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ABSTRACT

Context. Future large-scale surveys, such as the ESA Euclid mission, will produce a large set of galaxy redshifts (≥106) that will
require fully automated data-processing pipelines to analyze the data, extract crucial information and ensure that all requirements are
met. A fundamental element in these pipelines is to associate to each galaxy redshift measurement a quality, or reliability, estimate.
Aims. In this work, we introduce a new approach to automate the spectroscopic redshift reliability assessment based on machine
learning (ML) and characteristics of the redshift probability density function.
Methods. We propose to rephrase the spectroscopic redshift estimation into a Bayesian framework, in order to incorporate all sources
of information and uncertainties related to the redshift estimation process and produce a redshift posterior probability density function
(PDF). To automate the assessment of a reliability flag, we exploit key features in the redshift posterior PDF and machine learning
algorithms.
Results. As a working example, public data from the VIMOS VLT Deep Survey is exploited to present and test this new methodology.
We first tried to reproduce the existing reliability flags using supervised classification in order to describe different types of redshift
PDFs, but due to the subjective definition of these flags (classification accuracy ∼58%), we soon opted for a new homogeneous
partitioning of the data into distinct clusters via unsupervised classification. After assessing the accuracy of the new clusters via
resubstitution and test predictions (classification accuracy ∼98%), we projected unlabeled data from preliminary mock simulations
for the Euclid space mission into this mapping to predict their redshift reliability labels.
Conclusions. Through the development of a methodology in which a system can build its own experience to assess the quality of a
parameter, we are able to set a preliminary basis of an automated reliability assessment for spectroscopic redshift measurements. This
newly-defined method is very promising for next-generation large spectroscopic surveys from the ground and in space, such as Euclid
and WFIRST.
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1. Introduction

Next-generation experiments in Cosmology face the formidable
challenge of understanding dark matter (DM) and dark en-
ergy (DE), two major components seemingly dominating the
Universe content and evolution.

To improve our understanding of the Universe evolution his-
tory, the investigation of the distribution of galaxies over large
volumes of the Universe at different cosmic times now consti-
tutes a key requirement for future observational programs such
as Euclid (Laureijs et al. 2011), WFIRST (Green et al. 2012),
and LSST (Ivezic et al. 2008) that will exploit cosmological
probes such as Weak Lensing (WL) and Galaxy Clustering

? A table of the reclassified VVDS redshifts and relia-
bility is only available at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A53

(GC: baryon acoustic oscillations – BAO, redshift space dis-
tortions – RSD) to define the role of the dark components
(Albrecht et al. 2006).

In GC, the detection of the BAOs at the sound horizon
scale (rs ≈ 105 h−1 Mpc) is used to investigate the role of
DE in the evolution of the expansion through measurements
of the Hubble parameter H(z) and the comoving angular dis-
tances DA(z) (Beutler et al. 2011), while the detection of the dis-
torsions in the redshift space is used to probe the structures’
growth and DE models by measuring the parameter combina-
tion gθ = f (z)σ8(z), where f (z) and σ8 refer to the growth rate
and the rms amplitude (in a sphere of radius 8 h−1 Mpc) of the
density fluctuations (Beutler et al. 2012), respectively. The WL
is used to map the matter distribution (dark + visible) in the Uni-
verse and constrain the expansion history through precise mea-
surements of shapes and distances of lensed galaxies (Huterer
2002; Linder & Jenkins 2003).
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In Cosmology, the redshift z is a fundamental quantity, which
links distances and cosmic time through the use of a cosmologi-
cal model. Accurate redshift measurements are at the core of all
modern experiments aiming at precision cosmology for a better
understanding of the Universe content, focused on the dominant
DM and DE components, as the cosmological probes GC and
WL that require precise redshift measurements to build robust
statistical models to constrain the DE equation-of-state and in-
vestigate the content of the dark Universe (Abdalla et al. 2008;
Wang et al. 2010). In particular, 3D galaxy distribution maps
from GC measurements entail precise measurements of spectro-
scopic redshifts, while cosmic shear measurements in WL re-
quire, along with high-quality imaging and photometry, the se-
lection of sources using redshift measurements for two reasons:
First, the galaxies in front of the lens are not affected by the grav-
itational lensing but they dilute the signal of the galaxy source in
the background, and second, the galaxies at the same redshift as
the lens contribute to the intrinsic alignment that disrupts the WL
measurements.

As part of the future large-scale experiments in Cosmology
designed to address the DE and DM origin, the Euclid mis-
sion is a M-Class ESA mission from the ESA Cosmic Vision
program that aims to probe the expansion and the LSS growth
histories in the Universe. Through the combination of cosmo-
logical probes (BAO, RSD, WL, clusters of galaxies, super-
novae – SNe), Euclid will achieve an unprecedented level of
accuracy and control of systematic effects to derive precise mea-
surements of the Hubble parameter H(z), the linear growth rate
of structures γ, the DE equation-of-state parameters (ωp, ωa), the
non-Gaussianity amplitude fNL and the rms fluctuation of the
matter over-density σ8, among other cosmological parameters
(Laureijs et al. 2011).

By covering a large fraction of the sky (Wide: ∼15 000 deg2,
Deep: a total of 40 deg2), the mission will perform a photo-
metric survey in the visible and three near-infrared bands to
measure the weak gravitational lensing by imaging approxi-
mately 1.5 billion galaxies with a photometric redshift accuracy
of σz/(1 + z) ≤ 0.05, in addition to a spectroscopic slitless sur-
vey of approximately 25 million galaxies with a redshift accu-
racy of σz/(1 + z) ≤ 0.001 in order to derive precise measure-
ments of the galaxy power spectrum (Laureijs et al. 2011). The
wide-field Euclid survey will be particularly challenging because
of the large-size sample of faint distant galaxies, for which the
spectroscopic redshifts need to be automatically measured, and
their corresponding reliability evaluated.

For large-scale surveys such as Euclid, the sheer amount
of data requires the development of robust and fully automated
data-processing pipelines to analyze the data, extract useful
information (e.g., redshift) and ensure that all requirements are
met.

Distinct approaches to estimate redshifts have been used in
a broad range of galaxy surveys. Photometric redshifts zphot are
estimated using spectral energy distribution (SED) template fit-
ting (e.g., Hyper-z Bolzonella et al. 2000; Le Phare Ilbert et al.
2006), classification with neural networks to produce a map-
ping between photometric observables and reference data (e.g.,
ANNz, Collister & Lahav 2004), or Bayesian inference to com-
pute a posterior zphot PDF with prior information from inte-
grated flux in filters, colour or magnitude: BPZ (Benitez 1999),
ZEBRA (Feldmann et al. 2006), EAZY (Brammer et al. 2008).
On the other hand, spectroscopic redshifts zspec are estimated
from the direct application of cross-correlation or chi-square-
fitting methods between the observed data and a reference set
of spectroscopic templates (Tonry & Davis 1979; Simkin 1974;

Schuecker 1993; Machado et al. 2013), or using spectral feature
detection (emission/absorption lines and continuum features in-
cluding spectral discontinuities in the UV-visible domain such as
the Lyman break or the Balmer and D4000A breaks) that can be
very powerful (Schuecker 1993). Some codes (EZ, Garilli et al.
2010) combine spectral lines detection with cross-correlation or
chi-square fitting to inject prior knowledge about more plausible
redshift solutions.

Despite their overall performances in redshift estimation,
most algorithms in use today still suffer from numerous model-
ing and computational deficiencies, as the major recurrent issues
with the zspec estimation algorithms remain the strong correlation
between reliable spectral feature detection and the quality of the
observed spectrum, the difficulty to define a representative set of
reference templates, and the use of a pre-generated redshift grid
Θz that might be beneficial for rapid and parallel processing but
could induce a “bias” regarding the redshift space to probe.

In galaxy surveys, a key issue often overlooked is the neces-
sary evaluation of the quality of a redshift measurement because
spectroscopic redshift measurement methods may be affected by
a number of known or unknown observational biases that may
produce some errors in the output redshift, ranging all the way
to a catastrophic measurement far from the real galaxy redshift.
Further, despite the general trend that consists in linking the re-
liability of a redshift measurement to the S/N of detected spec-
tral features, the noise in the data usually presents a strongly
non-linear dependency on the flux spectrum for various reasons
(e.g., the wavelength-dependency of the background flux), which
makes the definition of a precise redshift reliability criterion even
more difficult.

A number of previous faint galaxy surveys have adopted red-
shift reliability assessments, either by using empirical thresh-
olds applied to a single metric operator (Baldry et al. 2014;
Cool et al. 2013), or by combining independent reliability as-
sessments performed by more than two experienced astronomers
in order to smooth-out the observer bias of each individ-
ual and produce a remarkably repetitive reliability assessment
(Le Fèvre et al. 2013, 2015; Garilli et al. 2014; Guzzo et al.
2014). All methods imply subjective information, either by se-
lecting “adequate” thresholds from a constructed sample or
by involving a human operator within the (visual) verifica-
tion process that becomes largely unfeasible for samples over
105 galaxies. For massive spectroscopic surveys such as Euclid
or WFIRST, there is a critical need for a fully automated reliabil-
ity flag definition that will adapt to the observed data and display
a greater use of all available information.

In this paper, we propose to exploit a Bayesian frame-
work for the spectroscopic redshift estimation to incorporate all
sources of information and uncertainties of the estimation pro-
cess (prior, data-model hypothesis), and produce a full zspec pos-
terior PDF, that will be the starting point of our automated relia-
bility flag definition.

To test the proposed methodology of assessing the redshift
reliability, we use a new redshift estimation software called al-
gorithms for massive automatic Z evaluation and determination
(AMAZED) developed as part of the Processing function (PF-
SPE) in charge of the 1D spectroscopic data-processing pipeline
of the Euclid space mission.

The paper is organized as follows. After introducing the
subject, we present the data used in this study in Sect. 2,
and in Sect. 3 we describe the Bayesian formalism of the
spectroscopic redshift estimation. Section 4 is focused on the
proposed automated reliability assessment method, where we
first describe the principle, then present preliminary results of
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Fig. 1. VVDS-Deep galaxy spectra with
identifiable spectral features at known red-
shifts: emission/absorption line, D4000A
break.

supervised and unsupervised classification techniques using the
public database of the VIMOS VLT Deep Survey (VVDS,
Le Fèvre et al. 2013). In Sect. 5, we present our results of red-
shift reliability predictions using preliminary simulations of Eu-
clid spectra covering a wavelength range [1.25−1.85] µm, and
we finally conclude in Sect. 6.

2. Reference data

To test the proposed method of assessing a redshift reliability, we
use public data from the VIMOS VLT Deep Survey1 (VVDS) in
this study. The large VIMOS VLT Deep Survey (Le Fèvre et al.
2013) is a combination of three i-band magnitude limited sur-
veys: Wide (17.5 ≤ iAB ≤ 22.5; 8.6 deg2), Deep (17.5 ≤ iAB ≤

24; 0.6 deg2) and Ultra-Deep (23 ≤ iAB ≤ 24.75; 512 arcmin2),
that produced a total of 35 526 spectroscopic galaxy redshifts
between 0 and 6.7 (22 434 in Wide, 12 051 in Deep and 1041 in
UDeep) with a spectral resolution (R ' 230, dispersion 7.14A)
approaching that of the upcoming Euclid mission (R ≥ 380 for a
0.5′′object, dispersion 13.4A) as illustrated in Fig. 1.

