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Abstract. Consider a network of agents connected by communication links, where each agent
holds a real value. The gossip problem consists in estimating the average of the values diffused
in the network in a distributed manner. Current techniques for gossiping are designed to deal
with worst-case scenarios, which is irrelevant in applications to distributed statistical learning
and denoising in sensor networks. We design second-order gossip methods tailor-made for the
case where the real values are i.i.d. samples from the same distribution. In some regular network
structures, we are able to prove optimality of our methods, and simulations suggest that they
are efficient in a wide range of random networks. Our approach of gossip stems from a new
acceleration framework using the family of orthogonal polynomials with respect to the spectral
measure of the network graph.

1. Introduction

The averaging problem, or gossip problem, is a fundamental primitive of distributed algorithms.
Given a network composed of agents and communication links between them, we assign to each
agent a real value, called the observation. The goal is to design an iterative communication
procedure allowing each agent to know the average of the initial observations in the network, as
quickly as possible. This problem appears when distributing an optimization or learning task on
several devices.

The landmark paper [BGPS06] suggests the natural following protocol to solve the averaging
problem: at each iteration, each agent replaces his current observation by the average of the
observations of its neighbors in the network. We will refer to this method in the following by the
term simple gossip. The paper [BGPS06] proves the linear convergence of the observations to their
average.

However, the rate of the linear convergence was shown to worsen significantly in many networks
of interest as the size of the network increases. More precisely, define the diameter D of the
network as the largest number of communication links needed to connect any two agents. While
obviously, D steps of averaging are needed for any gossip method to spread information in the
network, the simple gossip method may require up to Θ(D2) communication steps to estimate the
average, as for instance in the two-dimensional grid [RT17]. To reach the O(D) bound, a diverse
set of ideas were proposed, including second-order recursions [CSY06, RT17], message passing
algorithms [MR05], lifted Markov chain techniques [Sha09] or inspiration arising from advection-
diffusion processes [SGB10]. To our knowledge, all of these methods assume that the agents hold
additional information about the graph, such as its spectral gap.

It is worth noting that all the aforementioned literature analyzes the gossip algorithms in a
worst-case setting, meaning that no prior about the observations is assumed. However, in many
applications, there is a statistical structure one should exploit. In sensor networks, observations
are measurements of the environment corrupted by noise. The purpose of the gossip algorithm is to
average observations to get a better estimate of the ground truth. Gossip algorithms are also used
as building blocks in distributed statistical learning problems such as distributed optimization (see
[NO09, SBB+17, S+14, RNV10, DAW12, CS12]) or distributed bandit algorithms (see [SBFH+13,
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LSL16, KSS16]). All of these problems have a statistical structure that simplifies the underlying
gossip problem. For instance, in sensor networks, good estimates of the mean may not require
using observations from nodes extremely far in the network.

This remark motivates that in this paper, we consider the special case where the observations are
independent identically distributed (i.i.d.) random variables ξ ∼ ν, and the goal is to estimate the
statistical mean E[ν] of these random variables (and not the average). A more precise definition
of this framework, called statistical gossip, is given in Section 2. We then make the following
contributions to the statistical gossip problem.

Contributions. In Section 3, we use a parallel with random walks to show that in this frame-
work too, simple gossip is suboptimal in networks of interest. The bulk of the paper focuses on
accelerating the statistical gossip. In Section 4, we describe an acceleration framework that, given
the spectral measure of the network graph, and the associated family of orthogonal polynomials,
derives an accelerated algorithm suited for that network.

However, it is unrealistic in practice to assume that we know the whole spectrum of the graph,
let alone that we are able to compute the corresponding orthogonal polynomials. We argue, with
theoretical results and simulations, that one can wisely approximate the spectral measure by a
simpler one with known orthogonal polynomials without any significant decrease in performance
of the accelerated algorithm.

In d-regular graphs, and when the approximate spectral measure is the one of the infinite d-
regular tree, we show in Section 5 that the resulting algorithm is equivalent to the message passing
algorithm of [MR05], an optimal method on trees. In grids Zd, d > 2, we give an approximate
spectral measure that gives asymptotically optimal results (see Section 6).

Section 7 provides simulations showing that the algorithm for grids is still efficient on random
geometric graphs and the algorithm for trees is still efficient on random d-regular graphs. These
results support that only little information about the spectral measure is needed to build efficient
algorithms from our acceleration framework.

2. Problem setting

A network of agents is modeled by a undirected graph G = (V,E), where V is the set of vertices
of the graph, or agents, and E the set of edges, or communication links. Note that here, V can
be either finite or infinite, but we will always assume G to be locally finite, meaning that for all
v ∈ V , the degree deg v (i.e., the number of neighbors of v in the graph) is finite. The case where
V is infinite must be thought as the large graph limit where we neglect border effects. Although
the infinite network modelling might be surprising, in this paper it provides insights on the gossip
problem, even in the finite case.

We consider a probability law ν on R, and µ =
∫
R ξ dν(ξ) its statistical mean. Each agent v ∈ V

is given a sample from ν:
ξv, v ∈ V ∼

i.i.d.
ν .

A fundamental operation to estimate the mean µ consists in averaging the observations of neighbors
in the network. We formalize this notion using a gossip matrix.

Definition 2.1. A gossip matrix W = (Wv,w)v,w∈V on the graph G is a matrix with entries
indexed by the vertices of the graph satisfying the following properties:

– W is nonnegative: for all v, w ∈ V , Wv,w > 0.
– W is supported by the graph G: for all distinct vertices v, w such that Wv,w > 0, {v, w}
must be an edge of G.

– W is stochastic: for all v ∈ V ,
∑
w∈V Wv,w = 1.

– W is symmetric: for all v, w ∈ V , Wv,w = Ww,v.

If W is a gossip matrix and x = (xv)v∈V is a set of values stored by the agents v, the product
Wx is interpreted as the computation by each agent v of a weighted average of the values xw of its
neighbors w in the graph (and of its own value xv). This average is computed simultaneously for
all agents v; indeed in this paper we deal only with synchronous gossip. Note that we do not need
the symmetry assumption on W to interpret W as an averaging operation. This assumption is
usual in gossip frameworks as it allows one to use the spectral theory for W , on which our analysis
relies heavily. It appears, for instance, in the works [BGPS06, CSY06, RT17].
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In a d-regular graphG (∀v,deg v=d), a typical gossip matrix isW = A(G)/d = (1{{v,w}∈E}/d)v,w∈V
where A(G) is the adjacency matrix of the graph. We will call this matrix the simple gossip matrix
as it is the transition matrix of the simple random walk on G.

