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Abstract. Consider a network of agents connected by communication links, where each agent
holds a real value. The gossip problem consists in estimating the average of the values diffused
in the network in a distributed manner. We develop a method solving the gossip problem that
depends only on the spectral dimension of the network, that is, in the communication network
set-up, the dimension of the space in which the agents live. This contrasts with previous work
that required the spectral gap of the network as a parameter, or suffered from slow mixing.
Our method shows an important improvement over existing algorithms in the non-asymptotic
regime, i.e., when the values are far from being fully mixed in the network. Our approach stems
from a polynomial-based point of view on gossip algorithms, as well as an approximation of the
spectral measure of the graphs with a Jacobi measure. We show the power of the approach with
simulations on various graphs, and with performance guarantees on graphs of known spectral
dimension, such as grids and random percolation bonds. An extension of this work to distributed
Laplacian solvers is discussed. As a side result, we also use the polynomial-based point of view to
show the convergence of the message passing algorithm for gossip of [MR05] on regular graphs.
The explicit computation of the rate of the convergence shows that message passing has a slow
rate of convergence on graphs with small spectral gap.

1. Introduction

The averaging problem, or gossip problem, is a fundamental primitive of distributed algorithms.
Given a network composed of agents and undirected communication links between them, we assign
to each agent v a real value ξv, called an observation. The goal is to design an iterative com-
munication procedure allowing each agent to know the average of the initial observations in the
network, as quickly as possible.

The landmark paper [BGPS06] suggests the natural following protocol to solve the averaging
problem: at each iteration, each agent replaces his current observation by some average of the
observations of its neighbors in the network. We will refer to this method in the following by the
term simple gossip. More precisely, we are given a weight matrix W = (Wv,w)v,w∈V , called the
gossip matrix, indexed by the vertices v ∈ V of the network graph, satisfying the property that
Wv,w is non-zero only if v ∼ w, that is v and w are connected in the graph. Then the simple gossip
iteration writes

xt=0
v = ξv , xt+1

v =
∑
w:w∼v

Wv,wx
t
w , t > 0 . (1.1)

The paper [BGPS06] proves the linear convergence of the observations to their average.
However, the rate of the linear convergence was shown to worsen significantly in many networks

of interest as the size of the network increases. More precisely, define the diameter D of the network
as the largest number of communication links needed to connect any two agents. While obviously,
D steps of averaging are needed for any gossip method to spread information in the network, the
simple gossip method may require up to Θ(D2) communication steps to estimate the average, as for
instance on the line graph or the two-dimensional grid [RT17]. To reach the O(D) bound, a diverse
set of ideas were proposed, including second-order recursions [CSY06, RT17], message passing
algorithms [MR05], lifted Markov chain techniques [Sha09], methods using Chebychev polynomial
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2 ACCELERATED GOSSIP IN NETWORKS OF GIVEN DIMENSION

iterations [AS14, SBB+17] or inspiration arising from advection-diffusion processes [SGB10]. To
our knowledge, all of these accelerated methods assume that the agents hold additional information
about the network graph, such as its spectral gap. For instance, second-order methods typically
take the form (see [CSY06])

xt=0
v = ξv , xt=1

v =
∑
w:w∼v

Wv,wx
0
w ,

xt+1
v = ω

∑
w:w∼v

Wv,wx
t
w + (1− ω)xt−1v , t > 1 ,

(1.2)

where ω is some simple function of the spectral gap γ, that is the distance between the largest
and the second largest eigenvalue of W . This iteration obtains optimal asymptotic convergence on
many graphs, with a relaxation time of the linear convergence that scales like 1/

√
γ as γ → 0.

In this paper, we develop a gossip method based not on the spectral gap γ, but on the density of
eigenvalues of W near the upper edge of the spectrum. Looking at the upper part of the spectrum
at a broader scale allows us to improve the local averaging of the gossip algorithm in the regime
t < 1/

√
γ. This improvement is worthy as the spectral gap γ can get arbitrarily small in large

graphs. For instance, in the case of the line graph or the two-dimensional grid, the relaxation
time 1/

√
γ scales like the diameter D of the graph. Thus the regime t < 1/

√
γ can be relevant for

applications.
Remarkably, the spectral density of W near the upper edge can be described by a very natural

parameter: the spectral dimension d. The network is of spectral dimension d if the number of
eigenvalues of W in [1 − E, 1] decreases like Ed/2 for small E (γ � E � 1), see 5.3 for rigorous
definitions. We will see with examples that this definition coincides with our intuition of the
dimension of the graph, which is the dimension of the manifold on which the agents live. For
instance, the grid with nodes Zd where the nodes at distance 1 are connected, is a graph of
dimension d. Thus the parameter d is much easier to know than the spectral gap γ.

In real-world situations, the practitioner reasonably knows if the network on which she imple-
ments the gossip method is of finite dimension, and if so, she also knows the dimension d. In this
paper, we argue that she should run a second-order iteration with time-dependent weights

xt=0
v = ξv , xt=1

v = a0
∑
w:w∼v

Wv,wx
0
w + b0x

0
v ,

xt+1 = at
∑
w:w∼v

Wv,wx
t
w + btx

t
v − ctxt−1v , t > 1 ,

(1.3)

where the recurrence weights at, bt, ct are given by the formulas

a0 =
d+ 4

2(2 + d)
, b0 =

d

2(2 + d)
,

at =
(2t+ d/2 + 1)(2t+ d/2 + 2)

2(t+ 1 + d/2)2
, bt =

d2(2t+ d/2 + 1)

8(t+ 1 + d/2)2(2t+ d/2)
,

ct =
t2(2t+ d/2 + 2)

(t+ 1 + d/2)2(2t+ d/2)
, t > 1 .

(1.4)

The motivation for these choice of weights at, bt, ct should not be obvious at first sight. It follows
from a polynomial-based point of view on gossip algorithms: it consists in seeing the iterations
(1.1), (1.2) and (1.3) as sequences P0, P1, P2, . . . of polynomials in the gossip matrix W . The
correspondence is given by the relation xt = Pt(W )ξ where xt = (xtv)v∈V and ξ = (ξv)v∈V . This
approach is inspired from similar work done in the resolution of linear systems [Fis96] and on
the load balancing problem [DFM99]. The choice of an iteration is reframed as the choice of
a sequence of polynomials, and the performance of the resulting gossip method depends on the
spectrum of W . As the dimension of the graph gives the rate of decrease of the spectral density
near the edge of the spectrum, it suggests the sequence of polynomials one should take: we choose a
parametrized sequence of polynomials called Jacobi polynomials, that is well-known in the literature
on orthogonal polynomials (see the Definition B.2 of the Jacobi polynomials). This actually leads
to the iteration (1.3), that we call the Jacobi polynomial iteration.

The Jacobi polynomial iteration (1.3) improves the convergence of the gossip method in the
transitive phase t < 1/

√
γ, but looses the optimal rate of convergence of second-order gossip,



ACCELERATED GOSSIP IN NETWORKS OF GIVEN DIMENSION 3

because it does not use the spectral gap γ. We argue that in most applications of gossip methods,
the asymptotic rate of convergence is not relevant as there is noise in the initial data ξ, thus a high
precision on the result would be useless. However, we also build a gossip iteration that uses both
parameters d and γ and achieves both the efficiency in the non-transitive regime and the fast rate
of convergence.

This resolution of the gossip problem with inner-product free polynomial-based iterations is
new, and could lead to other interesting algorithms on other types of graphs. Here, the phrase
“inner-product free” comes from the literature on polynomial-based iterations for linear systems
[Fis96], and refers to the fact that recurrence coefficients at, bt, ct are computed without using the
gossip matrix W (but parametrized using the knowledge of d). Indeed, as the knowledge of the
gossip matrix W is distributed across the graph, it would be a challenging distributed problem to
compute the recurrence coefficients if they depended on W .

Although our work is inspired by iterative methods for linear systems, the Jacobi iteration that
we developed for gossip can be transposed into a new idea to this literature, which can be useful
for the distributed resolution of Laplacian systems over multi-agent networks.

Finally, in Section 9, we show that the message passing gossip iteration of [MR05] can be
interpreted as an inner-product free polynomial iteration. This point of view allows to derive
convergence rates of the message passing gossip on regular graphs.

Outline of the paper. Section 2 sets some notation used in the remainder of this paper. In
Section 3, we give simulations in different types of networks of dimension 2 and 3. We show that
the recursion (1.3) brings important benefits over existing methods in the non-asymptotic regime,
i.e., when the observations are far from being fully mixed in the graph.

In Sections 4-5, we develop the derivation of the Jacobi polynomial iteration. Section 4 describes
an optimal way to design polynomial-based gossip algorithms, following the lines of [Fis96] and
[DFM99], and discusses its feasibility. Section 5 uses the notion of spectral dimension of a graph
to inspire the practical Jacobi polynomial iteration (1.3).

In Section 6, we prove some performance guarantees of the Jacobi polynomial iteration (1.3)
under the assumption that the graph has spectral dimension d. As a corollary, we get performance
results on two types of infinite graphs: the d-dimensional grid Zd and supercritical percolation
bonds in dimension d. This supports that the iteration (1.3) is robust to local perturbations of a
graph.

In Section 7, we present the adaptation of the Jacobi polynomial iteration to the case where the
spectral gap γ of W is given to improve the asymptotic rate of convergence.

In Section 8, we describe the parallel between gossip methods and iterative methods for linear
systems, and discuss the contributions that our work can bring to the distributed resolution of
Laplacian systems over networks.

In Section 9, we show how the message passing gossip algorithm can be interpreted as a poly-
nomial gossip algorithm. We give the convergence rate of message passing in terms of the spectral
gap γ.

Code. The code that generated the simulation results and the figures of this paper is available on
the GitHub page https://github.com/raphael-berthier/jacobi-polynomial-iterations.

2. Problem setting

A network of agents is modeled by an undirected finite graph G = (V,E), where V is the set of
vertices of the graph, or agents, and E the set of edges, or communication links. We assume each
agent v holds a real value ξv. Our goal is to design an iterative algorithm that quickly gives each
agent the average ξ̄ = (1/n)

∑
v∈V ξv, where n = |V | is the number of agents.

A fundamental operation to estimate the average ξ̄ consists in averaging the observations of
neighbors in the network. We formalize this notion using a gossip matrix.

Definition 2.1. A gossip matrix W = (Wv,w)v,w∈V on the graph G is a matrix with entries
indexed by the vertices of the graph satisfying the following properties:

– W is nonnegative: for all v, w ∈ V , Wv,w > 0.
– W is supported by the graph G: for all distinct vertices v, w such that Wv,w > 0, {v, w}
must be an edge of G.

https://github.com/raphael-berthier/jacobi-polynomial-iterations
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– W is stochastic: for all v ∈ V ,
∑
w∈V Wv,w = 1.

– W is symmetric: for all v, w ∈ V , Wv,w = Ww,v.

If W is a gossip matrix and x = (xv)v∈V is a set of values stored by the agents v, the product
Wx is interpreted as the computation by each agent v of a weighted average of the values xw of its
neighbors w in the graph (and of its own value xv). This average is computed simultaneously for
all agents v; indeed in this paper we deal only with synchronous gossip. Note that we do not need
the symmetry assumption on W to interpret W as an averaging operation. This assumption is
usual in gossip frameworks as it allows one to use the spectral theory for W , on which our analysis
relies heavily. It appears, for instance, in the works [BGPS06, CSY06, RT17].

In a d-regular graphG (∀v,deg v=d), a typical gossip matrix isW = A(G)/d = (1{{v,w}∈E}/d)v,w∈V
where A(G) is the adjacency matrix of the graph. More generally, if the graph has all vertices of
degree bounded by some quantity dmax, then a natural gossip matrix is

W = I +
1

dmax
(A−D) , (2.1)

where D is the degree matrix, which is the diagonal matrix such that Dv,v = deg v.

Definition 2.2 (Spectral gap). Denote λ1 > λ2 > · · · > λn the real eigenvalues of the symmetric
matrix W . As W is stochastic, W1 = 1; we can take λ1 = 1, that corresponds to the eigenvector
1 = (1, . . . , 1). According to the Perron-Frobenius theorem, all eigenvalues must be smaller than 1
in magnitude. We define:

(1) the spectral gap γ = 1− λ2 as the distance between the two largest eigenvalues of W ,
(2) the absolute spectral gap γ̃ = min(1 − λ2, λn + 1) as the difference between the moduli of

the two largest eigenvalues of W in magnitude.

We now discuss different iterations for the gossip problem.

Simple gossip. Simple gossip is a natural algorithm solving the gossip problem that consists in
averaging repeatedly values in the graph [BGPS06]. More precisely, we choose a gossip matrix W
on the graph G, initialize x0 = ξ = (ξv)v∈V , and at each communication round t, compute

xt+1 = Wxt . (2.2)

Note that the latter equation is simply a compact rewriting of (1.1). We can rewrite this iteration
as xt = W tξ. Note that in this last equation, we used the notation .t to denote both the index of
x and the power of the square matrix W . We will frequently make use of the indexation .t when
vectors indexed by the vertices (or the edges) also depend on time.

The speed of convergence of this method is studied in [BGPS06]. We give a summary here:

Proposition 2.3 (from [BGPS06]). Let ξ be an arbitrary family of initial observations and xt the
iterates of simple gossip defined by (2.2). Denote γ̃ the absolute spectral gap of W . Then

lim sup
t→∞

‖xt − ξ̄1‖1/t2 6 1− γ̃ .

Moreover, the upper bound is reached if there exists an eigenvector u of W , corresponding to an
eigenvalue of magnitude 1− γ̃, such that 〈ξ, u〉 6= 0.

Shift-register gossip. Several acceleration schemes of gossip [CSY06, RT17] store some past
iterates to compute higher-order recursions (that thus depend on powers of W ). For instance, the
shift-register iteration of [CSY06] is of the form

x0 = ξ , x1 = Wξ , xt+1 = ωWxt + (1− ω)xt−1 , (2.3)

where ω is a parameter that needs to be tuned.

Proposition 2.4 (from [LACM13, Theorem 2]). Let ξ be an arbitrary family of initial observations
and xt the iterates of shift-register gossip defined in (2.3) with parameter

ω = 2
1−

√
γ(1− γ/4)

(1− γ/2)
2 ,
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where γ is the spectral gap of the gossip matrix W . Then

lim sup
t→∞

‖xt − ξ̄1‖1/t2 6 1− 2

√
γ(1− γ/4)− γ/2

1− γ
.

Moreover, the upper bound is reached if there exists an eigenvector u of W , corresponding to the
eigenvalue 1− γ, such that 〈ξ, u〉 6= 0.

The important consequence of this result is that the rate of convergence of the shift-register
method behaves like 1− 2

√
γ + o(

√
γ) as γ → 0. This differs from simple gossip where the rate of

convergence behaves like 1− γ. This means that in graphs with a small spectral gap, shift-register
enjoys a much better rate of convergence that simple gossip: this is why we say that shift-register
enjoys an accelerated rate of convergence as opposed to simple gossip which has a diffusive or
unaccelerated rate. This effect on the asymptotic rate of convergence can be seen in Figures 2
and 3.

Polynomial gossip. More abstractly, we define a polynomial gossip method as any method
combining the past iterates of the simple gossip method:

xt = Pt(W )ξ , (2.4)

where Pt is a polynomial of degree smaller or equal to t satisfying Pt(1) = 1. The constraint
Pt(1) = 1 ensures that xt = ξ̄1 if all initial observations are the same, i.e., ξ = ξ̄1. The constraint
degPt 6 t ensures that the iterate xt can be computed in t time steps. Simple gossip corresponds
to the particular case of the polynomial Pt(λ) = λt. Shift-register gossip is a polynomial gossip
method whose corresponding polynomials that can be expressed using the Chebyshev polynomials
(see Proposition I.4). The method (1.3) will be derived as the polynomial iteration corresponding
to some Jacobi polynomials.

In this paper, we design polynomial gossip methods whose polynomials Pt, t > 0 satisfy a
second-order recursion. This key property ensures that the resulting iterates xt = Pt(W )ξ can be
computed recursively.

3. Simulations: comparison of simple gossip, shift-register gossip and
the Jacobi polynomial iteration

In this section, we run our methods on grids, percolation bonds and random geometric graphs;
the latter being a widely used model for real-world networks [Pen03, Section 1.1]. In each case, we
consider both the two-dimensional (2D) structure and its three-dimensional (3D) counterpart. We
refer to Figure 1 for visualizations of the 2D structures, and to Appendix A for details about the
parameters used.

