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ABSTRACT 

In this paper a new asymmetric 3-translational (3T) parallel 

manipulator, i.e., RPa(3R) 2R+RPa, with zero coupling degree 

and decoupled motion is firstly proposed according to topology 

design theory of parallel mechanism (PM) based on position 

and orientation characteristics (POC) equations. The main 

topological characteristics such as POC, degree of freedom and 

coupling degree are calculated. Then, the analytical formula for 

the direct and inverse kinematic are directly derived since 

coupling degree of the PM is zero. The study of singular 

configurations is simple because of the independence of the 

kinematic chains. 

INTRODUCTION 

In many industrial production lines, process operations 

require pure translation movements only. Therefore, the 3-DOF 

translational parallel mechanism (TPM) has a significant 

potential value since it is a relatively simple structure and easily 

controlled [1]. 

Many scholars have being studied the TPM. For example: 

original design of 3-DOF TPM is the Delta Robot which was 

presented by Clavel [2]. The structure manipulators of TPM 

have been developed [3-5]. Tsai et al [6] presented the 3-DOF 

TPM, the moving actuators are prismatic joints and the sub-

chain is 4R parallelogram mechanism (P is prismatic joint and 

R is revolute joint). The same architecture was optimized to 

have isotropic posture in the center of its workspace with 3 or 5 

degrees of freedom in [7, 8]. Li et all developed a 3-UPU 

parallel mechanism (U is universal joint) [9] and analyzed the 

instantaneous kinematics performance of the TPM. In [10], the 

authors suggested a 3-RRC TPM and developed the forward 

and inverse solution equation (C is cylindrical joint). 

Considering the anisotropy of kinematics, Zhao et al [11] 

analyzed the dimension synthesis and kinematics of the 3-DOF 

TPM based on the Delta PM. Zeng et.al [12-14] introduced a 3-

DOF TPM called as Tri-pyramid robot and presented a more 

detailed analytical approach for the Jacobi matrix. G. Bhutani et 

al [15] established a new design for the 3-UPU mechanism by 

taking into account mathematical models. Gao et al [16] 

developed a TPM with decoupled motion. 
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However, the most previous TPMs generally suffer from 

two major problems: i) the degree of coupling κ of the 

mechanism is greater than zero, which means its forward 

position solution is generally not analytical, and ii) the 

mechanism does not have input-output decoupling 

characteristics [17], which leads to the complexity of motion 

control and path planning.  

According to topology design theory of PM based on 

position and orientation characteristics (POC) equations [18], a 

new TPM is proposed in this paper. The TPM is designed with 

simple structure and features zero coupling degree, which 

makes it possible to produce analytical models for the direct 

and inverse kinematic model. In addition, TPM's motion 

control and trajectory planning is easier thanks to its partially 

decoupled motion characteristics.  

STRUCTURAL DESIGN 

The 3T parallel manipulator proposed in this paper is 

illustrated in Fig.1. The base platform 0 is connected to the 

moving platform 1 by two hybrid simple opened chain 

(HSOCs).  

To illustrate the structure of the manipulator, the CAD 

design of the hybrid chain is shown in Fig. 1(A). Two HSOCs 

composed of series of links are shown in Fig. 1(B).  

The first HSOC includes the branches I and II: The shorter 

link 3 of a parallelogram composed of four spherical pairs ( aS , 

bS , cS  and dS ) is connected at point a, by actuated arm 2, to 

the base 0 by a revolute joint 11R . The extended part of the 

opposite link 3’ of the parallelogram is connected in parallel 

with a sub-chain composed of two links(6 and 5) and three 

parallel revolute joints (3R, i.e., 23 22 21R R RP P ), which is 

denoted as RRP S

a 3)4( . Further, two links (7 and 8) and two 

parallel revolute joints (2R, i.e., 12 13||R R ) are connected in 

series with the link 3’, which are connected to the moving 

platform 1. Because the two revolute joints(2R, i.e., 11 21R R ) 

of the base 0 are perpendicular to each other the HSOC can be 

recorded as R23)4( RRP S

a
 , the end part of which is part of 

the moving platform 1 and produce three translations and one 

rotation. 