Simple gossip. Simple gossip is a natural algorithm solving the gossip problem that consists
in averaging repeatedly values in the graph. More precisely, we choose a gossip matrix W on the
graph G, initialize µ̂0 = ξ = (ξv)v∈V , and at each communication round t, compute

µ̂t+1 = Wµ̂t . (2.1)

We can rewrite this iteration as µ̂t = W tξ. Simple gossip builds unbiased estimators µ̂tv of the
mean µ for each agent v. Indeed, W is stochastic, i.e., W1 = 1, thus

E[µ̂t] = W tE[ξ] = µW t1 = µ1 . (2.2)

Note that in the last equation, we used the notation .t to denote both the index of µ̂ and the power
of the square matrix W . We will frequently make use of the indexation .t when vectors indexed
by the vertices (or the edges) also depend on time.

Polynomial gossip. Several acceleration schemes of gossip [CSY06, RT17] store some past
iterates to compute higher-order recursions (that thus depend on powers ofW ). Without specifying
the recursion for now, we define a polynomial gossip method as any method combining the past
iterates of the simple gossip method:

µ̂t = Pt(W )ξ , (2.3)
where Pt(W ) is a polynomial of degree smaller or equal to t satisfying Pt(1) = 1. As in (2.2), the
constraint Pt(1) = 1 ensures that the estimators µ̂t in (2.3) are unbiased. The constraint degPt 6 t
ensures that the estimator µ̂t can be computed in t time steps. Simple gossip corresponds to the
particular case of the polynomial Pt(λ) = λt.

The rest of this paper is devoted to the study of the variance of the unbiased estimators of
simple gossip (2.1) and polynomial gossip (2.3), as well as the design of polynomials Pt that ensure
small variances of the estimators. The next result is both a technical lemma linking the variance
var µ̂t to the polynomials Pt and a lower bound that we aim to match.

Proposition 2.2. Let µ̂t be the unbiased estimator defined in (2.3). Let v ∈ V . Denote ev =
(1{w=v})w∈V ∈ RV . Then

var µ̂tv
var ν

= ‖Pt(W )ev‖2`2(V ) =
〈
ev, Pt(W )2ev

〉
`2(V )

,
var µ̂tv
var ν

>
1

|Bv(t)|
, (2.4)

where Bv(t) = {w ∈ V | d(v, w) 6 t} denotes the ball of radius t, centered in v, for the shortest
path distance d(., .) in the graph G.

Definition 2.3 (Optimality). In the case where var µ̂tv/var ν = Θ(1/|Bv(t)|) as t→∞, we will say
that the gossip method is asymptotically optimal (for v). In the stronger case where var µ̂tv/var ν =
1/|Bv(t)| for all t, we will say that the gossip method is exactly optimal.

See Appendix A.1 for a proof of Proposition 2.2. Note that the above definition of asymptotic op-
timality is of interest only if the graph G is infinite. Indeed, if G is finite, var µ̂tv/var ν and 1/|Bv(t)|
are both lower bounded by 1/|V | and upper bounded by 1, thus var µ̂tv/var ν = Θ(1/|Bv(t)|) as
t→∞.

3. Sub-optimality of simple gossip

For the reader’s convenience, we recall that simple gossip is defined by the iteration

µ̂0 = ξ = (ξv)v∈V , µ̂t+1 = Wµ̂t . (3.1)

In this section, we derive a parallel between simple gossip and a random walk on V to show the
sub-optimality of simple gossip. Indeed, as W is a stochastic matrix, it can be seen as a transition
matrix of a random walk on V . Denote Vt ∈ V the random walk with transition matrix W , and
Ev (resp. Pv) the corresponding expectation (resp. probability) when it is started from v.

Proposition 3.1. Let µ̂t be the estimates of the simple gossip method (3.1). Then

var µ̂tv
var ν

=
〈
ev,W

2tev
〉
`2(V )

= Pv(V2t = v) .
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Using estimates of return probabilities of random walks provided by the probabilistic literature,
we derive two applications of Proposition 3.1 showing that simple gossip is suboptimal.

Grids Zd. Let ω = (ωv)v∈Zd be a centered probability distribution over Zd with compact
support such that the random walk on Zd with law of increments ω is irreducible and aperiodic.
Let G(ω) = (Zd, E) with E = {{v, w} | ωw−v 6= 0} be the associated graph, and Wv,w = ωw−v the
associated gossip matrix. The local central limit theorem [LL10, chapter 2] gives the asymptotic
equivalent of the return probability of the random walk on Zd with increments of law ω. Combining
with Proposition 3.1, we get for all v ∈ Zd,

var µ̂tv
var ν

∼ 1

2dπd/2
√

detQ

1

td/2
as t→∞ , (3.2)

where Q ∈ Rd×d is the covariance matrix of ω. Note that in G(ω), we have the growth |Bv(t)| =
Θ(td) as t → ∞. Thus simple gossip is suboptimal on a wide range of “grid-like” graphs. For
instance, if we choose ωv = 1/(2d) for v being the 2d points in Zd closest to 0, and ωw = 0 elsewhere,
we get suboptimality of simple gossip on the d-dimensional grid, when W = A(G(ω))/(2d). This
is the graph we will refer to as G = Zd in rest of this paper.

Trees Td. (d > 3) Let W = A(Td)/d be the gossip matrix on the infinite d-regular tree Td.
The associated random walk on Td is the simple random walk on Td, whose return probabilities
are studied in [Saw78]. Combining their result with Proposition 3.1, we get

var µ̂tv
var ν

= Θ

(
1

|Bv(t)|

(
2− 2

d

)2t
1

t3/2

)
as t→∞ .

Thus the simple gossip method is suboptimal on Td.

4. Design of best polynomial gossip algorithms

We now turn to the design of efficient estimators of the form µ̂t = Pt(W )ξ. An important result
of this section is that the best estimators of this form can be computed in an online fashion as
they result from a second-order recurrence relation.

The analysis of gossip on finite graphs usually relies on the spectral theorem applied to an auto-
adjoint finite matrix W . Here we will need the equivalent result on possibly infinite graphs. Fix
v ∈ V . As W is an auto-adjoint operator, bounded by 1, acting on `2(V ), there exists a unique
positive measure σ = σ(G,W, v) on [−1, 1], called the spectral measure, such that for all polynomial
P ,

〈ev, P (W )ev〉`2(V ) =

∫ 1

−1
P (λ)dσ(λ) .

For a deeper presentation of spectral graph theory, see [MW89] and references therein. Note that
when the graph G is finite, it is easy to check that the spectral measure is the discrete measure
σ(G,W, v) =

∑n
i=1(uiv)

2δλi where λ1, . . . , λn are the eigenvalues of W and u1, . . . , un are the
associated eigenvectors. When G is d-regular and we choose to take the simple gossip matrix
W = A(G)/d, we will omit the dependence on W in σ(G, v). Further, when the spectral measure
does not depend on v, we will simply write σ(G).