We compare our Jacobi polynomial iteration (1.3) with the simple gossip method (1.1) and
the shift-register algorithm (1.2). We found experimentally that the behavior of the shift-register
algorithm was typical of methods based on the spectral gap such as the splitting algorithm of
[RT17] or the Chebychev polynomial acceleration scheme [AS14, SBB+17]; to avoid redundancy
we do not present the similar behavior of these methods. We also compare with local averaging,
which is given by the formula

xtv =
1

|Bt(v)|
∑

w∈Bt(v)

ξw ,

where |Bt(v)| denotes the ball in G, centered in v, of radius t, for the shortest path distance. Note
that local averaging does not correspond in general to any computationally cheap iteration, as
opposed to the algorithms we present here. Thus it should not be considered as a gossip method,
but rather as a lower bound on the performance achievable by any gossip method. (This is made
fully rigorous in the statistical gossip framework of Section 6.)

In our simulations, we change the graph G that we run our algorithms on, but we always sample
ξv ∼i.i.d. N (0, 1), v ∈ V and measure the performance of gossip methods through the quantity
‖xt − ξ̄1‖2/

√
n. Thus the performance of the algorithms is random because the initial values ξv

are random, and also because percolation bonds and random geometric graphs are random. The
results we present here are averaged over 10 realizations of the graph and the initial values, which
is sufficient to give stable results.
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Tuning. The optimal tuning of the shift-register gossip method as a function of the spectral
gap was determined in [LACM13, Theorem 2], it is given by the formula (2.4); this is the tuning
that we use in our simulations. The Jacobi polynomial iteration is tuned by choosing d = 2 in 2D
grid, 2D percolation bonds and 2D random geometric graphs, and d = 3 for their 3D analogs.

Interpretation of the results. The results of the simulations are exposed in Figure 2. The
qualitative picture remains the same across different graphs. Simple gossip performs better than
shift-register gossip in a first phase, but in a large t asymptotic, simple gossip converges slowly
where shift-register gossip converges quickly. The Jacobi polynomial iteration enjoys both the
quick diffusion of simple gossip in the first phase, and reaches the full mixing before shift-register
gossip. As a consequence, the Jacobi polynomial iteration gets considerably closer to the local
averaging optimal bound, especially in very regular structures like grids.

These results should be mitigated with the large t asymptotic: in Figure 3, we show the com-
parison of gossip methods on a longer time scale, in linear and log-scale y-axis. We only present
the results on the 2D grid as they are typical of the behavior on other structures. We observe that
shift-register gossip enjoys a much better asymptotic rate of convergence than simple gossip and
the Jacobi polynomial iteration.

Methods that use the spectral gap are designed to achieve the best possible asymptotic (see
[CSY06], [RT17]), thus the above observation is not surprising. These methods however fail in
the non-asymptotic regime, where they are outperformed by the Jacobi polynomial iteration and
simple gossip. We believe that in applications where a high precision on the average is not needed,
the Jacobi polynomial iteration brings important improvements over existing methods, let alone
the fact that it is considerably easier to tune. However, in Section 7, we present a Jacobi polynomial
iteration that uses the spectral gap of the gossip matrix to obtain the accelerated convergence rate.

4. Design of best polynomial gossip iterations

We now turn to the design of efficient polynomial iterations of the form xt = Pt(W )ξ. An
important result of this section is that the best iterates of this form can be computed in an online
fashion as they result from a second-order recurrence relation.

The approach presented in this section is similar to [DFM99, Section 3.3], although therein it
is applied to the slightly different problem of load balancing. We repeat here the derivations as
we take a slightly different approach: here we derive the best polynomial Pt with fixed W and ξ;
while in [DFM99] the matrix W is fixed, but a polynomial Pt efficient uniformly over ξ is sought.
We then discuss why the resulting recursion may be impractical. The next section introduces some
approximation of the impractical scheme that leads to the practical iteration (1.3).

Our measure of performance of a polynomial gossip iteration is the sum of squared errors over
the agents of the network:

E(Pt) =
∑
v∈V

(xtv − ξ̄)2 = ‖xt − ξ̄1‖22 = ‖Pt(W )ξ − ξ̄1‖22 .

Denote λ1, λ2, . . . , λn the real eigenvalues of the symmetric matrix W and u1, u2, . . . , un are the
associated eigenvectors, normalized such that ‖ui‖2 = 1. The diagonalization of W gives the new
expression of the error

E(Pt) =

n∑
i=2

〈ξ, ui〉2Pt(λi)2 =

∫ 1

−1
Pt(λ)2dσ(λ) , dσ(λ) =

n∑
i=2

〈ξ, ui〉2δλi , (4.1)

where 〈., .〉 denotes the canonical scalar product on Rn and δλ is the Dirac mass at λ.
The polynomial πt minimizing the error E(Pt) must be chosen as

πt ∈ argmin
P (1)=1, degP6t

∫ 1

−1
P (λ)2dσ(λ) . (4.2)

We now show that the sequence of best polynomials π0, π1, π2, . . . can be computed as the
result of a second-order recursion, which leads to a second-order gossip method, whose coefficients
depend on σ. As noted in [CSY06], having iterates xt that satisfy a low-order recurrence relation
is valuable as it ensures that they can be computed online with limited memory cost. In order to
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(a) Grid (b) Percolation bond (c) Random geometric graph

Figure 1. The three types of two-dimensional graphs considered in simulations.
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Figure 2. Performance of different gossip algorithms running on graphs with an
underlying low-dimensional geometry, as measured by ‖xt − ξ̄1‖2/

√
n.



8 ACCELERATED GOSSIP IN NETWORKS OF GIVEN DIMENSION

0 50 100 150 200 250 300
t

0.0

0.2

0.4

0.6

0.8

1.0
‖x

t
−

̄ ξ�
‖ 2
/√
n

Jacobi‖Polynomial‖Iteration
Sim le‖Gossi 
Shift-Register Gossip
Local Averaging

(a) in linear scale

0 50 100 150 200 250 300
t

10−6

10−5

10−4

10−3

10−2

10−1

100

‖x
t
−

̄ ξ�
‖ 2
‖√
n

(b) in log-scale

Figure 3. Performance of different gossip algorithms running on the 2D grid.

prove this property for our iterates, we use that these polynomials are orthogonal with respect to
some measure τ .

Definition 4.1 (Orthogonal polynomials w.r.t. τ). Let τ be a measure on R whose moments are
all finite. Endow the set of polynomials R[X] with the scalar product

〈P,Q〉τ =

∫
R
P (λ)Q(λ)dτ(λ) .

Denote T ∈ N ∪ {∞} the cardinal of the support of τ . Then there exists a family π0, π1, ..., πT−1
of polynomials, such that for all t < T , π0, π1, ..., πt form an orthogonal basis of (Rt[X], 〈., .〉τ ),
where Rt[X] denotes the set of polynomials of degree smaller or equal to t. In other words, for all
s, t < T ,

deg πt = t , 〈πs, πt〉τ = 0 if s 6= t .

π0, π1, ..., πT−1 is called a sequence of orthogonal polynomials with respect to τ (w.r.t. τ). More-
over, the family of orthogonal polynomials π0, π1, ..., πT−1 is unique up to a rescaling of each of the
polynomials.

An extensive reference on orthogonal polynomials is the book [Sze39]. An introduction from
the point of view of applied mathematics can be found in [Gau04]. In Appendix B, we recall the
results from the theory of orthogonal polynomials that we use in this paper. The next proposition
states that the optimal polynomials sought in (4.2) are orthogonal polynomials.

Proposition 4.2. Let σ be some finite measure on [−1, 1] and let T ∈ N∪ {∞} be the cardinal of
Suppσ − {1}. For 0 6 t 6 T − 1, the minimizer πt of

min
P (1)=1, degP6t

∫ 1

−1
P (λ)2dσ(λ)

is unique. Moreover, π0, . . . , πT−1 is the unique sequence of orthogonal polynomials w.r.t. dτ(λ) =
(1− λ)dσ(λ) normalized such that πt(1) = 1.

This result is well-known and usually stated without proof [Nev86, Sections 3, 4.1], [Nev79,
Section 2]; we give the short proof in Appendix D. In the following, the phrase “the orthogo-
nal polynomials w.r.t. τ ” will refer to the unique family of orthogonal polynomials w.r.t. τ and
normalized such that πt(1) = 1.

Remark 4.3. When T is finite and t > T , finding a minimizer of
∫ 1

−1 P (λ)2dσ(λ) over the set of
polynomials such that P (1) = 1, degP 6 t is trivial. Indeed, one can consider the polynomial

πT (λ) =

∏
λ′∈Suppσ−{1}(λ− λ′)∏
λ′∈Suppσ−{1}(1− λ′)
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which is of degree T , satisfies πT (1) = 1 and
∫ 1

−1 πT (λ)2dσ(λ) = σ({1}). This is the best value
that a polynomial P of any degree, such that P (1) = 1, can get.

A fundamental result on orthogonal polynomials states that they follow a second-order recursion.

Proposition 4.4 (Three-term recurrence relation, from [Sze39, Theorem 3.2.1]). Let π0, . . . , πT−1
be a sequence of orthogonal polynomials w.r.t. some measure τ . There exist three sequences of
coefficients (at)16t6T−2, (bt)16t6T−2 and (ct)16t6T−2 such that for 1 6 t 6 T − 2,

πt+1(λ) = (atλ+ bt)πt(λ)− ctπt−1(λ) .

The classical proof of this proposition is given in Appendix B.1. Taking σ to be the spectral
measure of (4.1) in Proposition 4.2, we get that the best polynomial gossip algorithm is a second-
order method whose coefficients are determined by the graph G, the gossip matrix W and the
vertex v. Indeed, as π0, . . . , πT−1 is a family of orthogonal polynomials, there exists coefficients
at, bt, ct such that

πt+1(λ) = (atλ+ bt)πt(λ)− ctπt−1(λ) ,

and thus
πt+1(W ) = atWπt(W ) + btπt(W )− ctπt−1(W ) .

Decomposing π1(λ) = a0λ + b0 and applying the previous relation in ξ gives the second-order
recursion for the best polynomial estimators xt = πt(W )ξ:

x0 = ξ , x1 = a0Wξ + b0ξ , xt+1 = atWxt + btx
t − ctxt−1 . (4.3)

Note that the dependence of the gossip method in the graph G, the gossip matrix W and the
vertex v is entirely hidden in the coefficients at, bt, ct. Thus the choice of the coefficients is central.
In [DFM99], it is argued that the coefficients can be computed in a “preprocessing step”. Indeed,
the coefficients can be computed in a centralized or decentralized manner, at the cost of extra
communication steps. The gossip method that consists in computing the optimal coefficients
at, bt, ct and running Eq. (4.3) will be refered to as parameter-free polynomial iteration, as it does
not require any tuning of parameters, and by analogy with the terminology used in polynomial
methods for the resolution of linear systems (see [Fis96, Section 6]). It corresponds to the optimal
polynomial iteration. For a detailed exposition on the parameter-free polynomial iteration and a
discussion of its practicability, see Appendix E.

However, in dynamic networks that are constantly changing, it is not a valid option to keep
repeating the preprocessing step to update the coefficients at, bt, ct. Our approach consists in
observing that there are sequences of coefficients like (1.4) that –albeit they are not optimal–
work reasonably well on a large set of graphs. This implies that even if the details of the graph
are not known to the algorithmic designer, she can make a choice of coefficients that have a fair
performance.

More formally, we approximate the true spectral measure σ of the graph with a simpler mea-
sure σ̃, whose associated polynomials have known recursion coefficients at, bt, ct. We will show that
in some cases, substituting the orthogonal polynomials w.r.t. σ with the ones orthogonal to σ̃ does
not worsen the efficiency of the gossip method much. In the next sections, we argue for two choices
of the approximating measure σ̃. The first uses only the spectral dimension d of the network, and
gives the Jacobi polynomial iteration (1.3). The second one uses both the spectral dimension d
and the spectral gap γ of W , and gives the Jacobi polynomial iteration with spectral gap.

Figure 4 reproduces Figure 3 and adds the performance of the parameter-free polynomial it-
eration and the Jacobi polynomial iteration with spectral gap. It shows that in linear scale, the
performance of the parameter-free polynomial iteration is indistinguishable from the performance
of the Jacobi polynomial iterations with or without spectral gap, which are obtained through ap-
proximations of the spectral measure σ. However, the figure in log-scale shows that the asymptotic
convergence of the methods depends on the coarseness of the approximation. The relevance of this
asymptotic convergence to the practice depends on the application.

Remark 4.5. The shift-register iteration xt = Pt(W )ξ defined in (2.3) can be seen as a best
polynomial gossip iteration with some approximating measure. Indeed, the polynomials Pt, t > 0
are the orthogonal polynomials w.r.t. some measure whose support is strictly included in [−1, 1]
(see Proposition I.5).
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Figure 4. Performance of different gossip algorithms running on the 2D grid.

5. Design of polynomial gossip algorithms for graphs of given spectral
dimension

5.1. The dimension d and the rate of decrease of the spectral measure near 1. We now
assume that we are given a graph G on which we would like to run the optimal polynomial gossip
algorithm (4.3). However, we do not know the spectral measure σ, nor the coefficients at, bt, ct. In
this section, we give a heuristic motivating an approximation σ̃ of the spectral measure σ using
only the dimension d of the graph. The heuristic is supported by the simulations of Section 3 and
some rigorous theoretical support in Section 6.

Our approximation is given by the following non-rigorous intuition:

the graph G is of dimension d ⇔ σ([1− E, 1]) ≈ CEd/2 as E � 1 , (5.1)

for some constant C. Of course, we have not defined the dimension of a graph, nor given a rigorous
signification of the symbols “≈” and “�”. We come back to these questions in Section 5.3, but for
now we assume that the reader has an intuitive understanding of these notions and finish drawing
the heuristic picture.

Eq. (5.1) describes the repartition of the mass of σ near 1. This mass near 1 challenges the
design of polynomial methods as the gossip polynomials P are constrained to satisfy P (1) = 1
while minimizing

∫
P 2dσ. Moreover, eigenvalues of a graph close to 1 are known to describe the

large-scale structure of the graph and thus must be central in the design of gossip methods. The
traditional design of gossip algorithms considered the spectral gap γ between 1 and the second
largest eigenvalue, a quantity that typically gets very small in large graphs. Intuition (5.1) also
describes the behavior of the spectrum near 1, but on a larger scale than the spectral gap. It
describes how the set of the largest eigenvalues is distributed around 1.

5.2. The Jacobi iteration for graphs of given dimension. When a spectral measure satisfies
the edge estimate (5.1), we approximate it with a measure satisfying the same estimate, namely

dσ̃(λ) = (1− λ)d/2−11{λ∈(−1,1)}dλ .

Note that we do not elaborate on the normalization of the approximate measure dσ̃ as it is only
used to define an orthogonality relation between polynomials, in which the normalization does
not matter. The orthogonal polynomials w.r.t the modified spectral measure (1 − λ)dσ̃(λ) =
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simple gossip λ6.

(1− λ)d/21{λ∈(−1,1)}dλ and their recursion coefficients are known as they correspond to the well-
studied Jacobi polynomials [Sze39, Chapter IV]:

a
(d)
0 =

d+ 4

2(2 + d)
, b

(d)
0 =

d

2(2 + d)
,

a
(d)
t =

(2t+ d/2 + 1)(2t+ d/2 + 2)

2(t+ 1 + d/2)2
, b

(d)
t =

d2(2t+ d/2 + 1)

8(t+ 1 + d/2)2(2t+ d/2)
,

c
(d)
t =

t2(2t+ d/2 + 2)

(t+ 1 + d/2)2(2t+ d/2)
.

(5.2)

These coefficients are derived in Appendix H.2. This approximation of the spectral measure gives
the practical recursion

x0 = ξ , x1 = a
(d)
0 Wξ + b

(d)
0 ξ , xt+1 = a

(d)
t Wxt + b

(d)
t xt − c(d)t xt−1 , (5.3)

that only depends on d. It is just a rewriting of the Jacobi polynomial iteration (1.3) given in
the introduction of this paper. The Jacobi polynomial π(d/2,0)

t (λ) such that xt = π
(d/2,0)
t (W )ξ is

plotted in Figure 5 with d = 2 and t = 6, along with the polynomial λ6 associated with simple
gossip. The Jacobi polynomial is smaller in magnitude near the edge of the spectrum.

