, Zurich, Switzerland. �hal-01797063�

https://hal.science/hal-01797063v1
https://hal.archives-ouvertes.fr

ISBN 978-3-903176-08-9 c© 2018 IFIP

The Virtue of Gentleness: Improving Connection
Response Times with SYN Priority Active Queue

Management

Tristan Braud∗, Martin Heusse¶, and Andrzej Duda¶

{braudt@ust.hk, martin.heusse@imag.fr, andrzej.duda@imag.fr}
∗Department of Computer Science and Engineering, Hong Kong University of Science and Technology.

¶Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, F-38000 Grenoble, France.

Abstract—We have analyzed network traces of TCP connec-
tions and observed that there are many more losses during
the handshake than for the remainder of the data exchange.
Although recently developed AQM schemes can efficiently reduce
latency related to bufferbloat, only more complex solutions relying
on Fair Queueing (FQ) can improve the long delays resulting
from the loss of a packet during the establishment of a TCP
connection. In this paper, we propose SPA (SYN Priority Active
queue management), a new low-complexity queue management
scheme that combines the benefits and simplicity of the most
recent AQM schemes while achieving performance comparable
to more complex combinations of Fair Queueing and AQM. Our
evaluation shows that the SPA performance is close to FQ CoDel
for only a fraction of the complexity and resource usage.

I. INTRODUCTION

Shortening the response time and reducing overall latency
of TCP transfers is paramount to improve the responsiveness
of information access over the network. In this paper, we
focus on the connection establishment phase, which is often
the limiting factor of the transfer response time, because at
the beginning, connections do not have an estimate of the
round trip time (RTT) between the client and the server, so
they use a long default retransmission timeout (RTO). The
reception of SYN/ACK immediately updates RTO so that
all other segments can be quickly resent, even without Fast
Retransmit. Thus, the client can only recover from the loss
of the initial SYN segment or the corresponding SYN/ACK
after a long period several orders of magnitude larger than
the recovery time of subsequent data segments. This effect is
particularly detrimental to short connections. For larger ones,
the impact of a SYN loss becomes less significant, especially
in the case of non-interactive traffic. Despite the importance of
the connection establishment phase, speeding it up has received
less attention than ensuring the good performance of the bulk
data exchange [1]. Over the past years, many proposals aimed
at maximizing link utilization and achieving low delays, the
most well-known being CoDel [2] and FQ CoDel, its Fair
Queueing counterpart [3]. However, the most recent packet
scheduling schemes [2], [4] present the drawback of either
increasing SYN drops, or relying on Fair Queueing, which
results in higher CPU and memory usage.

To evaluate the impact of SYN or SYN/ACK losses on
the transfer response time, we have analyzed a set of publicly
available real world traffic traces. The analysis shows that SYN

and SYN/ACKs are generally lost much more often than other
TCP segments, which is another reason to consider them in a
particular way. We would expect that the SYN retransmission
rate is twice that of regular data segments, because it happens
after a SYN loss and also after a SYN/ACK loss. In fact,
we observe an even much higher SYN retransmission rate:
several times the retransmission rate of all segments, which
exacerbates the performance problem for short connections.
SYN/ACK losses has a detrimental impact on performance:
their retransmissions cause a two-fold increase of the retrans-
mission delays experienced by connections. Based on these
observations, we propose SPA (SYN Priority Active queue
management), a queueing scheme with two packet queues
both managed by CoDel (Controlled Delay Management) [2]:
a higher priority queue handles SYN and FIN packets, and
a lower priority one manages data segments. SPA is thus
a pair of queues with independent AQM mechanisms. It
is much less complex than any fair queueing scheme and
results in short connection setup times and smooth low latency
data transmission. Similarly to CoDel and FQ CoDel, this
scheme is designed to be deployed at the “last mile” of the
network, typically in home routers, where resources (CPU and
bandwidth) tend to be scarce, and reactivity is key.

The contribution of this work is threefold: first, we analyze
network traces to get insight into the behavior of the TCP
establishment phase and observe a significantly higher SYN
retransmission rate compared to other types of segments. Sec-
ond, we model the effect of SYN retransmissions on transfers
of a limited size to show that SYN losses account for a large
part of the response time. Finally, we evaluate SPA through
measurements on a testbed and compare its performance with
recent and well-established scheduling mechanisms. We show
that under normal traffic conditions, SPA performs similarly
to FQ CoDel, for a fraction of complexity. We also shed light
on a case for which FQ Codel collapses due to its own design.

II. RELATED WORK

The delay introduced by the connection establishment
phase is often overlooked in the literature even in recent
papers [5], [6]. Some authors observed that the loss probability
of SYN segments and regular ones may differ [7], although
without exploring the impact of this difference. Ciullo et al.
[8] observed the distribution of the connection completion
time and realized that more than 70% of dropped packets

are recovered after RTO. They also proposed two schemes to
overcome long recovery delays due to the loss of the last data
segment in a flow. Anelli et al. [1] made a case for protecting
SYN segments to improve connection response times. They
introduced REDFavor, a RED mechanism with a specific
processing of SYN segments. Another idea proposed in the
literature is to resend aggressively SYNs to avoid the impact
of the long timeout on lost SYN segments [9]–[11]. Although
functional, this last solution requires the user to modify the
operating system or use additional software, while adding some
traffic in an already congested link. Similarly, solutions such
as WonderShaper [12] or DD-WRT [13] also take the approach
of giving a higher priority to all control messages. However,
they rely on FIFO queues that requires prior configuration to
achieve low latency. This approach cannot be efficiently used
in delay or bandwidth-varying environments.