The second HSOC includes the branch III: The 

parallelogram composed of four revolute joints ( eR , fR , gR  

and hR ) is connected in series with two parallel revolute joints 

(2R, i.e., 32 31||R R ), and is connected to the moving platform 1 

by  33 33 32||R R R . The HSOC can be recorded as 
( )4R

aRP , the 

end part of which produce three translations and one rotation. It 

is obvious that the HSOC has the same branch as the typical 

Delta (but the Delta contains three such complex HSOCs). 

 
(A) 3D CAD DESIGN 

 
 (B) KINEMATIC STRUCTURE 

FIGURE 1. 3D CAD DESIGN AND KINEMATIC 

STRUCTURE OF 3T ROBOT 

TOPOLOGICAL ANALYSIS 

Analysis of the POC set 

The POC set equations for serial and parallel mechanisms are 

expressed respectively as follows: 

1

bi Ji

m

i

M M


I
 (1) 

1

Pa bi

n

i

M M


I   (2) 

where  

JiM - POC set generated by the i-
th 

joint; 
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biM - POC set generated by the end link of i-
th 

branched chain; 

PaM - POC set generated by the moving platform of PM. 

The topological architecture of the two HSOCs  of the 

mechanism can be denoted as: 

 )}||()||||()(R{ 1312122232

4S4S4S4S

111 RRRRRRRPPHSOC   

  (4 )

2 31 32 33( )RPHSO RC R RP P . 

The POC sets of the end of the two HSOCs  are determined 

according to Eqs.(1) and (2) as follows: 

 

 

 

 1

1 1 1

11

1 1 1

11

2 2 3

23 12

1 1 1

21 12 12

( ) ( ( ))

( ) ( ( ))

( ) ( )

( ) ( ) ( )

HSOC

t R t abcd t ab
M

r R r ab r bd

t R t R t

r R r R r R

       
           

      
       
     

P

P P

P P P

  

2

1 1 1 1

31 32 33 32

1 1 1 0

31 32 33

3

1

31

( ) ( ) ( ) ( )

( ) ( ) ( )

( )

HSOC

t R t R t R t R
M

r R r R r R r

t

r R

         
          

      

 
  
 

P

P P P

P

 

The POC set of the moving platform of this PM is 

determined from Eq.(2) by 

1 2

3

0 0HS C HSOC

t
M M M

r

 
    

 
   

So, the moving platform 1 of the PM produces a pure 

translation motion. 

Determining the DOF 

The general and full-cycle DOF formula for PMs proposed 

in author’s work[18] is given: 

1 1

m

i

i j

Lj

v

F f 
 

    (3a) 

1 1

( 1)dim
i

j

L

v

j i

j b b jM M






  
   

  
 I  (3b) 

where, F - DOF of PM. fi- DOF of the i
th 

joint. m - number 

of all joints of the PM. v - number of independent loops (v=m-

n+1, n - number of links). Lj - number of independent 

equations of the j
th 

loop. 
1

ib

j

i

M


I  - POC set generated by the 

sub-PM formed by the former j branches; ( 1)b jM   - POC set 

generated by the end link of j+1sub-chains. 

The mechanism can be broken down into two independent 

loops, and their constraint equations are calculated as follows: 

 The first independent loop is consisted of branch I and II, the 

HSOC1 is deduced as: 

 212223

4S4S4S4S

111 ||||( RRRRRPPRHSOC     

Thus, as obtained from Eq. (2), the POC set of the sub PM is 

22 2

21

(1 2) 12 0

21

d
(

)
im

)

(
Pa I II

tt t
M M M

r r

R

r R


      
         

      



P
 (4) 

In accordance with Eq. (3), the independent constraint 

equation numbers 
1L  and the DOF, respectively, can be 

obtained as follows: 

 
1

22

21

12

21

3

3

dim

( )
dim

( )

dim 6

L II IM M

t Rt

r Rr

t

r

  

     
    

     

   
   

   

P

  
1

1 1

8 6 2
m

Lj

i

i

j

F f 
 

      .  