5.3. Spectral dimension of a graph. In this section, we discuss the meaning of intuition (5.1).
There are several definitions of the dimension of a graph.

When referring to the dimension of a graph, many authors actually refer to some quantity d that
has been used in the construction of the graph. An example is the d-dimension grid {1, . . . , n}d.
Another example consists in removing edges in Zd with probability 1 − p, independently of one
another. The resulting graph G is called a percolation bond [Gri99]. It is natural to consider that
this graph is of dimension d. A more complicated example is the random geometric graph: choose
d > 1, and sample n points uniformly in the d-dimensional cube [0, 1]d, and connect with an edge
all pairs of points closer than some chosen distance r > 0. It is natural to say that this random
geometric graph is d-dimensional as it is the dimension of the surface it is built on.

Mathematicians have developed more intrinsic definitions of the dimension of a graph [Dur09];
here we use the notion of spectral dimension. This definition is of interest only for infinite graphs
G = (V,E). Here, we consider only locally finite graphs, meaning that each node has only a finite
number of neighbors. As with Definition 2.1, one can define a gossip matrixW with entries indexed
by V × V . If G is infinite, W is a doubly infinite array, but with only a finite number of non-zero
elements in each line and column as the graph is locally finite.

The spectral dimension of a graph G is defined using a random walk on the graph, typically
the simple random walk on G, but here we consider more generally the lazy random walk with
transition matrix W̃ = (I +W )/2. (We take the lazy random walk to avoid periodicity issues.)

Definition 5.1 (Spectral dimension). Denote pt the probability that the lazy random walk, when
started from v, returns at v at time t. The spectral dimension of the graph is, if it exists and is
finite, the limit

ds = ds(G,W, v) = −2 lim
t→∞

ln pt
ln t

.
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If the graph is connected and W is the transition matrix of the simple random walk, this
definition does not depend on the choice of the vertex v. Motivations for this definition are:

Proposition 5.2. The spectral dimension of
(
Zd,W

)
with W = A(Zd)/d is d.

Proposition 5.3 (The spectral dimension of the supercritical percolation cluster is d). Let G0 be
a supercritical percolation bond in Zd with edge probability p ∈ (pc, 1], meaning that a.s., there is
an infinite connected component G in G0. Endow G with the gossip matrix W = I+(A−D)/(2d),
where A and D are respectively the adjacency and the degree matrices of G. Fix v ∈ V . Then
a.s. on the event {v ∈ G}, ds(G,W, v) = d.

The proofs of Propositions 5.2, 5.3 are given in Appendix F. The spectral dimension of a graph
is related to the decay of the spectrum of W near 1.

Definition 5.4 (Spectral measure of a possibly infinite graph). Let G be a graph and W its gossip
matrix. Fix v ∈ V . As W is an auto-adjoint operator, bounded by 1, acting on `2(V ), there exists
a unique positive measure σ = σ(G,W, v) on [−1, 1], called the spectral measure, such that for all
polynomial P ,

〈ev, P (W )ev〉`2(V ) =

∫ 1

−1
P (λ)dσ(λ) .

For a deeper presentation of spectral graph theory, see [MW89] and references therein. Note
that when the graph G is finite, it is easy to check that the spectral measure is the discrete
measure σ(G,W, v) =

∑n
i=1(uiv)

2δλi where λ1, . . . , λn are the eigenvalues of W and u1, . . . , un are
the associated normalized eigenvectors. However, when the graph G is infinite, the spectrum may
exhibit a continuous part w.r.t. the Lebesgue measure.

Proposition 5.5 (The spectral dimension is the spectral decay). Let G be a graph, W a gossip
matrix on G and v a vertex. We denote ds = ds(G,W, v) the spectral dimension and σ = σ(G,W, v)
the spectral measure. Then the limit limE→0 lnσ([1−E, 1])/ lnE exists and is finite if and only if
ds exists and is finite. In that case,

lim
E→0

lnσ([1− E, 1])

lnE
=
ds
2
.

For a proof, see Appendix G. This proposition gives a rigorous equivalent to intuition (5.1). It
uses the spectral dimension of the graph, which is an intrinsic property of the graph and turns out
to coincide with our intuition of the dimension of a graph in examples of interest. Note that in
Section 4, the spectral measure σ is defined as dσ(λ) =

∑
〈ξ, ui〉2δλi whereas in this section, it is

defined for finite graphs as dσ(λ) =
∑

(uiv)
2δλi . Roughly speaking, intuition (5.1) is valid for the

former if ξ projects evenly on all eigenvectors ui. It is the case if ξ has random i.i.d. components
for instance; this is used in Section 6.

6. Performance guarantees in graphs of spectral dimension d

In this section, we seek to give theoretical support to the empirical observations of Section 3:
Jacobi polynomial gossip improves on the non-asymptotic phase over existing methods. This is
challenging because the analysis of gossip methods is simpler in the asymptotic regime. In our
case, we use asymptotic properties of the Jacobi polynomials as t→∞.

In order to be able to run an asymptotic analysis without falling in the asymptotic phase of
exponential convergence, we run our method on infinite graphs G = (V,E). In infinite graphs,
it is impossible for information to have reached every node in any finite time. In practice, the
conclusions drawed on infinite graphs should be taken as approximations of the behavior on very
large graphs.

Of course, it is impossible for any gossip method to estimate the average of the values in the
infinite graphs: indeed, within time t the node v can only share information with nodes that
are closer than t (w.r.t. the shortest path distance in the graph). Even worse, the average of an
infinite number of values is ill-defined. Thus additional assumptions on the observations ξv are
needed. Several choices could be possible here, to keep the discussion simple we assume that the
observations ξv are independent identically distributed (i.i.d.) samples from a probability law ν.
The agents then seek to estimate the statistical mean µ =

∫
R ξdν(ξ) of ν.
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In practice, to build good estimates, the nodes should average their samples, thus it is natural
to run gossip algorithms in this situation. An estimator performs well if it averages a lot of samples
and averages them uniformly. Thus the mean square error (MSE) of the estimators measures the
capacity of a gossip methods to average locally in the graph.

This statistical gossip framework was already present in [BMM08] and is not only used for
its technical advantages. It is also a reasonable modeling of gossip of signals with a statistical
structure in large networks. For instance, in sensor networks, observations are measurements of
the environment corrupted by noise. The purpose of the gossip algorithm is to average observations
to get a better estimate of the ground truth. Gossip algorithms are also used as building blocks
in distributed statistical learning problems such as distributed optimization (see [NO09, SBB+17,
Say14, SRNV10, DAW12, CS12]) or distributed bandit algorithms (see [SBFH+13, LSL16, KSS16]).
All of these problems have a statistical structure that simplifies the underlying gossip problem.
For instance, in sensor networks, good estimates of the mean may not require using observations
from nodes extremely far in the network.

Let us now sum up the setting. The network of agents is modeled by a (possibly infinite, locally
finite) graph G = (V,E), that we endow with a gossip matrix W . We consider a probability law ν
on R, and µ =

∫
R ξ dν(ξ) its statistical mean. Each agent v ∈ V is given a sample from ν:

ξv, v ∈ V ∼
i.i.d.

ν .

The following theorem gives the asymptotic MSE of the estimators built by the simple gossip
method and the Jacobi polynomial iteration.

Theorem 6.1. Fix a vertex v and denote ds = ds(G,W, v) the spectral dimension of the graph.
(1) Let xt be the iterates of the simple gossip method (2.2), or the iterates of the shift-register

gossip method (2.3) with some parameter ω ∈ [1, 2]. Then

lim inf
t→∞

lnE[(xtv − µ)2]

ln t
> −ds

2
. (6.1)

(2) Let xt be the iterates of the Jacobi polynomial iteration (5.3) with parameter d = ds. Then

lim sup
t→∞

lnE[(xtv − µ)2]

ln t
6 −ds . (6.2)

See Appendix I for a proof. The above theorem shows that the asymptotic MSE of the Jacobi
polynomial iteration can be upper bounded using only the spectral dimension of the graph. The
power decay of the MSE with the Jacobi polynomial iteration enjoys a better rate than with simple
gossip and the shift-register iteration (regardless of the choice of ω). In some cases, this rate can
be proved optimal using the Hausdorff dimension of the graph.

Definition 6.2 (Hausdorff dimension). The Hausdorff dimension of the graph G at vertex v is, if
it exists, the limit

dh = dh(G, v) = lim
t→∞

ln |Bt(v)|
ln t

.

If G is connected, then dh does not depend on the choice of v.

Proposition 6.3. Let xt = Pt(W )ξ be any polynomial gossip method on a graph G with Hausdorff
dimension dh. Then

lim inf
t→∞

lnE[(xtv − µ)2]

ln t
> −dh . (6.3)

See Appendix J for a proof. Note that this lower bound it attained if xt is the local average of
values:

xtv =
1

|Bt(v)|
∑

w∈Bt(v)

ξw .

Thus reaching this lower bound means that the polynomial gossip method averages locally. Theo-
rem 6.1 shows that it is the case with the Jacobi polynomial iteration if d = ds = dh.
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Corollary 6.4. Assume that the spectral and the Hausdorff dimensions have the same value d =
dh = ds. If xt are the iterates of the Jacobi polynomial iteration (5.3), we obtain the optimal
asymptotic convergence rate

lim
t→∞

lnE[(xtv − µ)2]

ln t
= −dh .

Application to the grid. Proposition 5.2 states that the spectral dimension of Zd is d, which
coincides the Hausdorff dimension.

Corollary 6.5. Let xt be the iterates of the Jacobi polynomial iteration (5.3) on the grid Zd. Then
we obtain the optimal asymptotic convergence rate

lim
t→∞

lnE[(xtv − µ)2]

ln t
= −d .

Note that Theorem 6.1 also gives that if xt are the iterates of the simple gossip method, then
limt→∞ lnE[(xtv − µ)2]/ ln t = −d/2. (The theorem actually only gives the lower bound, but the
proof technique, combined with the fact that the spectrum of Zd is symmetric, actually gives
the result.) This result could have been anticipated intuitively as follows. Under the simple
gossip iteration, the information of the measurement ξv diffuses following a simple random walk
on the grid. According to the central limit theorem, at large t, the information is approximately
distributed according to a Gaussian distribution of standard deviation

√
t, which is approximately

supported by Θ(
√
t
d
) nodes. This means that at time t, a node v gets the information of Θ(td/2)

neighbors. As a consequence, the MSE E[(xtv − µ)2] scales like t−d/2.
Application to the percolation bonds. LetG be the random infinite cluster of a supercritical

percolation in Zd as defined in Proposition 5.3. The proposition gives that the spectral dimension
of G is a.s. d, which is also a lower bound for the Hausdorff dimension. But it is trivial that the
Hausdorff dimension is smaller than d, thus the two coincide.

Corollary 6.6. Let G be the random infinite cluster of a supercritical percolation in Zd, and
v ∈ Zd. Let xt be the iterates of the Jacobi polynomial iteration (5.3). Then a.s. on the event
{v ∈ G},

lim
t→∞

lnEξ[(xtv − µ)2]

ln t
= −d .

Remark 6.7. The Jacobi polynomial iteration (5.3) is derived so that xt = π
(α,β)
t (W )ξ, where

π
(α,β)
t are the orthogonal polynomials w.r.t. the Jacobi measure σ(α,β)(dλ) = (1 − λ)α(1 + λ)βdλ

on [−1, 1], with α = d/2, β = 0, d is the spectral dimension. A curious reader could wonder what
happens for other choices of α and β (while keeping d fixed). This question is investigated at
length in Appendix I.5. The conclusion is that the natural choice α = d/2, β = 0 is optimal (up to
constant factors) but there are other choices that are optimal.

7. The Jacobi polynomial iteration with spectral gap

In this section, we adapt the Jacobi polynomial iteration to the case where the spectral gap γ of
the gossip matrix W is given. This allows to obtain accelerated asymptotic rates of convergence,
that compete with the state-of-the-art accelerated algorithms for gossip.

We assume that we are given the spectral dimension d of the graph, which determines the density
of eigenvalues near 1, and the spectral gap γ = 1 − λ2(W ), the distance between the largest and
the second largest eigenvalue. Given these parameters, we can approximate the spectral measure
of W with

dσ̃(λ) = ((1− γ)− λ)d/2−11{λ∈(−1,1−γ)}dλ .

Following the recommendation of Proposition 4.2, this means that we should consider the polyno-
mial iteration associated with the orthogonal polynomials w.r.t. (1− λ)dσ̃(λ) = (1− λ)((1− γ)−
λ)d/2−11{λ∈(−1,1−γ)}dλ. We do not know how to compute the recurrence formula for this measure,
thus we used the orthogonal polynomials w.r.t. ((1−γ)−λ)dσ̃(λ) = ((1−γ)−λ)d/21{λ∈(−1,1−γ)}dλ,
which is a rescaled version of a Jacobi measure. The corresponding polynomial method is called
the Jacobi polynomial iteration with spectral gap.
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A recursive formula for orthogonal polynomials w.r.t. ((1−γ)−λ)dσ̃(λ) is derived in Section H.3.
Taking α = d/2 and β = 0 in equations (H.3), we get the practical recursion:

xt =
yt

δt
,

y0 = ξ , δ0 = 1 ,

y1 = a
(d,γ)
0 Wξ + b

(d,γ)
0 ξ , δ1 = a

(d,γ)
0 + b

(d,γ)
0 ,

yt+1 = a
(d,γ)
t Wyt + b

(d,γ)
t yt − c(d,γ)t yt−1 , t > 1 ,

δt+1 =
(
a
(d,γ)
t + b

(d,γ)
t

)
δt − c(d,γ)t δt−1 , t > 1 ,

a
(d,γ)
t = a

(d)
t

(
1− γ

2

)−1
, b

(d,γ)
t = b

(d)
t +

γ

2

(
1− γ

2

)−1
a
(d)
t , t > 0 ,

c
(d,γ)
t = c

(d)
t , t > 1 ,

(7.1)

where the coefficients a(d)t , b
(d)
t , c

(d)
t are defined in (5.2).

Theorem 7.1 (Asymptotic rate of convergence). Let γ > 0 be a lower bound on the spectral gap of
the gossip matrix W and d any positive real. Let ξ = (ξtv)v∈V be any family of initial observations
and xt = (xtv)v∈V be the sequence of iterates generated by the Jacobi polynomial iteration with
spectral gap (7.1). Then

lim sup
t→∞

‖xt − ξ̄1‖1/t2 6
1− γ/2

(1 +
√
γ/2)2

.

This shows that the Jacobi polynomial iteration with spectral gap enjoys linear convergence.
The asymptotic rate of convergence is equivalent to 1−

√
2γ as γ → 0. This justifies that we obtain

an accelerated asymptotic rate of convergence that compares with the state-of-the art accelerated
gossip methods (see Figure 4).

Note that the asymptotic rate of convergence does not depend on d. However, the choice of d
may have an important effect during the non-asymptotic phase t < 1/

√
γ. In this phase, the

spectral gap γ can be neglected in the approximation of the spectral measure, and it is important
that the densities of eigenvalues of σ and σ̃ match near the upper edge of the spectrum. This is
why one should choose d as the spectral dimension of the graph.

8. The parallel between the gossip methods and distributed Laplacian
solvers

There is a natural parallel between gossip methods and iterative methods that solve linear sys-
tems. Loosely speaking, simple gossip corresponds to gradient descent on the quadratic minimiza-
tion problem associated to the linear system, shift-register gossip to Polyak’s heavy-ball method
and the parameter-free polynomial iteration to the conjugate gradient algorithm (see [Fis96] or
[Pol87] for references on these subjects). In this parallel, the fact that we can reach perfect gossip
in n steps (see Remark 4.3) translates into the finite convergence of the conjugate gradient algo-
rithm in a number of iterations equal to the dimension of the ambient space. In the distributed
resolution of linear systems, the problem that the recursion coefficients at, bt, ct can not be com-
puted in a centralized manner has also appeared and it motivated the development of inner-product
free iterations.

The Jacobi polynomial iterations presented above were motivated by the facts that (a) the
parameter-free polynomial iteration is not feasible in the distributed setting of gossip, and (b) the
gossip matrix W exhibits a structure due to the low-dimension manifold on which the agents live.
Interestingly, the literature on multi-agent systems deals with some minimization problems with
the same properties. Examples are given by the estimation of quantities on graphs from relative
measurements, in which the agents v ∈ V try to estimate some quantity xv, v ∈ V defined over the
graph, from noisy relative measurements over the edges of the graph:

ξv,w = xv − xw + ηv,w , {v, w} ∈ E .
This problem has applications in network localization, where the xv are the positions of the agents
and the ξv,w come from measurements of the distances and directions between the neighbors.
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It also has similar applications in time synchronization of clocks over networks, where xv is the
offset of the clock of node v; and to motion consensus, where xv is the speed of agent v. For an
introduction to estimation on graphs from relative measurements and its applications, see [BH08]
and references therein. Note that the quantities xv can only be determined up to a global constant
from the measurements; either we seek the true solution up to a constant only, either we assume
that some agents know their true value.