It follows from (2.4) that

var µ̂tv
var ν

=
〈
ev, Pt(W )2ev

〉
`2(V )

=

∫ 1

−1
Pt(λ)2dσ(λ) .

The polynomial Pσt minimizing the variance var µ̂tv satisfies

Pσt ∈ argmin
P (1)=1, degP6t

∫ 1

−1
P (λ)2dσ(λ) . (4.1)

Two examples are given in Figure 1. Note how the polynomial Pσt adapts to be small where σ has
mass while satisfying the constraint Pσt (1) = 1. The corresponding performance var (Pσt (W )ξ)/var ν
is Λt(σ, 1) where

Λt(σ, λ0) = min
P (λ0)=1, degP6t

∫ 1

−1
P (λ)2dσ(λ)
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Figure 1. Two measures σ with densities and the corresponding optimal poly-
nomial Pσ6 as defined in (4.1). Left: σ(dλ) = σ(Z)(dλ) = dλ/(π

√
1− λ2). Right:

σ(dλ) = σ(T5)(dλ) as explicited in (5.3).

is the Christoffel function associated with the measure σ, whose asymptotic as t → ∞ is studied
for instance in [Tot00, Nev79, Nev86, MNT91].

Remark 4.1. One may not want to minimize the variance var µ̂tv at a single vertex v but a
weighted average

∑
w∈V γwvar µ̂tw. This can easily be done by replacing σ = σ(G,W, v) with

σ =
∑
w∈V γwσ(G,W,w). The discussions of this section and the following sections still apply

in this case. However, to simplify the matter, we present the case σ = σ(G,W, v).

We will now show that the sequence of best polynomials Pσ0 , Pσ1 , Pσ2 , . . . can be computed
online as the result of a second order recursion, which leads to a second order gossip method,
whose coefficients depend on σ. As noted in [CSY06], having estimators µ̂t that satisfy a low-order
recurrence relation is valuable as it ensures that they can be computed online with limited memory
cost. In order to prove this property for our estimators, we will need a sequence of orthogonal
polynomials with respect to σ.

Definition 4.2 (Orthonormal polynomials w.r.t. σ). Let σ be a measure on R whose moments
are all finite. Endow the set of polynomials R[X] with the scalar product

〈P,Q〉σ =

∫
R
P (λ)Q(λ)dσ(λ) .

Denote T ∈ N∪{∞} the cardinal of the support of σ. Then there exists a unique family π0, π1, ..., πT−1
of polynomials with positive leading coefficient, such that for all t < T , π0, π1, ..., πt form an or-
thonormal basis of (Rt[X], 〈., .〉σ), where Rt[X] denotes the set of polynomials of degree smaller or
equal to t. In other words, for all s, t < T ,

deg πt = t , 〈πs, πt〉σ = 1{s=t} .

π0, π1, ..., πT−1 are called the orthonormal polynomials with respect to σ.

A much more comprehensive description of orthogonal polynomials from the point of view of
applied mathematics can be found in [Gau04]. We now fix the spectral measure σ = σ(G,W, v)
and π0, π1, . . . , πT−1 the corresponding orthogonal polynomials.

Proposition 4.3. There exists a unique minimizing polynomial Pσt satisfying (4.1) and

Pσt =
( t∑
s=0

πs(1)2
)−1 t∑

s=0

πs(1)πs , (4.2)

Λt(σ, 1) =
var (Pσt (W )ξ)v

var ν
=
( t∑
s=0

πs(1)2
)−1

. (4.3)

This result is well-known and usually stated without proof [Nev86, Sections 3, 4.1], [Nev79, Sec-
tion 2]; we give the short proof in Appendix A.2. A fundamental result on orthogonal polynomials
states that they follow a second order recursion.



6 GOSSIP OF STATISTICAL OBSERVATIONS USING ORTHOGONAL POLYNOMIALS

Proposition 4.4 ([Gau04, Section 1.5.1]). There exist two sequences of coefficients (at)06t6T−2
and (bt)06t6T−2 with at > 0 and bt ∈ R such that (using the convention π−1 = 0)

at+1πt+1(λ) = (λ− bt)πt(λ)− atπt−1(λ) .

As a consequence, the best polynomial gossip algorithm is a second order method whose co-
efficients are determined by the graph G, the gossip matrix W and the vertex v. Assuming the
coefficients at, bt, t > 0 are given, the computation of the best polynomial gossip µ̂t = Pσt (W )ξ
goes:

Computation formula Result

x−1 = 0 , x0 = ξ , xt+1 = 1
at+1

(
Wxt − btxt − atxt−1

)
xt = πt(W )ξ (4.4)

ρ−1 = 0 , ρ0 = 1 , ρt+1 = 1
at+1

((1− bt)ρt − atρt−1) ρt = πt(1) (4.5)

u0 = ξ , ut+1 = ut + ρt+1x
t+1 ut =

∑t
s=0 πs(1)πs(W )ξ (4.6)

v0 = 1 , vt+1 = vt + ρ2t+1 vt =
∑t
s=0 πs(1)2 (4.7)

µ̂t = ut/vt µ̂t = Pσt (W )ξ (4.8)

However, we warn the reader that this algorithm is unpractical for two reasons: it assumes the full
knowledge of the measure σ, as well as our ability to compute the sequences at, bt from the measure
σ, which can be challenging (see [Gau04]). The rest of this paper will circumvent these difficulties
by approximating the measure σ with a simpler measure σ̃, whose recursion coefficients are known.
We will show that in some cases, substituting P σ̃t (W )ξ to Pσt (W )ξ worsens the variances negligibly.

Remark 4.5. Our method is similar to the Chebychev acceleration scheme used in [AS14, SBB+17]
to accelerate gossip. The underlying idea is that the Chebychev polynomial of degree t can be
properly rescaled to a polynomial Pt such that Pt(1) = 1 and supλ∈[−1,1−γ] |Pt(λ)| is small for
some γ > 0 (typically the spectral gap of the matrix W ), thus Pt is a good candidate for polynomial
gossip. Our framework brings two benefits over this approach. First, it adapts the choice of
the polynomial Pt to the type of network (characterized by the spectral measure). Second, the
Chebychev acceleration method performs poorly when γ is small (i.e., the graph is large) and t
is small (compared to 1/

√
γ), a regime where our acceleration still gives good results (see the

simulations of Section 7).