It can be seen that the output link 3’ of the sub PM 

produces two dimensional translational motions in the xoz 

plane, and is only determined by the active joints 11R  and 

21R . Therefore, the mechanism has partial motion decoupling. 

 The above-mentioned sub PM and the branch chain III 

comprise the second loop: 

 12133332

)R4(

312 ||- RRRRPRHSOC ）（   

In accordance with Eq. (3), the independent displacement 

equation numbers 
2L  and the DOF, respectively, can be 

obtained as follows: 

2

2 2 3

12 12

1 1 1

13 13 31

3

2

13 31

( ) ( )
dim dim

( ) ( ) ( )

dim 5
( ( )),

L III

t R t R t
M

r R r

t

R

R r R

r R


            

           
           

   
   

   

P P P

P

 
1

1 1

8 6 (6 5) 3
j

m

i L

i j

F f 
 

       .  

 

Determining the coupling degree 

Definition of coupling degree 
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According to the composition principle of mechanism 

based on SOC units, any PM can be decomposed into a series 

of Assur kinematics chains (AKCs), and an AKC with v 

independent loops can be broken down into v single-open-

chains (SOC). The constraint of the j
th

 SOC is defined by 

0

1

5, 4, 2, 1

0

1, 2, 3,...

j

j

jm

j i j L j

i

j

f I 



 

    


     
    

   (4) 

where, mj- number of joints contained in the j
th

 SOCj. if  

- DOF of the i
th 

joints; JI - number of actuated joints in the j
th

 

SOCj; 
jL  - number of independent equations of the j

th 
loop. 

Then, the coupling degree of AKC is  









 


v

j

jin
1

m
2

1
 (5) 

The physical meaning of the coupling degree κ can be 

explained as follows:  

 The coupling degree κ reflects the correlation and 

dependence between kinematic variables of each independent 

loop of the mechanism. It has been proved that the higher κ, the 

greater the complexity of the kinematic and dynamic problems 

of the mechanism will be.  

 For 0 , the motion of each loop can be obtained 

independently, and we can finally obtain the solution of the 

direct kinematic model; If 0 , this means that the direct 

kinematic model must be solved using several constraint 

equations. 

Calculation of coupling degree 

The independent displacement equations ( 1,2)Li i   of 

loop 1 and loop 2 have been calculated in the previous section, 

i.e., 
1

6L  , 
2

5L  , thus, the both coupling degrees are 

calculated by Eq. (4), respectively 

 1 5 3 2 6 0
ji j Lf I            

2 6 1 5 0
ji j Lf I          

By Eq.(5), it can be seen that the mechanism contains two 

AKCs with zero coupling degree (κ1=0, κ2=0), hence, the 

closed-form forward position solution of the PM can be easily 

obtained by AKC1 and AKC2.  

POSITION ANALYSIS 

Establishment of the coordinate system and 

parameterization 

To simplify reading, the mechanism shown in Fig. 1 is 

developed under a planar view in the Fig. 2. The base 0 and the 

moving platform 1 are square shaped, and the sizes of their 

sides are 12l  and 22l , respectively. The three revolute joints 

(3R, i.e., 11R , 21R  and 31R ) of the base 0 are distributed at 

the midpoint of each edge. 

 
FIGURE 2. A PLANAR VIEW OF THE 3 ROBOTS 

Without losing the generality, the frame coordinate system 

O-xyz is established on the base 0. The x-axis is parallel to the 

axis of 11R , and the y-axis is perpendicular to the axis of 11R .  

On the moving platform 1, the moving coordinate system 

uvw is established at P. The u axis and the v axis are 

perpendicular and parallel to the axis of the 33R  respectively. 