In natural approach to solve the problem is to determine estimates yv of xv that minimize
1

2

∑
v,w

Wv,w (ξv,w − (yv − yw))
2
,

where Wv,w are some weights on the edges of the graph. Indeed, this corresponds to finding the
maximum likelihood estimator if the noise ηv,w is i.i.d. Gaussian and Wv,w is the inverse variance
of ηv,w. The above minimization problem is a quadratic problem whose covariance matrix is the
Laplacian I −W . It can be solved using gradient descent or spectral-gap based accelerations like
the heavy-ball method. However, the conjugate gradient algorithm can not be applied here as
it involves centralized computations. The Jacobi polynomial iterations developed in this paper
can be adapted to this situation in order to develop accelerations exploiting the structure of the
Laplacian I −W . Experimenting how this performs in real-world situations is left for future work.

9. Message passing seen as a polynomial gossip algorithm

This section develops another application of the polynomial point-of-view on gossip algorithms.
It is independent of the Jacobi polynomial iterations developed in Sections 5-7; we show that the
message passing algorithm for gossip of [MR05] has a natural derivation as a polynomial gossip
algorithm and uses this point of view to derive convergence rates.

The message passing algorithm of [MR05] (in its zero-temperature limit) defines quantities on
the edges of the graph G with the following recursion: for v, w ∈ V linked by an edge in the graph
G, it defines K0

vw = 0, M0
vw = 0, and

Kt+1
vw = 1 +

∑
u∈N (v), u 6=w

Kt
uv , M t+1

vw =
1

Kt+1
vw

(
ξv +

∑
u∈N (v), u 6=w

Kt
uvM

t
uv

)
, (9.1)

where N (v) denotes the set of neighbors of v. Kvw and Mvw are interpreted as messages going
from v to w in G: M t

vw corresponds to an average of observations gathered by v and transmitted
to w; Kt

vw is the corresponding number of observations. We recommend [MR05, Section II.A] and
Lemma L.1 for a detailed description of this intuition. At each time step t, the output of the
algorithm is

xtv =
ξv +

∑
u∈N (v)K

t
uvM

t
uv

1 +
∑
u∈N (v)K

t
uv

. (9.2)

This gossip methods performs exact local averaging on trees, as shown by the following proposition.

Proposition 9.1. Assume that G is a tree. Then for all t > 1, v ∈ V ,

xtv =
1

|Bv(t)|
∑

w∈Bv(t)

ξw .

See Appendix L for a proof. Nothing prevents from running the message passing recursion
(9.1)-(9.2) in a graph G with loops. In the case of regular graphs, we are able to interpret the
message passing algorithm as a polynomial gossip algorithm.

Theorem 9.2. Assume G is d-regular, meaning that each vertex has degree d, d > 2. Assume
further thatW = A(G)/d. Denote σ(Td) = σ(Td,W, v) the spectral measure of the infinite d-regular
tree at any vertex v (see Definition 5.4). Then the output xt of the message passing algorithm (9.1)-
(9.2) on G can also be obtained as xt = πt(W )ξ where π0, π1, . . . are the orthogonal polynomials
w.r.t. (1− λ)σ(Td)(dλ).

See Appendix M for a proof. In words, the theorem above states that message passing corre-
sponds to the best polynomial gossip algorithm when one believes the graph is a tree. This is not
surprising as message passing algorithms are often derived by neglecting loops in a graph.
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An easy follow-up of this theorem is that the iterates xt defined in (9.1)-(9.2) follow a second-
order recursion (in d-regular graphs). Actually the spectral measure σ(Td) of the infinite d-regular
tree, also called the Kesten-McKay measure, can be computed explicitly (see [Sod07, Section 2.2]),

σ(Td)(dλ) =
d

2π(1− λ2)

(
4(d− 1)

d2
− λ2

)1/2

1[−2
√
d−1/d,2

√
d−1/d](λ)dλ .

The recurrence relation of the modified Kesten-McKay measure (1 − λ)σ(Td)(dλ) is derived in
Appendix H.4. It shows that

x0 = ξ , x1 = a0Wξ + b0ξ , xt+1 = atWxt − ctxt−1 ,

a0 =
d

d+ 1
, b0 =

1

d+ 1
, at =

d
d−1 − 2(d− 1)−(t+1)

1− 2
d (d− 1)−(t+1)

, ct =
1
d−1 −

2
d (d− 1)−t

1− 2
d (d− 1)−(t+1)

, t > 1 .

Theorem 9.2 gives a way to study the convergence of the message passing algorithms on d-regular
graphs with loops. For instance, using asymptotic properties of the orthogonal polynomials
w.r.t. (1 − λ)σ(Td)(dλ), we obtain the convergence rate of the message passing algorithm as a
function of the spectral gap γ of the matrix:

Theorem 9.3. Assume G is d-regular, meaning that each vertex has degree d, d > 3. Assume
further that W = A(G)/d, and denote γ̃ its absolute spectral gap. Let ξ = (ξtv)v∈V be any family of
initial observations and xt = (xtv)v∈V be the sequence of iterates generated by equations (9.1)-(9.2).
Then

(1) If γ̃ < 1− 2
√
d− 1/d,

lim sup
t→∞

‖xt − ξ̄1‖1/t2 6
(1− γ̃) +

√
(1− γ̃)2 − 4(d− 1)/d2

1 +
√

1− 4(d− 1)/d2
.

Moreover, the upper bound is reached if there exists an eigenvector u corresponding to an
eigenvalue of W of magnitude 1− γ̃ such that 〈u, ξ〉 6= 0.

(2) If γ̃ > 1− 2
√
d− 1/d,

lim sup
t→∞

‖xt − ξ̄1‖1/t2 6
2
√
d− 1/d

1 +
√

1− 4(d− 1)/d2
.

A consequence of this theorem is that the rate of convergence of the message passing algorithm
is 1 − cγ̃ + o(γ̃) as γ̃ → 0, for some constant c. This proves that message passing has a diffusive
(or unaccelerated) behavior on graphs with a small spectral gap. Figure 6 shows this diffusive
convergence rate on the 2D grid.

However, the message passing algorithm can be competitive in situations with a large spectral
gap. For instance, McKay’s Theorem [Sod07, Theorem 1.1] states that the spectral measure of a
uniformly random d-regular graph on n vertices converges to the spectral measure σ(Td) of the
d-regular tree (in law, for the weak-convergence topology). This suggests that the message passing
algorithm is well-suited for uniformly sampled large regular graphs. We give simulations in Figure 7
on uniformly sampled 3-regular graphs of size n = 2000. The results were averaged over 10 graphs.
We observe that in this case, message passing matches closely the lower-bound. Note that in this
case, we do not have a diffusive rate of convergence because the spectral gap γ does not converge
to 0 as n→∞ (see [Fri03] for a proof that γ → 1− 2

√
d− 1/d in probability).

10. Conclusion

Gossip methods based on the spectral gap were designed to improve the slow convergence
rate of simple gossip. However, these methods are paradoxically bad at averaging locally in the
intermediate regime before consensus is reached. In this paper, we propose another acceleration
of simple gossip based on (i) the polynomial-based point of view, which designs iterations that
are efficient at all times, and (ii) the Jacobi approximation, which uses prior information on the
spectral dimension of the graph, a more natural property than the spectral gap.

This paper advocates for the use of the polynomial point of view to design gossip algorithm, as it
allows to use different types of prior information about the graph (spectral gap, spectral dimension,
tree-like structure, etc.) and gives tools to prove the convergence of the designed algorithms.
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Figure 6. Performance of different gossip algorithms running on the 2D grid.
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Figure 7. Performance of different gossip algorithms running a uniformly random
3-regular graph of size n = 2000.
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Appendix A. Details of the simulations of Section 3

2D grid. We run simulations on a 40× 40 square lattice (n=1600 vertices) endowed with the
gossip matrix defined in (2.1) with dmax = 4. The results are plotted in Figure 2a and a 20 × 20
grid is plotted in Figure 1a for visualization.

3D grid. We run simulations on a 12× 12× 12 cubic lattice (n = 1728 vertices) endowed with
the gossip matrix defined in (2.1) with dmax = 6. The results are plotted in Figure 2b.

2D percolation bond. We build a 2D percolation bond by taking a 40×40 2D grid, and keep
each edge independently with probability p = 0.6. To avoid connectivity issues, we consider G the
largest connected component of the resulting graph, endowed with the gossip matrix defined in
(2.1) with dmax = 4. The results are plotted in Figure 2c and a 20×20 percolation bond is plotted
in Figure 1b for visualization.

3D percolation bond. We build a 3D percolation bond by taking a 12× 12× 12 3D grid and
keep each edge independently with probability p = 0.4. To avoid connectivity issues, we consider
G the largest connected component of the resulting graph, endowed with the gossip matrix defined
in (2.1) with dmax = 6. The results are plotted in Figure 2d.

2D random geometric graph. We build a 2D random geometric graph G by sampling
n = 1600 points uniformly in the unit square [0, 1]2 and linking pairs closer than 1.5/

√
n = 0.0375.

To avoid connectivity issues, we consider G the largest connected component of the resulting graph.
We build a gossip matrix W on G with the formulas: Wvw = max(deg v,degw)−1 if v ∈ N (w)
and Wvv = 1−

∑
w∈N (v) max(deg v,degw)−1. The results are shown in Figure 2e.

3D random geometric graph. We build a 3D random geometric graph G by sampling
n = 1728 points in the unit cube [0, 1]3 and linking pairs closer than 1.5/n1/3 = 0.125. To avoid
connectivity issues, we consider G the largest connected component of the resulting graph. We
build a gossip matrix W on G with the formulas: Wvw = max(deg v,degw)−1 if v ∈ N (w) and
Wvv = 1−

∑
w∈N (v) max(deg v,degw)−1. The results are shown in Figure 2f.

Appendix B. Toolbox from orthogonal polynomials

In this appendix, we describe the tools from the theory of orthogonal polynomials that we use
in this paper. The definition of the orthogonal polynomials πt w.r.t. some measure τ is given in
Definition 4.1. We start by giving some general properties of orthogonal polynomials in Section
B.1. We then describe two parametrized measures with respect to which orthogonal polynomials
can be explicitly described: the Jacobi polynomials, in Section B.2, and the polynomials orthogonal
to some measure of the form (1 − λ2)1/2/ρ(λ), where ρ is some polynomial, in Section B.3. We
finally give in Section B.4 some asymptotic properties of the Jacobi polynomials as t→∞.

B.1. General properties.

Proposition B.1 (from [Sze39, Theorem 3.3.1]). Let πt be a family of orthogonal polynomials
w.r.t. some measure τ on some interval [a, b]. Then the zeros of πt are real, distinct and located
in the interior of [a, b].

In Proposition 4.4, it is stated that the orthogonal polynomials satisfy a three-term recurrence
relation. We write here the short proof as it is used in Appendix E.

Proof of Proposition 4.4. The polynomial λπt(λ) of the variable λ is of degree t+ 1, thus it can be
decomposed over the orthogonal basis π0(λ), π1(λ), . . . , πt+1(λ):

λπt(λ) =

t+1∑
s=0

〈λπt, πs〉τ
〈πs, πs〉τ

πs(λ) .

Note that 〈λπt, πs〉τ =
∫
λπt(λ)πs(λ)dτ(λ) = 〈πt, λπs〉τ = 0 when s 6 t − 2 because in this case

λπs(λ) ∈ Rt−1[X] and πt is orthogonal to Rt−1[X]. Thus

λπt(λ) =
〈λπt, πt+1〉τ
〈πt+1, πt+1〉τ

πt+1(λ) +
〈λπt, πt〉τ
〈πt, πt〉τ

πt(λ) +
〈λπt, πt−1〉τ
〈πt−1, πt−1〉τ

πt−1(λ) ,
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with the convention π−1 = 0. Note that 〈λπt, πt+1〉τ is non-zero as otherwise it would imply that
λπt is a polynomial of degree smaller or equal to t, which is absurd. We get the recursion formula
by denoting

at =
〈πt+1, πt+1〉τ
〈λπt, πt+1〉τ

, bt = −〈πt+1, πt+1〉τ 〈λπt, πt〉τ
〈λπt, πt+1〉τ 〈πt, πt〉τ

, ct =
〈πt+1, πt+1〉τ 〈λπt, πt−1〉τ
〈λπt, πt+1〉τ 〈πt−1, πt−1〉τ

. (B.1)

�

B.2. Jacobi polynomials.

Definition B.2 (from [Sze39, Chapter IV]). Let α, β > −1. The Jacobi polynomials P (α,β)
t are

the orthogonal polynomials w.r.t. the Jacobi measure

σ(α,β)(dλ) = (1− λ)α(1 + λ)β1{λ∈(−1,1)}dλ ,

normalized such that P (α,β)
t (1) =

(
t+α
t

)
.

Example B.3 (from [Sze39, Section 2.4]). (1) The Chebyshev polynomials Tt of the first kind
are the orthogonal polynomials w.r.t. σ(−1/2,−1/2)(dλ) = (1−λ2)−1/2 and normalized such
that Tt(1) = 1. They are, up to some rescaling, a family of Jacobi polynomials. They
satisfy the trigonometric formula

Tt(cos θ) = cos(tθ) .

(2) The Chebyshev polynomials Ut of the second kind are the orthogonal polynomials w.r.t.
σ(1/2,1/2)(dλ) = (1− λ2)1/2 and normalized such that Ut(1) = t+ 1. They are, up to some
rescaling, a family of Jacobi polynomials. They satisfy the trigonometric formula

Ut(cos θ) =
sin(t+ 1)θ

sin θ
.

A remarkable property of the Jacobi polynomials is that their recurrence relation can be com-
puted explicitly.

Proposition B.4 (from [Sze39, Section 4.4.5]). Let α, β > −1. The Jacobi polynomials Pα,βt

satisfy the three recurrence formula

P
(α,β)
0 (λ) = 1 , P

(α,β)
1 (λ) =

1

2
(α+ β + 2)λ+

1

2
(α− β) ,

2(t+ 1)(t+ 1 + α+ β)(2t+ α+ β)P
(α,β)
t+1 (λ)

= (2t+ α+ β + 1)[(2t+ α+ β + 2)(2t+ α+ β)λ+ α2 − β2]P
(α,β)
t (λ)

− 2(t+ α)(t+ β)(2t+ α+ β + 2)P
(α,β)
t−1 (λ) .

Example B.5. The Chebyshev polynomials of the first and the second kind satisfy the same re-
currence formula, but with different initializations:

T0(λ) = 1 , T1(λ) = λ , Tt+1(λ) = 2λTt(λ)− Tt−1(λ) ,

U0(λ) = 1 , U1(λ) = 2λ , Ut+1(λ) = 2λUt(λ)− Ut−1(λ) .

Proposition B.6 (from [Sze39, Theorem 7.32.1]). Let α, β > 1/2. Then

max
λ∈[−1,1]

∣∣∣P (α,β)
t (λ)

∣∣∣ =

(
t+ max(α, β)

t

)
.

B.3. Polynomials orthogonal w.r.t. (1 − λ2)1/2/ρ(λ), ρ polynomial. In this section, we
present how one can compute the recurrence relation for some orthogonal polynomials w.r.t. a
weight of the form (1− λ2)1/2/ρ(λ), ρ polynomial.

Proposition B.7 (from [Sze39, Theorem 1.2.1]). Let ρ be a real polynomial of degree l which is
non-negative for λ ∈ [−1, 1]. Then there exists a polynomial h of degree l such that for all real θ,
ρ(cos θ) = |h(eiθ)|2.
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Proposition B.8 (from [Sze39, Theorem 2.6]). Let ρ be a real polynomial of degree l taking positive
values on the interval [−1, 1], and

τ(dλ) =
(1− λ2)1/2

ρ(λ)
dλ .

Let h be a polynomial of degree l such that ρ(cos θ) = |h(eiθ)|2 (see Proposition B.7), and decompose
h(eiθ) = c(θ) + is(θ), c(θ) and s(θ) real. Then the polynomials

πt(cos θ) = c(θ)Ut(cos θ)− s(θ)

sin θ
Tt+1(cos θ)

are orthogonal w.r.t. τ .