5. Message passing seen as a polynomial gossip algorithm

The message passing algorithm of [MR05] (in its zero-temperature limit) defines quantities on
the edges of the graph G with the following recursion: for v, w ∈ V linked by an edge in the graph
G, it defines K0

vw = 0, M0
vw = 0, and

Kt+1
vw = 1 +

∑
u∈N (v), u 6=w

Kt
uv , M t+1

vw =
1

Kt+1
vw

(
ξv +

∑
u∈N (v), u 6=w

Kt
uvM

t
uv

)
, (5.1)

where N (v) denotes the set of neighbors of v. Kvw and Mvw are interpreted as messages going
from v to w in G: M t

vw corresponds to an average of observations gathered by v and transmitted
to w; Kt

vw is the corresponding number of observations. We recommend [MR05, Section II.A] and
Lemma A.1 for a detailed description of this intuition. At each time step t, the output of the
algorithm is

µ̂tv =
ξv +

∑
u∈N (v)K

t
uvM

t
uv

1 +
∑
u∈N (v)K

t
uv

. (5.2)

It is an easy check that this gossip method is unbiased. Furthermore it is exactly optimal on trees,
as shown by the following proposition.

Proposition 5.1. Assume that G is a tree. Then for all t > 1, v ∈ V ,

µ̂tv =
1

|Bv(t)|
∑

w∈Bv(t)

ξw ,
var µ̂tv
var ν

=
1

|Bv(t)|
.

However, nothing prevents us from running the message passing recursion (5.1)-(5.2) in a graph
G with loops. In the case of regular graphs, we are able to interpret the message passing algorithm
as a polynomial algorithm using Pσt with a particular choice of σ.
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Theorem 5.2. Assume G is d-regular, meaning that each vertex has degree d, d > 2. Assume
further that W = A(G)/d. Recall that σ(Td) is the spectral measure of the infinite d-regular tree.
Then the output µ̂tv of the message passing algorithm (5.1)-(5.2) on G can also be obtained as
µ̂tv = P

σ(Td)
t (W )ξ where Pσ(Td)

t is defined in (4.1).

As message passing algorithms are often derived by neglecting loops in a graph, this theorem
should not surprise the reader: message passing corresponds to the best polynomial gossip algo-
rithm when one believes the graph is a tree.

An important feature of the spectral measure of Td and its corresponding orthogonal polynomials
is that they can be computed explicitly (combining [Sod07, Section 2.2] and Lemma B.1), thus
making the corresponding polynomial algorithm practical:

σ(Td)(dλ) =
d

2π(1− λ2)

(
4(d− 1)

d2
− λ2

)1/2

1[−2
√
d−1/d,2

√
d−1/d](λ)dλ , (5.3)

a1 =
1√
d
, at =

√
d− 1

d
for t > 2, bt = 0 for all t . (5.4)

Note that by merging Proposition 5.1 and Theorem 5.2, it follows that:

Corollary 5.3. The best polynomial algorithm on Td (d > 2) gives a practical and exactly optimal
gossip algorithm on Td.

Note that it is fairly easy to derive an elementary proof of Corollary 5.3 (without using the
connection with message passing). In particular, when d = 2 (T2 = Z), the spectral measure
is the arcsine distribution σ(Z)(dλ) = dλ/(π

√
1− λ2)1(−1,1)(λ). The corresponding orthonormal

polynomials are, up to rescaling, the Chebychev polynomials. We believe that the interested reader
could gain some insights about our framework by repeating explicitly the derivations of Sections 4
and 5 in this particular case.

6. Design of polynomial gossip algorithms for grids

We now focus on the case of the regular grid G = (Zd, E), with d > 2 and E = {{v, w} |
‖v−w‖2 = 1} that we equip with the simple gossip matrix W = A(Zd)/(2d). We believe that it is
difficult to compute the sequence of orthogonal polynomials with respect to the spectral measure
σ(Zd) in this case. However, we have the following information on the spectrum.

Proposition 6.1. The spectral measure σ(Zd) has a symmetric density wd : R 7→ R+, with support
in [−1, 1], and wd(λ) ∼ Cd(1− λ)d/2−1as λ→ 1, for some constant Cd.

As eigenvalues close to 1 of a graph Laplacian are known to correspond to the large-scale
structure of a graph, a natural idea for our gossip algorithm is that we can approximate σ(Zd) by
another measure σ̃d with the same behavior in 1. We choose σ̃d(dλ) = (1− λ)d/2−1dλ because the
corresponding orthogonal polynomials are the well-known Gegenbauer polynomials. The recursion
coefficients can be computed (see [Gau04, Section 1.5.1] for instance):

at =

(
t(t+ d− 2)

(2t+ d− 1)(2t+ d− 3)

)1/2

, bt = 0 . (6.1)

Building on work studying the decrease of the Christoffel function [Nev79, Section 6.2, Lemma
21], we prove that this approximation gives optimal variance.

Theorem 6.2. Equip the grid Zd, d > 2 with the simple gossip matrix W = A(Zd)/(2d). Apply
the gossip method corresponding to the Gegenbauer polynomials, that is µ̂t = P σ̃d

t (W )ξ. Then the
gossip method is asymptotically optimal, that is,

var µ̂tv
var ν

= Θ

(
1

td

)
.
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7. Simulations

In this section, we run our methods on random regular graphs, grids and random geometric
graphs; the latter being a widely used model for real-world networks [Pen03, Section 1.1]. We
compare our polynomial gossip algorithm with the simple gossip method (2.1), the shift-register
algorithm of [CSY06] and the splitting algorithm of [RT17]. The last two algorithms are state-of-
the-art accelerated methods for the averaging problem. Some theoretical results (see [LACM13,
Theorem 2] for the former, [RT17, Theorem 4] for the latter) determine the best tuning of their
parameters as a function of the spectral gap of W ; this is the tuning we use in our simulations.

In all our simulations, we only specify the graph G that we run our algorithms on. It will be
implicit that we built a gossip matrix on G with the formulas: Wvw = max(deg v,degw)−1 if v ∈
N (w) andWvv = 1−

∑
w∈N (v) max(deg v,degw)−1. We measure the performance of all estimators

µ̂t using the empirical variance averaged over the graph, ‖µ̂t − µ‖22/n. We compare with the
best possible estimator µ̂tv = (1/|Bv(t)|)

∑
w∈Bv(t)

ξw, which gives us a lower bound on the the
performance achievable. All simulations are run with ξw ∼ N (0, 1).

Two-dimensional grid. We run simulations on a 40 × 40 square lattice (n= 1600 vertices).
Approximating the finite grid with its infinite counterpart Z2, and following Section 6, we choose
to run the algorithm using the Gegenbauer orthogonal polynomials for σ̃2. The results are plotted
in Figure 2a.

Two-dimensional random geometric graph. We build a random geometric graph G by
sampling n = 1600 points uniformly in the unit square [0, 1]2 and linking pairs closer than 3/

√
n ≈

0.0548. This tuning was chosen so that the resulting graph is connected with high probability.
This ensures that the spectral gap is positive and the accelerated methods for averaging apply. As
this random geometric graph has a structure “close to” Z2, we take again the algorithm using the
Gegenbauer orthogonal polynomials w.r.t. σ̃2. The results, averaged over 10 realizations of the
graph, are shown in Figure 2b.