The VIMOS Interactive Pipeline and Graphical Interface
(VIPGI) data-processing software included background sub-
traction, decontamination, filtering and extraction of 1D spec-
tra from 2D spectral images using sophisticated packages
(Scodeggio et al. 2005). The VIMOS 1D spectroscopic data was
processed using the EZ software (Garilli et al. 2010) to com-
pute spectroscopic redshift measurements and reliability flags
by combining reliability assessments (visual checks) of at least
two experienced astronomers (Le Fèvre et al. 2013). The VVDS
project provides a reference sample with a range of redshifts and
reliability flags well-suited for testing our methods in a broad
parameter space.

1 http://cesam.lam.fr/vvds/

To evaluate our automated redshift reliability assessment
method (Sect. 4), we use the VVDS data in two stages. First we
exploit the existing redshift reliability flags of the VVDS data
as a reference to assess the performances of supervised classi-
fication algorithms in predicting a similar redshift reliability la-
bel. Then, after partitioning the VVDS data into distinct clusters
of redshift reliability flags using unsupervised classification, we
compare these results with the original VVDS redshift flags to
evaluate the performances of the proposed methodology and un-
veil possible discrepancies.

3. Spectroscopic redshift estimation

3.1. Description

To derive a redshift, the widely used template-based algorithms
rely on the hypothesis that “there exists a reference template
spectrum that is a true (and sufficient) representation of the ob-
served data”, implying that the observed spectrum can be de-
scribed by at least one spectroscopic template of the reference
library.

Using a set of rest-frame templates and a fixed grid of red-
shift candidates in Θz, for each pair (redshift z, template Mt) we
compute the Least-Square metric:

χ2(z, t) =
∑
i∈Λ

σi
−2(di − ati,z)2, z ∈ Θz, (1)

or the cross-correlation:

xc(z, t) =
1

σd σt,z

∑
i∈Λ

(di − µd)(ti,z − µt,z)σi
−2, z ∈ Θz, (2)

where di and σi refer respectively to the observed flux and noise
spectra at pixel i, ti,z is the redshifted template interpolated at
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pixel i, and (µt,z; σt,z) and (µd; σd) are the mean and standard-
deviation of the redshifted template and the observed spectrum
respectively. The wavelength range in use Λ contains n data-
points, Θz refers to the redshift space to probe, and a is a scale
factor referring to the amplitude of the redshifted template that
is usually computed at each trial from (weighted) least-square
estimation.

The estimated zspec results from a joint-estimation of the pair
(z,Mt) and is performed by optimizing a chosen metric: maxi-
mization of the cross-correlation function or minimization of the
chi-square operator.

In general, the accuracy of the template-based methods is
tied to the representativeness and wavelength coverage of the
spectroscopic templates Mt in use.

3.2. Bayesian inference

Assuming a linear and Gaussian data model with i.i.d. (indepen-
dent and identically distributed) residuals {Ni}i∈Λ, the probability
of observing the spectrum {Di}i∈Λ, at a redshift z given a template
model Mt and any additional information I is described by the
likelihood function L(z,Mt) (cf. Appendix A):

L(z,Mt) = p(D|z,Mt, I) =
∏
i∈Λ

p(Ni|z,Mt, I)

=
∏

1≤i≤n

(
√

2πσi)
−1

exp−
1
2 χ

2(z,t), (3)

`(z,Mt) = log
(
L(z,Mt)

)
= −

1
2
χ2(z, t) −

N
2

log (2π) −
∑
i∈Λ

log (σi). (4)

Via the Bayes rule, the joint posterior distribution is:

p(z,Mt |D, I) =
p(D|z,Mt, I) × π(z, t)

p(D|I)
, (5)

log
(
p(z,Mt |D, I)

)
= −

1
2
χ2(z, t) + log (π(z, t))

− log
("

z,Mt

π(z, t) exp−
1
2 χ

2(z,t) dz dMt

)
(6)

where π(z, t) is the joint-prior distribution of the pair (z,Mt).
The 1D posterior distribution is obtained by marginalizing

over Mt:

p(z|D, I) =

∫
Mt

p(z,Mt |D, I) dMt. (7)

The “best” redshift ẑspec is the MAP (Maximum-A-Posteriori)
estimate:

zMAP = argmaxz p(z|D, I). (8)

This Bayesian formalism was not clearly stated for the spectro-
scopic redshift estimation. As for now, a posterior zspec PDF can
be computed and prior information, if available, can easily be
integrated.

Furthermore if the hypothesis of the datamodel is readjusted,
the equations can be rapidly and accurately revised in the likeli-
hood expression (cf. Appendix A).

The template library used in this study includes a set of
9 continuum spectra of spiral, elliptical, starburst, and bulge
galaxies, supplemented with 12 templates displaying different
shapes and level for the continuum and the emission lines that

were built by the VVDS team to take into account the diversity
of galaxy spectra observed during the survey.

The spectroscopic templates that had only optical data were
extended in the UV down to 912A by exploiting the closest tem-
plates with UV data, and below 912A by using nul flux spectra.
In the infrared, a blackbody continuum was used to extrapolate
the templates up to 20 000A.

This large wavelength coverage ensures that the intersection
between the observed spectra and the templates is verified at
each redshift trial.

3.3. Numerical computation

In the Bayesian inference, if our state of knowledge about a cer-
tain quantity θ is vague, a non-informative prior, such as the flat
prior, is usually computed.∫

∆θ

p(θ|data) dθ = 1. (9)

Using a flat prior for redshift estimation implies that all redshifts
and all templates are viewed as equiprobable solutions. The es-
timation algorithm will explore the full template library and the
entire redshift grid and compute a (marginalized) posterior red-
shift PDF as displayed in Fig. 2.

If extra information about the pair (z,Mt) is available, the
joint prior will be more informative as it will display a refined
structure in the (z,Mt) space. For example, to estimate photo-
metric redshifts, integrated flux in filters, colour, or magnitude
can be used as priors to efficiently probe the redshift space. In
Benitez (1999), the joint-prior p(z,T |m0) provides additional in-
formation about the most eligible spectral objects, T, with a
magnitude, m0, that could be observed at certain redshifts, z.
However, for spectroscopic redshift estimation, there is no clear
definition of a (data-independent) prior, a choice justified by the
fact that spectroscopic data is more informative than photometry.

4. Reliability assessment

As the size of massive surveys in astronomy continues to expand,
assessing redshifts’ reliability becomes increasingly challeng-
ing. The need for fully automated reliability assessment methods
is now part of the requirements for future surveys, and is justified
by the fact that automation provides predictable and consistent
performances while the behavior of a human operator remains
unpredictable and often inconsistent and therefore can require
several independent observers to smooth out personal biases.

Moreover, the need for automation comes from the orders-
of-magnitude increase in the total number of spectra that need
to be processed. Visual examination of all spectra in a survey
(2dF, DEEP2, VVDS, VIPERS, zCOSMOS, VUDS, PRIMUS,
etc.) is extremely difficult for samples containing 105 objects
or more, and will be completely impossible for next-generation
spectroscopy surveys with more than 50 × 106 objects.

In general, existing approaches to automate the reliability as-
sessment as well as the associated quality control in most en-
gineering applications, such as the intrusion detection systems
(IDS) that aim to evaluate the traffic quality by identifying any
malicious activity or policy violation within a network, include:

1. Anomaly detection systems (ADS), where a component is
labeled as an outlier if it deviates from an expected behavior
using a set of thresholds or reference data (Chandola et al.
2009; Patcha & Park 2007). The ADS usually proceed by
monitoring the system activity and detecting any sort of vio-
lation based on specific criteria or invariable standards.
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Fig. 2. Posterior redshift PDF of two
VVDS-Deep spectra. Top: a unimodal zPDF
characterizes a very reliable redshift mea-
surement (a single peak at z=0.879). Bot-
tom: a multimodal zPDF refers to multiple
redshift solutions (multiple peaks) possibly
with similar probabilities associated to a di-
minished confidence level of the MAP esti-
mate at z = 1.159. The quantity δΘz refers
to the fixed step of the redshift grid used to
compute the zPDFs.

2. Supervised classification that exploits prior knowledge of a
referenced training set to predict a label (Shahid et al. 2014).

Both methods deliver great performances in general, but still
have some limitations: irrelevant thresholds to new data for the
ADS, and poor representativity of the training set in classifica-
tion, and so on.

To automate the redshift reliability assessment, reproducing
the ADS reasoning scheme by setting empirical thresholds might
not be the best option when dealing with massive surveys. How-
ever, the use of machine learning (ML) techniques can still be a
viable option but first requires the search for a valid model and a
coherent set of entries.

In this work, the method to automate the redshift reliability
flag definition stems from an attempt to address questions about
the meaning of a “reliable” redshift:

1. What guides an experienced astronomer to declare an esti-
mated redshift as a plausible solution; apart from visual in-
spection of the data and its fitted template?

2. Is there some disregarded information within the
z-estimation process that we can further exploit?

3. How can a system “perceive” the same information as a hu-
man does?

Spectroscopic redshift measurements are obtained from χ2 mini-
mization or maximization of the posterior probability p(z|D, I) in
Bayesian inference (cf. Sect. 3), and usually no further analysis
of the computed functions is conducted afterwards. When com-
puting the posterior redshift PDF, broadly two types of probabil-
ity density function can be observed (cf. Fig. 2): a unimodal PDF
versus a multimodal distribution. In both cases, a pipeline will
provide a redshift estimation zMAP but the estimated redshifts
from these two different types of PDFs definitely do not show
the same level of reliability. In fact, the multimodal PDF refers
to numerous redshift candidates possibly with similar probabil-
ities, while a strong unimodal PDF with a prominent peak and
low dispersion depicts a more “reliable” redshift estimation of
the data.

We exploit such characteristics of the posterior PDF to build
a discretized descriptor space that will be the entry point for ML
techniques to predict a reliability label. Our approach aims to
build the “experience” of an automated system in order to assess
the quality of a redshift measurement from the zPDF.

4.1. Description

In machine learning, the typical entries of the model are a re-
sponse vector Y and a feature matrix X:

X =


x1

...

xM

 =

d1 dP


s1 x11 · · · x1P

...
. . .

...

sM xM1 · · · xMP

; Y =


y1

...

yM

 , (10)

where x j = (x j,1 . . . x j,P) is the P-dimensional feature vector
of the jth observational data (s j) j∈{1,...M}, and y j is its response
variable.

If the response vector Y of the model is unknown, the pre-
diction of a label y j using only the distribution of X in the
feature space refers to clustering (unsupervised classification).
Otherwise, we talk about supervised classification whose goal
is to define a mapping between the observable entries X and
their associated response variables Y through a dual training/test
scheme.

In ML, the design of the entry model is decisive. What could
be the optimal selection of informative and independent features
to accurately describe the zPDF? Can a single operator, such as
the integral under the redshift solution zMAP or the difference
in probability between the first two peaks (modes), be a unique
and sufficient descriptor? No definite answers can be given, since
this approach of “quantifying the spectroscopic redshift reliabil-
ity” from the zPDF is new. Each set of selected features will
define a different descriptor space that a classifier could separate
differently.
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In this study, our selected ML entries are redshift reliability
flags (Y) and descriptors of the zPDFs (X), where the feature
vector x j associated to the observation s j = {D} consists of a list
of eight tailored descriptors of the zPDF:

– The quantity P(zMAP|D, I) ≈ p(zMAP|D, I)× δΘz , where δΘz is
the fixed step of the redshift grid.