B.4. Asymptotics for the Jacobi polynomials. To prove the asymptotic performance guaran-
tees of the polynomial iterations we build in this paper, we need the following asymptotic properties
of the Jacobi polynomials.

Proposition B.9 (from [Sze39, Theorem 8.21.7]). Let α, β > −1, and λ > 1 a real number. Then
there exists a positive constant c = c(α, β, λ) such that

P
(α,β)
t (λ) ∼

t→∞

c

t1/2

(
λ+

√
λ2 − 1

)t
.

In the special case of the Chebyshev polynomials, we also have similar non-asymptotic bounds.

Lemma B.10. For all λ > 1, for all t > 0,
1

2

(
λ+

√
λ2 − 1

)t
6 Tt(λ) 6

(
λ+

√
λ2 − 1

)t
, (B.2)(

λ+
√
λ2 − 1

)t
6 Ut(λ) 6 (t+ 1)

(
λ+

√
λ2 − 1

)t
. (B.3)

Proof. We start by deriving a classic expression for the Chebyshev polynomials. The identities

Tt(cos θ) = cos(tθ) , Ut(cos θ) =
sin((t+ 1)θ)

sin θ
,

can be interpreted as

Tt

(
z + z−1

2

)
=
zt + z−t

2
, Ut

(
z + z−1

2

)
=
zt+1 − z−(t+1)

z − z−1
, for z = eiθ.

The above equations are equalities of holomorphic functions on the unit circle, it implies that the
identities must be true for all complex numbers z 6= 0; we use it here for real numbers z.

For λ > 1, write λ = (z + z−1)/2, z > 1. This is equivalent to z = λ+
√
λ2 − 1. Then

Tt(λ) =
zt + z−t

2
=

1 + z−2t

2
zt =

1 + z−2t

2

(
λ+

√
λ2 − 1

)t
.

As z > 1,
1

2
6

1 + z−2t

2
6 1 .

This proves the inequalities (B.2). Further,

Ut(λ) =
zt+1 − z−(t+1)

z − z−1
=

1− z−2t−2

1− z−2
zt =

1− z−2t−2

1− z−2
(
λ+

√
λ2 − 1

)t
.

As z > 1,

1 6
1− z−2t−2

1− z−2
6 t+ 1 .

This proves the inequalities (B.3). �

Proposition B.11 (from [Sze39, Theorem 7.32.2]). Let α, β > −1. There exists two constants
C1, C2 > 0 such that, ∣∣∣P (α,β)

t (cos θ)
∣∣∣ 6 {C1θ

−α−1/2t−1/2 if 1/t 6 θ 6 π/2 ,

C2t
α if 0 6 θ 6 1/t .
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Appendix C. Some basic tools for the proofs

C.1. Comparing integrals using a domination of the cumulative distribution function.

Lemma C.1. Let σ, τ be two positive measures on some interval [a, b] such that for all λ ∈ [a, b],

σ([λ, b]) 6 τ([λ, b]) . (C.1)

Then for all continuous non-decreasing functions f : [a, b]→ R>0,∫
[a,b]

f(λ)dσ(λ) 6
∫
[a,b]

f(λ)dτ(λ) .

Proof. For any u ∈ R>0, denote λ∗(u) = min{λ|u 6 f(λ)}.∫
[a,b]

f(λ)dσ(λ) =

∫
[a,b]

∫
R>0

1{u6f(λ)}f(λ)dudσ(λ) =

∫
R>0

(∫
[a,b]

1{u6f(λ)}dσ(λ)

)
du

=

∫
R>0

σ([λ∗(u), b])du .

The proof is finished using (C.1) and similar equalities for τ . �

.

C.2. The gamma and beta function. The gamma function Γ and the beta function B are
defined as [OLBC10, Section 5.2, Section 5.12]

Γ(z) =

∫ ∞
0

e−uuz−1du , z > 0 ; B(a, b) =

∫ 1

0

sa−1(1− s)b−1ds =
Γ(a)Γ(b)

Γ(a+ b)
, a, b > 0 .

The asymptotic ratios of the gamma functions are given in [OLBC10, Eq. 5.11.12]: for c, d ∈ R,
Γ(z + c)

Γ(z + d)
∼ zc−d as z → +∞ .

This gives the asymptotic of the beta function

B(a, b) ∼ Γ(b)

ab
as a→ +∞ . (C.2)

Appendix D. Proof of Proposition 4.2

Note first that as dτ(λ) = (1 − λ)dσ(λ) is a measure on [−1, 1], if π̃0, . . . , π̃T−1 is a sequence
of orthogonal polynomials w.r.t. τ , then the zeros of the polynomials π̃0, . . . , π̃T−1 are located in
the interior of [−1, 1] (see Proposition B.1). In particular, π̃t(1) 6= 0, t < T . Thus it is possible to
build a family π0 = π̃0/π̃0(1), . . . , πT−1 = π̃T−1/π̃T−1(1) of orthogonal polynomials normalized to
take value 1 at 1, as it is done in Proposition 4.2.

The polynomial πt satisfies πt(1) = 1 and deg πt = t. We now consider some polynomial Qt also
satisfying Qt(1) = 1 and degQt = t, and show that∫

πt(λ)2dσ(λ) 6
∫
Qt(λ)2dσ(λ) , i.e. 〈πt, πt〉σ 6 〈Qt, Qt〉σ .

The polynomial Qt − πt vanishes at 1 thus there exists a polynomial Rt−1 of degree at most t− 1
such that Qt(λ) = πt(λ) + (1− λ)Rt−1(λ). Then

〈Qt, Qt〉σ = 〈πt, πt〉σ + 2〈πt, (1− λ)Rt−1〉σ + 〈(1− λ)Rt−1, (1− λ)Rt−1〉σ .
Note that 〈πt, (1 − λ)Rt−1〉σ = 〈πt, Rt−1〉τ = 0 because πt is orthogonal to all polynomials of
degree smaller or equal to t− 1 w.r.t. 〈., .〉τ . Moreover,

〈(1− λ)Rt−1, (1− λ)Rt−1〉σ =

∫
(1− λ)2Rt−1(λ)2dσ(λ) > 0 .

Thus 〈Qt, Qt〉σ > 〈πt, πt〉σ. This shows that πt is a minimizer.
We now show that the minimizer πt is unique. There is equality 〈Qt, Qt〉σ = 〈πt, πt〉σ if and

only if
∫

(1 − λ)2Rt−1(λ)2dσ(λ) = 0, i.e. (1 − λ)Rt−1 vanishes on Suppσ. But the cardinal of
Suppσ is at least T while (1 − λ)Rt−1 is a polynomial of degree at most t 6 T − 1. Thus the
equality case is reached if and only if Rt−1 = 0, i.e. Qt = πt.
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Appendix E. The parameter-free polynomial iteration

In this section, we give the details of the implementation of the parameter-free polynomial
iteration in a centralized setting. We explicit the computation of the optimal coefficients at, bt and
ct. It is used in the simulation of Figure 4.

The parameter free polynomial iteration is Eq. (4.3), where the coefficients at, bt, ct, t > 1, are
determined in Eq. (B.1). The results are repeated here for convenience:

x0 = ξ , x1 = a0Wξ + b0ξ , xt+1 = atWxt + btx
t − ctxt−1 ,

at =
〈πt+1, πt+1〉τ
〈λπt, πt+1〉τ

, bt = −〈πt+1, πt+1〉τ 〈λπt, πt〉τ
〈λπt, πt+1〉τ 〈πt, πt〉τ

, ct =
〈πt+1, πt+1〉τ 〈λπt, πt−1〉τ
〈λπt, πt+1〉τ 〈πt−1, πt−1〉τ

.

where τ = (1−λ)σ, σ is defined in (4.1). Note that the scalar products that appear in the formulas
for at, bt, ct can be computed from the iterates xt = πt(W )ξ, t > 0. For instance,

〈λπt, πt−1〉τ =

∫
λπt(λ)πt−1(λ)(1− λ)dσ(λ)

=

n∑
i=1

〈ξ, ui〉2λiπt(λi)πt−1(λi)(1− λi)

= 〈Wπt(W )ξ, (I −W )πt−1(W )ξ〉
= 〈Wxt, xt−1 −Wxt−1〉 .

Note that the last line requires the computation of a scalar product 〈., .〉 over RV , which means
summing over v ∈ V . This is possible in simulations where we can centralize the information of
the nodes v ∈ V . However in practical situation where the coordinates of xt are distributed among
the nodes, such a computation requires many additional communication steps. This makes the
parameter free polynomial iteration impractical.

The computation of the other scalar products give

bt = −at
〈xt −Wxt,Wxt〉
〈xt, xt −Wxt〉

, ct = at
〈xt, xt−1 −Wxt−1〉
〈xt−1, xt−1 −Wxt−1〉

,

and as at + bt − ct = 1 (that follows from πt(1) = 1 for all t), we get for t > 1,

b̃t = −〈x
t −Wxt,Wxt〉
〈xt, xt −Wxt〉

, c̃t =
〈xt, xt−1 −Wxt−1〉
〈xt−1, xt−1 −Wxt−1〉

,

xt+1 =
1

1 + b̃t − c̃t

(
Wxt + b̃tx

t − c̃txt−1
)
.

Similarly, one can compute that

x1 =
1

1 + b̃0

(
Wξ + b̃0ξ

)
, b̃0 = −〈ξ −Wξ,Wξ〉

〈ξ, ξ −Wξ〉
,

which gives the initialization of the parameter-free polynomial iteration.

Appendix F. Proofs of Propositions 5.2 and 5.3

F.1. Proof of Proposition 5.2. The return probability pt of the lazy random walk on Zd is
equivalent to C/td/2 for some constant C. It is, for instance, a consequence of the local central
limit theorem for random walks on Zd [LL10, Theorem 2.1.1]. Thus the spectral dimension of Zd
is d.

F.2. Proof of Proposition 5.3. The return probabilities of the random walk on the supercritical
percolation cluster have rather been studied in continuous time. The continuous-time random walk
is defined as follows: the random walk at w waits at an exponential time of parameter 1 before
picking a site w′ out of the 2d neighboring sites uniformly randomly. If there is an edge in the
percolation configuration between w and w′, the random walk jumps to w′, otherwise it stays in w
and starts again. Denote Xt the continuous-time random walk, and Pw the probability w.r.t. this
random walk when it is started from some vertex w.
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Lemma F.1. There exists two constants c = c(d, p), C = c(d, p) > 0 such that, a.s. on the set
{v ∈ G}, there exists a random time t0 such that for t > t0,

c

td/2
6 Pv(Xt = v) 6

C

td/2
.

Proof. The upper bound is proved in [MR+04, Theorem 1.2]. As noted in [Bis11, Lemma 5.1], the
lower bound can be proved using a central limit theorem on Xt; we repeat the argument here as
our random walk differs slightly from theirs. As Xt is reversible w.r.t. the uniform measure on G,

Pv(X2t = v) =
∑
w∈G

Pv(Xt = w)Pw(Xt = v) =
∑
w∈G

Pv(Xt = w)2 .

By the Cauchy-Schwarz inequality,

Pv(‖Xt − v‖2 6
√
t)2 =

(∑
x∈G

1{‖x−v‖26
√
t}Pv(Xt = x)

)2

6
∣∣∣{‖x ∈ G : x− v‖2 6

√
t}
∣∣∣(∑

w∈G
Pv(Xt = w)2

)
6 C1t

d/2Pv(X2t = v) ,

for some constant C1. Now using [ABDH13, Theorem 1.1(a)], there exists a deterministic variance
σ2 such that the law of (Xt − v)/

√
t converges a.s. on the event {v ∈ G} to a centered Gaussian

with variance σ2. Thus there exists a deterministic constant c1 > 0 and a random time t1 such
that for t > t1, Pt(‖Xt − v‖2 6

√
t)2 > c1. This finishes the proof of the lower bound. �

We now finish the proof of the proposition using Lemma F.1. If µt denotes the law of Xt,

d

dt
E
[
µt
]

= (W − I)µt , thus µt = et(W−I)µ0 .

Thus

Pv(Xt = v) = 〈δv, µt〉 = 〈δv, et(W−I)δv〉
(Definition 5.4)

=

∫
et(λ−1)dσ(λ) .

As a consequence, Lemma F.1 translates into bounds on the Laplace transform of σ: a.s. on
{v ∈ G}, for t large enough,

c

td/2
6
∫
et(λ−1)dσ(λ) 6

C

td/2
.

Some bounds on the spectral density of σ near 1 easily follow (see [MS07, Lemma 4.5]): there
exists constants c′, C ′ > 0 such that a.s. on {v ∈ G}, for E small enough,

c′Ed/2 6 σ([1− E, 1]) 6 C ′Ed/2 .

The proof is finished using Proposition 5.5.

Appendix G. Proof of Proposition 5.5

We start by assuming that l = limE→0 lnσ([1 − E, 1])/ lnE exists and is finite. We show that
ds exists and that l = ds/2. To this end, we define

ds = −2 lim sup
t→∞

ln pt
ln t

, d̄s = −2 lim inf
t→∞

ln pt
ln t

,

where pt is defined as in Definition 5.1. Note that

pt =

〈
ev,

(
I +W

2

)t
ev

〉
(Definition 5.4)

=

∫ (
1 + λ

2

)t
dσ(λ) . (G.1)

Proof that d̄s/2 6 l. Consider l+ > l. Then there exists constants c1, c2 > 0 such that for all
E ∈ [0, 2],

σ([1− E, 1]) > c1E
l+ = c2σ

(l+−1,0)([1− E, 1]) ,
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where σ(l+−1,0)(dλ) = (1− λ)l+−1dλ. Then

pt
(G.1)
=

∫
[−1,1]

(
1 + λ

2

)t
dσ(λ)

(Lemma C.1)
> c2

∫ 1

−1

(
1 + λ

2

)t−1
(1− λ)l+−1dλ

(u=(1+λ)/2)
= c3

∫ 1

0

ut(1− u)l+−1du = c3B (t+ 1, l+)
(C.2)∼
t→∞

c4
tl+

,

for some constant c3, c4 > 0. Thus

lim inf
t→∞

ln pt
ln t

> −l+ , i.e.
d̄s
2
6 l+ .

This being true for all l+ > l, this proves d̄s/2 6 l.
Proof that ds/2 > l. Consider l− < l. Then there exists constants C1, C2 such that for all

E ∈ [0, 2],
σ([1− E, 1]) 6 C1E

l− = C2σ
(l−−1,0)([1− E, 1]) ,

where σ(l−−1,0)(dλ) = (1− λ)l−−1dλ. Then

pt
(G.1)
=

∫
[−1,1]

(
1 + λ

2

)t
dσ(λ)

(Lemma C.1)
6 C2

∫ 1

−1

(
1 + λ

2

)t
(1− λ)l−−1dλ

(u=(1+λ)/2)
= C3

∫ 1

0

ut(1− u)l−−1du = C3B (t+ 1, l−) ∼
t→∞

C4

tl−
,

for some constants C3, C4. Thus

lim sup
t→∞

ln pt
ln t

6 −l− , i.e.
ds
2
> l− .

This being true for all l− < l, this proves ds/2 > l.
Finally, we have proven l 6 ds/2 6 d̄s/2 6 l. Thus the limit ds = −2 limt→∞ ln pt/ ln t exists

and is equal to 2l.

Conversely, we assume now that ds exists and is finite. We show that l = limE→0 lnσ([1 −
E, 1])/ lnE exists and that l = ds/2. To this end, we define

l = lim inf
E→0

lnσ([1− E, 1])

lnE
, l̄ = lim sup

E→0

lnσ([1− E, 1])

lnE
.

Proof that l > ds/2. For any t ∈ N, we have 1{λ>1−E} 6 (1 − E/2)−t ((1 + λ)/2)
t, thus by

integrating against dσ(λ),

σ([1− E, 1]) 6

(
1− E

2

)−t ∫ (
1 + λ

2

)t
σ(dλ) ,

lnσ([1− E, 1])

lnE
>

ln
∫ (

1+λ
2

)t
σ(dλ)

ln t

ln t

lnE
−
t ln
(
1− E

2

)
lnE

.

We choose t(E) = bE−1c. Then we get

l = lim inf
E→0

lnσ([1− E, 1])

lnE
> −ds

2
(−1)− 0 =

ds
2

Proof that l̄ 6 ds/2. For any t ∈ N, we have ((1 + λ)/2)t − (1 − E/2)t 6 1{λ>1−E}, thus by
integrating against dσ(λ),∫ (

1 + λ

2

)t
dσ(λ)−

(
1− E

2

)t
6 σ([1− E, 1]) .