Both z and w axis are determined by the right hand Cartesian 

coordinate rule, as shown in Fig. 3(A). For ease of 

comprehension, the 3T PM is redesigned in 3D view as shown 

in Fig. 3(B).  

The length of each actuated arms 2, 5 and 12 is 

1 1 2 2 3 3 3 3 1 with B B A B lA lA l     

The length of driven links 6 and the length of longer links of 

the both parallelograms 4 and 11 are  

1 1 2 2 3 3 4C B C BB C l     

The shorter links of the parallelogram are 2l5 and the point 

Bi and Ci (i=1, 2, 3) are the midpoint of the short edge. Thus, 

the parameters of the other links are respectively defined below. 

2 2 5C D l , 1 1 3 3 1 1 6D D EC F lC    , 1 1 7D E l .  

The three input angles are defined as θ1, θ2 and θ3, as shown in 

Fig. 3(a). That is, the angle between the vectors 1 1A B  and the 
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y-axis is θ1. The angles between the vectors 2 2A B , 3 3A B , and 

the x-axis are θ2 and θ3 respectively. The angle between the 

vectors 1 1D E  and the x-axis is β. 

Direct kinematics 

To solve the direct kinematic problem, i.e., to compute the 

position of the moving platform, we set the values of the 

actuated joints θ1, θ2 and θ3. 

 
(A) KINEMATIC STRUCTURE    

 
(B)  KINEMATIC MODELING 

FIGURE 3. PARAMETERIZATIONS OF THE 3T PM 

Direct kinematics of AKC1 

The coordinates of A1, A2 and A3 on the base platform 1 are  

 1 10 0
T

A l ,  2 1 0 0
T

A l  and  3 1 0 0
T

A l . 

The coordinates of each end-point of the three actuated 

arms 2, 5 and 12, i.e., B1, B2 and B3 are easily calculated as  

1 1 3 1 3 1[0 cos sin ]TB l l l   ,  

2 1 3 2 3 2[ 0 sin ]Tl cos lB l    , 

3 1 3 3 3 3[ 0 sin ]Tl co lB sl     

As stated in Eq. (4), the output link 3’ of the sub-PM can 

only produce two dimensional translational motions in the xoz 

plane, i.e. 
1 2

0C Cy y  . Due to the link length constraints 

defined by 1 1 2 2 4C B CB l  , there are two constraint equations 

as below. 

     

     

1 1 1 1 1 1

2 2 2 2 2 2

2 2 2
2

4

2 2 2
2

4

C B C B C B

C B C B C B

x x y y z z l

x x y y z z l

      

      


  (6) 

Equation (6) leads to: 

1 11 1 1C Ca zbx c  (7) 

Where 

21 52( 2 )Bxa l  , )(2
12 BB1 zzb  ,

2 2 1 1

2 2 2 2

1 52( )B B B Bc l z yx z     

If a1=0 and b1=0, then 0- 2

B1 1
 yc . But 1By could not 

be zero. Hence, a1 and b1 are not zero at the same time, and we 

can have two cases as follows: 

 1 0a  . In such a case, we have 

1

1 1 1 1

1 1

2 2 2

4

/

( )

C

C B C B

c b

l z z y

z

x







   





 (8a) 

 1 0a  . In such a case, we have 

1

1

1

2

1 1 1 1

1

1 1

1

4

2
C

C

C

f

b z

e e d
z

d

c
z

a

  
 












 (8b) 

where 
2 2

1 1 1d a b  ,
1

2

1 1 1 12( )Bb c z ae   , 
1 1

2 2 2 2 2

1 1 4 1( )B Ba y z l cf     . 

Direct kinematics of AKC2 

From the Fig. 3, the coordinates of 1D , 1E , 1F , 3D , 

and 3C  are defined as: 

1 11 60
T

C CzD x l  
  ,  

1 11 7 7

T

D DE x l l zcos sin    , 

1 11 7 7

T

D DF x l l zcos sin    , 

1 13 7 2 72
T

D Dcos lD x l l zsin   
  , 

3 3 33 6

T

D D DC x y y l   .  
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Due to the link length constraints defined by 3 3 4B C l , 

the constraint equation can be deduced as below. 