– The number of significant modes in the PDF. The “signif-
icance” of a mode is determined by partitioning the set of
detected peaks of the PDF into two categories (strong/weak)
based on their prominence and height in order to avoid in-
cluding the extremely-low density peaks (10−100 usually)
that result from the conversion of logPDFs into a linear scale.

– The difference in probability of the first two best redshift so-
lutions (zMAP, z2): P(zMAP|D, I) − P(z2|D, I).

– The dispersion σ = [
∫

(z − z̄)2 p(z)dz]1/2, with z̄ =
∫

zp(z)dz.
– The cumulative probability in the region R∗2:[

zMAP ± δ
]

where the parameter δ is chosen equal to 0.001.
– The characteristics of the CR∗(restricted version of the cred-

ibility region with 95% in probability): number of z candi-
dates, width ∆z, cumulative probability.
In Bayesian Inference, the CR is analogous to the frequentist
CI (confidence interval).
For a 100(1 − α)% level of credibility, the CR is defined as:∫

CR p(z|D, I)dz = 1 − α.
The restricted CR∗ used sets (optional) maximal bounds to
the search region around zMAP to accelerate the operation.

Displays of distinct zPDFs are presented in Figs. 3–6, where
the descriptors listed above highlight interesting features of the
zPDFs. For example, it is possible to obtain a similar dispersion
for two zPDFs but a different number of significant redshift
modes (Fig. 3), or the other way around: multimodal zPDFs
with a comparable number of redshift modes with different
amplitudes, and a different dispersion (cf. Fig. 4) or difference
in probability between the first two best redshift solutions (cf.
Fig. 5). Also, unimodal zPDFs can vary as they can display
wider or narrower restricted CR (cf. Fig. 6) or different values
of the dispersion σ.

Using the eight listed key descriptors, we estimate that the
main features of the zPDF can be inferred. This design is not
immutable. Supplementing the feature matrix with additional in-
formation about the observed spectra, s, or designing a different
feature selection can also be explored.

4.2. Classification

4.2.1. Model

The ML entries in this study are obtained from a collection
of zPDFs computed from M spectra of the VVDS to which a
reliability label (yi)i∈{1,...M} is known to belong to one of the flags
(Le Fèvre et al. 2005, 2013):

– flag 1, “Unreliable redshift”;
– flag 2, “Reliable redshift”;
– flag 9, “Reliable redshift, detection of a single emission

line”;
– flag 3, “Very reliable redshift with strong spectral features”;
– flag 4, “Very reliable redshift with obvious spectral features”.

The redshift reliability flags in the VVDS are determined by con-
fronting independent redshift measurements performed by sev-
eral observers on the same spectra.

By comparing the redshift measurements with internal du-
plicated observations or with published redshifts from different
surveys, the VVDS spectroscopic redshift flags have been em-
pirically paired with a probability for “a redshift to be correct”:
the VVDS redshift reliability flags {1, 2, 9, 3, 4} are associated
with probabilities of [50–75]%, [75–85]%, ∼80%, [95–100]%,
and 100% , respectively, that the measured redshifts are correct.

Using supervised classification, the objective is to predict
similar redshift reliability flags for new unlabeled data. However,
since the reproducibility of the VVDS redshift reliability flags
is difficult because of their subjective definition and the confu-
sion between “quality of a redshift” and “specific information
about the data”, we first decided to regroup the VVDS flags, as
following:

– “Class 0”, consisting of the “VVDS flags 1” to depict the
uncertain redshifts.

– “Class +1”, consisting of the “VVDS flags 2–9” to depict the
reliable redshifts.

– “Class +2”, consisting of the “VVDS flags 3–4” to depict the
very reliable redshifts.

A three-class classification problem is then set. For multi-class
problems, the error-correcting-output-codes (ECOC), as intro-
duced in Dietterich & Bakiri (1995), are adapted for several
learners, such as support vector machines (SVM), Tree tem-
plates, and Ensemble classifiers. A description of the ECOC is
provided in Appendix B.

4.2.2. Preliminary tests

Classification tests are conducted using a VVDS subset of 24519
spectra with a constraint on the redshift accuracy |zMAP−zref |/(1+
zref) ≤ 10−3 for the VVDS flags {2, 9, 3, 4}. Our main objective
is to build a descriptor space from a diverse set of zPDFs and
evaluate the ability of the system to predict a redshift reliability
label.

The dataset is decomposed into a “Training set” and a “Test
set” (cf. Tables 1–3).

Different classifiers are tested in this study to carry out a
careful analysis and avoid blindly trusting the results in cases of
overfitting. We assess that different techniques should provide a
different but not very disparate level of performance. Three clas-
sifiers are selected: the SVMs with linear and Gaussian kernels,
an ensemble of bagging trees (referred to simply as TreeBagger)
and a GentleBoost ensemble of decision trees. A general descrip-
tion of the classifiers and the multi-class measures is provided in
Appendices C and D.

To evaluate the performance of a classifier, two tests are
conducted:

– test 1: resubstitution;
– test 2: test prediction.

In the resubstitution, the “Training set” is reused as the “Test
set” during the prediction phase. Extremely low prediction er-
rors are expected (.1% classification error rate): if a bijective
relation exists between the observables Xtrain and the response
vector Ytrain, the generated mapping from the training phase is
supposedly accurate. The predicted labels Ypred in resubstitution
tests are therefore expected to resemble the true labels Ytrain with
high accuracy, otherwise a clear mismatch between the features
matrix X and the response vector Y of the ML model is reported.
In such a case, the predictions of the second test (“Test pre-
diction”) would be baseless, since the mapping produced from
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Fig. 3. Display of two zPDFs with multiples
modes and a similar dispersion.

Fig. 4. Display of two zPDFs with multiples
modes and a different dispersion.

the training phase is truly unusable. The overall performances
reported in Tables F.9 and F.10 in addition to the confusion ma-
trices (cf. Tables F.1 to F.8) representing the fraction of the pre-
dicted labels versus the true classes in Ytest, support this conclu-
sion. Most classifiers seem unable to predict the true labels in re-
substitution: non-zero off-diagonal elements in the matrices and
a high error-rate, implying that a correct mapping between the
feature matrix and the existing VVDS redshift reliability flags
cannot be produced.

We would like to point out the singular case of the Tree-
Bagger that seems to generate a good mapping in resubstitu-
tion (error rate 0.08% on average) in comparison with the SVMs
that are commonly-known as robust classifiers (error rate >10%
in average). It seems reasonable to consider that the observed
dissimilarity between the different classifiers in resubstitution is
due to the sensitivity of the bagging trees to several parameters
as the number of learners or the trees depth that can coerce the

training into focusing on irregular patterns and establish an er-
roneous mapping). As anticipated from the resubstitution results
(high error rate), we also find that the test predictions present a
significant error rate (∼40% on average).

To summarize, these first results of supervised classification
show that trying to match the subjective VVDS flags with de-
scriptors of the zPDF gives poor results.

The entries and hypotheses for ML have to be reexamined.

4.3. Clustering and fuzzy classification

From the previous results, doubts can be raised regarding the en-
gineered zPDF feature space derived from a collection of 24519
VVDS spectra. However the selected set of descriptors seems
to be a viable description that portrays an existing but hidden
structure of the feature space.
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Fig. 5. Display of two zPDFs with multiples
modes and different characteristics of the two
best z solutions.

Fig. 6. Display of two zPDFs with a single
mode and a different width of CR∗.

Table 1. Description of the VVDS dataset used in this study.

Type z reliability flags Counts z range

Primary
objects

“Unreliable” 1 6768 0.0070–5.2280

“Reliable” 9 632 0.0195–4.9285

“Reliable” 2 4743 0.0017–4.4345

“Very reliable” 3 6455 0.0266–4.5400

“Very reliable” 4 5921 0.0213–3.8352

Clustering, known as unsupervised classification, is used in
this Section to unveil the intricate structure and bring into light
some properties of the data in the descriptor space.

4.3.1. Partitioning the descriptor space
In unsupervised classification, prior knowledge about class
membership is unavailable. Partitioning the descriptor space into
K manifolds is realized by applying separation rules only to the
feature matrix X.
By representing the zPDFs feature matrix X in 3D (cf. Fig. 7), a
simple bi-partitioning is introduced:

– Group 1: high dispersion and low P(zMAP|D, I) referring to
multimodal PDFs or platykurtic unimodal PDFs.

– Group 2: medium dispersion and high P(zMAP|D, I) depicting
strongly peaked unimodal PDFs.

In each category, we choose to reapply a bi-partitioning to
decompose the data into a dichotomized pattern (cf. Fig. 8).
This partitioning strategy, applied to the entire descriptor com-
ponents and not only to the two descriptor components as in
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Fig. 7. 3D representation of the feature matrix X. Broadly, two categories are noticeable. The first group refers to the zPDFs with high dispersion,
large zMAP peak and low probability P(zMAP|D, I) that can be assimilated to multimodal PDFs or platykurtic unimodal PDFs. The second group
characterizes the zPDFs with medium-to-low dispersion, narrow zMAP peak and high P(zMAP|D, I) that depict strongly peaked unimodal PDFs.

Fig. 8. Clustering the zPDFs features X in a dichotomized pattern. The clustering strategy exploits the classic FCM algorithm at each step to
decompose the input data into two sub-classes using the entire set of descriptors. The final categories {Ck}k∈{1,2,3,4,5} are displayed in distinct colors.

the displays, alongside with the number of clusters, the feature
selection and the ML algorithms tested in this work as a nov-
elty to automate the redshift reliability, are not immutable and

can be readjusted according to the data in hand. Further evalu-
ations will be conducted on these aspects of ML to develop a
robust and precise automated assessment of redshift reliability.
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Fig. 9. Representative zPDFs for each clusters. Display of representative zPDFs in each cluster obtained from clustering. The shift in the confidence
level in the {Ck}k∈{1,2,3,4,5} clusters is apparent in the type of the zPDF: from multimodal zPDFs to unimodal zPDFs with narrower zMAP peaks, the
confidence level ranges from “extremely unreliable redshift estimate” (C1) to “very certain redshift estimate” (C5).

Fig. 10. Clusters repartition in a selected 3D space. The five zReliabil-
ity clusters described in Sect. 4.3.1 are associated to different types of
redshift PDFs, where the two extreme categories C1 and C5, respec-
tively, describe highly dispersed multimodal zPDFs and peaked uni-
modal zPDFs.

Table 2. Training set (total of 16346 VVDS spectra).

Label Counts %

T
r
a
in
se
t

“0” 4512 27.60

“+1” 3583 21.92

“+2” 8251 50.48

Table 3. Test set (total of 8173 VVDS spectra).