Three-dimensional grid. We run simulations on a 12 × 12 × 12 cubic lattice (n = 1728
vertices). Approximating the finite lattice with its infinite counterpart Z3, and following Section 6,
we choose to run the algorithm using the Gegenbauer orthogonal polynomials for σ̃3. The results
are plotted in Figure 2c.

Three-dimensional random geometric graph. We build a three-dimensional random geo-
metric graph G by sampling n = 1728 points in the unit cube [0, 1]3 and linking pairs closer than
1.8/n1/3 = 0.15. Again, this tuning was chosen so that the resulting graph is connected with high
probability. As this random geometric graph has a structure “close to” Z3, we take the algorithm
using the Gegenbauer orthogonal polynomials w.r.t. σ̃3. The results, averaged over 10 realizations
of the graph, are shown in Figure 2d.

Note that in the four simulations of Figure 2, all curves converge to the same consensus limit
µ̂t = (1/|V |)

∑
v∈V ξv. As suggested by Section 3, simple gossip is slow in reaching that limit. In

comparison, the shift-register and splitting methods reach consensus faster, but decrease slower
in the first phase. Our polynomial gossip algorithm enjoys the fast decrease of simple gossip at
the beginning, reaches consensus faster than the accelerated methods and is more efficient than
existing algorithms in the intermediate regime. Our polynomials estimator µ̂t = P σ̃2

t ξ matches
closely the lower bound of the best possible estimator in the case of grids, and more loosely in the
case of random geometric graphs. This could mean that our approximation of the spectral measure
of the random geometric graph by σ̃2 or σ̃3 is too crude.

Random regular graph. We also run our algorithmic comparisons on a random 3-regular
graph. To be precise, we fix n = 2000 and pick a graph uniformly from the collection of all 3-
regular graphs with n vertices. McKay’s Theorem [Sod07, Theorem 1.1] shows that as n → ∞,
the spectrum of such a random graph converges to the spectral measure of the infinite 3-regular
tree T3 (in distribution, for the weak convergence topology). According to Section 5, this is a
strong incentive to use the message passing algorithm (5.1)-(5.2) of [MR05], that is equivalent to
a polynomial algorithm (see Theorem 5.2). The results are plotted in Figure 3.

The message passing algorithm outperforms all other algorithms and matches closely the lower
bound. This is due to the fact that the spectrum of the random regular graph is well-understood,
and the corresponding orthogonal polynomials are known. This simulation encourages a deeper
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(a) 2D grid (b) 2D random geometric graph

(c) 3D grid (d) 3D random geometric graph

Figure 2. Performance of different gossip algorithms running on graphs with an
underlying low-dimensional geometry, as measured by ‖µ̂t − µ‖22/n.

Figure 3. Performance of different gossip algorithms running a random regular
graph, as measured by ‖µ̂t − µ‖22/n.

study of the orthogonal polynomials w.r.t the spectrum of some classes of random graphs, that we
hope to conduct in future work.

8. Conclusion

In the averaging problem, the goal is to reach consensus (full averaging of the values in the
network) as quickly as possible. However, the methods designed for this objective are paradoxically
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bad at averaging locally in the intermediate regime before consensus in reached (see Figure 2). In
statistical applications, local averaging may be sufficient and the network may be too large to
hope for full averaging in the network. We proposed a new framework, better suited for these
applications and new methods that are efficient at all times.

Our acceleration framework using orthogonal polynomials provides new tools for gossip and a
new point of view on message passing. We hope to bring more theoretical support and understand-
ing of the framework in future work. To what extent can one approximate the spectral measure σ
of the graph when deriving the algorithm? Can we prove some results on large random graphs?
Can we give interpretations of the recursion coefficients at and bt in terms of the graph?
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Appendix A. Proofs of the results

A.1. Proof of Proposition 2.2. Using that W is symmetric and that the ξw, w ∈ V are i.i.d.
random variables, we get.

var µ̂tv = var 〈Pt(W )ξ, ev〉`2(V ) = var 〈ξ, Pt(W )ev〉`2(V ) = ‖Pt(W )ev‖2`2(V ) (var ν) ,

and using again that W is symmetric,

‖Pt(W )ev‖2`2(V ) = 〈Pt(W )ev, Pt(W )ev〉`2(V ) =
〈
ev, Pt(W )2ev

〉
`2(V )

.

This proves the left part of Eq. (2.4).
Note that the intuition lying behind the right part of Eq. (2.4) is very simple: the unbiased

estimator µ̂tv is a linear combination of observations corresponding to vertices in the ball Bv(t),
thus it must have variance greater than var ν/|Bv(t)|.

A more rigorous argument goes as follows: using that W is a gossip matrix, it is easy to show
by induction that for all s > 0 and v, w ∈ V , if (W s)vw > 0, then there exists a path of length s
linking v to w in G. As degPt 6 t, this implies that Pt(W )ev has at most |Bv(t)| non-zero entries.
Furthermore, the entries of Pt(W )ev sum to 1 because W1 = 1 and Pt(1) = 1. Thus, using the
Cauchy-Schwarz inequality,

1 =

(∑
w∈V

(Pt(W )ev)w

)2

=

(∑
w∈V

(Pt(W )ev)w1{(Pt(W )ev)w>0}

)2

6 ‖Pt(W )ev‖2`2(V )

∑
w∈V

1{(Pt(W )ev)w>0} 6 ‖Pt(W )ev‖2`2(V ) |Bv(t)| .

Combining with the previous expression, this gives the right part of (2.4).

A.2. Proof of Proposition 4.3. Eq. (4.1) can be rewritten as

Pσt ∈ argmin
P (1)=1, degP6t

〈P, P 〉σ . (A.1)

We parametrize the minimization problem (A.1) using the orthogonal polynomials π0, . . . , πt with
respect to σ: as π0, . . . , πt form a basis of Rt[X], one can uniquely decompose a polynomial P
such that degP 6 t as P = α0π0 + · · · + αtπt. Then P (1) = α0π0(1) + · · · + αtπt(1), and by
orthogonality of the orthogonal polynomials with respect to σ, 〈P, P 〉σ = α2

0 + · · ·+ α2
t . Denoting

β = (π0(1), . . . , πt(1)), our minimization problem becomes

min
〈α,β〉=1

‖α‖22 .

This is the minimization of a strictly convex function over a linear subspace, thus the minimizer
is unique and given by α∗ = β/‖β‖22. One can then derive equations (4.2) and (4.3) from Pσt =
α∗0π0 + · · ·+ α∗tπt.
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A.3. Proof of Proposition 4.4. The polynomial λπt(λ) of the variable λ is of degree t+ 1, thus
it can be decomposed over the orthonormal basis π0(λ), π1(λ), . . . , πt+1(λ):

λπt(λ) =

t+1∑
s=0

〈λπt, πs〉σπs(λ) .