Let d > ds. There exists a constant c > 0 such that
∫

((1 + λ)/2)tdσ(λ) > c/td/2. Then

ln

(
c

td/2
−
(

1− E

2

)t)
6 lnσ([1− E, 1]) .
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Let α > 1. We choose t(E) = dE−αe. Then(
1− E

2

)t(E)

= exp

(
t(E) ln

(
1− E

2

))
6 exp

(
− t(E)E

2

)
6 exp

(
−1

2
E1−α

)
decreases super-polynomially fast as E → 0. Moreover

c

t(E)d/2
∼
E→0

cEαd/2 .

Finally,

l̄ = lim sup
E→0

lnσ([1− E, 1])

lnE
6
αd

2
.

As this is true for all α > 1, d > ds, we have l̄ 6 ds/2.

Finally, we have proven that ds/2 6 l 6 l̄ 6 ds/2. Then the limit l = limE→0 lnσ([1−E, 1])/ lnE
exists and l = ds/2.

Appendix H. Computation of the recursion coefficients of some
orthogonal polynomials

H.1. A rescaling lemma for orthogonal polynomials. We start with a lemma giving the
change in the recursion coefficients of orthogonal polynomials when the underlying measure un-
dergoes an affine transformation. It is used in the next subsections.

Lemma H.1. Let σ be a measure on R, π0, . . . , πT−1 a sequence of orthogonal polynomials w.r.t. σ
and

πt+1(λ) = (atλ+ bt)πt(λ)− ctπt−1(λ) , t > 1 , (H.1)

their recurrence formula (see Definition 4.1 and Theorem 4.4).
Let ϕ : λ 7→ αλ + β, α 6= 0 be a linear function and σ̃ be the image measure of σ by ϕ

(which means that for all measurable set A, σ̃(A) = σ(ϕ−1(A))). Then a sequence of orthogonal
polynomials w.r.t. σ̃ is given by the formula

π̃t(λ̃) := πt

(
ϕ−1(λ̃)

)
= πt

(
λ̃− β
α

)
.

These polynomials follow the recursion formula

π̃t+1(λ̃) = (ãtλ̃+ b̃t)π̃t(λ̃)− c̃tπ̃t−1(λ̃) ,

ãt =
at
α
, b̃t = bt −

atβ

α
, c̃t = ct .

Proof. By change of variable,∫
π̃t(λ̃)π̃s(λ̃)dσ̃(λ̃) =

∫
πt

(
ϕ−1(λ̃)

)
πs

(
ϕ−1(λ̃)

)
dσ̃(λ̃)

=

∫
πt
(
ϕ−1(ϕ(λ))

)
πs
(
ϕ−1(ϕ(λ))

)
dσ(λ)

=

∫
πt(λ)πs(λ)dσ(λ) = 1{s=t} ,

and deg π̃t = t thus π̃0, . . . , π̃T−1 are orthogonal polynomials w.r.t. σ̃. The recurrence relation for
π̃t follows by evaluating the recurrence relation (H.1) for πt in (λ̃− β)/α. �

H.2. Jacobi polynomials. Let α, β > −1. In this section, we derive, using the recurrence
formula for the Jacobi polynomial P (α,β)

t of Proposition B.4, a similar recurrence relation for
the polynomials π(α,β)

t orthogonal w.r.t. the Jacobi measure σ(α,β), but normalized such that
π
(α,β)
t (1) = 1.
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Substituting P (α,β)
t =

(
t+α
t

)
π
(α,β)
t in the recurrence relation of Proposition B.4, we get

2(t+ 1)(t+ 1 + α+ β)(2t+ α+ β)

(
t+ 1 + α

t+ 1

)
π
(α,β)
t+1 (λ)

= (2t+ α+ β + 1)[(2t+ α+ β + 2)(2t+ α+ β)λ+ α2 − β2]

(
t+ α

t

)
π
(α,β)
t (λ)

− 2(t+ α)(t+ β)(2t+ α+ β + 2)

(
t− 1 + α

t− 1

)
π
(α,β)
t−1 (λ) .

Using that (t+ 1)
(
t+1+α
t+1

)
= (t+ 1 +α)

(
t+α
t

)
and t

(
t+α
t

)
= (t+α)

(
t−1+α
t−1

)
, we can divide the above

equation by
(
t+α
t

)
. We get

2(t+ 1 + α+ β)(2t+ α+ β)(t+ 1 + α)π
(α,β)
t+1 (λ)

= (2t+ α+ β + 1)[(2t+ α+ β + 2)(2t+ α+ β)λ+ (α+ β)(α− β)]π
(α,β)
t (λ)

− 2t(t+ β)(2t+ α+ β + 2)π
(α,β)
t−1 (λ) .

Summing up, we obtain the recursion formula

π0(λ) = 1 , π1(λ) = a
(α,β)
0 λ+ b

(α,β)
0 ,

π
(α,β)
t+1 (λ) =

(
a
(α,β)
t λ+ b

(α,β)
t

)
π
(α,β)
t (λ)− c(α,β)t π

(α,β)
t−1 (λ) ,

with the recursion coefficients

a
(α,β)
0 =

α+ β + 2

2(1 + α)
, b

(α,β)
0 =

α− β
2(1 + α)

,

a
(α,β)
t =

(2t+ α+ β + 1)(2t+ α+ β + 2)

2(t+ 1 + α+ β)(t+ 1 + α)
,

b
(α,β)
t =

(2t+ α+ β + 1)(α+ β)(α− β)

2(t+ 1 + α+ β)(t+ 1 + α)(2t+ α+ β)
,

c
(α,β)
t =

t(t+ β)(2t+ α+ β + 2)

(t+ 1 + α+ β)(2t+ α+ β)(t+ 1 + α)
.

(H.2)

H.3. Rescaled Jacobi polynomials. Let α, β > −1. In this section, we determine a recursion
formula for the orthogonal polynomials π(α,β,γ)

t w.r.t. the rescaled Jacobi measure

dσ(α,β,γ)(λ) = ((1− γ)− λ)α(1 + λ)β1{λ∈(−1,1−γ)}dλ ,

The polynomials π(α,β,γ)
t are normalized such that π(α,β,γ)

t (1) = 1.
Note that, up to a rescaling, dσ(α,β,γ) is the image measure of the Jacobi measure dσ(α,β)

(defined in (B.2)) by the linear function ϕγ(λ) = (1−γ/2)λ−γ/2. Thus Lemma H.1 gives a family
of orthogonal polynomials P (α,β,γ)

t w.r.t. dσ(α,β,γ) and their recursion formula:

P
(α,β,γ)
t (λ̃) = π

(α,β)
t

(
ϕ−1γ (λ̃)

)
,

P
(α,β,γ)
t+1 (λ̃) =

(
a
(α,β,γ)
t λ̃+ b

(α,β,γ)
t

)
P

(α,β,γ)
t (λ̃)− c(α,β,γ)t P

(α,β,γ)
t−1 (λ̃) ,

a
(α,β,γ)
t = a

(α,β)
t

(
1− γ

2

)−1
, b

(α,β,γ)
t = b

(α,β)
t +

γ

2
a
(α,β)
t

(
1− γ

2

)−1
, c

(α,β,γ)
t = c

(α,β)
t .

However, the polynomials P (α,β,γ)
t are not normalized such that P (α,β,γ)

t = 1. Indeed, P (α,β,γ)
t =

π
(α,β)
t

(
(1− γ/2)

−1
(1 + γ/2)

)
. It is difficult to deduce the recurrence relation for π(α,β,γ)

t =

P
(α,β,γ)
t /P

(α,β,γ)
t (1) from the recurrence relation for P (α,β,γ)

t . One can circumvent this difficulty
by using that the normalization P (α,β,γ)

t (1) also follows the recurrence relation

P
(α,β,γ)
t+1 (1) =

(
a
(α,β,γ)
t + b

(α,β,γ)
t

)
P

(α,β,γ)
t (1)− c(α,β,γ)t P

(α,β,γ)
t−1 (1) .
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Summing things up, we get

π
(α,β,γ)
t (λ) =

P
(α,β,γ)
t (λ)

P
(α,β,γ)
t (1)

,

P
(α,β,γ)
0 (λ) = 1 , P

(α,β,γ)
0 (1) = 1 ,

P
(α,β,γ)
1 (λ) = a

(α,β,γ)
0 λ+ b

(α,β,γ)
0 , P

(α,β,γ)
1 (1) = a

(α,β,γ)
0 + b

(α,β,γ)
0 ,

P
(α,β,γ)
t+1 (λ) =

(
a
(α,β,γ)
t λ̃+ b

(α,β,γ)
t

)
P

(α,β,γ)
t (λ)− c(α,β,γ)t P

(α,β,γ)
t−1 (λ) , t > 1 ,

P
(α,β,γ)
t+1 (1) =

(
a
(α,β,γ)
t + b

(α,β,γ)
t

)
P

(α,β,γ)
t (1)− c(α,β,γ)t P

(α,β,γ)
t−1 (1) , t > 1 ,

a
(α,β,γ)
t = a

(α,β)
t

(
1− γ

2

)−1
, b

(α,β,γ)
t = b

(α,β)
t +

γ

2
a
(α,β)
t

(
1− γ

2

)−1
, t > 0 ,

c
(α,β,γ)
t = c

(α,β)
t , t > 1 .

(H.3)

These equations give a practical way to compute the polynomials π(α,β,γ)
t because all recursion

coefficients can be computed explicitly using the formulas (H.2).

H.4. Polynomials orthogonal to the modified Kesten-McKay measure. In this section,
we determine the recurrence formula for the orthogonal polynomials πt w.r.t. the modified Kesten-
McKay measure

(1− λ)σ(Td)(dλ) =
d

2π(1 + λ)

(
4(d− 1)

d2
− λ2

)1/2

1[−2
√
d−1/d,2

√
d−1/d](λ)dλ .

The polynomials πt are normalized such that πt(1) = 1.
The measure dσ(Td) is, up to a rescaling factor, the image measure of

dσ̃(λ) =
(1− λ2)1/2

d+ 2
√
d− 1λ

1[−1,1](λ)dλ (H.4)

by the linear map ϕ : λ 7→ 2
√
d− 1λ/d. We thus compute a family of orthogonal polynomials

w.r.t. σ̃ and then use Lemma H.1.
The orthogonal polynomials w.r.t. σ̃ are given by Proposition B.8. Following the cited theorem,

we define ρ(λ) = d+ 2
√
d− 1λ and

ρ(cos θ) = 2
√
d− 1 cos θ + d = |h(eiθ)|2 ,

h(eiθ) =
√
d− 1 + eiθ =

√
d− 1 + cos θ︸ ︷︷ ︸

:=c(θ)

+i sin θ︸︷︷︸
:=s(θ)

.

Then we have the following family p̃t of orthogonal polynomials w.r.t. σ̃.

p̃t(cos θ) = c(θ)Ut(cos θ)− s(θ)

sin θ
Tt+1(cos θ) ,

p̃t(λ) = (
√
d− 1 + λ)Ut(λ)− Tt+1(λ) ,

where Tt and Ut denote the t-th Chebyshev polynomial of the first kind and the second kind
respectively. As the Chebyshev polynomials Tt and Ut both satisfy the same recurrence relation

Tt+1(λ) = 2λTt(λ)− Tt−1(λ) ,

Ut+1(λ) = 2λUt(λ)− Ut−1(λ) , t > 1 ,

the same relation follows for p̃t:

p̃t+1(λ) = 2λp̃t(λ)− p̃t−1(λ) , t > 1 ,

with initial condition p̃0(λ) =
√
d− 1 and p̃1(λ) = 2

√
d− 1λ+ 1.

Lemma H.1 gives the rescaled orthogonal polynomials pt(λ) = p̃t
(
ϕ−1(λ)

)
w.r.t. dσ(Td):

p0(λ) =
√
d− 1 , p1(λ) = dλ+ 1 , pt+1(λ) =

d√
d− 1

λpt(λ)− pt−1(λ) , t > 1 . (H.5)
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As πt(λ) = pt(λ)/pt(1), it now remains to compute pt(1). The sequence pt(1), t > 1 satisfies a
second-order recurrence relation with fixed coefficients, it thus can be solved explicitly

pt(1) =
1

d− 1

(
d(d− 1)(t+1)/2 − 2(d− 1)(1−t)/2

)
.

By substituting pt(λ) = pt(1)πt(λ) in (H.5), one obtains

π0(λ) = 1 , π1(λ) = a0λ+ b0 , πt+1(λ) = atλπt(λ)− ctπt−1(λ) , t > 1 ,

a0 =
d

d+ 1
, b0 =

1

d+ 1
, at =

d
d−1 − 2(d− 1)−(t+1)

1− 2
d (d− 1)−(t+1)

, ct =
1
d−1 −

2
d (d− 1)−t

1− 2
d (d− 1)−(t+1)

, t > 1 .

Appendix I. Proof of Theorem 6.1

The proof is divided in four subsections. Appendix I.1 develops tools that we use both in the
proof of the theorem. We then prove the theorem in Sections I.2, I.3and I.4. Finally, in Appendix
I.5, we discuss the choice of the parameters of the Jacobi polynomials in the Jacobi polynomial
iteration. In all this appendix, we denote σ = σ(G,W, v) the spectral measure of G.

I.1. Preliminaries. The first lemma relates the MSE of the estimator xtv to the spectral measure.

Lemma I.1. Write xt = Pt(W )ξ using the polynomial gossip point of view. Then

E[(xtv − µ)2] = (var ν) ‖Pt(W )ev‖2`2(V ) = (var ν)

∫
Pt(λ)2dσ(λ) .

Proof. As Pt(1) = 1, we have

E[xt] = E[Pt(W )ξ] = Pt(W )E[ξ] = Pt(W )µ1 = Pt(1)µ1 = µ1 .

In words, the estimator xtv is unbiased. Thus

E[(xtv − µ)2] = varxtv = var 〈Pt(W )ξ, ev〉`2(V ) = var 〈ξ, Pt(W )ev〉`2(V ) = (var ν) ‖Pt(W )ev‖2`2(V ) ,

using that W is symmetric and that the ξw, w ∈ V are i.i.d. random variables. Then

E[(xtv − µ)2] = (var ν) 〈Pt(W )ev, Pt(W )ev〉`2(V ) = (var ν)
〈
ev, Pt(W )2ev

〉
`2(V )

.

The proof is finished using the Definition 5.4 of the spectral measure. �

In the statement of Theorem 6.1, we have stated results in terms of the spectral dimension
ds = 2 limt→∞ lnσ([1− E, 1])/ lnE. In the proof here, we will be more precise. We show how the
results of Theorem 6.1 actually depend on different definitions of the dimension.

Definition I.2. Let τ be a probability measure on [−1, 1]. We define

(1) the right upper dimension dim→τ ∈ [0,∞] of the measure τ as

dim→τ = 2 lim sup
E→0

ln τ([1− E, 1])

lnE
,

(2) the right lower dimension dim→τ ∈ [0,∞] of the measure τ as

dim→τ = 2 lim inf
E→0

ln τ([1− E, 1])

lnE
,

(3) the left upper dimension dim←τ ∈ [0,∞] of the measure τ as

dim←τ = 2 lim sup
E→0

ln τ([−1,−1 + E])

lnE
.

(4) the left lower dimension dim←τ ∈ [0,∞] of the measure τ as

dim←τ = 2 lim inf
E→0

ln τ([−1,−1 + E])

lnE
.
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I.2. Proof of Theorem 6.1: simple gossip. In the case of simple gossip, Pt(λ) = λt.

Proposition I.3. Let τ be a probability measure on [−1, 1]. Then

lim inf
t→∞

∫
λ2tdτ(λ)

ln t
> −

min
(
dim→τ,dim←τ

)
2

Proof. Let d > dim→τ . As dim→τ = 2 lim supE→0 lnσ([1 − E, 1])/ lnE, there exists constants
c1, c2 > 0 such that for all E ∈ [0, 2],

τ([1− E, 1]) > c1E
d/2 = c2σ

(d/2−1,0)([1− E, 1]) (I.1)

where σ(d/2−1,0)(dλ) = (1− λ)d/2−1dλ. Then using jointly Lemma C.1 and Eq. (I.1),∫
λ2tdτ(λ) >

∫
[0,1]

λ2tdτ(λ) > c1

∫ 1

0

λ2t(1− λ)d/2−1dλ = B(2t+ 1, d/2)
(C.2)∼
t→∞

c3
td/2

,

for some constant c3. Thus

lim inf
t→∞

∫
λ2tdτ(λ)

ln t
> −d

2
.