Label Counts %

T
e
st
se
t

“ 0 ” 2256 27.60

“+1” 1792 21.93

“+2” 4125 50.47

Using the classic clustering algorithm FCM (Fuzzy
C-Means) to minimize the intraclass variance (cf. Appendix E),
the final groups identify distinct partitions in the feature space
(cf. Figs. 9 to 11). In this study, the selection of the number
of clusters is an empirical process based on the analysis of the
intermediate partitions and testing different configurations. We
assess that the final architecture is a viable solution amongst
others.
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Fig. 11. Distribution of the probability value P(zMAP|D, I) within the five partitions. The distribution of the probability values (component of the
descriptor space) P(zMAP|D, I) show distinct properties of the clusters. The five zReliability clusters (cf. Sect. 4.3.1) are associated with different
categories of redshift PDFs.

– “Cluster C1”: highly dispersed PDFs with multiple
equiprobable modes, P(zMAP) ∼ 0.028 ± 0.023.

– “Cluster C2”: less dispersed PDFs, with few modes and low
probabilities P(zMAP) ∼ 0.087 ± 0.033.

– “Cluster C3”: low σ, intermediate probabilities P(zMAP) ∼
0.166 ± 0.035.

– “Cluster C4”: unimodal PDFs with low dispersion, higher
probabilities P(zMAP) ∼ 0.290 ± 0.059.

– “Cluster C5”: strong unimodal PDFs with extremely low
dispersion, better probabilities P(zMAP) ∼ 0.618 ± 0.204.

The coordinates of the clusters’ centroids in the descriptor space
are reported in Table 4.

Class {Ck} centroid gk = 1
Mk

∑
y j∈Ck

x j

Class {Ck} variance Vk = 1
Mk

∑
y j∈Ck

(x j − gk)>(x j − gk),
(11)

where Mk is the number of elements in cluster Ck.
Tables 5 and 6 report the intraclass dispersion

√
W and the

interclass dispersion
√

B that characterize the newly defined
clusters:

Interclass variance B = 1
M

∑
k Mk(gk − g)>(gk − g)

Intraclass variance W = 1
M

∑
k MkVk,

(12)

with the total variance:

V =
1
N

M∑
j=1

(x j − g)>(x j − g) = B + W, (13)

where g is the global centroid and M is the full number of ele-
ments in the descriptor space.

The variance tables show that the intraclass variance, W,
is generally small in comparison to the interclass variance, B,
except for two descriptors (the dispersion and the number of
modes). This results from the fact that the cluster C1 allows
wider variations for these two components. Since the class C1
refers by definition to multimodal zPDFs associated to very un-
reliable redshift measurement, the results remain coherent.

Given the possibility that the clustering results might be un-
reliable due to inherent computational limitations or an incor-
rect modeling of the descriptor space, the full content of each

partition (Ck)k∈{1,2,3,4,5} is investigated. We find that, overall, the
zPDFs within each class, Ck , verify the properties listed above.
The newly defined partitions genuinely describe a homogeneous
representation of the data in the feature space.

4.3.2. Cluster analysis

In this section, we compare the initial VVDS redshift reliability
flags and the new clusters in order to point out peculiar cases of
misclassifications: unexplained discrepancies between the man-
ually attributed flags in the VVDS database and those resulting
from the unsupervised classification (cf. Sect. 4.3.1).

Two examples of misclassification are reported in
Figs. 12 and 13:

1. A misclassification of a “VVDS Flag 1: unreliable redshift
estimation” as C5 (unimodal zPDF and very reliable ẑspec) is
presented in Fig. 12. The misclassification is due to the mis-
match between the flux spectrum and its noise component,
where the latter seems very inadequate when considering the
good quality of the data. A problem regarding the generation
of the 1D data (flux & noise components) from the 2D→ 1D
extraction can be noted.

2. A different type of misclassification illustrated in Fig. 13,
where a “VVDS flag 9: secure redshift estimation with
an identifiable strong EL” is identified as C1 (for very
multimodal zPDFs and extremely unreliable ẑspec). This dis-
crepancy between the VVDS flag and the new label from
clustering could be ascribed to an imprecise computation of
the zPDF due to a lack of representative templates at the
given redshift, or a biased evaluation of a human operator.

To evaluate the misclassification rate for the entire VVDS dataset
used in this study, Tables 7 and 8 summarize the repartition of the
initial VVDS flags {1; 2; 9; 3; 4} within the predicted reliability
clusters.

We find that:

– The green cells represent the “expected” behavior: the cluster
C1 is mainly composed of the unreliable redshift “VVDS
flags 1” (∼86%), while the majority of the “VVDS flags 4”
are in C4/C5 (∼81%) and the “VVDS flags 3” are in C3/C4
(∼68%).

– The gray cells represent a “gray area”: the clustering pro-
vides homogeneous partitioning in comparison with the
VVDS flags, as it properly incorporates the full information
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Table 4. Coordinates of the clusters’ centroids in the descriptor space.

Selected Class {Ck} centroid

descriptors C1 C2 C3 C4 C5

Dispersion σ 0.524 0.049 0.005 0.002 5e-4

P(zMAP|D, I) 0.028 0.087 0.166 0.290 0.618

Card(z ∈ CR∗) 24.06 20.98 11.16 6.45 3.16

Width ∆z ∈ CR∗ 2.3e-3 2.0e-3 1.0e-3 5.5e-4 2.2e-4∑
i P(zi ∈ CR∗) 0.387 0.890 0.957 0.964 0.978∑

i P(zi ∈ R∗2) 0.364 0.884 0.998 1.0 1.0

Significant peaks 107.89 2.30 1.27 1.05 1.00

∆P(two “best” z) 0.013 0.049 0.130 0.274 0.743

Nb elements Mk 3156 6720 5677 4966 4030

Table 5. Intraclass dispersion in the descriptor space.

Selected Class {Ck} dispersion

descriptors C1 C2 C3 C4 C5

Dispersion σ 0.585 0.167 0.039 0.023 0.008

P(zMAP|D, I) 0.023 0.033 0.035 0.059 0.204

Card(z ∈ CR∗) 7.36 5.22 2.01 1.31 1.37

Width ∆z ∈ CR∗ 7.4e-4 5.2e-4 2.0e-4 1.3e-4 1.4e-4∑
i P(zi ∈ CR∗) 0.191 0.093 0.006 0.010 0.016∑

i P(zi ∈ R∗2) 0.175 0.107 0.006 0.003 0.001

Significant peaks 718.76 1.87 0.50 0.23 0.03

∆P(two “best” z) 0.030 0.045 0.063 0.071 0.245

Table 6. Class dispersions in the descriptor space.

Selected Variance V = B + W

descriptors
√

V
√

B
√

W

Dispersion σ 0.2851 0.1709 0.2282

P(zMAP|D, I) 0.2131 0.1929 0.0905

Card(z ∈ CR∗) 8.64 7.65 4.01

Width ∆z ∈ CR∗ 8.6e-4 7.7e-4 4.0e-4∑
i P(zi ∈ CR∗) 0.207 0.189 0.085∑

i P(zi ∈ R∗2) 0.223 0.207 0.084

Significant peaks 260.28 35.63 257.83

∆P(two “best” z) 0.271 0.247 0.112

from the input data (cf. observed flux and its associated noise
component).
We find that the “VVDS flags 2−9” in C4/C5 (∼20% each)
are associated with extremely bright objects with easily
identifiable spectral features that make the estimated red-
shifts very secure.
On the other hand, the “VVDS flags 4” predicted in C3
(∼15%) are associated to noisier spectra with scarce spec-
tral features in comparison with the “VVDS flags 4” in
C5. The redshift reliability level for these spectra is thereby
diminished.

Table 7. Repartition of the initial VVDS redshift reliability flags within
the predicted labels (in absolute values).

VVDS initial flags

F1 F9 F2 F3 F4 Total

C
lu
st
e
r
s

C1 2776 39 233 85 23 3156

C2 3023 252 2055 1169 221 6720

C3 657 212 1534 2345 899 5647

C4 241 104 750 2019 1852 4966

C5 71 25 171 837 2926 4030

Total 6768 632 4743 6455 5921 24 519

Table 8. Repartition of the initial VVDS redshift reliability flags within
the predicted labels (in percent).

VVDS initial flags

F1 F9 F2 F3 F4

C
lu
st
e
r
s

C1 41.0% 6.2% 4.9% 1.3% 0.4%

C2 44.7% 39.9% 43.3% 18.1% 3.7%

C3 9.7% 33.5% 32.3% 36.3% 15.2%

C4 3.6% 16.5% 15.8% 31.3% 31.3%

C5 1.0% 4.0% 3.6% 13.0% 49.4%

Similarly, the prediction of “VVDS flag 2” in C2 (∼43%) is
due to the degradation of data quality in comparison with the
“VVDS flags 2” located in C3.
The main reason behind these discrepancies lies in having
different observers conducting the redshift-quality checks, as
each person has their own understanding of a “redshift re-
liability” depending on their experience and knowledge of
objectively assessing whether a redshift is deemed a secure
estimation or not.

– The red cells are associated with peculiar cases of “abnor-
mal” zPDFs resulting from incorrect noise spectra and/or
human misclassification. In particular, the 71 cases listed
of “VVDS flag 1” in C5 result from a mismatch between
the flux and noise components; the noise component seems
extremely low considering the reduced data quality. Having
very low noise components contributes to reinforce that the
flux information depicts a real observation even when it is
not the case. We obtain, finally, extremely peaked zPDFs that
are predicted as C5.
For the 23 spectra of “VVDS flag 4” in C1, 13 cases are
related to highly dispersed multimodal zPDFs where a con-
fusion between the oxygen emission line [OII]3726A and Lyα
is reported: both emission lines are strong candidates which
gives at least two significant modes detected in the zPDF.
Also, the fact that the associated peaks are very distant in
the redshift space results in a high dispersion value, σ, of the
zPDF. The prediction in C1 is highly driven by these char-
acteristics. We also report four cases within these 23 spectra
that are associated to low S/N spectra: an important noise
component annihilates the confidence in the flux vector and
therefore produces highly multimodal zPDFs predicted in
C1. For the remaining six cases of “VVDS flag 4” in C1,
they result from an excessively-high noise component that
produces very degenerate zPDFs, also predicted in C1.
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Table 9. Training set (total of
16347 VVDS spectra).

Label Counts %

T
r
a
in
se
t

C1 2104 12.87

C2 4480 27.41

C3 3765 23.03

C4 3311 20.25

C5 2687 16.44

Table 10. Test set (total of 8172
VVDS spectra).

Label Counts %

T
e
st
se
t

C1 1052 12.87

C2 2240 27.41

C3 1882 23.03

C4 1655 20.25

C5 1343 16.43

The main result from the cluster analysis is that existing redshift
reliability flags cannot be reproduced with a 100% accuracy due
to their subjective definition, however a general trend can be re-
trieved as the majority of the VVDS initial redshift flags can
be described by one or two of the redshift reliability clusters
{Ck}k∈{1,2,3,4,5}.

4.3.3. Re-using the clusters for redshift reliability label
predictions

– Classification tests

The clustering results showed a great coherency between the au-
tomated definition of redshift reliability labels using the zPDF’s
features matrix and our understanding of “a redshift reliability”.
The idea presented in this Section consists in re-using the new
labels of the 24519 VVDS spectra as the response vector Ytrain
in supervised classification, to train a classifier to predict redshift
reliability labels for new unlabeled data. For this purpose, clas-
sification tests are performed using the Training and Test sets in
Tables 9 and 10. The resubstitution and test predictions are also
used to verify once again the accuracy of the partitioning and
objectively assess whether the FCM dichotomized strategy pro-
duced “random results” or a “a true description of the zPDFs” in
the descriptor space.