Recently, researchers have started to discuss the bufferbloat
effect, the problem of long delays due to excessive buffer
sizes in access networks [14]. A workgroup on bufferbloat
began in 2011 [15] and some analyses of the problem started
to appear [16]–[19]. Two main proposals for solving the
problem include CoDel [20] and PIE (Proportional Integral
controller Enhanced) [4], [21]. CoDel measures the packet
sojourn time in the queue and drop packets at the queue head
to keep the delay from exceeding a reasonable value for any
significant period of time. It requires per packet timestamps,
but it does not need any configuration parameter except for the
default threshold delay. FQ (Fair Queueing) CoDel [3] extends
CoDel with the principles of Stochastic Fair Queueing [22]
to manage per flow queues and mitigate the adverse effects
of purely random packet drop. PIE [21] controls the average
queueing latency so it stays at a reference value. It combines
the benefits of both RED and CoDel: PIE randomly drops a
packet at the beginning of the congestion detected based on
the queueing latency like CoDel. PIE can ensure low latency
and achieve high link utilization under various congestion
conditions. Schwardmann et al. evaluated by simulation the
robustness of CoDel, PIE, and ARED for various static and
dynamic scenarios [23] in a simple set-up with one link and a
variable number of bulk TCP flows. ARED (Adaptive RED) is
an active queue management scheme that attempts to stabilize
the average queue size around some preset target queue size
[24]. PIE achieved lower delays than CoDel and ARED for
low capacity links, but for higher capacity links, CoDel and
ARED resulted in lower delays. In dynamic scenarios, CoDel
results in a lower maximum delay than the other schemes.
Khademi et al. evaluated CoDel, PIE, and ARED [25], but in
an experimental setup using Linux implementations in a wired
testbed for bulk TCP transfers. The authors also observed that
the CoDel “dropping-mode” interval needs to be set lower than
the default value, while we note in this paper (see Section
VI-B), the noticeable influence of the target delay that it uses in
the case of the FQ CoDel variant. These results contradict the
claim that CoDel is a parameterless AQM. Otherwise, ARED
performed the best in the Khademi et al. study except when
the number of flows on the bottleneck link was very small.

III. ANALYSIS OF REAL WORLD TRACES

To evaluate the impact of SYN or SYN/ACK losses, we
have analyzed a set of publicly available traffic traces: five

0
10
20
30
40
50

Link utilization (%)

0

2

4

6 Packet rtx probability (%)
... of which, SYN and SYN/ACK

0
5

10
15
20
25 Packet rtx probability (%)

SYN, SYN/ACK rtx probability (%)

Tra
ce

#1

dire
ct.

 A
Tra

ce
#1

dire
ct.

 B
Tra

ce
#2

dire
ct.

 A
Tra

ce
#2

dire
ct.

 B
0

1000
2000
3000
4000
5000

Avg Rtx Delay (ms)
Avg Rtx Delay for cx with SYN, SYN/ACK loss (ms)
Avg Rtx Delay for cx without SYN, SYN/ACK loss (ms)

Fig. 1. Analysis of the CAIDA traces in both directions ordered by ascending
order of link utilization in direction A. SYN losses represent a large part of
all losses and SYN segments have a significantly higher loss probability than
data segments leading to a significant impact on retransmission delays.

sets of traces from the CAIDA data set1 recorded on two
different days at an Equinix datacenter in Chicago connected
to a 10 Gigabit Ethernet backbone link of a Tier 1 ISP. As
the traces from CAIDA are split according to the direction,
we analyze them in one direction at a time. We consider two
days with differing traffic load patterns: for the trace taken
on March 20th, 2014 the link utilization in direction A is
markedly lower than on September 18th, 2014. For readability
purposes, we will further refer to the traces as Trace “Real” and
Trace “Short” respectively. All measurements except the link
utilization concern connections with at least one SYN, which
represents from 180,000 to 650,000 connections per trace. We
have filtered out the connections with retransmission delays
greater than 45s to remove inconsistent data from the analysis
(the value of 45s corresponds to the total delay after loosing
3 SYNs at the start of a connection due to the exponential
backoff 2). Due to the number of samples, the 95% confidence
interval could not be represented for loss probabilities and is
barely visible for retransmission times.

Figure 1 shows two striking phenomena:

1) SYN and SYN/ACK retransmissions account for a
large part of the retransmissions (2nd plot)

2) the probability of SYN or SYN/ACK retransmissions
is exceptionally high—between 10% and 20% (3rd

plot). The connections with SYN or SYN/ACK re-
transmission suffer from an average retransmission
delay almost twice that of other connections (4th plot).

Note that the initial RTO is set to 3 seconds by default on
Windows, FreeBSD, and Linux (prior to 2011; it is now 1 s).
10% to 20% of all connections are affected whereas the packet
loss rate remains limited at 1% to 3.5%.

1The CAIDA UCSD Anonymized Internet Traces 2014
20/03/2014 12:59:11, 13:03:00, 13:06:00 and 18/09/2014 13:07:00, 13:19:00
http://www.caida.org/data/passive/passive 2014 dataset.xml

2as stated in the FreeBSD source code ”the odds are that the user has given
up attempting to connect by then.” [26].

TABLE I. ANALYSIS OF MAWI TRACES

Dir A Dir B
Packet rtx prob. 1.65% 2.73%
. . . of which, SYN, SYN/ACK represent 29.8% 79.5%
SYN and SYN/ACK rtx prob. 13.1% 29.9%
Average rtx delay (ms) 5276.96 2114.93
Average rtx delay for connections
with SYN or SYN/ACK loss (ms) 6324.93 2390.63
Average rtx delay for connections
without SYN or SYN/ACK loss (ms) 4707.11 1011.93

The higher retransmission rate of SYNs compared to other
segments is expected as a SYN/ACK drop in the reverse
direction always causes a timeout, whereas cumulative ACKs
make the established connections relatively immune to losses
on the return path [27]. So, as long as SYN and SYN/ACK
segments are as likely as other packets to be dropped, the
retransmission rate doubles. Since the queues in many routers
are managed as packet FIFOs, small SYN packets are just as
likely to be dropped as the larger ones. On the contrary, a
byte-based FIFO would favor small packets that can generally
still fit in the queue when larger packets are dropped. In our
trace analyses, we do not see any situation in which small
packets would be retransmitted less than larger ones, which
means that most routers use packet FIFOs. (If some routers
use byte FIFO, it is beneficial to small flows as shown below.)
However, the fact that retransmissions occur for losses in
both directions only explains a small fraction of the observed
difference. Another explanation of the discrepancy between
SYN and regular segment losses could be TCP congestion
control algorithms. They are designed so that connections loose
a limited number of segments per congestion episode (1 for
the congestion avoidance phase). After a loss, TCP divides the
congestion window by 2 to reduce the transmission rate and
delay the next occurrence of congestion. Subsequent packets
are thus less likely to experience another loss. In contrast, SYN
packets arrive at random and their potential retransmission is
so distant in time that the conditions are uncorrelated, which
could lead to more losses than regular packets. Again, more
investigations are required to explain this difference.