This being true for all d > dim→τ , this proves

lim inf
t→∞

∫
λ2tdτ(λ)

ln t
> −dim→τ

2
.

The proof at the other edge of the spectrum is the same by symmetry. �

The proof of Theorem 6.1 for simple gossip follows easily. Indeed, if τ = σ is the spectral
measure of the graph, then dim→σ = ds. Thus

lim inf
t→∞

lnE[(xtv − µ)2]

ln t

(Lemma I.1)
= lim inf

t→∞

ln
∫
λ2tdσ(λ)

ln t

(Proposition I.3)
> −ds

2
.

I.3. Proof of Theorem 6.1: shift-register. In the case of the shift-register gossip iteration,
Pt(λ) satisfies the second-order recurrence relation

P0(λ) = 1 , P1(λ) = λ , Pt+1(λ) = ωλPt(λ) + (1− ω)Pt−1(λ) . (I.2)

The case ω = 1 corresponds to simple gossip: it has been treated above. We now assume ω ∈ (1, 2].

Proposition I.4. Let Pt be the polynomials defined in Eq. (I.2) with ω ∈ (1, 2]. Then

Pt(λ) = (ω − 1)t/2
[(

2− 2

ω

)
Tt

(
ω

2
√
ω − 1

λ

)
+

(
2

ω
− 1

)
Ut

(
ω

2
√
ω − 1

λ

)]
where Tt and Ut are the Chebyshev polynomials of the first and second kind respectively (see Ex-
ample B.3).

Proof. Consider the rescaled version Qt of Pt given by the formula

Pt(λ) = (ω − 1)t/2Qt

(
ω

2
√
ω − 1

λ

)
. (I.3)

If follows from Eq. (I.2) that

Q0(λ) = 1 , Q1(λ) =
2

ω
λ , Qt+1(λ) = 2λQt(λ)−Qt−1(λ) .

Thus the sequence Qt, t > 0 satisfies the same recurrence relation as the Chebyshev polynomials,
but with a different initialization. As a consequence, it must be a linear combination of the two
sequences of Chebyshev polynomials: there exists µ, ν ∈ R such that for all t,

Qt(λ) = µTt(λ) + νUt(λ)

The computation of the weights µ, ν is straightforward from the initialization Q0, Q1. This proves
the proposition. �

Proposition I.5. Let ω ∈ (1, 2]. The polynomials Pt, t > 0 defined in Eq. (I.2) are the orthogonal
polynomials w.r.t. the measure

τ(dλ) =

((
2
√
ω − 1/ω

)2 − λ2)1/2
1− λ2

.
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Proof. The orthogonal polynomials w.r.t. the measure

τ̃(dλ) =

(
1− λ2

)1/2(
ω/(2

√
ω − 1)

)2 − λ2
are computed using Proposition B.8 with

ρ(cos θ) =
ω2

4(ω − 1)
− cos2 θ .

Simple computations give that ρ(cos θ) = |h(eiθ)|2 with

h(eiθ) =

∣∣∣∣ ω

2
√
ω − 1

[(
2− 2

ω

)
1− e2iθ

2
+

(
2

ω
− 1

)]∣∣∣∣2 .
Proposition B.8 then gives that the polynomials (2− 2/ω)Tt + (2/ω− 1)Ut are orthogonal w.r.t. τ̃ .
But these polynomials are the polynomials Qt defined in Eq. (I.3). We then use Lemma H.1 to
prove that Pt is orthogonal w.r.t. τ . �

Lemma I.6. Let Pt be the polynomials defined in Eq. (I.2) with ω ∈ (1, 2] and τ a measure on
[−1, 1]. Then

lim inf
t→∞

∫
Pt(λ)2dτ(λ)

ln t
> −

min
(
dim→τ,dim←τ

)
2

Proof.∫
Pt(λ)2dτ(λ) >

∫
[2
√
ω−1/ω,1]

Pt(λ)2dτ(λ)

(Proposition I.4)
> c1(ω − 1)t

∫
[2
√
ω−1/ω,1]

Tt

(
ω

2
√
ω − 1

λ

)2

dτ(λ)

(B.2)
> c2(ω − 1)t

∫
[2
√
ω−1/ω,1]

(
ω

2
√
ω − 1

λ+

√
ω2

4(ω − 1)
λ2 − 1

)2t

dτ(λ) .

where ci > 0 is a constant independent of t. Let d > dim→τ . As dim→τ = 2 lim supE→0 lnσ([1−
E, 1])/ lnE, there exists constants c3, c4 > 0 such that for all E ∈ [0, 2],

τ([1− E, 1]) > c3E
d/2 = c4σ

(d/2−1,0)([1− E, 1]) (I.4)

where σ(d/2−1,0)(dλ) = (1− λ)d/2−1dλ. Then using jointly Lemma C.1 and Eq. (I.4),∫
Pt(λ)2dτ(λ) > c5(ω − 1)t

∫ 1

2
√
ω−1/ω

(
ω

2
√
ω − 1

λ+

√
ω2

4(ω − 1)
λ2 − 1

)2t

(1− λ)d/2−1dλ

> c6(ω − 1)t
∫ cosh−1(ω/(2

√
ω−1))

0

e2tu
(

1− 2
√
ω − 1

ω
coshu

)d/2−1
sinhudu .

where in the last step we made the change of variable ω/(2
√
ω − 1)λ+

√
ω2/(4(ω − 1))λ2 − 1 = eu,

i.e. λ = 2
√
ω − 1/ω coshu. Denote umax = cosh−1(ω/(2

√
ω − 1)) to shorten notations. As cosh is

a convex function, for u ∈ [0, umax],

coshumax − coshu 6
coshumax − 1

umax
(umax − u) ,

⇔ 1− 2
√
ω − 1

ω
coshu 6

(
1− 2

√
ω − 1

ω

)(
1− u

umax

)
Moreover, choose some constant umin ∈ (0, umax) so that we can lower bound with a constant c7:
for all u ∈ [umin, umax], sinhu > c7. This finally gives:∫

Pt(λ)2dτ(λ) > c8(ω − 1)t
∫ umax

umin

e2tu
(

1− u

umax

)d/2−1
du .
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After the change of variable w = 2t(umax − u), this gives∫
Pt(λ)2dτ(λ) > c8(ω − 1)t

∫ 2t(umax−umin)

0

e2tumaxe−w
(

w

2tumax

)d/2−1
1

2t
dw .

Note that e2tumax = (ω − 1)−t, thus there exists a constant c9 > 0 such that∫
Pt(λ)2dτ(λ) > c9

1

td/2

∫ 2t(umax−umin)

0

e−wwd/2−1 dw .

This proves that

lim inf
t→∞

∫
Pt(λ)2dτ(λ)

ln t
> −d

2
.

This being true for all d > dim→τ , this proves

lim inf
t→∞

∫
Pt(λ)2dτ(λ)

ln t
> −dim→τ

2
.

The proof at the other edge of the spectrum is the same by symmetry. �

I.4. Proof of Theorem 6.1: Jacobi polynomial iteration. In this section, we use again
the notation of Appendix H.2: in the case of the Jacobi polynomial iteration (5.3), we have xt =

π
(ds/2,0)
t (W )ξ, where π(α,β)

t is the rescaled Jacobi polynomial; π(α,β)
t = P

(α,β)
t /

(
t+α
t

)
where P (α,β)

t is
the traditional Jacobi polynomial. Lemma I.1 suggests to study the quantity

∫
π
(ds/2,0)
t (λ)2dσ(λ).

However we study here the behavior of
∫
π
(α,β)
t (λ)2dσ(λ) for any (α, β). This will be useful in

Appendix I.5 to give a motivation for the choice α = d/2, β = 0 complementary to the intuition
developed in Section 5, and will allow us to discuss the performance of other choices.

Proposition I.7. Let τ be a probability measure on [−1, 1] and α, β > −1/2. Then

lim sup
t→∞

ln
∫
π
(α,β)
t (λ)2dτ(λ)

ln t
6 −min (2α+ 1,dim→τ, 2(α− β) + dim←τ) .

Before proving this proposition, we use it to finish the proof of the theorem. If τ = σ is the
spectral measure of the graph, then dim→σ = ds. Thus taking α = ds/2, β = 0 in Proposition I.7,
we get

lim sup
t→∞

ln
∫
π
(ds/2,0)
t (λ)2dσ(λ)

ln t
6 −min(ds + 1, ds, ds + dim←σ) = −ds , (I.5)

as dim←σ > 0. One can conclude the proof using Lemma I.1.
We now turn to the the proof of Proposition I.7.

Lemma I.8. Let τ be a probability measure on [−1, 1] and α > −1/2, β > −1. Then

lim sup
t→∞

ln
∫
[0,1]

P
(α,β)
t (λ)2dτ(λ)

ln t
6 −min(1,dim→τ − 2α) .

Proof. Let d < dim→τ . As dim→τ = 2 lim infE→0 ln τ([1 − E, 1])/ lnE, there exists constants
C1, C2 such that for all E ∈ [0, 2],

τ([1− E, 1]) 6 C1E
d/2 = C2σ

(d/2−1,0)([1− E, 1]) (I.6)

where σ(d/2−1,0)(dλ) = (1− λ)d/2−1dλ.
For the proof of this result, we use the asymptotic bound on the Jacobi polynomials given by

Proposition B.11, thus we divide the integral∫
[0,1]

P
(α,β)
t (λ)2dτ(λ) =

∫
[cos 1/t,1]

P
(α,β)
t (λ)2dτ(λ) +

∫
[0,cos 1/t[

P
(α,β)
t (λ)2dτ(λ) ,

and treat the two terms separately.
(a) ∫

[cos 1/t,1]

P
(α,β)
t (λ)2dτ(λ) 6 C3t

2ατ

([
cos

1

t
, 1

])
6 C1C3t

2α

(
1− cos

1

t

)d/2
6 C4t

2α−d
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for some constants C3, C4. Thus

lim sup
t→∞

ln
∫
[cos 1/t,1]

P
(α,β)
t (λ)2dτ(λ)

ln t
6 2α− d . (I.7)

(b) ∫
[0,cos 1/t[

P
(α,β)
t (λ)2dτ(λ) 6 C5t

−1
∫
[0,cos(1/t)[

(arccosλ)−2α−1dτ(λ) (I.8)

We then use jointly Eq. (I.6) and Lemma C.1 with the function

f(λ) = (arccosλ)−2α−11{λ<cos 1/t} + t2α+11{λ>cos 1/t} .

Note that f is non-decreasing as α > 1/2. We get∫
[0,cos(1/t)[

(arccosλ)−2α−1dτ(λ)

6 C2

∫
[0,cos(1/t)[

(arccosλ)−2α−1(1− λ)d/2−1dλ+ C1t
2α+1

(
1− cos

1

t

)d/2
Now using the simple inequality arccosλ >

√
2
√

1− λ, we get∫
[0,cos(1/t)[

(arccosλ)−2α−1dτ(λ)

6 C5

∫
[0,cos(1/t)[

(1− λ)−α+d/2−3/2dλ+ C6t
2α+1−d

(I.9)

for some constants C5, C6. Now if β is a real number,

lim
t→∞

ln
∫ cos 1/t

0
(1− λ)βdλ

ln t
= max(0,−2β − 2) . (I.10)

Indeed, if β 6= −1,∫ cos 1/t

0

(1− λ)βdλ =

[
− (1− λ)β+1

β + 1

]cos 1/t
0

=
1

β + 1

[
1−

(
1− cos

1

t

)β+1
]

=
t→∞

1

β + 1

[
1− t−2β−2 + o(t−2β−2)

]
∼ C(β)tmax(0,−2β−2) .

for some constant C(β) depending on β. This proves the statement (I.10) for β 6= −1. The
result for β = −1 follows easily by noting that both terms in (I.10) are decreasing in β.

Merging finally Eqs. (I.8), (I.9) and (I.10), we get

lim sup
t→∞

ln
∫
[0,cos 1/t[

P
(α,β)
t (λ)2dτ(λ)

ln t
6 −1 + max(0, 2α+ 1− d)

= max(−1, 2α− d) = −min(1, d− 2α) .

(I.11)

Finally

lim sup
t→∞

ln
∫
[0,1]

P
(α,β)
t (λ)2dτ(λ)

ln t

6 lim sup
t→∞

2 max
(∫

[cos 1/t,1]
P

(α,β)
t (λ)2dτ(λ),

∫
[0,cos 1/t[

P
(α,β)
t (λ)2dτ(λ)

)
ln t

6 max

lim sup
t→∞

ln
∫
[cos 1/t,1]

P
(α,β)
t (λ)2dτ(λ)

ln t
, lim sup
t→∞

ln
∫
[0,cos 1/t[

P
(α,β)
t (λ)2dτ(λ)

ln t


(I.7),(I.11)
6 max(2α− d,−min(1, d− 2α)) = −min(1, d− 2α) .

As this is true for all d < dim→τ , the lemma is proved. �
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Proof of Proposition I.7. If we denote τ̃ the symmetric measure of τ w.r.t. 0 (i.e. the image measure
of τ by the map λ 7→ −λ), we have∫

[−1,0]
P

(α,β)
t (λ)2dτ(λ) =

∫
[0,1]

P
(α,β)
t (−λ)2dτ̃(λ) =

∫
[0,1]

P
(β,α)
t (λ)2dτ̃(λ)

Thus according to Lemma I.8,

lim sup
t→∞

ln
∫
[−1,0] P

(α,β)
t (λ)2dτ(λ)

ln t
6 −min(1,dim→τ̃ − 2β) = −min(1,dim←τ − 2β) . (I.12)

Finally, using that π(α,β)
t = P

(α,β)
t /

(
t+α
t

)
,

lim sup
t→∞

ln
∫
[−1,1] π

(α,β)
t (λ)2dτ(λ)

ln t
6 lim sup

t→∞

ln
∫
[−1,1] P

(α,β)
t (λ)2dτ(λ)

ln t
− 2 lim sup

t→∞

ln
(
t+α
t

)
ln t

6 lim sup
t→∞

ln
(

2 max
(∫

[−1,0] P
(α,β)
t (λ)2dτ(λ),

∫
[0,1]

P
(α,β)
t (λ)2dτ(λ)

))
ln t

− 2α

6 max

lim sup
t→∞

ln
∫
[−1,0] P

(α,β)
t (λ)2dτ(λ)

ln t
, lim sup
t→∞

ln
∫
[0,1]

P
(α,β)
t (λ)2dτ(λ)

ln t

− 2α

((I.12),Lemma I.8)

6 max (−min(1,dim←τ − 2β),−min(1,dim→τ − 2α))− 2α

6 −min(1,dim←τ − 2β,dim→τ − 2α)− 2α

= −min(2α+ 1, 2(α− β) + dim←τ,dim→τ) .

�

I.5. Tuning of the parameters α and β. In this section, we discuss the performance of the poly-
nomial gossip iteration xt = π

(α,β)
t (W )ξ using the tools developed in the proof above. The Jacobi

polynomial iteration introduced in Section 5.2 corresponds to the specific choice α = ds/2, β = 0,
where ds is the spectral measure of the graph. Thanks to the tools developed in the proof above,
we can explore the effect of changing α and β analytically. Inspired by (I.5), we define optimality
as follows

Definition I.9. Let α, β > −1, d←, d→ > 0. We say that (α, β) is optimal for (d←, d→) if for any
spectral measure σ such that dim→σ = d→ and dim←σ = d←,

lim sup
t→∞

ln
∫
π
(α,β)
t (λ)2dσ(λ)

ln t
6 −d→ .

The following theorem is an analogue of the optimality theorem 6.1(2) in the general case.

Theorem I.10. Consider a graph G, a gossip matrix W and a vertex v. Denote σ = σ(G,W, v)
the spectral measure of the graph. Let ξv, v ∈ V be i.i.d. samples from a distribution of mean µ.