Similar performances are observed for several classifiers in
resubstitution, with extremely low off-diagonal elements in the
confusion matrices and an average per-class error rate .1% (cf.
Tables F.11 to F.14, and Table F.19) for all four classifiers, which
is a clear contrast with the results in Sect. 4.2. By having low
resubstitution errors, the mapping is deemed a reliable repro-
duction of the input data, and the prediction of Xtest can be
examined. We find in test predictions that the confusion matri-
ces for several classifiers offer a good predictive power (average
per-class error rate <2%), with the Linear SVM scoring slightly
lower results (cf. Tables F.15 to F.18, and Table F.20).
– Fuzzy approach

In ML, two main approaches exist: “hard” partitioning where an
object is said to belong to a unique class (binary membership),
and “soft/fuzzy” partitioning where the membership of an object
to a class is expressed in terms of a probability between 0 and 1
(Wahba 1998, 2002).

In the classification tests, “soft” partitioning is used to
compute the posterior class prediction probability in order
to evaluate the classifier predictive power. The class pos-
terior probabilities p(Label | {C1,C2,C3,C4,C5} ; Descriptors)
are obtained by minimizing the Kullback-Leibler divergence
(Hastie & Tibshirani 1998).

Fig. 12. Misclassification – case 1. A “VVDS flag 1: very unreliable
redshift” is predicted by the classifier in the new category “C5” for very
reliable redshifts. The spectrum displays very low noise components
that reinforce the confidence in the measured flux pixels. However the
extracted 1D spectrum appears distorted considering the initial 2D spec-
trum. The extraction 2D→ 1D induced a bias in the estimation of the
(falsely unimodal) zPDF.

In the test predictions on the evaluated VVDS dataset, we
find that most class prediction probabilities fall between 0.7 and
1.0 (bright colors in Fig. 14). However, we estimate that it could
be possible for new data to be assigned to a redshift reliabil-
ity label with a lower probability, meaning that the classifier
cannot project with certainty the unlabeled zPDF into the de-
scriptor space as a result of an incorrect PDF (numerical limi-
tations, degraded input spectra, etc.), or if it is located close to
the margins of two or more clusters. For such cases, a new class
of “Unidentified” objects has to be set apart from the labeled
clusters {Ck}k∈{1,2,3,4,5}. This particular point on the class predic-
tion using soft partitioning is addressed further in the following
section.

5. Tests on mock simulations for the Euclid space
mission

An end-to-end simulation pipeline is currently under develop-
ment for Euclid using catalogs of realistic input sources with
spectro-photometric information and an instrumental model for
the spectrophotometer NISP designed to perform slitless spec-
troscopy and imaging photometry in the near-infrared (NIR)
wavelength domain. For Euclid, observations of the same field
will be obtained from the combination of three or more different
roll angles (referring to different orientations of the grisms) in
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Fig. 13. Misclassification – case 2. A “VVDS flag 9: reliable redshift,
detection of a single emission line” is predicted by the classifier in
the new category “C1” for very unreliable redshifts. The spectrum dis-
plays a strong noise component that annihilates the confidence in the
measured flux pixels (especially the spectral emission line [OII]3726 at
7365A). Several redshift solutions are declared as plausible solutions (a
multimodal zPDF).

Table 11. Parameters of preliminary mock simulations for Euclid.

Pr
o
pe
r
t
ie
s

Redshift range [0.95; 1.40]

Magnitude JAB range [21.8; 24.5]

Extinction E(B − V) [0.00; 0.57]

log ( f Hα) [erg s−1cm−2] [–16.2; –14.1]

Si
m
u
la
to
r Source size in arcsec, sigma

0.10 (set S1)

0.50 (set S2)

Sky background in e−s−1pix−1 0.8 (set S1)

2.0 (set S2)

order to alleviate the superposition of overlapping spectra due to
the slitless mode.

Using the pixel simulator software TIPS (Zoubian et al.
2014), 1D spectra are obtained from 2D dispersed images af-
ter subtracting the sky background from the raw data and com-
bining co-added image stamps of different roll angles. In these
preliminary simulations for Euclid, a contamination model (zo-
diacal light, adjacent sources, etc.) is not included.

Table 11 reports the main characteristics of the simulated
data of Hα EL galaxies at redshifts in the range 0.95 ≤ z ≤ 1.40.

The Euclid simulations are not associated with a redshift re-
liability flag, and thereby are qualified as “unlabeled data” in this
work. To test the performance of the redshift reliability assess-

Table 12. zReliability predictions (in absolute values) of preliminary
mock simulations for Euclid.

Predictions in absolute values

Set “C1” “C2” “C3” “C4” “C5”

S1 3 61 313 835 1957

S2 383 1275 555 662 294

Table 13. zReliability predictions (in percent) of preliminary mock sim-
ulations for Euclid.

Predictions in %

Set “C1” “C2” “C3” “C4” “C5”

S1 0.09 1.92 9.88 26.35 61.75

S2 12.09 40.23 17.51 20.89 9.28

ment method, two sets of unlabeled spectra are used (S1, S2),
with a total of 3169 spectra per set.

By varying the source size and the sky background level, the
difference in data quality between the two datasets is noticeable:
Fig. 15 displays sample spectra for each dataset.

5.1. Reliability class predictions

The redshift PDFs of the Euclid simulated datasets are computed
using a constant prior in Θz (cf. Figs. 16 and 17), and projected
into the mapping (cf. Sect. 4.3) using soft partitioning to predict
redshift reliability labels. Class prediction results are reported in
Tables 12 and 13.

The system computes predominantly multimodal zPDFs
with high dispersion when the useful information cannot be re-
trieved from the data because of low S/N: the estimated redshifts
are deemed unreliable, which explains the high percentage of
S2 spectra in the clusters C1/C2 (∼52.3%). In contrast, for high
S/N data, the system identifies the majority of redshifts as very
reliable: high percentage of S1 spectra in the clusters C4/C5
(∼88.1%).

Moreover, the highlighted cells (in magenta) within the result
tables indicate two particular cases we anticipated to be null frac-
tions when considering the data quality: We denote on one hand
few spectra in the dataset S1 (high S/N) that are associated with
unreliable redshift measurements (∼2% predicted in C1/C2),
and on the other hand a small fraction of spectra in S2 (low S/N)
that is linked to very reliable redshifts (∼9% predicted in C5).
Such results can easily be understood by looking at the distribu-
tion in [log( f Hα), JAB] of the input spectra (cf. Fig. 18). We find
that:

– Bright objects are mainly located in C5, while the majority
of faint objects are predicted as C1/C2, in particular when
the flux spectrum is embedded in a strong noise (S2). This
distribution can be assimilated to a shift C1→ C5 according
to the intrinsic properties of the observed object.

– The difference in absolute values (cf. Table 12) between the
results in S1 and S2 is due to the increased noise level from
the sky background that injects a higher uncertainty in the
observed flux spectrum. The redshift reliability is decreased
in S2 in comparison with less noisy data (S1).
The repartition in absolute values seems to describe a shift
C5→ C1 according to observational constraints (S/N).
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Fig. 14. Class posterior probabilities. The predictive power of several classifiers is displayed for each true class in Ytest. Most prediction probabil-
ities fall between ∼[70–100]% (bright colors). For example: the Linear SVM correctly predicts ∼92% (2060 elements) of the subset of “true C2”
(around 2240 elements) in Ytest (cf. Table F.17) with class prediction probabilities between 0.7 and 1 (bright colors).
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Fig. 15. Simulated Euclid spectra. Left: simulated galaxy spectrum (id: 53678850) in the dataset S1 with an identifiable Hα line at 12803A. Right:
simulated galaxy spectrum (id: 56932048) in the dataset S2 with a Hα emission line at 12908A.

Fig. 16. Computed zPDF for a galaxy spectrum in the dataset S1. The
redshift probability density function is computed using a constant prior
over Θz.

Fig. 17. Computed zPDF for a galaxy spectrum in the dataset S2. The
redshift probability density function is computed using a constant prior
over Θz.

5.2. Redshift error distribution

We further investigate the distribution of the redshift error εz =
|zMAP − zref |/(1 + zref) within the predicted clusters (cf. Table 14).

We find that the majority of incorrect redshift estimations
(εz > 10−3) are located in the clusters C1/C2 for “unreliable
redshifts” since low S/N data are more likely to be associated
with inaccurate redshift measurements.

For the two datasets, the fraction of spectra associated with
low redshift error (εz ≤ 10−3) is ∼100%, ∼99%, ∼95%, and
<70% in C5/C4, C3, C2, and C1, respectively.

From this particular result, one approach would be to identify
a possible correlation between the redshift reliability clusters and
a specific range of redshift errors in order to define a probability
for “a redshift to be correct” within the {Ck} clusters, in a similar
way to that used for VVDS.

In this direction, the next step will be to conduct similar tests
on a wide basis of Euclid simulated datasets (with a contami-
nation model) to statistically constrain the correlation between
redshift errors and the redshift reliability clusters.

5.3. Fuzzy approach for label prediction

As previously stated in Sect. 4.3.3, soft partitioning in ML pro-
vides extra information about the classifier predictive power that
can be affected by several factors as possible outliers in the train-

Table 14. Redshift error distribution within the predicted redshift relia-
bility classes for preliminary mock simulations for Euclid.

Fraction of spectra with εz ≤ 10−3

Set “C1” “C2” “C3” “C4” “C5”

S1 1/3 59/61 313/313 835/835 1957/1957

S2 260/383 1221/1275 550/555 662/662 294/294

Notes. The initial predictions are indicated in gray.

ing set or numerical limitations associated to the zPDF compu-
tation.

In this study, we find that the majority of S1 and S2 spec-
tra are associated with class probability predictions higher than
99%, as in the example of Table 15. However, peculiar cases,
related to class predictions falling within the margins of two or
more reliability clusters are detected, as in the example reported
in Table 16 where the class posterior probabilities of the cluster
C4 are quite close to the predicted class C3.

In this study, the predictions associated to lower-class prob-
abilities are extremely few, with a confusion clearly stated be-
tween adjacent clusters (C1 with C2 or C4 with C5 for example).

A confusion entailing predicting a label C4/C5 as C1 (and
vice-versa) could have been more problematic and can result
from an erroneous computation of the zPDF or an incorrect spec-
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Fig. 18. log( f Hα), JAB distribution of the reliability class predictions for unlabeled simulated galaxy spectra for Euclid. The number of faint
objects predicted in C1/C2 increases when the noise component in the data is important (S 1 → S 2). The increased sky background injects a
strong noise component of the spectra that annihilates the confidence in a measured redshift, resulting in multimodal zPDFs with high dispersion
(C1/C2). In contrast, extremely bright objects with an identifiable Hα line are located in C4/C5, because the redshift estimation is deemed very
reliable when distinct spectral features are found.

Table 15. Class posterior probabilities of two simulated Euclid spectra.

Class probability(in %)

Set Spectrum ID C1 C2 C3 C4 C5

S1 53678850 0.00 0.17 0.02 0.01 99.81

S2 56932048 99.88 0.05 0.02 0.03 0.03

Notes. In green, the probability associated with the predicted class.

Table 16. Class posterior probabilities for a simulated spectrum in S2.