To confirm the findings, we have also analyzed traces
collected by the MAWI Working Group of the Wide project
on the sample point F (1Gb/s transit link between WIDE
and an upstream ISP). Again, we filter out connections with
retransmission delays greater than 45s (see Table I). We can
first observe that one direction presents less losses than the
other one although, according to the retransmission delays,
connections experience many timeouts. We have observed the
same phenomenon in the CAIDA traces taken on September
18, 2014 in direction A: although losses are less frequent
than in direction B, most of them end up as a timeout. The
reason may be bufferbloat in an upstream buffer that causes
higher delays, thus setting off the RTO timer. The observed
delays corroborate the results from the CAIDA traces: SYN
and SYN/ACK losses account for almost half of the losses.
SYN and SYN/ACK retransmissions cause a two-fold increase
of the retransmission delays experienced by connections.

As we analyze connection establishment, one concern is
that the presence of SYN flood attacks may bias the re-
sults. We have filtered out potential SYN floods by removing

TABLE II. MAWI TRACES, SYN FLOOD FILTERED OUT

Dir A Dir B
Packet rtx prob 1.63% 2.72%
. . . of which, SYN, SYN/ACK represent 28.8% 78.9%
SYN and SYN/ACK rtx prob 12.8% 40.6%
Average rtx delay (ms) 5312.9 2114.93
Average rtx delay for cx
with SYN or SYN/ACK loss (ms) 6469.4 2390.63
Average rtx delay for cx
without SYN or SYN/ACK loss (ms) 4710.5 1011.93

250

500

750

1000
Load (Mb/s)

2

4

6

8
Packet rtx probability (%)

SYN rtx probability (%)

19/01/2017 20/01/2017 21/01/2017

500

1000

1500

2000

Avg Rtx Delay (ms)

Avg Rtx Delay for cx with SYN, SYN/ACK loss (ms)

Avg Rtx Delay for cx without SYM, SYM/ACK loss (ms)

Fig. 2. Analysis of the bidirectional MAWI traces ordered by date for connec-
tions with a full three way handshake and a data packet. Although SYN losses
represent a lower part of total losses, they still have a higher loss probability
than data segments leading to a significant impact on retransmission delays.

connections involving IP addresses that show the signs of a
SYN flood, which is possible for bidirectional MAWI traces.
To identify them, we have first counted the connections that
effectively carry data segments for each IP address present
in the trace. We have filtered hosts that showed strong signs
of being under a SYN flood attack (or could have been
dysfunctional), when they experienced 1000 times more con-
nections without data than with data (with a minimum of
1000 connections without data). We have removed 69 out of
587,262 IP addresses present in the trace, which results in
removing over 30% of connections mainly in direction B. Table
II presents the corrected data. In direction A, we have removed
only a few connections and the results are mostly unchanged.
Removing a large part of connections in the reverse direction
dramatically increases the SYN retransmission probability up
to 40%, while the delays and the retransmission probabilities
are not significantly affected. Indeed, in the case of a SYN
flood, we expect to see a large amount of unique SYNs,
without any further segment or retransmission, as the attacker
does not have any interest in establishing a real connection.
As the MAWI traces are bidirectional, we can now focus on
the analysis of connections that manage to pass the three-way
handshake and transmitted at least one data segment. Figure 2
presents the results. Fully established connections present
more contrasted results. Indeed, the SYN loss probability is
now only twice as big as the packet loss probability, which

corroborates the hypothesis we have made earlier, stating that
we should observe a SYN loss probability twice the packet
loss probability as the loss of a SYN/ACK packet will trigger a
SYN retransmission from the other side. Although we observe
less SYN losses, their impact on the average retransmission
time is much higher: between 10% and 40% of the average
retransmission time is due to connections with at least a SYN
loss. Such connections also present average retransmission
times 4 to 14 times higher than connections without a SYN
loss. Our findings from both data sets are in line with the
results by Damjanovic et al. in the LBNL/ICSI Enterprise
Tracing Project [9] that showed an overall 10% of SYN
retransmissions for all connections in a LAN and 2% of SYN
retransmissions for successful connections. Still, we observe
much higher loss rates (10–20% overall SYN loss and 5–8%
for successful connections). This difference could be explained
by the fact that the CAIDA and MAWI traces come from a
transit link where it is more likely to include 3/4G, WLANs,
or even satellite traffic with variable delays and random losses,
or simply more congestion along the way. Such conditions are
more prone to generate losses, create timeouts, and in general,
create more fluctuations in the analyzed values.

IV. MODEL OF THE TCP RESPONSE TIME UNDER SYN
LOSSES

To evaluate how SYN losses impact short TCP transfers,
we propose to estimate the transfer duration based on the well-
known model proposed by Mathis et al. [28] and Padhye et al.
[29], extended to take into account SYN retransmissions.

We first consider the congestion avoidance phase of a
TCP connection with constant RTT and subject to packet
loss probability pl. The congestion window oscillations are
equivalent to cyclic oscillations between W̄max

2 and W̄max so
the average expected window is:

W̄avg = 3/4× W̄max

and the expected throughput in pkt/s is the following:

X̄ =
3

4
× W̄max

RTT
≈ 1

RTT

√
3

2 pl
,

using Mathis’ estimate for W̄max. We model the slow start
phase by considering an initial congestion window of one
segment going up to W̄max. We approximate the number nss of
RTT taken by the slow start phase as 2nss−1 = W̄max, so that

nss =
log(W̄max)

log(2)
+ 1.

Now, we need to estimate the time spent in recovery of
losses that may happen during the connection. For one loss per
congestion event that happens with probability pl and recovery
time Rt, a connection of size S MSS spends time trecovery =
S × Rt × pl in recovery, knowing that optimistically, Rt ≈
RTT . If the probability of a SYN loss is pSl, the time spent
in the connection establishment phase is:

tsyn = RTT + RTO0

∞∑
k=1

(pSl)
k = RTT +

(
1

1− pSl
− 1

)
RTO0,

(1)

Response time
No SYN Loss(s)
SYN Loss, RTO 1s (s)
SYN Loss, RTO 3s (s)

Impact of SYN loss
with RTO 1s (%)
with RTO 3s (%)

101 102 103 104

Connection size (pkt)

100

101

102

103

Re
sp

on
se

 ti
m

e
(s

)

0

50

100

150

200

Re
la

tiv
e

im
pa

ct
 o

f a
 S

YN
 lo

ss
 o

n
co

m
pl

et
io

n
tim

e
(%

)

Fig. 3. Response time of connections with and without SYN loss

where RTO0 is initial retransmission timeout. We can approx-
imate pSl with ≈ 2pl or obtain it from measurements.