Note that 〈λπt, πs〉σ =
∫
λπt(λ)πs(λ)dσ(λ) = 〈πt, λπs〉σ = 0 when s 6 t − 2 because in this case

λπs(λ) ∈ Rt−1[X] and πt is orthogonal to Rt−1[X]. Thus

λπt(λ) = 〈λπt, πt+1〉σπt+1(λ) + 〈λπt, πt〉σπt(λ) + 〈πt, λπt−1〉σπt−1(λ) ,

where we keep the convention π−1 = 0. Denoting at = 〈πt, λπt−1〉σ and bt = 〈λπt, πt〉σ, we get the
recursion formula. Note that at must also be the ratio of the leading coefficients of πt−1(λ) and
πt(λ), which are both positive. Hence it must be positive.

A.4. Proof of Proposition 5.1. Let t > 0 and v, w ∈ V be two vertices linked by an edge in G.
Define Bvw(t) as the set of vertices u in Bw(t) such that all paths in the tree G going from u to w
pass though v.

Lemma A.1. For all t > 0, for all v, w ∈ V linked by an edge in G,

Kt
vw = |Bvw(t)| , and if t > 1, M t

vw =
1

|Bvw(t)|
∑

u∈Bvw(t)

ξu .

Proof. The proof goes by induction. The statement is trivial for t = 0, 1. For the induction, assume
the result at time t and note that

Bvw(t+ 1) = {v} ∪

 ⋃
u∈N (v), u 6=w

Buv(t)

 , (A.2)

where all unions are disjoint. This essentially comes from the fact that G has no loops.
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Taking cardinal, we get that

|Bvw(t+ 1)| (A.2)
= 1 +

∑
u∈N (v), u 6=w

|Buv(t)|
(induction)

= 1 +
∑

u∈N (v), u 6=w

Kt
uv

(5.1)
= Kt+1

vw .

This proves the induction for the first equality. The proof for the second equality is similar:

1

|Bvw(t+ 1)|
∑

u∈Bvw(t+1)

ξu
(A.2)
=

1

Kt+1
vw

ξv +
∑

u∈N (v), u 6=w

∑
x∈Buv(t)

ξx


(induction)

=
ξv +

∑
u∈N (v), u 6=w |Buv(t)|M t

uv

Kt+1
vw

(induction)
=

ξv +
∑
u∈N (v), u 6=wK

t
uvM

t
uv

Kt+1
vw

(5.1)
= M t+1

vw .

�

We now end the proof of Proposition 5.1. As Bv(t) = {v} ∪
(⋃

u∈N (v)Buv(t)
)

with disjoint
unions, using Lemma A.1, we get

1

|Bv(t)|
∑

w∈Bv(t)

ξw =
ξv +

∑
u∈N (v)

∑
w∈Buv(t)

ξw

1 +
∑
u∈N (v) |Buv(t)|

=
ξv +

∑
u∈N (v)K

t
uvM

t
uv

1 +
∑
u∈N (v)K

t
uv

(5.2)
= µ̂tv .

A.5. Proof of Theorem 5.2. As noted by [RT17], the message passing iteration (5.1)-(5.2)
indexed by the edges of the graph can be written as an iteration indexed by the vertices of the
graph. We repeat here the elementary derivation of this statement in our particular case of d-
regular graphs.

First, because G is d-regular, it is an easy check from (5.1) that Kt
vw does not depend on the

edge (v, w) (thus we denote it Kt) and it satisfies the recursion K0 = 0, Kt+1 = 1 + (d− 1)Kt.
Let us now denote Stv = ξv +

∑
u∈N (v)K

t
uvM

t
uv and Lt = 1 + dKt so that µ̂tv = Stv/Lt. We will

now find recursions for Lt and St:

Lt+1 = 1 + dKt+1 (5.1)
= 1 + d(1 + (d− 1)Kt) = 2 + (d− 1)(1 + dKt) = 2 + (d− 1)Lt ,

and

St+1
v = ξv +

∑
u∈N (v)

Kt+1M t+1
uv

(5.1)
= ξv +

∑
u∈N (v)

ξu +
∑

w∈N (u),w 6=v

KtM t
wu


= ξv +

∑
u∈N (v)

(
Stu −KtM t

vu

)
.

As ∑
u∈N (v)

KtM t
vu

(5.1)
= dξv +

∑
u∈N (v)

∑
w∈N (v),w 6=u

Kt−1M t−1
wv

= dξv + (d− 1)
∑

w∈N (v)

Kt−1M t−1
wv = ξv + (d− 1)St−1v ,

we finally get
St+1 = A(G)St − (d− 1)St−1 .

To sum up, we now have the simpler formulas for the message passing algorithm:

Lt+1 = 2 + (d− 1)Lt L0 = 1 (A.3)

St+1 = A(G)St − (d− 1)St−1 S0 = ξ S1 = ξ +A(G)ξ (A.4)

µ̂t = St/Lt (A.5)
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We now want to compare this message passing algorithm to the polynomial algorithm (4.4)-(4.8)
for d-regular trees (see the coefficients at, bt in (5.4)), whose recursion is the following:

x−1 = 0 x0 = ξ x1 =
√
dWξ x2 =

d√
d− 1

Wx1 −
√

d

d− 1
ξ (A.6)

xt+1 =
d√
d− 1

Wxt − xt−1 (t > 2) (A.7)

ρ−1 = 0 ρ0 = 1 ρ1 =
√
d ρ2 =

d√
d− 1

ρ1 −
√

d

d− 1
(A.8)

ρt+1 =
d√
d− 1

ρt − ρt−1 (t > 2) (A.9)

u0 = ξ ut+1 = ut + ρt+1x
t+1 (A.10)

v0 = 1 vt+1 = vt + ρ2t+1 (A.11)

mt = ut/vt (A.12)

Here, we denote mt the output of the algorithm (as opposed to (4.8), where it is denoted µ̂t) as
we want to keep the notation µ̂t for the output of the message passing algorithm. The theorem
states that µ̂t = mt. We will prove the stronger fact that Lt = vt and St = ut.
Proof of Lt = vt. From (A.8)-(A.9), it is an easy check by induction that for t > 1, ρ2t = d(d− 1)t.
Using this, let us now show by induction that Lt = vt. It is true that L0 = v0 and L1 = v1, so now
we take t > 1, assume that Lt−1 = vt−1 and Lt = vt, and show that Lt+1 = vt+1. Indeed,

Lt+1
(A.3)
= 2 + (d− 1)Lt + Lt − (2 + (d− 1)Lt−1) = Lt + (d− 1)(Lt − Lt−1)

(induction)
= vt + (d− 1)(vt − vt−1)

(A.11)
= vt + (d− 1)ρ2t = vt + ρ2t+1

(A.11)
= vt+1 .