Class probability(in %)

Set Spectrum ID C1 C2 C3 C4 C5

S2 114440656 17.36 8.09 29.43 32.10 13.03

Notes. In green, the probability associated with the predicted class.

troscopic data (flux and noise components). We estimate that
soft partitioning can be used to unveil such peculiar cases and
improve the clustering by identifying possible outliers in the de-
scriptor space that can be assigned to the “Unidentified” class
independently from the {Ck}k∈{1,...5} clusters.

5.4. Discussion

The results obtained using preliminary mock simulations for
Euclid show that the new automated reliability redshift defini-
tion can be used to quantify the reliability level of spectroscopic
redshift measurements. This method could be useful for cosmo-
logical studies that require accurate redshift measurements. By
using 1D spectra of newly released Euclid simulations, upcom-
ing studies will focus on the correlation between the distribution
of redshift errors and the redshift reliability clusters to define the
probability for “a redshift to be correct” in the {Ck}k∈{1,...5} clus-
ters in a similar approach as in VVDS.

6. Summary and conclusions

By mapping the posterior PDF p(z|D, I) into a discretized fea-
ture space and exploiting ML algorithms, we are able to design a
new automated method that correlates relevant characteristics of
the posterior zPDF, such as the dispersion of the probability dis-
tribution and the number of significant modes, with a reliability
assessment of the estimated redshift.

The proposed methodology consists of three steps:

1. Using a set of representative spectra, compute the redshift
posterior PDFs p(z|D, I) and extract a set of features to build
the descriptor matrix X.

2. Generate a reliable partitioning Y of the feature space using
clustering techniques and prior knowledge, if available.

3. Use the partitioning to train a classifier that will predict a
quality label for new unlabeled observations.

Using the zPDFs descriptors, we first tried to bypass the first two
steps by exploiting existing reliability flags to train a classifier
(supervised classification), but the results obtained (Sect. 4.2)
justify the need for new homogeneous partitions [steps 1 and 2]
of the feature space because the reproducibility of the existing
quality flags cannot be achieved due to their subjective defini-
tion: the combination of several visual checks performed by dif-
ferent observers cannot derive homogeneous and objective crite-
ria of redshift reliability for an automated system to learn from.

The results of unsupervised classification in Sect. 4.3 dis-
played great coherency in describing distinct categories of
zPDFs: the multimodal zPDFs with equiprobable redshift solu-
tions and high dispersion, versus the unimodal zPDFs with a nar-
rower peak around the zMAP solution, each depicting a different
level of reliability for the measured redshift.

To predict a redshift reliability flag for unlabeled data
(Sect. 5), our methodology consists in projecting the unlabeled
zPDF [step 3] into the mapping generated from known zPDF de-
scriptors X and their associated z reliability labels Y to predict
the class membership.
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A fuzzy approach can also be used to predict the class predic-
tion probability and provide relevant information about the clas-
sifier performance and possible discrepancies in the input data.

To conclude, the proposed method to automate the redshift
reliability assessment is simple and flexible; the only require-
ment being robust redshift estimation algorithms with represen-
tative templates and a good computational efficiency to produce
accurate redshift PDFs. For the spectroscopic redshift estima-
tion, the use of the Bayesian framework allows to incorporate
multiple sources of information as a prior and any readjustment
of the data/model hypotheses into the estimation process and
produce a posterior zPDF.

In this work, we have demonstrated that by using a simple
entry model and a few ML-algorithms that exploit descriptors
of the redshift PDF, it is possible to capture an accurate descrip-
tion of the spectroscopic redshift reliability. This approach paves
the way for fully automated processing pipelines of large spec-
troscopic samples as for next-generation large-scale galaxy sur-
veys. We expect to further develop and test our method for the
needs of the Euclid space mission when large simulations of re-
alistic spectra become available. Advanced techniques in ML,
such as neural networks and deep learning, will be explored to
build a complex learning scheme.
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Appendix A: Assigning probabilities

In the data, if the noise is assumed Gaussian, additive, and i.i.d.,
the data model for a single observation Dk is:

datum dk = true xk + noise nk; Nk ∼ N(0;σk). (A.1)

The variables dk, nk , and xk are realizations of the random vari-

ables (r.v.) Dk, Nk and Xk.
By marginalizing over the r.v. Xk and Nk:

p(Dk |z,Mt, I) =

∫ ∫
p(Dk,Nk, Xk |z,Mt, I)dXkdNk. (A.2)

Assuming Xk |= Nk:

p(Dk |z,Mt, I) =

∫ ∫
p(Xk |z,Mt, I) × p(Nk |z,Mt, I)

× p(Dk |Nk, Xk, z,Mt, I)dXkdNk. (A.3)

From Eq. (A.1), the likelihood function is:

p(Dk |Nk, Xk, z,Mt, I) = δ(dk − xk − nk) = δk. (A.4)

The Kronecker function δk implies nk = dk − xk and allows to

rewrite p(Dk |z,Mt, I) as:

p(Dk |z,Mt, I) =
∫

dxk fX(xk)
∫

dnk fN(nk)δk

=
∫

fX(xk) fN(dk − xk)dxk,
(A.5)

where fX(xk) and fN(nk) are the probability density functions of

the random variables Xk and Nk.
If the true value Xk is considered as a deterministic variable:

p(Dk |z,Mt, I) = fN(dk − xk) = fN(nk) = p(Nk |z,Mt, I). (A.6)

Otherwise, the probabilistic model of xk has to be integrated into

the full expression of p(Dk |z,Mt, I).
The likelihood L(z,Mt) describes the probability of ob-

serving the full set of independent observations D = {Dk}k∈Λ
given a redshift z and a template model Mt and any additional
information I.

Considering the aforementioned hypotheses on the data
model, the likelihood is defined as following:

L(z,Mt) = p(D|z,Mt, I) = p(D1, . . .Dn|z,Mt, I)

= p(N1, . . .Nn|z,Mt, I) =
∏

k∈Λ p(Nk |z,Mt, I)

=
∏

1≤i≤n (
√

2πσi)
−1

exp
(
− 1

2χ
2(z, t)

)
χ2(z, t) =

∑n
i=1 σ

−2
i [di − aopt ti,z]2,

(A.7)

where Λ is the wavelength range in use (with n datapoints), di

and σi are the observed flux and noise spectra at pixel i, respec-
tively, ti,z is the redshifted template interpolated at pixel i, and

aopt is the optimal amplitude obtained from (weighted) Least-
Square (LS) estimation.

We would like to point out that the estimation is in reality
obtained from marginalizing over nuisance parameters θ, such
as the amplitude A (r.v.) in the chi-square expression:

p(z,Mt |D, I) =
∫

p(z,Mt, θ|D, I)dθ. (A.8)

The joint-posterior PDF can be rewritten as:

p(z,Mt |D, I) =

∫
p(θ, z,Mt |I) × p(D|z,Mt, θ, I)

p(D)
dθ

=

∫
p(z,Mt |I) × p(θ|z,Mt, I) × p(D|z,Mt, θ, I)

p(D)
dθ

=
p(z,Mt |I) × p(D|z,Mt, θopt, I)

p(D)

×

∫
p(θ|z,Mt, I)

p(D|z,Mt, θ, I)
p(D|z,Mt, θopt, I)

dθ, (A.9)

where the highlighted integral in blue is usually approximated

by a constant, and the computed likelihood in redshift estimation
englobes the optimal estimation aopt of the amplitude parameter
in Eq. (A.7).

The amplitude aopt is estimated at each trial (z, t):

aopt = (t>z w tz)−1 t>z w s

=
( n∑

i=1

siti,zσ−2
i

)
/
( n∑

i=1

t2
i,zσ

−2
i

)
, (A.10)

where w = diag(σ−2
1 , . . . , σ−2

n ) is the weight matrix.

Appendix B: ECOC for multi-class problems

The principle of ECOC (Error-Correcting-Output-Codes) is
based on the binary reduction of the multi-class problem using a
coding matrixM ∈ {−1; 0; +1}K×L to design a codeword.

M =

l1 lL


c1 m11 · · · m1L

...
. . .

...

cK mK1 · · · mKL

, (B.1)

where:

– L: number of learners;
– K: number of distinct classes.

The codewords mk = (mk,1, . . . ,mk,L) translate the membership
information for each class ck given a binary scheme:

– mk j = −1: ck is the negative class for learner l j;
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Fig. B.1. [Examples of ECOC coding design] . The black, white, and
gray boxes refer respectively to mk, j = +1, –1 or 0.

– mk j = 0: all observations associated with ck are ignored by
the learner l j;

– mk j = +1: ck is the positive class for learner l j.

Codewords are generated using existing coding strategies such
as OVA (one-versus-all), OVO (one-versus-one) and dense ran-
dom. Coding matrices for a example of a four-class problem are
shown in Fig. B.1.

Each learner l j is associated with two superclasses, {S +; S −}
referring to the positive and the negative classes, respectively,
that are used to encode the response vector Ytrain into a binary
vector [Ytrain]j.

Training the learner l j with
{
Xtrain; [Ytrain]j

}
is performed with

the usual classifiers such as SVM, MLP, and so on.
A class prediction for an unlabeled spectra x0 in Xest is

achieved in two steps:

– Step 1: each trained learner l j provides a binary prediction:
(y0) j ∈ {−1; +1}.

– Step 2: the bit vector y0 for all learners is decoded into the
initial K-class by minimizing a distance metric ∆ as the Eu-
clidean distance ∆k =

∑L
j=1 (mk j − (y0) j)21/2

or a binary loss
function ∆k =

∑L
j=1 |mk j| g(mk j, s j), where g is a binary loss

function and s j the score for learner j.
The predicted class ĉk for x0 is associated with the index k
for which the vector ∆ is minimal.

Appendix C: Description of classification
algorithms: SVM – Ensemble methods

C.1. Support-machine vectors

The SVM method classifies the data by finding the best hyper-
plane separating the datapoints of one class from those of an-
other category.

Given a training set of M datapoints (xi, yi)i∈1...M , where xi
refers to the P-dimensional feature vector and yi the associated
label that indicates whether the datapoint belongs to the positive
class (yi = +1) or the negative class (yi = −1), the objective of
SVM is to separate the data into distinct classes using a separat-
ing rule in form of a parametrized function f (x).

For linearly separable data, the equation of the hyperplane is:

f (x) = fw,b(x) = w.x + b = 0, (C.1)

where the scalar product w.x is equivalent to w>x.

An infinity of hyperplanes verify Eq. (C.1), but only one hy-
perplane maximizing the margins between the observations and
the hyperplane exists. This optimal hyperplane verify:


(w.x + b) ≥ +1 if yi = +1

(w.x + b) ≤ −1 if yi = −1
⇔ yi(w.x + b) ≥ +1. (C.2)

To find the “best” linear hyperplane minimizing the margins
2(w.w>)−1/2, the SVM algorithm consists in solving a quadratic
problem:

minimize
w,b

1
2 (ww>)

subject to: yi(w.xi + b) ≥ +1.
(C.3)

For non-linearly separable data, the use of a kernel ϕ trick
enables to map the distribution of the datapoints x into a pro-
jected space where ϕ(x) can be linearly separable, and defines,
in the same approach as in Eq. (C.2), a quadratic problem:

minimize
W,B

1
2 (WW>)

subject to: yi(W.ϕ(xi) + B) ≥ +1,
(C.4)

where f (x) = fW,B(x) = W.ϕ(x) + B = 0.