For a connection of size S, the total response time is:

ttot = tsyn + tslow start + tcongestion avoidance + trecovery + tfin, (2)

where tslow start = nss × RTT, tcongestion avoidance = S−(2nss−1)
X̄

and tfin = RTT.

Figure 3 represents the estimated response time of connec-
tions with and without SYN loss with RTO of 1 s or 3 s, for
the connection size between 25 and 10000 segments in the
conditions of Trace “Real” (Figure 1). A SYN loss is a major
problem for short connections as it increases the response time
by up to 200%. The impact becomes negligible (i.e., < 10% of
the response time) for connections larger than 1000 segments
for RTO of 1 s and 2000 segments for RTO of 3 s. Short
connections, which are generally already penalized compared
to long connections, dramatically suffer from this phenomenon.

V. SPA – SYN PRIORITY AQM SCHEME

CoDel [2], an almost parameterless, delay-based queueing
management scheme, is a recent solution to bufferbloat. How-
ever, as other AQMs designed to tackle excessive queueing
delays, CoDel assumes that all losses are good to the network,
as long as they contribute to keeping the delay low. Yet, many
losses will always result in timeouts, especially head drops—
when the initial TCP RTO is still up to make matters worse—
and tail drops can also result in long timeouts if the connection
presents some delay fluctuations. FQ CoDel [3] solves this
problem by giving a higher priority to the first packets, but
at the cost of a higher complexity and memory footprint: for
instance, the default Linux implementation uses 1024 separate
queues. Our approach is to strike a compromise: we manage
only two packet queues by CoDel—a higher priority queue
for SYN and FIN packets and a lower priority one for regular
packets, and do not keep track of connection states. The
pseudocode below defines the scheme more formally:

SPA (SYN Priority AQM) Scheme
s y n f i n q u e u e = CoDel ()
p a c k e t q u e u e = CoDel ()
def enqueue (p) :

i f p . f l a g .SYN== s e t or p . f l a g . FIN== s e t :
s y n f i n q u e u e . enqueue (p)

e l s e :
p a c k e t q u e u e . enqueue (p)

def dequeue (p) :
i f s y n f i n q u e u e . i s e m p t y () :

p a c k e t q u e u e . dequeue (p)
e l s e :

s y n f i n q u e u e . dequeue (p)

Three types of losses may lead to a timeout: SYN, FIN, and
tail losses. While it is difficult to detect tail losses at the router
level, it is much easier to isolate SYN and FIN in a separate
queue and avoid timeouts. The queue for SYN and FIN has
priority over the second one for data packets and both queues
are managed by CoDel. In this way, we significantly increase
the overall performance by preventing most of timeouts, while
keeping complexity much lower than FQ CoDel. We can easily
implement SPA based on an existing CoDel implementation in
coordination with regular system tools. For our experiments,
we have set up SPA with a priority queue serving two CoDel
subqueues using tc [30] and iptables for packet filtering.
As mentioned before, another possibility to avoid SYN and
SYN/ACK losses is to dimension the buffer in bytes rather than
in packets. Although effective and relatively straightforward to
implement, this solution still presents one major drawback: it
requires to know in advance the link capacity, whereas in many
cases, it is unknown and fast varying, as for WiFi or cellular
networks. Excessive queueing space—bufferbloat—results in
high latency in the network or conversely, an insufficient buffer
may result in low link utilization. By design, the proposed SPA
scheme does not suffer from such limitations.

As the SPA scheme favors SYN packets over data packets,
it may raise some security concerns. We do not want an
attacker exploit our solution to favor her/his connections or
to accelerate SYN DoS attacks. Regarding the first issue, a
basic attack would be to set the SYN or FIN flag on every
data packet. Admitting that the receiver does not discard such
packets, checking the packet length is enough to prevent abuse.
SYN DoS attacks raise a more complex issue. Indeed, as SPA
favors SYN packets, a router could be used as a relay to
accelerate the transit of SYN packets at the bottleneck and
amplify a SYN flood attack. However, similarly to CoDel and
FQ CoDel, SPA is intended to be deployed at the bottleneck,
usually at the last mile of the network, where an attacker may
already have full control of the link. For instance, deploying
SPA in home routers is harmless. Most Fair Queueing solutions
are also vulnerable to this type of exploit, as they prioritize
packets from new connections, since they constantly try to
equalize the service received by all connections, and the new
one initially shows a deficit. A batch of SYN packets with
various source addresses and ports would typically be favored
over data packets from existing connections. We show this
phenomenon in Section VI-B, where FQ CoDel gets swarmed
by a large number of new connections, resulting in abnormal
behavior, whereas SPA proves to be more resilient.

VI. TESTBED EXPERIMENTS AND
PERFORMANCE COMPARISONS

We have run a series of experiments on a testbed network
composed of three computers (cf. Figure 4). One of them
acts as a router interconnecting two others, while the two

400Kb/s

Freebsd
+modcc

Freebsd
+modcc

2.4Mb/s

100 Mb/s
(Ethernet)

Debian GNU/Linux + tc

uplink buffer:
10 packets

downlink buffer:
60 packets

Upload - TCP data

Upload - TCP ACKs

Download - TCP data

Download - TCP ACKs

Fig. 4. Testbed network for experiments. The central computer emulates the
bottleneck link in both directions and implements the considered policies. The
traffic is in the downlink direction with or without a long lasting upload TCP
data transfer.

ends are used as a client and a server. This simple topology
allows observing the behavior of various queueing policies at
the bottleneck. The hosts run FreeBSD 9.3 that allows us to
test the latest variants of TCP without switching operating
systems. The router runs Debian GNU/Linux (wheezy) with
a slightly modified 3.18 kernel as described below. On top of
this operating system, we run the tc tool to emulate links and
various queueing management policies. We have set the kernel
context switching frequency to 1kHz to emulate the bottleneck
link smoothly for the bit rates up to 10Mb/s. We use the
ipmt suite [31] to generate connections as follows: connection
arrival times follow a Poisson process with parameter λ and
connection sizes follow a Zipf distribution with parameter µ.
We have run experiments with and without reverse traffic.