Proof of St = ut. Again, we proceed by induction. It is true that S0 = u0, S1 = u1, and S2 = u2,
so now we take t > 2, assume that St−2 = ut−2, St−1 = ut−1 and St = ut, and show that
St+1 = ut+1. Indeed,

ut+1 (A.10)
= ut + ρt+1x

t+1 (A.7)
= ut + ρt+1

d√
d− 1

Wxt − ρt+1x
t−1

= ut + dρtWxt − (d− 1)ρt−1x
t−1 (A.10)

= ut + dW (ut − ut−1)− (d− 1)(ut−1 − ut−2) .

Then using the induction hypothesis and the fact that dW = A(G), we get:

ut+1 = St +A(G)St −A(G)St−1 − (d− 1)St−1 + (d− 1)St−2
(A.4)
= St + St+1 − St = St+1 .

A.6. Proof of Proposition 6.1. The spectrum of Z is well known and can be expressed in
closed-form (see for instance [MW89, Section 7.A]):

σ(Z)(dλ) = w1(λ)dλ , w1(λ) =
1

π

1√
1− λ2

1(−1,1)(λ) .

The graph Zd is the Cartesian product Z × · · · × Z (d times). According to [MW89, Theorem
4.10], the spectral measure of the adjacency matrix of the Cartesian product of two graphs is the
convolution of the spectral measures of the adjacency matrices of the two graphs. This implies that
σ(Zd, A(Zd)) = σ(Z, A(Z))∗d. (The notation .∗d denotes the convolution power d of an object.)
Here a rescaling is needed as the spectral measure we consider is σ(Zd) = σ(Zd, A(Zd)/(2d)), the
image measure of σ(Zd, A(Zd)) by the map λ 7→ λ/(2d). Overall, it is easy to check that σ(Zd)
has a density wd, which satisfies

wd(λ) = dw∗d1 (dλ) ,

(the expression w∗d1 (dλ) is well-defined Lebesgue almost-everywhere). The symmetry of wd follows
from the symmetry of w1.
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To estimate wd(λ) as λ→ 1, we use the estimates on the resolvent given by [Car88, Lemma 4]:
for z ∈ C\[−1, 1],

Sd(z) :=

∫
wd(λ)dλ

z − λ
=

{
(z − 1)d/2−1gd(z) + hd(z) if d is odd,
(z − 1)d/2−1Log(z − 1)gd(z) + hd(z) if d is even,

where gd and hd are two analytic functions on a neighborhood of 1, and gd(1) 6= 0. We then use
the Stieltjes-Perron inversion formula (see for instance [AGZ10, Theorem 2.4.3]):

wd(λ) = lim
ε→0+

1

2iπ
[Sd(λ− iε)− Sd(λ+ iε)]

=

{
(−1)(d−1)/2 1

π (1− λ)d/2−1gd(λ) if d is odd,
(−1)d/2(1− λ)d/2−1gd(λ) if d is even.

As gd is continuous in 1 and gd(1) 6= 0, this concludes the proof.

A.7. Proof of Theorem 6.2. In section A.6, we have seen that the density of σ(Zd) is defined
Lebesgue almost-everywhere by

wd(λ) = dw∗d1 (d · λ) , w1(λ) =
1

π
√

1− λ2
1[−1,1](λ) .

The following technical lemma gives upper bounds for wd.

Lemma A.2. There exists constants D1, D2, D3, . . . such that the following inequalities hold al-
most everywhere:

(i) w2(λ) 6 D1 log 1
|λ| +D2 ,

(ii) wd(λ) 6 Dd for d > 3 .

The proof of this lemma is given at the end of this section. We now finish the proof of Theorem
6.2.

If d > 3, we know from Lemma A.2.(ii) that wd(λ) 6 Dd for all λ ∈ [−1, 1], and from Propo-
sition 6.1 that wd(λ) ∼ Cd(1 − λ)d/2−1 as λ → 1. Moreover wd is symmetric, so there exists a
constant C ′d such that for all λ ∈ [−1, 1],

wd(λ) 6 C ′d(1− λ)d/2−1 .

This leads to a bound on the variance of the estimator µ̂tv = P σ̃d
t (W )ξ:

var µ̂tv
var ν

=

∫ 1

−1
P σ̃d
t (λ)2wd(λ)dλ 6 C ′d

∫ 1

−1
P σ̃d
t (λ)2σ̃d(dλ) = C ′dΛt(σ̃d, 1) .

The decrease of the Christoffel function for the Jacobi weights is given by [Nev79, Section 6.2,
Lemma 21]: it gives Λt(σ̃d, 1) = O(1/td), which concludes the proof in this case.

If d = 2, note that σ̃2 = 1[−1,1](λ)dλ is simply the Lebesgue measure restricted to [−1, 1]. This
case is harder because w2 is not uniformly bounded on [−1, 1], so we cannot use only the decrease
of the Christoffel function Λt(σ̃2, 1). We only have Lemma A.2.(i), which gives

var µ̂tv
var ν

=

∫ 1

−1
P σ̃2
t (λ)2w2(λ)dλ =

∫ 1

−1
P σ̃2
t (λ)2

(
D1 log

1

|λ|
+D2

)
dλ

= D1

∫ 1/2

−1
P σ̃2
t (λ)2 log

1

|λ|
dλ+D1

∫ 1

1/2

P σ̃2
t (λ)2 log

1

|λ|
dλ+D2

∫ 1

−1
P σ̃2
t (λ)2dλ .

Again, [Nev79, Section 6.2„Lemma 21] proves that∫ 1

−1
P σ̃2
t (λ)2dλ = Λt(σ̃2, 1) = O

(
1

t2

)
,

and ∫ 1

1/2

P σ̃2
t (λ)2 log

1

|λ|
dλ 6 (log 2)

∫ 1

1/2

P σ̃2
t (λ)2dλ = O

(
1

t2

)
.



16 GOSSIP OF STATISTICAL OBSERVATIONS USING ORTHOGONAL POLYNOMIALS

To conclude, we only need to show that It :=
∫ 1/2

−1 P σ̃2
t (λ)2 log 1

|λ|dλ = O(1/t2). In the case d = 2,
the orthonormal polynomials π0, π1, . . . w.r.t. the uniform measure σ̃2 are closely related to the
classical family of Legendre polynomials P0, P1, . . . by the relation

πs =

√
2s+ 1

2
Ps , (A.13)

(see [Gau04, Section 1.5.1] for instance). This will allow us to show It = O(1/t2), using that

Ps(1) = 1 , max
λ∈[−1,1]

|Ps(λ)| 6 1 . (A.14)

(see [Sze39, Section 7.21] for a proof). According the the Christoffel-Darboux formula [Gau04,
Section 1.3.3],

t∑
s=0

πs(1)πs(λ) = at+1
πt+1(1)πt(λ)− πt(1)πt+1(λ)

1− λ

(6.1)
=

(
(t+ 1)2

(2t+ 3)(2t+ 1)

)1/2

√
2t+3
2 πt(λ)−

√
2t+1
2 πt+1(λ)

1− λ

=
t+ 1

2

√
2

2t+1πt(λ)−
√

2
2t+3πt+1(λ)

1− λ

=
t+ 1

2

Pt(λ)− Pt+1(λ)

1− λ
.