The selection of an adequate kernel K is determined by a list
of criteria. By definition, a kernel must be symmetric, definite
positive, square integrable and satisfy:


Ki, j = K(xi, x j) = ϕ(xi).ϕ(x j)

∃(λ1...λN) ∈ R:
∑N

i=0
∑N

j=0 λiλ jK(xi, x j) ≥ 0.
(C.5)

Among commonly used kernels:

– linear: K(xi, x j) = xi.x j;
– power: K(xi, x j) = (xi.x j)m;
– Gaussian (rbf): K(xi, x j) = exp(− 1

2 |xi − x j|
2/σ2).

Further details about the SVMs are available in Vapnik (2000)
and Cristianini & Shawe-Taylor (2000).

C.2. Ensemble classifiers

The principle of ensemble methodology is to combine a set of
predictions from different learners in order to improve the accu-
racy of a single learner.

Among the ensemble methods, two distinct approaches are
identified:

1. averaging methods: Bagging/ Random forests...
2. boosting methods: AdaBoost/GentleBoost/RSBoost/...
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– AdaBoost

AdaBoost, known also as “Adaptive Boosting” refers to a spe-
cific algorithm of boosted classifier defined as the sum of indi-
vidual predictions from T weak learners. The algorithm aims to
minimize the (weighted) classification error at each iteration:

εt =

N∑
i=1

d(t)
i 1(yi , ht(xi)), (C.6)

where:

– xi is the feature vector of the ith observation;
– yi is the true label of the ith observation;
– ht is the prediction of learner t;
– 1 is the indicator function;
– d(t)

i is the weight of the ith observation at step t;
– t the iteration step from 1 to T .

At the first iteration, the weights d(t)
i are initialized (e.g., d(t)

i =
1/N) and the weak learner ht is obtained by minimizing the error
εt. For the next iteration, the weights of the learner (t + 1) are
adjusted according to the performance of the previous one (t):
whether increase d(t+1)

i for misclassified observations by learner
t, or reduce the weights otherwise. The learner ht+1 is trained
using the updated weights d(t)

i in the error εt+1.
After training, the prediction for a new data point, x, is

obtained by combining the individual predictions of all weak
learners:

f (x) =

>∑
t=1

αtht(x); αt =
1
2

log
(

1 − εt

εt

)
· (C.7)

The AdaBoost algorithm can also be viewed as a minimization
of an exponential loss function:

N∑
i=1

wt exp(−yi f (xi)), (C.8)

where wt are normalized observational weights.

– LogitBoost

Following a similar approach to AdaBoost, the LogitBoost con-
sists in training learners sequentially by minimizing an error
function εt; the only difference being the minimization of the
error function with respect to a fitted regression model ỹ instead
of y:

εt =

N∑
i=1

d(t)
i (̃yi − ht(xi))2; ỹi =

y∗i − pt(xi)
pt(xi)(1 − pt(xi))

, (C.9)

where:

– y∗i are modified labels: y∗i = 0 if yi = −1; and y∗i = 1
otherwise;

– pt(xi) is the predicted class probability for the ith observation
to be in the positive class “+1” given by the learner t.

– GentleBoost

Also called Gentle AdaBoost, this algorithm combines the
methodology of AdaBoost and LogitBoost. An exponential loss
function is minimized with a different optimization strategy to
AdaBoost. Further, similarly to LogiBoost, weak learners fit a
regression model ỹ to the response variables y.

– Bagging

Bagging, referring to “bootstrap aggregation”, consists in gen-
erating m new training sets P j, each of size N′, by uniformly
sampling with replacement from the initial training set I =
(xi, yi)i∈1...N .

The m models are trained separately and the class prediction
of an unlabeled data x is obtained by combining the individual
predictions of the m models: “averaging” if regression, or “vot-
ing” if classification.

Further details on the ensemble algorithms can be found in
Dietterich (2000).

Appendix D: Measures for multi-class classification

For a binary classification, the confusion matrix represents the
fraction of predicted labels versus the true classes. Four quanti-
ties are directly measured:

– T P: True Positives;
– T N: True Negatives;
– FP: False Positives;
– FN: False Negatives.

True

pos neg Total

Pr
e
d
ic
t
e
d

pos TP FP TP+FP

neg FN TN FN+TN

Total TP+FN TN+FP TP+FP+TN+FN

For multi-class classification, the approach consists in estimating
these measures for each class. For example:

True

“0” “+1” “+2” Total

Pr
e
d
ic
t
e
d “0” 4503 2 1 4506

“+1” 9 3581 203 3793

“+2” 0 0 8047 8047

Total 4512 3583 8251 16346

Measures per class

“0” “+1” “+2”

TP 4503 3581 8047

FP 3 212 0

FN 9 2 204

TN 11831 12551 8095

From the confusion matrix, the overall performances of the clas-
sification are quantified with the following measures:
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multi-class classification (Ck)k∈{1...K}
M
e
a
su
r
e
s
pe
r
-c
la
ss

Accuracy(Ck) T Pk+T Nk
T Pk+FNk+T Nk+FPk

Precision(Ck) T Pk
T Pk+FPk

Sensitivity(Ck) T Pk
T Pk+FNk

F-score(Ck) 2∗T Pk
2∗T Pk+FNk+FPk

Specificity(Ck) T Nk
FPk+T Nk

Av
e
r
a
g
e
pe
r
-c
la
ss

Accuracy 1
K

∑
k Accuracy(Ck)

Error rate 1
K

∑
k Error(Ck)

Precision 1
K

∑
k Precision(Ck)

Sensitivity 1
K

∑
k S ensitivity(Ck)

F-score 1
K

∑
k Fscore(Ck)

Further details are provided in Fawcett (2006).

Appendix E: Description of the FCM clustering
algorithm

Similar to the k-means algorithm that aims to minimize the in-
traclass variance, the FCM (Fuzzy C-Means) algorithm exploits
additional information about membership of the data to multiple
clusters.

To partition a dataset X = (x1 . . . xM)> of P-dimensional vec-
tors into K clusters, the algorithm aims to solve a quadratic prob-
lem in order to determine the optimal solution (U, G), where
G = (g1 . . . gM) refers to the centroids of the final K clusters and
U = (µi j){ 1≤i≤K

1≤ j≤M
is a coefficient matrix of class memberships for

each element.

minimize
U,G

J(X; U,G)

subject to:
∑K

i=1 µi j = 1, j = 1, . . . ,M.
(E.1)

The algorithm proceeds iteratively and converges when the
estimated coefficient matrix at the iteration t is not very different
from its previous estimation:

‖U(t) − U(t−1)‖ < ε0 , where ε0 is fixed by the user. (E.2)

Further, the elements (x j) j=1,...,M are said to belong to the class
(ci)i=1,...,K for which the final coefficient µi j is maximal.

The matrix U can be further exploited to assess the member-
ship level of the element x j to its predicted class.

The cost function to minimize is:

J(X; U,G) =

K∑
i=1

M∑
j=1

µm
i jD

2
i jA, (E.3)

where the distance Di jA, the coefficient µi j and the centroid gi are
defined as following:

D2
i jA = ‖x j − gi‖

2
A = (x j − gi)

>A(x j − gi), (E.4)

µi j =

 K∑
k=1

D2
i jA/D

2
k jA

−2/(m−1)

, (E.5)

gi =

 M∑
j=1

µm
i jx j

 /
 M∑

j=1

µm
i j

 . (E.6)

In the FCM, the fuzzifier parameter m ≥ 1 is used to determine
the level of fuzziness: if m = 1, the coefficient matrix is binary,
which is equivalent to a hard partitioning. Usually, in the absence
of prior information about the datamodel, the value m = 2 is
used.

For the norm ‖.‖2A in Eq. (E.4), a common choice for the ma-
trix A is the identity matrix, but it can be designed to incorporate
individual variances of the data as A = diag(σ−2

1 . . . σ−2
M ) or the

inverse of the covariance matrix.
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Appendix F: Additional tables

Confusion matrices using modified VVDS flags

Table F.1. [Resubstitution prediction] – bagging trees.

True

“0” “+1” “+2” Total

Pr
e
d
ic
t
e
d “0” 4503 2 1 4506

“+1” 9 3581 203 3793

“+2” 0 0 8047 8047

Total 4512 3583 8251 16346

Table F.2. [Resubstitution prediction] – gentle boost.

True

“0” “+1” “+2” Total

Pr
e
d
ic
t
e
d “0” 3520 271 0 3791

“+1” 988 3070 1752 5810

“+2” 4 242 6499 6745

Total 4512 3583 8251 16346

Table F.3. [Resubstitution prediction] – SVM (linear kernel).

True

“0” “+1” “+2” Total

Pr
e
d
ic
t
e
d “0” 3654 457 1 4112

“+1” 851 2281 625 3757

“+2” 7 845 7625 8477

Total 4512 3583 8251 16346

Table F.4. [Resubstitution prediction] – SVM (Gaussian kernel).

True

“0” “+1” “+2” Total

Pr
e
d
ic
t
e
d “0” 3646 372 2 4020

“+1” 866 2823 1431 5120

“+2” 0 388 6818 7206

Total 4512 3583 8251 16346

Table F.5. [Test prediction] – bagging trees.

True

“0” “+1” “+2” Total

Pr
e
d
ic
t
e
d “0” 722 271 442 1435

“+1” 974 256 1424 2654

“+2” 560 1265 2259 4084

Total 2256 1792 4125 8173

Table F.6. [Test prediction] – gentle boost.

True

“0” “+1” “+2” Total

Pr
e
d
ic
t
e
d “0” 447 272 253 972

“+1” 1398 381 1799 3578

“+2” 411 1139 2073 3623

Total 2256 1792 4125 8173

Table F.7. [Test prediction] – SVM (linear kernel).

True

“0” “+1” “+2” Total

Pr
e
d
ic
t
e
d “0” 559 272 330 1161

“+1” 956 141 1317 2414

“+2” 741 1379 2478 4598

Total 2256 1792 4125 8173

Table F.8. [Test prediction] – SVM (Gaussian kernel).