TABLE III. EXPERIMENT PARAMETERS

Uplink
Capacity Cu 0.4Mb/s 2Mb/s
Delay Du 52ms
Scheduling Qu Packet FIFO

Downlink
Capacity Cd 2.4Mb/s 10Mb/s
Delay Dd 42ms
Scheduling Qd Packet FIFO - Byte FIFO

RED - ARED - REDFavor
CoDel - FQ CoDel – PIE

SFQ
SYN Prio - SYN/FIN Prio - SPA

Connection Generation Parameters
Traffic Type “Real” “Short” “10M”
1/λ (s) 0.12 0.017 0.032
µ 1.7 2 1.7

We run experiments under three different traffic conditions
shown in Table III. As SPA targets the last mile section of
a network, we consider the case of typical ADSL link as it
is still far more deployed than fibers [32]. We use a 42 ms
round trip delay, which corresponds to the ADSL interleaving
delay (typically 24 ms) plus an intra-continental propagation
time [33]. The slightly higher uplink delay helps to avoid
perfect synchronization between the upload and download
feedback loops. The traffic conditions correspond to a high link
utilization of 90%. By varying the λ and µ parameters as well
as the connection size, we obtain various traffic conditions:

Traffic Type “Real” corresponds to realistic assumptions with
connection sizes distributed according to a heavy tailed Zipf
distribution: 1/λ = 0.12s, µ = 1.7, which leads to an average

size of 21 segments per connection, a median of 2 packets and
80% of connections spanning 6 segments or less. This load is
applied with and without reverse traffic.

Traffic Type “Short” represents extreme conditions to push
the tested schemes to the limits. We generate a connection
every 1/λ = 0.017s, connections have the average size of
3 segments (µ = 2), a median size of 1 segment, and the
maximum size of 100 segments (80% are 4 segments or less)

Traffic Type “10M”. With this type, we analyze the behavior
of the tested schemes for a link with the increased capacity
to 10Mb/s with 95% load composed of connections arriving
on the average every 0.032 second, with an average size of 26
segments and a median of 2 segments (80% under 7 segments).

We test the following scheduling schemes at downlink
queue Qd: regular FIFO (limited either in packets – Packet
FIFO or in bytes – Byte FIFO), AQM (RED, ARED [24]),
delay controlled mechanisms (CoDel and PIE [4]), Fair Queue-
ing (FQ CoDel and SFQ – Stochastic Fair Queueing [22]).
We compare these queueing schemes to priority queues with
a higher priority given to SYN or SYN/FIN (SYN Prio,
SYN/FIN Prio, RedFavor [1], and SPA). The uplink queue
remains unchanged for all experiments (Packet FIFO). We use
the default threshold delay of 5 ms for CoDel, FQ CoDel,
and SPA. As we have discovered that in some cases, this
parameter needs to be tweaked for CoDel and FQ CoDel, we
also try the value of 20 ms. We did not include solutions at
the edge like setting the SYN retransmission timeout to a more
aggressive value [9]–[11], because they may only improve the
retransmission time, but they cannot lower the SYN loss rate.

A. Results for Traffic Type “Real”

Figure 5 presents the results for Traffic Type “Real”.
Similarly to Figure 1, due to the number of connections (8326),
we are only able to display 95% confidence intervals for the
retransmission and response times. The two most prominent
outcomes are: (1) all schemes provide better response times
than Packet FIFO and (2) only a few schemes clearly stand out:
FQ CoDel, SFQ, RedFavor, and SPA. For short connections,
FQ CoDel 20ms and SPA are the best ones. SFQ attains
the best result for longer connections with REDFavor and
SPA also having short response times. We observe remarkable
differences of RTT between delay-based solutions and regular
queueing schemes: CoDel and PIE halve the RTT compared
to FIFO or RED, while FQ CoDel and SPA achieve the
lowest RTTs. We also see that about one fourth of the average
retransmission delay is contributed by connection SYN losses:
looking at the traces, a small fraction of connections experience
a 3 second delay before even being able to send a single
packet. Byte FIFO gets shorter retransmission delays (20%)
than Packet FIFO, reaching the same performance as RED
with almost no SYN loss and a lower RTT than Packet FIFO.
Byte FIFO even outperforms RED, ARED, CoDel, and
PIE in terms of response times! SFQ shows unusually high
retransmission delays. Indeed, even if there are almost no
SYN losses, most losses result in one and often multiple
timeouts. In essence, the Fair Queueing algorithm leads to
the starvation of long flows: as the queue experiences high
load with many short connections, the longer ones are not
serviced and eventually timeout. Yet, Fair Queueing policies

0
50

100
150
200
250
300

RTT (ms)

0

5

10

15 Packet rtx probability (%)

... of which, SYN and SYN/ACK

0

5

10

15
Packet rtx probability (%)

SYN, SYN/ACK rtx probability (%)

0

500

1000

1500

2000

2500 Avg Rtx Delay (ms)

Avg Rtx Delay for cx without SYN, SYN/ACK loss (ms)

PF
IFO

BFIF
O

RED
ARED

CoD
el

5m
s

CoD
el

20m
s PIE

FQ
 C

oD
el

5m
s

FQ
 C

oD
el

20m
s

SFQ

SYN
 P

rio

SYN
/F

IN
 P

rio

REDFa
vo

r

SPA
 5

m
s

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Response time at median size (s)

Response time at 80% size (s)

FIFO AQM FQ SYN Isolation

Fig. 5. Average RTT, loss percentage, retransmission delays and response
times for various queueing schemes under Traffic Type “Real”. FQ CoDel,
SFQ, RedFavor, and SPA achieve the shortest response time.

SFQ
FQ CoDel 5ms
SPA

PIE
CoDel 5ms

RedFavor

Packet FIFO
Byte FIFO

1 2 6
Connection size (MSS)

0.2

0.5

1.0

R
e
sp

o
n
se

 t
im

e
 (

s)

Fig. 6. Response times of connections for various queueing schemes under
Traffic Type “Real”. SPA and Fair Queueing schemes result in significantly
lower response times compared to other AQM and FIFO.

display some of the best response times for short connections.
Considering the isolation of SYN and/or FIN in a separate
FIFO (SYN and SYN/FIN Prio, REDFavor), we do not ob-
serve a real improvement in RTT and retransmission times
compared to basic FIFO. Nevertheless, there are fewer SYN
retransmission, which improves the response times especially
for short connections. Finally, SPA results in the shortest
retransmission delay, while keeping one of the lowest average
RTT and response times. FQ CoDel achieves a similar though
slightly worse performance if left with default parameters.