Let α, β > −1 and define the polynomial iteration xt = π
(α,β)
t (W )ξ. If (α, β) is optimal for

(dim←σ, dim→σ), then

lim sup
t→∞

lnE
[
(xtv − µ)2

]
ln t

6 −dim→σ . (I.13)

In the section above, we prove that (d→/2, 0) is optimal for (d←, d→) (for any d←, d→ > −1/2).
We now explore other choices. According to Proposition I.7, to prove that (α, β) is optimal for
(d←, d→), it is sufficient to prove that

min(2α+ 1, d→, 2(α− β) + d←) = d→ ⇔

{
2α+ 1 > d→
2(α− β) + d← > d→

⇔

{
α > 1

2 (d→ − 1)

β 6 α+ d←−d→
2

. (I.14)
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Figure 8. Simulations of polynomial iterations using Jacobi polynomials with
different parameters (α, β): frontier tightness.
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Figure 9. Simulations of polynomial iterations using Jacobi polynomials with
different parameters (α, β): large α asymptotic.

This gives a wide range of optimal parameters. For instance, the parameter α can be chosen
arbitrarily large. In Figures 8b and 9b, the shaded regions corresponds to region for (α, β) defined
by (I.14) with (d←, d→) = (2, 2).

Note however that we have only proved that (I.14) are sufficient conditions for the optimality
Theorem I.10 to hold. To explore the tightness of our condition, we present in Figure 8 the results
of simulations on the 2D grid. The setting is the same as in Section 3 (see also Appendix A for
details). Note that for the 2D infinite grid, d← = d→ = 2 (see Proposition 5.2 and the symmetry
of the spectrum of Zd that follows from [Woe00, Eq.(7.4)]). The curves in Figure 8a closest to the
local averaging are those satisfying the condition (I.14), thus our condition seems tight.

Finally, note that the result (I.13) of Theorem I.10 gives the rate of the power decay of the
MSE, but neglects constants and sub-polynomial factors. These factors depend on (α, β) and can
be significant for extreme values of (α, β). For instance, in Figure 9, we run simulations in the
same setting as before, but for choices of parameters deeper in the optimality zone (I.14). The
performance worses as α gets bigger. So contrarily to what is suggested by (I.14) and Theorem



ACCELERATED GOSSIP IN NETWORKS OF GIVEN DIMENSION 37

6.1, taking large values for α is a bad idea in practice. This can also be hinted at by the limit
[OLBC10, Eq. (18.6.2)]

lim
α→∞

π
(α,β)
t (λ) =

(
1 + λ

2

)t
.

This means that, as α→∞, the polynomial gossip xt = π
(α,β)
t (W )ξ converges to the simple gossip

xt = W̃ tξ with the gossip matrix W̃ = (I + W )/2. We know from Theorem 6.1(1) that simple
gossip is suboptimal.

Overall, theory and practice suggest that the choice α = dim→σ/2, β = 0 that we make in
Section 5.2 is relevant.

Appendix J. Proof of Proposition 6.3

Note that the intuition lying behind the proposition is very simple: the unbiased estimator xtv
are linear combination of observations corresponding to vertices in the ball Bv(t), thus it must
have variance greater than var ν/|Bv(t)| ≈ var ν/tdh .

A more rigorous argument goes as follows: using that W is a gossip matrix, it is easy to show
by induction that for all s > 0 and v, w ∈ V , if (W s)vw > 0, then there exists a path of length s
linking v to w in G. As degPt 6 t, this implies that Pt(W )ev has at most |Bv(t)| non-zero entries.
Furthermore, the entries of Pt(W )ev sum to 1 because W1 = 1 and Pt(1) = 1. Thus, using the
Cauchy-Schwarz inequality,

1 =

(∑
w∈V

(Pt(W )ev)w

)2

=

(∑
w∈V

(Pt(W )ev)w1{(Pt(W )ev)w>0}

)2

6 ‖Pt(W )ev‖2`2(V )

∑
w∈V

1{(Pt(W )ev)w>0} 6 ‖Pt(W )ev‖2`2(V ) |Bv(t)|

(Lemma I.1)
= E[(xtv − µ)2]|Bv(t)| .

Thus

lim inf
t→∞

lnE[(xtv − µ)2]

ln t
> lim inf

t→∞
− ln |Bv(t)|

ln t
= −dh .

Appendix K. Proof of Theorem 7.1

In this section, we use the notation of Appendix H.3. As xt = π
(d/2,0,γ)
t (W )ξ, we have

‖xt − ξ̄1‖22 =

n∑
i=2

〈ξ, ui〉2π(d/2,0,γ)
t (λi)

2 6 ‖ξ − ξ̄1‖22

(
sup

λ∈[−1,1−γ]
|π(d/2,0,γ)
t (λ)|

)2

, (K.1)

where λ2, . . . , λn are the eigenvalues of W different from 1, that lie in [−1, 1−γ] by definition of γ,
and u2, . . . , un are the corresponding normalized eigenvectors.

sup
λ∈[−1,1−γ]

|π(d/2,0,γ)
t (λ)| 6 1

|P (d/2,0,γ)
t (1)|

sup
λ∈[−1,1−γ]

|P (d/2,0,γ)
t (λ)|

=
1

|π(d/2,0)
t (ϕ−1γ (1))|

sup
λ∈ϕ−1

γ ([−1,1−γ])
|π(d/2,0)
t (λ)|

=
1∣∣∣π(d/2,0)

t

(
1+γ/2
1−γ/2

)∣∣∣ sup
λ∈[−1,1]

|π(d/2,0)
t (λ)|

=
1∣∣∣P (d/2,0)

t

(
1+γ/2
1−γ/2

)∣∣∣ sup
λ∈[−1,1]

|P (d/2,0)
t (λ)| (K.2)

where P (α,β)
t is the Jacobi polynomial, see Appendix H.2.

By Proposition B.6,

sup
λ∈[−1,1]

|P (d/2,0)
t (λ)| =

(
t+ d/2

t

)
∼

t→∞
td/2 , (K.3)
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an by Proposition B.9 applied in x = 1+γ/2
1−γ/2 , there exists a positive constant c such that,

P
(d/2,0)
t

(
1 + γ/2

1− γ/2

)
∼

t→∞
ct−1/2

(
(1 +

√
γ/2)2

1− γ/2

)t
. (K.4)

Combining (K.2), (K.3) and (K.4), we get that there exists a constant C such that

sup
λ∈[−1,1−γ]

|π(d/2,0,γ)
t (λ)| 6 Ct(d+1)/2

(
1− γ/2

(1 +
√
γ/2)2

)t
,

and we conclude using (K.1).

Appendix L. Proof of Proposition 9.1

Let t > 0 and v, w ∈ V be two vertices linked by an edge in G. Define Bvw(t) as the set of
vertices u in Bw(t) such that all paths in the tree G going from u to w pass though v.

Lemma L.1. For all t > 0, for all v, w ∈ V linked by an edge in G,

Kt
vw = |Bvw(t)| , and if t > 1, M t

vw =
1

|Bvw(t)|
∑

u∈Bvw(t)

ξu .

Proof. The proof goes by induction. The statement is trivial for t = 0, 1. For the induction, assume
the result at time t and note that

Bvw(t+ 1) = {v} ∪

 ⋃
u∈N (v), u 6=w

Buv(t)

 , (L.1)

where all unions are disjoint. This essentially comes from the fact that G has no loops.



ACCELERATED GOSSIP IN NETWORKS OF GIVEN DIMENSION 39

Taking cardinal, we get that

|Bvw(t+ 1)| (L.1)= 1 +
∑

u∈N (v), u 6=w

|Buv(t)|
(induction)

= 1 +
∑

u∈N (v), u 6=w

Kt
uv

(9.1)
= Kt+1

vw .

This proves the induction for the first equality. The proof for the second equality is similar:

1

|Bvw(t+ 1)|
∑

u∈Bvw(t+1)

ξu
(L.1)
=

1

Kt+1
vw

ξv +
∑

u∈N (v), u 6=w

∑
x∈Buv(t)

ξx


(induction)

=
ξv +

∑
u∈N (v), u 6=w |Buv(t)|M t

uv

Kt+1
vw

(induction)
=

ξv +
∑
u∈N (v), u 6=wK

t
uvM

t
uv

Kt+1
vw

(9.1)
= M t+1

vw .

�

We now end the proof of Proposition 9.1. As Bv(t) = {v} ∪
(⋃

u∈N (v)Buv(t)
)

with disjoint
unions, using Lemma L.1, we get

1

|Bv(t)|
∑

w∈Bv(t)

ξw =
ξv +

∑
u∈N (v)

∑
w∈Buv(t) ξw

1 +
∑
u∈N (v) |Buv(t)|

=
ξv +

∑
u∈N (v)K

t
uvM

t
uv

1 +
∑
u∈N (v)K

t
uv

(9.2)
= xtv .

Appendix M. Proof of Theorem 9.2

As noted by [RT17], the message passing iteration (9.1)-(9.2) indexed by the edges of the graph
can be written as an iteration indexed by the vertices of the graph. We repeat here the elementary
derivation of this statement in our particular case of d-regular graphs.

First, because G is d-regular, it is an easy check from (9.1) that Kt
vw does not depend on the

edge (v, w) (thus we denote it Kt) and it satisfies the recursion K0 = 0, Kt+1 = 1 + (d− 1)Kt.
Let us now denote Stv = ξv +

∑
u∈N (v)K

t
uvM

t
uv and Lt = 1 + dKt so that xtv = Stv/Lt. We will

now find recursions for Lt and St:

Lt+1 = 1 + dKt+1 (9.1)
= 1 + d(1 + (d− 1)Kt) = 2 + (d− 1)(1 + dKt) = 2 + (d− 1)Lt ,

and

St+1
v = ξv +

∑
u∈N (v)

Kt+1M t+1
uv

(9.1)
= ξv +

∑
u∈N (v)

ξu +
∑

w∈N (u),w 6=v

KtM t
wu


= ξv +

∑
u∈N (v)

(
Stu −KtM t

vu

)
.

As ∑
u∈N (v)

KtM t
vu

(9.1)
= dξv +

∑
u∈N (v)

∑
w∈N (v),w 6=u

Kt−1M t−1
wv

= dξv + (d− 1)
∑

w∈N (v)

Kt−1M t−1
wv = ξv + (d− 1)St−1v ,

we finally get
St+1 = A(G)St − (d− 1)St−1 .

To sum up, we now have the simpler formulas for the message passing algorithm:
Lt+1 = 2 + (d− 1)Lt , L0 = 1 ,

St+1 = dWSt − (d− 1)St−1 , S0 = ξ , S1 = ξ + dWξ ,

xt = St/Lt .

(M.1)

In Appendix H.4, it is proved that πt(λ) = pt(λ)/pt(1) where pt satisfies the recursion formula

p0(λ) =
√
d− 1 , p1(λ) = dλ+ 1 , pt+1(λ) =

d√
d− 1

λpt(λ)− pt−1(λ) , t > 1 .
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Denote qt = (d− 1)(t−1)/2pt. It is an easy check that

q0(λ) = 1 , q1(λ) = dλ+ 1 , qt+1(λ) = dλqt(λ)− (d− 1)qt−1(λ) , t > 1 .

Using (M.1), one sees that for all t, St = qt(W )ξ and Lt = qt(1). Thus

xt =
St

Lt
=
qt(W )ξ

qt(1)
=
pt(W )ξ

pt(1)
= πt(W )ξ .

Appendix N. Proof of Theorem 9.3

Theorem 9.2 states that xt = πt(W )ξ where the πt are the orthogonal polynomials w.r.t. the
modified Kesten-McKay measure (1− λ)σ(Td)(dλ). Then

‖xt − ξ̄1‖22 =

n∑
i=2

〈ξ, ui〉2πt(λi)2 6 ‖ξ − ξ̄1‖22

(
sup

λ∈[−(1−γ̃),(1−γ̃)]
|πt(λ)|

)2

, (N.1)

where λ2, . . . , λn are the eigenvalues ofW different from 1, that lie in [−(1−γ̃), (1−γ̃)] by definition
of the absolute spectral gap γ̃, and u2, . . . , un are the corresponding normalized eigenvectors.

In Section H.4, we show that

πt(λ) =
pt(λ)

pt(1)
,

pt(λ) = p̃t(ϕ
−1(λ)) , ϕ(λ) =

2
√
d− 1

d
λ ,

p̃t(λ) =
(√

d− 1 + λ
)
Ut(λ)− Tt+1(λ) ,

where Tt and Ut are the Chebyshev polynomials of the first kind and of the second kind respectively.
Denote D = d/(2

√
d− 1). Then

sup
λ∈[−(1−γ̃),(1−γ̃)]

|πt(λ)| = 1

|p̃t(D)|
sup

λ∈[−(1−γ̃)D,(1−γ̃)D]

|p̃t(λ)| . (N.2)

If λ ∈ [−1, 1], |Tt(λ)| 6 1 and |Ut(λ)| 6 t+ 1. Thus

sup
λ∈[−1,1]

|p̃t(λ)| 6
(√

d− 1 + 1
)

(t+ 1) + 1 . (N.3)

We now discuss the different cases of the theorem.
(1) We assume γ̃ < 1 − 2

√
d− 1/d. As p̃t are orthogonal polynomials w.r.t. some measure on

[−1, 1], all zeros of pt are real, distinct and located in the interior of [−1, 1] (see Proposition B.1).
It follows that

sup
λ∈(1,(1−γ̃)D]

|p̃t(λ)| = |p̃t ((1− γ̃)D)| , sup
λ∈[−(1−γ̃)D,−1)

|p̃t(λ)| = |p̃t (−(1− γ̃)D)| . (N.4)

Merging Eqs. (N.2)-(N.4), we obtain

sup
λ∈[−(1−γ̃),(1−γ̃)]

|πt(λ)| 6 1

|p̃t(D)|
max

(
|p̃t((1− γ̃)D)|, |p̃t(−(1− γ̃)D)|, (

√
d− 1 + 1)(t+ 1) + 1

)
.

Lemma N.1. (1) If x > 1, then there exists a constant C(d, x) 6= 0 such that

p̃t(x) ∼
t→∞

C(d, x)
(
x+

√
x2 − 1

)t
. (N.5)

(2) If x < −1, then there exists a constant C(d, x) 6= 0 such that

p̃t(x) ∼
t→∞

C(d, x)
(
x−

√
x2 − 1

)t
. (N.6)

Proof. In the proof of Lemma B.10, we developed the following formulas for the Chebyshev poly-
nomials:

Tt

(
z + z−1

2

)
=
zt + z−t

2
, Ut

(
z + z−1

2

)
=
zt+1 − z−(t+1)

z − z−1
.
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We write x = (z + z−1)/2 with |z| > 1. If x > 1, then z = x +
√
x2 − 1, and if x < −1, then

z = x−
√
x2 − 1. Then

p̃t(x) =
(√

d− 1 + x
)
Ut(x)− Tt+1(x)

=

(√
d− 1 +

z + z−1

2

)
zt+1 − z−(t+1)

z − z−1
− zt+1 + z−(t+1)

2

∼
t→∞

[(√
d− 1 +

z + z−1

2

)
1

z − z−1
− 1

2

]
zt+1 .

The constant that appears is non-zero, thus the result is proved. �

Using Lemma N.1, we get that there exists a constant C(d) such that

sup
λ∈[−(1−γ̃),(1−γ̃)]

|πt(λ)| 6 C(d)

(
(1− γ̃)D +

√
((1− γ̃)D)2 − 1

D +
√
D2 − 1

)t
.

Finally, using (N.1), this gives

‖xt − ξ̄1‖2 6 ‖ξ − ξ̄1‖2C(d)

(
(1− γ̃)D +

√
((1− γ̃)D)2 − 1

D +
√
D2 − 1

)t
.

Dividing the numerator and the denominator of the fraction by D, we get the desired result.
We now turn to the second part of the statement. Let u be an eigenvector of W corresponding

to an eigenvalue λ of magnitude 1− γ̃ such that 〈ξ, u〉 6= 0. Then

‖xt − ξ̄1‖2 > |〈ξ, u〉||πt(λ)| = |〈ξ, u〉| |p̃t(λ)|
|p̃t(D)|

,

Using as before Lemma N.1, we get the desired lower bound.
(2) We now assume γ̃ > 1− 2

√
d− 1/d. This means that (1− γ̃)D 6 1, and thus

sup
λ∈[−(1−γ̃)D,(1−γ̃)D]

|p̃t(λ)| 6 sup
λ∈[−1,1]

|p̃t(λ)|
(N.3)
6

(√
d− 1 + 1

)
(t+ 1) + 1 .

Combining with (N.1) and (N.2), we get

‖xt − ξ1‖2 6 ‖ξ − ξ̄1‖2
1

|p̃t(D)|

((√
d− 1 + 1

)
(t+ 1) + 1

)
,

which gives the desired result using Lemma N.1.
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