True

“0” “+1” “+2” Total

Pr
e
d
ic
t
e
d “0” 494 270 289 1053

“+1” 1300 336 1638 3274

“+2” 462 1186 2198 3846

Total 2256 1792 4125 8173
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General performances using modified VVDS flags

Table F.9. [Resubstitution prediction] – Measures from confusion matrices
Measures per class

“0” “+1” “+2”
T
r
e
e
ba
g
g
e
r

Accuracy 99.93% 98.69% 98.75%

Precision 99.93% 94.41% 100%

Sensitivity 99.80% 99.94% 97.53%

Specificity 99.97% 98.34% 100%

F-score 99.87% 97.10% 98.75%

G
e
n
t
le
b
o
o
st

Accuracy 92.27% 80.10% 87.78%

Precision 92.85% 52.84% 96.35%

Sensitivity 78.01% 85.68% 78.77%

Specificity 97.71% 78.53% 96.96%

F-score 84.79% 65.37% 86.68%

SV
M

(l
in
e
a
r
)

Accuracy 91.95% 83.01% 90.96%

Precision 88.86% 60.71% 89.95%

Sensitivity 80.98% 63.66% 92.41%

Specificity 96.13% 88.44% 89.47%

F-score 84.74% 62.15% 91.16%

SV
M

(r
b
f)

Accuracy 92.41% 81.30% 88.86%

Precision 90.70% 55.14% 94.62%

Sensitivity 80.81% 78.79% 82.63%

Specificity 96.84% 82% 95.21%

F-score 85.47% 64.87% 88.22%

Average per-class

T
r
e
e
ba
g
g
e
r

Accuracy 99.12%

Error rate 0.88%

Precision 98.11%

Sensitivity 99.09%

F-score 98.60%

G
e
n
t
le
b
o
o
st

Accuracy 86.72%

Error rate 13.28%

Precision 80.68%

Sensitivity 80.82%

F-score 80.75%

SV
M

(l
in
e
a
r
)

Accuracy 88.64%

Error rate 11.36%

Precision 79.84%

Sensitivity 79.02%

F-score 79.43%

SV
M

(r
b
f)

Accuracy 87.52%

Error rate 12.48%

Precision 80.15%

Sensitivity 80.74%

F-score 80.45%

Table F.10. [Test prediction] – Measures from confusion matrices.
Measures per class

“0” “+1” “+2”

T
r
e
e
ba
g
g
e
r

Accuracy 72.51% 51.87% 54.84%

Precision 50.31% 9.65% 55.31%

Sensitivity 32% 14.29% 54.76%

Specificity 87.95% 62.42% 54.92%

F-score 39.12% 11.52% 55.04%

G
e
n
t
le
b
o
o
st

Accuracy 71.44% 43.62% 55.93%

Precision 45.99% 10.65% 57.22%

Sensitivity 19.81% 21.26% 50.25%

Specificity 91.13% 49.90% 61.71%

F-score 27.70% 14.19% 53.51%

SV
M

(l
in
e
a
r
)

Accuracy 71.87% 51.99% 53.91%

Precision 48.15% 5.84% 53.89%

Sensitivity 24.78% 7.87% 60.07%

Specificity 89.83% 64.38% 47.63%

F-score 32.72% 6.70% 56.82%

SV
M

(r
b
f)

Accuracy 71.60% 46.24% 56.26%

Precision 46.91% 10.26% 57.15%

Sensitivity 21.90% 18.75% 53.28%

Specificity 90.55% 53.96% 59.29%

F-score 29.86% 13.26% 55.15%

Average per-class

T
r
e
e
ba
g
g
e
r

Accuracy 59.74%

Error rate 40.26%

Precision 38.42%

Sensitivity 33.68%

F-score 35.90%

G
e
n
t
le
b
o
o
st

Accuracy 57%

Error rate 43%

Precision 37.95%

Sensitivity 30.44%

F-score 33.79%

SV
M

(l
in
e
a
r
)

Accuracy 59.26%

Error rate 40.74%

Precision 35.96%

Sensitivity 30.91%

F-score 33.24%

SV
M

(r
b
f)

Accuracy 58.03%

Error rate 41.97%

Precision 38.11%

Sensitivity 31.31%

F-score 34.38%
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Confusion matrices using partition labels

Table F.11. [Resubstitution prediction] – bagging trees.

True

C1 C2 C3 C4 C5 Total

Pr
e
d
ic
t
e
d

C1 2104 3 0 0 0 2107

C2 0 4476 4 0 0 4480

C3 0 1 3758 2 0 3761

C4 0 0 3 3309 0 3312

C5 0 0 0 0 2687 2687

Total 2104 4480 3765 3311 2687 16347

Table F.12. [Resubstitution prediction] – gentle boost.

True

C1 C2 C3 C4 C5 Total

Pr
e
d
ic
t
e
d

C1 2067 37 0 0 0 2104

C2 37 4346 24 0 0 4407

C3 0 97 3582 14 0 3693

C4 0 0 158 3263 20 3441

C5 0 0 1 34 2667 2702

Total 2104 4480 3765 3311 2687 16347

Table F.13. [Resubstitution prediction] – SVM (linear kernel).

True

C1 C2 C3 C4 C5 Total

Pr
e
d
ic
t
e
d

C1 2101 8 0 0 0 2109

C2 3 4335 48 0 0 4386

C3 0 136 3545 37 0 3718

C4 0 1 172 3261 18 3452

C5 0 0 0 13 2669 2682

Total 2104 4480 3765 3311 2687 16347

Table F.14. [Resubstitution prediction] – SVM (Gaussian kernel).

True

C1 C2 C3 C4 C5 Total

Pr
e
d
ic
t
e
d

C1 2098 12 0 0 0 2110

C2 6 4424 10 0 0 4440

C3 0 44 3724 6 0 3774

C4 0 0 31 3294 10 3335

C5 0 0 0 11 2677 2688

Total 2104 4480 3765 3311 2687 16347

Table F.15. [Test prediction] – bagging trees.

True

C1 C2 C3 C4 C5 Total

Pr
e
d
ic
t
e
d

C1 1035 3 0 0 0 1038

C2 17 2218 19 0 0 2254

C3 0 19 1853 18 0 1890

C4 0 0 10 1630 13 1653

C5 0 0 0 7 1330 1337

Total 1052 2240 1882 1655 1343 8172

Table F.16. [Test prediction] – gentle boost.

True

C1 C2 C3 C4 C5 Total

Pr
e
d
ic
t
e
d

C1 1012 8 0 0 0 1020

C2 40 2118 20 1 0 2179

C3 0 114 1736 19 0 1869

C4 0 0 125 1608 18 1751

C5 0 0 1 27 1325 1353

Total 1052 2240 1882 1655 1343 8172

Table F.17. [Test prediction] – SVM (linear kernel).

True

C1 C2 C3 C4 C5 Total

Pr
e
d
ic
t
e
d

C1 1051 4 0 0 0 1055

C2 1 2060 37 0 0 2098

C3 0 176 1702 12 0 1890

C4 0 0 143 1631 14 1788

C5 0 0 0 12 1329 1341

Total 1052 2240 1882 1655 1343 8172

Table F.18. [Test prediction] – SVM (Gaussian kernel).

True

C1 C2 C3 C4 C5 Total

Pr
e
d
ic
t
e
d

C1 1037 4 3 1 1 1046

C2 15 2198 17 0 0 2230

C3 0 38 1842 2 0 1882

C4 0 0 20 1642 3 1665

C5 0 0 0 10 1339 1349

Total 1052 2240 1882 1655 1343 8172
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General performances using partition labels

Table F.19. [Resubstitution prediction]– Measures from confusion matrices.
Measures per class

C1 C2 C3 C4 C5
T
r
e
e
ba
g
g
e
r

Accuracy 99.98% 99.95% 99.94% 99.97% 100%

Precision 99.86% 99.91% 99.92% 99.91% 100%

Sensitivity 100% 99.91% 99.81% 99.94% 100%

Specificity 99.98% 99.97% 99.98% 99.98% 100%

F-score 99.93% 99.91% 99.87% 99.92% 100%

G
e
n
t
le
b
o
o
st

Accuracy 99.55% 98.81% 98.20% 98.62% 99.66%

Precision 98.24% 98.62% 96.99% 94.83% 98.70%

Sensitivity 98.24% 97.01% 95.14% 98.55% 99.26%

Specificity 99.74% 99.49% 99.12% 98.63% 99.74%

F-score 98.24% 97.81% 96.06% 96.65% 98.98%

SV
M

(l
in
e
a
r
)

Accuracy 99.93% 98.80% 97.60% 98.53% 99.81%

Precision 99.62% 98.84% 95.35% 94.47% 99.52%

Sensitivity 99.86% 96.76% 94.16% 98.49% 99.33%

Specificity 99.94% 99.57% 98.63% 98.53% 99.90%

F-score 99.74% 97.79% 94.75% 96.44% 99.42%

SV
M

(r
b
f)

Accuracy 99.89% 99.56% 99.44% 99.65% 99.87%

Precision 99.43% 99.64% 98.68% 98.77% 99.59%

Sensitivity 99.71% 98.75% 98.91% 99.49% 99.63%

Specificity 99.92% 99.87% 99.60% 99.69% 99.92%

F-score 99.57% 99.19% 98.79% 99.13% 99.61%

Average per-class

T
r
e
e
ba
g
g
e
r

Accuracy 99.97%

Error rate 0.03%

Precision 99.92%

Sensitivity 99.93%

F-score 99.93%

G
e
n
t
le
b
o
o
st

Accuracy 98.97%

Error rate 1.03%

Precision 97.48%

Sensitivity 97.64%

F-score 97.56%

SV
M

(l
in
e
a
r
)

Accuracy 98.93%

Error rate 1.07%

Precision 97.56%

Sensitivity 97.72%

F-score 97.64%

SV
M

(r
b
f)

Accuracy 99.68%

Error rate 0.32%

Precision 99.22%

Sensitivity 99.30%

F-score 99.26%

Table F.20. [Test prediction] – Measures from confusion matrices.
Measures per class

C1 C2 C3 C4 C5

T
r
e
e
ba
g
g
e
r

Accuracy 99.76% 99.29% 99.19% 99.41% 99.76%

Precision 99.71% 98.40% 98.04% 98.61% 99.48%

Sensitivity 98.38% 99.02% 98.46% 98.49% 99.03%

Specificity 99.96% 99.39% 99.41% 99.65% 99.90%

F-score 99.04% 98.71% 98.25% 98.55% 99.25%

G
e
n
t
le
b
o
o
st

Accuracy 99.41% 97.76% 96.59% 97.67% 99.44%

Precision 99.22% 97.20% 92.88% 91.83% 97.93%

Sensitivity 96.20% 94.55% 92.24% 97.16% 98.66%

Specificity 99.89% 98.97% 97.89% 97.81% 99.59%

F-score 97.68% 95.86% 92.56% 94.42% 98.29%

SV
M

(l
in
e
a
r
)

Accuracy 99.94% 97.33% 95.50% 97.79% 99.68%

Precision 99.62% 98.19% 90.05% 91.22% 99.11%

Sensitivity 99.90% 91.96% 90.44% 98.55% 98.96%

Specificity 99.94% 99.36% 97.01% 97.59% 99.82%

F-score 99.76% 94.97% 90.24% 94.74% 99.03%

SV
M

(r
b
f)

Accuracy 99.71% 99.09% 99.02% 99.56% 99.83%

Precision 99.14% 98.57% 97.87% 98.62% 99.26%

Sensitivity 98.57% 98.13% 97.87% 99.21% 99.70%

Specificity 99.87% 99.46% 99.36% 99.65% 99.85%

F-score 98.86% 98.34% 97.87% 98.92% 99.48%

Average per-class

T
r
e
e
ba
g
g
e
r

Accuracy 99.48%

Error rate 0.52%

Precision 98.85%

Sensitivity 98.68%

F-score 98.76%

G
e
n
t
le
b
o
o
st

Accuracy 98.17%

Error rate 1.83%

Precision 95.81%

Sensitivity 95.76%

F-score 95.79%

SV
M

(l
in
e
a
r
)

Accuracy 98.05%

Error rate 1.95%

Precision 95.64%

Sensitivity 95.96%

F-score 95.80%

SV
M

(r
b
f)

Accuracy 99.44%

Error rate 0.56%

Precision 98.69%

Sensitivity 98.70%

F-score 98.69%
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