Figure 6 presents the connection response times for a selec-
tion of the considered policies. There is a manifest separation
between two groups: in the first one, PIE and CoDel exhibit
similar performance, while Byte FIFO shows a noticeable im-
provement compared to Packet FIFO (connections complete

0
50

100
150
200
250
300

RTT (ms)

0

5

10

15 Packet rtx probability (%)

... of which, SYN and SYN/ACK

0

5

10

15
Packet rtx probability (%)

SYN, SYN/ACK rtx probability (%)

0

500

1000

1500

2000

2500 Avg Rtx Delay (ms)

Avg Rtx Delay for cx without SYN, SYN/ACK loss (ms)

PF
IFO

BFIF
O

RED
ARED

CoD
el

5m
s

CoD
el

20m
s PIE

FQ
 C

oD
el

5m
s

FQ
 C

oD
el

20m
s

SFQ

SYN
 P

rio

SYN
/F

IN
 P

rio

REDFa
vo

r

SPA
 5

m
s

0.0
0.5
1.0
1.5
2.0
2.5
3.0 Response time at median size (s)

Response time at 80% size (s)

FIFO AQM FQ SYN Isolation

Fig. 7. Average RTT, loss percentage, retransmission delays, and response
times under Traffic Type “Real” with one long reverse connection. SYN re-
transmissions rate, retransmission delays, and response times raise drastically.
FQ CoDel and SPA achieve the shortest response times for short connections,
while SFQ and SPA are the best for longer connections.

40% faster). In the second group, SPA, SFQ, and FQ CoDel
present lower response times with an improvement between
100% and 300% for the shortest connections. In the case of
delay based solutions like CoDel or PIE, this plot confirms that
the philosophy of “loss is good” is detrimental when control
segments such as SYN are not considered in a specific way:
the schemes lead to high data segment retransmission rates,
which is actually good for reducing congestion and delays, but
also to high levels of SYN retransmissions. Consequently, the
schemes experience longer retransmission delays and longer
delays, even if they still manage to improve the performance
over Packet FIFO. REDFavor performs better than other AQM
schemes: with this simple modification, response times are
halved compared to Packet FIFO, which is a quite noticeable
enhancement compared to other AQM mechanisms. Finally,
our solution performs better than FQ CoDel and SFQ for
short connections. For connections with more than 3 segments,
the difference between the regular and modified FQ CoDel
becomes less significant and connections under SPA complete
in 30% less time than with FQ CoDel. SFQ continues to obtain
good response times similar to those obtained with SPA, but
with inacceptable retransmission times for larger connections,
as we can see in Figure 5.

We complement the first experiment that dealt with uni-
directional traffic by adding one long reverse connection. The
idea is to approach “near real” traffic conditions as encountered
for instance behind an ADSL link with a user uploading files
to a Cloud service provider. The results appear in Figures 7
and 8. The first expected result is an increase of SYN losses
in the presence of reverse traffic. Indeed, SYN/ACKs can be

SFQ
FQ CoDel 5ms
SPA

PIE
CoDel 5ms

RedFavor

Packet FIFO
Byte FIFO

1 2 6
Connection size (MSS)

0.5

1.0

1.5

2.0

2.5

R
e
sp

o
n
se

 t
im

e
 (

s)

Fig. 8. Response times of connections for various queueing schemes under
Traffic Type “Real” with one long reverse connection. Important gap between
AQM and Fair Queueing schemes, but more differences inside each group.

lost on the return path, while the presence of ACKs in the
download queue virtually reduces the queue size and leads to
an overall increase of losses [34]. We observe 25% more losses
on average and twice as many SYN losses. Consequently, SYN
retransmissions account for a larger part of the retransmission
delay: connections without a SYN loss experience retransmis-
sion delays 25% lower than average. Similarly, response times
are much longer. We see that for short connections, FQ CoDel
and SPA achieve the shortest response times, while SFQ and
SPA are the best for the longer connections. SPA has once
again similar performance to FQ CoDel, both in terms of
RTT and retransmissions times, with response times halved
compared to most of the AQM mechanisms.

Concerning response times (cf. Figure 8), we observe the
same phenomenon: even if connections take much more time
to complete compared to the situation without reverse traffic,
we can still differentiate between two groups: FQ CoDel,
SFQ, and SPA obtain much better results than other queueing
schemes. In the AQM group, the differences are small except
for SPA that performs similarly to the other Fair Queueing
schemes. The values for larger connections suffer from the
bias introduced by heavy tail distributions: many very long
connections do not terminate during the measurement session
and those that finish benefit from shorter response times. This
bias explains lower response times for connections of 6 MSS.

B. Traffic Type “Short”

In the next experiment involving Traffic Type “Short”,
extreme conditions (majority of very small connections) push
the tested schemes to the limits with more frequent SYN
losses. Figure 9 shows that FQ CoDel, SPA, SFQ, and
SYN/FIN Priority achieve the shortest response times for
short connections, while SFQ and SYN/FIN Priority are the
best for the longer connections. RTT is significantly lower
than in the previous experiment. This is due to the size of the
transfers: with an average of 3 segments and an initial cwnd of
4 packets, most of the connections only last for the first burst of
the slow start phase. Moreover, we have a proportion of 3 small
segments (SYN, ACK, and FIN) for 3 data segments in the
queue, virtually decreasing the queue size. Byte FIFO achieves
shorter response times than AQM schemes, due to the fact that
it causes almost no SYN retransmissions. The explanation of

0
50

100
150
200
250
300

RTT (ms)

0

5

10

15 Packet rtx probability (%)

... of which, SYN and SYN/ACK

0

5

10

15
Packet rtx probability (%)

SYN, SYN/ACK rtx probability (%)

0

500

1000

1500

2000

2500 Avg Rtx Delay (ms)

Avg Rtx Delay for cx without SYN, SYN/ACK loss (ms)

PF
IFO

BFIF
O

RED
ARED

CoD
el

5m
s

CoD
el

20m
s PIE

FQ
 C

oD
el

5m
s

FQ
 C

oD
el

20m
s

SFQ

REDFa
vo

r

SYN
 P

rio

SYN
/F

IN
 P

rio

SPA
 5

m
s

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Response time at median size (s)