We substitute this inequality in (4.2):

P σ̃2
t (λ) =

(
t∑

s=0

πs(1)2

)−1
t+ 1

2

Pt(λ)− Pt+1(λ)

1− λ
=

1

t+ 1

Pt(λ)− Pt+1(λ)

1− λ
.

Thus from (A.14), ∣∣P σ̃2
t (λ)

∣∣ 6 1

t+ 1

2

1− λ
and finally

It =

∫ 1/2

−1
P σ̃2
t (λ)2 log

1

|λ|
dλ 6

∫ 1/2

−1

4

(t+ 1)2
1

(1− λ)2
log

1

|λ|
dλ

6
16

(t+ 1)2

∫ 1/2

−1
log

1

|λ|
dλ = O

(
1

t2

)
.

This concludes the proof of Theorem 6.2.

Proof of Lemma A.2. (i). As w2 is symmetric, we only need to prove (i) for λ > 0. For all λ > 0,

(w1 ∗ w1)(λ) =

∫ 1

−(1−λ)
w1(ρ)w1(λ− ρ)dρ

= 2

∫ 1

λ/2

w1(ρ)w1(λ− ρ)dρ using the symmetry of w1.

Note now that
1√

1− λ2
6

{
1√
1−λ if λ ∈ [0, 1),
1√
1+λ

if λ ∈ (−1, 0],

thus for ρ > λ/2 > 0 we have

w1(ρ) 6
1

π

1√
1− ρ

,

w1(λ− ρ) 6
1

π

(
1√

1− (λ− ρ)
+

1√
1 + (λ− ρ)

)
.
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We get that

(w1 ∗ w1)(λ) 6
2

π2

(∫ 1

λ/2

1√
1− ρ

1√
1− (λ− ρ)

dρ+

∫ 1

λ/2

1√
1− ρ

1√
1 + (λ− ρ)

dρ

)
. (A.15)

These integrals can be computed explicitly using primitives:∫ 1

λ/2

1√
1− ρ

1√
1− (λ− ρ)

dρ =

[
−2 arctan

( √
1− ρ√

ρ− λ+ 1

)]1
λ/2

= π/2 ,∫ 1

λ/2

1√
1− ρ

1√
1 + (λ− ρ)

dρ =
[
−2 log

(√
λ− ρ+ 1 +

√
1− ρ

)]1
λ/2

= log
1

λ
+ 2 log

(√
1 +

λ

2
+

√
1− λ

2

)
.

Substituting in (A.15), we get

(w1 ∗ w1)(λ) 6 D′1 log
1

λ
+D′2

with D′1 = 2/π2 and D′2 = 1/π + 4 log(2
√

2)/π2. Finally,

w2(λ) = 2(w1 ∗ w1)(2λ) 6 2D′1 log
1

2λ
+ 2D′2 = D1 log

1

λ
+D2

with D1 = 2D′1 and D2 = 2D′2 − 2D′1 log 2, which proves (i).
(ii). We start by proving by induction over d > 3 that there exists a constant D′3 such that for all
d > 3, for all λ ∈ R, w∗d1 (λ) 6 D′3.
Initialization. d = 3. Then for λ ∈ R,

w∗31 (λ) =

∫
w1(ρ)w∗21 (λ− ρ)dρ

6
∫

1

π

1√
1− ρ2

1[−1,1](ρ)

(
D′1 log

1

|λ− ρ|
+D′2

)
1[−1,1](λ− ρ)dρ

6
D′1
π

∫
1√

1− ρ2
1[−1,1](ρ) log

1

|λ− ρ|
1[−1,1](λ− ρ)dρ+D′2 .

To bound the last integral independently of λ, we use Hölder’s inequality:∫
1√

1− ρ2
1[−1,1](ρ) log

1

|λ− ρ|
1[−1,1](λ− ρ)dρ

6

(∫
1

(1− ρ2)3/4
1[−1,1](ρ)dρ

)2/3(∫
log3 1

|λ− ρ|
1[−1,1](λ− ρ)dρ

)1/3

=

(∫ 1

−1

1

(1− ρ2)3/4
dρ

)2/3(∫ 1

−1
log3 1

|ρ|
dρ

)1/3

=: D′′1 ,

where the last two integrals are finite and independent of λ. Thus denoting D′3 = D′1D
′′
1/π +D′2,

we get the initialization.
Iteration. Let d > 3. We assume that w∗d1 (λ) 6 D′3 for all λ ∈ R. Then for λ ∈ R,

w
∗(d+1)
1 (λ) =

∫
w∗d1 (λ− ρ)w1(ρ)dρ 6 D′3

∫
w1(ρ)dρ = D′3 .

Thus we get the result for w∗(d+1).
Finally, we have wd(λ) = dw∗d1 (d · λ) 6 dD′3, thus we get (ii) with constant Dd = dD′3. �

Appendix B. A rescaling lemma for orthogonal polynomials

Lemma B.1. Let σ be a measure on R, π0, . . . , πT−1 the corresponding orthonormal polynomials
and

at+1πt+1(λ) = (λ− bt)πt(λ)− atπt−1(λ) (B.1)
their recurrence formula (see Definition 4.2 and Theorem 4.4).
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Let α be a positive real, ϕ : λ 7→ αλ a linear function and σ̃ be the image measure of σ by ϕ
(which means that for all measurable set A, σ̃(A) = σ(ϕ−1(A))). Again, denote π̃0, . . . , π̃T−1 the
orthonormal polynomials corresponding to σ̃ and

ãt+1π̃t+1(λ̃) = (λ̃− b̃t)π̃t(λ̃)− ãtπ̃t−1(λ̃)

the recursion formula. Then:

π̃t(λ̃) = πt(λ̃/α) , ãt = αat , b̃t = αbt .

Proof. By change of variable,∫
πt

(
λ̃

α

)
πs

(
λ̃

α

)
dσ̃(λ̃) =

∫
πt

(
ϕ(λ)

α

)
πs

(
ϕ(λ)

α

)
dσ(λ) =

∫
πt(λ)πs(λ)dσ(λ) = 1{s=t} ,

and πt(λ̃/α) has positive leading coefficient thus by uniqueness of the orthonormal polynomials,
π̃t(λ̃) = πt(λ̃/α). The recurrence relation for π̃t follows by evaluating the recurrence relation (B.1)
for πt in λ̃/α. �
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