Response time at 80% size (s)

FIFO AQM FQ SYN Isolation

Fig. 9. Average RTT, loss percentage, retransmission, and response times
under Traffic Type “Short”: heavy tailed distribution with a majority of
very small connections. More SYN losses than with Traffic Type “Real”:
larger delays (RTT and retransmission) for CoDel and PIE. FQ CoDel, SPA,
SFQ, and SYN/FIN Priority display the shortest response times for short
connections, SFQ and SYN/FIN Priority are the best for longer connections.

more SYN retransmissions for RED queues is inherent to their
implementation in Linux: the algorithm computes the average
queue length at large time intervals. When congestion appears,
established connections stop sending packets, emptying the
queue. Due to this interval, the algorithm takes some time
to detect that the queue is again below the loss threshold
and incoming packets (mostly SYN) still suffer from drops.
This effect is specific to the Linux implementation of RED. In
general, AQM mechanisms cause many SYN retransmissions
(up to 8% of connections for PIE) that directly impact response
times. The retransmission delays under SFQ stand out again
due to starvation. We also note that FQ CoDel with the
default 5ms threshold delay does not perform well. In
this critical scenario, SYN packets arrive faster than the link
speed. Some SYN packets stay longer in the queue than the
FQ CoDel base delay and get dropped. Setting the base delay
of FQ CoDel to 20 ms gives back the expected performance.
SYN isolation techniques significantly improve response times
compared to both their single queue counterpart and other
AQM schemes. SPA also exhibits a noticeable improvement
over CoDel, and performs better than a correctly configured
FQ CoDel, with low RTT and retransmission delays, and some
of the shortest retransmission times.

In this experiment, the results greatly differ from those
for Traffic Type “Real”. First of all, delay based AQM and
RED are clearly not designed for this kind of load, with
a high level of losses, and generally higher response times
than with basic Packet FIFO. Byte FIFO continues to show an
almost negligible amount of SYN retransmissions and remains

SFQ
FQ CoDel 5ms
SPA

PIE
CoDel 5ms

RedFavor

Packet FIFO
Byte FIFO

1 2 6
Connection size (MSS)

0.2

0.5

0.7

0.9

R
e
sp

o
n
se

 t
im

e
 (

s)

Fig. 10. Response times of connections under Traffic Type “10M” on a
10Mb/s link. FQ CoDel, SPA, and SFQ result in the best performance.

a good alternative to Packet FIFO despite a slightly lower
RTT obtained by the latter. SYN isolation techniques display
a significant improvement in terms of response times, with
SYN/FIN Prio and SFQ showing the best performance. Both
are closely followed by a correctly configured FQ CoDel and
SPA that also obtains lower RTT and retransmission times,
thus making them well suited for interactive traffic.

C. Traffic Type “10M”

We have run experiments on a 10 Mb/s link with the
parameters similar to Traffic Type “Real” without reverse
traffic. Figure 10 presents the results. The experiment is
close to Traffic Type “Real” and the results are similar: FQ
CoDel, SPA, and SFQ perform much better than the
other schemes. Even though it is the second worst-performing
scheme, Byte FIFO still obtains response times 30% lower than
Packet FIFO. The main difference is that PIE and CoDel now
improve performance compared to FIFO (whether packet or
byte based). Moreover, REDFavor now clearly results in better
performance than other AQM schemes, even outperforming
SFQ and FQ CoDel for longer connections.

D. Conclusion on the Experimental Results

Based on the four setups above, we first assert that Byte
FIFO is generally an interesting alternative to Packet FIFO.
However, it is far more complex to implement than many other
tested solutions and generally not available. Even though delay
based solutions tend to compensate their high levels of SYN
losses through lower RTT and faster retransmission times,
they usually do not bring much improvement to the general
response times and could perform a lot better with a more
discerning dropping policy. Finally, isolating SYN and/or FIN
in separate queues presents at least similar performance to their
single-queue equivalent: in three out of four scenarios, we have
observed a considerable improvement with respect to FIFO
and RED based solutions. However, SPA always performs
much better than CoDel and similarly to Fair Queueing
algorithms that are drastically more complex. In some cases,
it even outperforms those schemes. It does not suffer from
starvation, ensuring low RTT and retransmission times in any
circumstances. Moreover, it does not break down when facing

an extremely aggressive load (compared to FQ CoDel). It is,
by far, the queueing scheme presenting the best performance
to complexity tradeoff in our set of experiments.

VII. CONCLUSION

In this paper, we have evaluated the impact of SYN re-
transmissions on TCP connection response times based on real
world traces. To achieve short response times via protecting
SYN and SYN/ACK segments from losses, we have proposed
SPA, a new scheme that uses two packet queues managed by
CoDel—a higher priority queue for SYN and FIN segments,
and a lower priority one for other segments. We have run
extensive experiments on a testbed network to compare the
most important schemes for three different traffic conditions.
Our measurements show that the evaluated AQM mechanisms
result in very similar performance: they succeed at maintaining
low queueing delays although this result comes at the cost
of a significant SYN loss rate. Unsurprisingly, adding some
kind of Fair Queueing mechanisms consistently results in good
performance, although FQ CoDel may need some tweaking in
extreme traffic conditions. SFQ obtains small response times,
but most losses are recovered through timeouts. However, the
drawback of Fair Queueing mechanisms is complexity and a
larger memory footprint compared to AQM. We also point out
the fact that Byte FIFO is a simple scheme and results in very
good performance. SPA, our proposal, strikes a compromise
between simplicity and the memory footprint of a regular AQM
policy. It achieves the low delays of CoDel and performance
similar to Fair Queueing schemes. It matches high throughput
and low delays required for interactive applications that cannot
afford to wait for a 3 s timeout caused by a SYN loss.

ACKNOWLEDGMENTS

This work has been partially supported by the French
Ministry of Research project PERSYVAL-Lab under contract
ANR-11-LABX-0025-01.

REFERENCES

[1] P. Anelli, F. Harivelo, and R. Lorion, “TCP SYN Protection: An
Evaluation,” in Proc. Eleventh International Conference on Networks.
ICN’12, Feb. 2012.

[2] K. Nichols and V. Jacobson, “Controlling Queue Delay,” ACM Queue,
vol. 10, pp. 20–34, May 2012.

[3] T. Hiland-Jrgensen, P. McKenney, D. Taht, J. Gettys, and E. Dumazet,
“FlowQueue-CoDel.” IETF Internet draft, March 2014. draft-hoeiland-
joergensen-aqm-fq-codel-00.

[4] R. Pan, P. Natarajan, F. Baker, and G. White, “PIE: a Lightweight
Control Scheme to Address the Bufferbloat Problem,” Internet-Draft
draft-ietf-aqm-pie-00, October 2014.

[5] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Estrin,
“A First Look at Traffic on Smartphone,” in Internet Measurement
Conference, (New York, NY, USA), ACM, 2010.

[6] N. Kuhn, E. Lochin, and O. Mehani, “Revisiting Old Friends: is CoDel
Really Achieving What RED Cannot?,” in Proceedings of the 2014
ACM SIGCOMM Workshop on Capacity Sharing, ACM, Aug. 2014.

[7] M. Mellia and H. Zhang, “TCP Model for Short Lived Flows,” IEEE
Communications Letters, vol. 6, pp. 85–87, Feb. 2002.

[8] D. Ciullo, M. Mellia, and M. Meo, “Two Schemes to Reduce Latency
in Short Lived TCP Flows,” IEEE Communications Letters, vol. 13,
no. 10, pp. 806–808, 2009.

[9] D. Damjanovic, P. Gschwandtner, and M. Welzl, “Why Is This Web
Page Coming Up so Slow? Investigating the Loss of SYN Packets,”
in Networking 2009 (D. Damjanovic, P. Gschwandtner, and M. Welzl,
eds.), (Berlin, Heidelberg), pp. 895–906, 2009.

[10] A. Vulimiri, O. Michel, P. B. Godfrey, and S. Shenker, “More Is Less:
Reducing Latency via Redundancy ,” in Proc. 11th ACM Workshop on
Hot Topics in Networks, (New York, New York, USA), pp. 13–18, ACM
Press, 2012.

[11] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Cardwell, Y. Cheng,
A. Jain, S. Hao, E. Katz-Bassett, and R. Govindan, “Reducing Web
Latency: the Virtue of Gentle Aggression,” in Proceedings of the ACM
SIGCOMM 2013 Conference, ACM Press, Aug. 2013.

[12] “The Wonder Shaper.” http://lartc.org/wondershaper/.
[13] “DD-WRT.” https://www.dd-wrt.com/site/.
[14] B. Turner, “Has AT&T Wireless Data Congestion Been Self-

Inflicted?.” http://blogs.broughturner.com/2009/10/is-att-wireless-data-
congestion-selfinflicted.html.

[15] J. Gettys, “Bufferbloat: Dark Buffers in the Internet,” IEEE Internet
Computing, vol. 15, pp. 96–96, May 2011.

[16] H. Jiang, Y. Wang, K. Lee, and I. Rhee, “Tackling Bufferbloat in 3G/4G
Networks,” in Proceedings of the 2012 ACM Conference on Internet
Measurement Conference, IMC ’12, (New York, NY, USA), pp. 329–
342, ACM, 2012.

[17] C. Staff, “Bufferbloat: What’s Wrong with the Internet?,” Communica-
tions of the ACM, vol. 55, no. 2, pp. 40–47, 2012. A discussion with
Vint Cerf, Van Jacobson, Nick Weaver, and Jim Gettys.

[18] M. Allman, “Comments on Bufferbloat,” ACM SIGCOMM Computer
Communication Review, January 2013.

[19] M. Heusse, S. A. Merritt, T. X. Brown, and A. Duda, “Two-way TCP
Connections: Old Problem, New Insight,” ACM SIGCOMM Computer
Communication Review, vol. 41, no. 2, pp. 5–15, 2011.

[20] K. Nichols and V. Jacobson, “Controlling Queue Delay,” ACM Queue,
vol. 10, no. 5, pp. 20–34, 2012.

[21] R. Pan et al., “PIE: A Lightweight Control Scheme to Address the
Bufferbloat Problem,” in IEEE HPSR 2013, Taipei, Taiwan, July 8-11,
2013, pp. 148–155, 2013.

[22] P. McKenney, “Stochastic Fairness Queueing,” Proceedings of IEEE
INFOCOM, 1990.

[23] J. Schwardmann, D. Wagner, and M. Khlewind, “Evaluation of ARED,
CoDel, and PIE,” in Advances in Communication Networking, vol. 8846,
pp. 185–191, Springer, 2014.

[24] S. Floyd, R. Gummadi, and S. Shenker, “Adaptive RED: An Algorithm
for Increasing the Robustness of RED’s Active Queue Management,”
tech. rep., Aug. 2001.

[25] N. Khademi, D. Ros, and M. Welzl, “The New AQM Kids on the Block:
An Experimental Evaluation of CoDel and PIE,” in 2014 Proceedings
IEEE INFOCOM Workshop, Toronto, Canada, pp. 85–90, 2014.

[26] “FreeBSD SYN Cache Source.” sys/netinet/tcp syncache.c. Accessed
on: FreeBSD-9.3.

[27] N. Cardwell, S. Savage, and T. Anderson, “Modeling TCP Latency,” in
Proc. INFOCOM 2003, pp. 1742–1751 vol.3, IEEE, 2000.

[28] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The Macroscopic
Behavior of the TCP Congestion Avoidance Algorithm,” SIGCOMM
Comput. Commun. Rev., vol. 27, pp. 67–82, July 1997.

[29] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
Throughput: A Simple Model and Its Empirical Validation,” SIGCOMM
Comput. Commun. Rev., vol. 28, pp. 303–314, Oct. 1998.

[30] “Linux Traffic Control.” http://tldp.org/HOWTO/Traffic-Control-
HOWTO/intro.html. Accessed: 2015-03-18.

[31] “IPMT Test Suite.” http://ipmt.forge.imag.fr.
[32] “OECD Broadband Portal.” https://www.oecd.org/internet/broadband/

oecdbroadbandportal.htm.
[33] V. Bajpai, S. J. Eravuchira, and J. Schönwälder, “Dissecting last-mile

latency characteristics,” SIGCOMM Comput. Commun. Rev., vol. 47,
pp. 25–34, Oct. 2017.

[34] T. Braud, M. Heusse, and A. Duda, “TCP over Large Buffers: When
Adding Traffic Improves Latency,” in Proc. 26th International Teletraf-
fic Congress (ITC), pp. 1–8, Sept 2014.