     
3 3 3 3 3 3

2 2 2
2

4B C B C B Cx y zx ly z       (9) 

Equation (9) leads to 

2 2cos ba     (10) 

With  

 
1 32 7 222 D Ba x xl l  , 

1 3 1 3

2 2 2 2

2 4 7 2( 2 ) ( )D B D Bb x x l zl zl        

After   is obtained by Eq. (10), the coordinate of 3D  

and 1F  can be obtain. Thus, the coordinates of P on the 

platform is 

 

 

 

3 1

3 1

3 1

/ 2

/2

/2

D F

D F

D F

x x

y y

z z

x

y

z

 

















   (11) 

Inverse kinematics 

To solve the inverse kinematics, we compute the values of 

θ1, θ2 and θ3 as a function of the coordinate P of the moving 

platform. We have also to evaluate the value of β, which is a 

passive variable form the Eq. (10). 

Solution for   

For a given position of the moving platform, there are two 

positions for points 1C  and 2C  with 

3

7

arcsin
Dy

l


 
  

 
 or 3

7

arcsin
Dy

l
 

 
   

 
  

For each position of 1C  and 2C , we can calculate 1  and 

2 . 

Solution for θ1 and θ2:  

From Fig. 3, the coordinates of 1F , 1E  and 1D  are 

 1 2, ,
T

l zF x y  ,  1 2 6, ,
T

x l y z lE    , 
11 6,0,

T

Dx zD l    . 

Due to the link length constraints defined by 1 1 7D E l , 

the coordinates of 1D , 1C  and 2C  can be deduced as below: 

71

2 2

2 60
T

yD x l l z l    
 

   

1 1 61 0
T

D DC x z l    , 
1 15 62 2 0

T

D DC x l z l     . 

Then, due to the link length constraints defined by 

1 1 2 2 4C CB B l  , i.e. 

     

     

1 1 1 1 1 1

2 2 2 2 2 2

2 2 2
2

4

2 2 2
2

4

C B C B C B

C B C B C B

x x y y z z l

x x y y z z l

      

      


 (12) 

Then, Eq. (12) leads to: 

 2 2

3 32arctan (2 4 ) /i i i i i il z l h gz g   , for i=1, 2 (13) 

where 

11 Cz z , 
22 Cz z , 

1 1

2 2 2 2

1 1 3 4( ) C Ch l l x zl    , 

1 1

2 2 2 2

1 1 3 4( ) C Cg l l x zl    , 

1 1 2

2 2 2 2

2 1 3 4 1 3( ) 2 ( )C C Ch l l x z x ll l      , 

1 1 2

2 2 2 2

2 1 3 4 1 3( ) 2 ( )C C Cg l l x z x ll l     . 

Solution for θ3 

Similarly, the coordinates of 3D  and 3C  can be easily 

obtained 

 3 2, ,
T

D x l y z  ,  3 2 6, ,
T

C x l y z l  . 

Due to the link length constraints defined by 3 3 4B C l , 

the constraint equation is established as below. 

     
3 3 3 3 3 3

2 2 2
2

4C B C B C Bx x y y z z l        (14) 

From Eq. (14), we can evaluate 3  as following 

 2 2

3 3 3 3 3 3 3 32arctan (2 4 ) /l zz gl h g     (15) 

Where 

33 Cz z , 
3 3

2 2 2 2

3 1 3 4( ) C Cl l l y zg     , 

3 3

2 2 2 2

3 1 3 4( ) C Cl l l y zh     

We can conclude that this robot has 16 solutions to the inverse 

kinematic model, twice as many as the Delta robot. This is due 

to the mobile platform which is made with two parts. For the 

same position of P , there are two values for   and for each 

  value, there are two values for θ1 and θ2. However, there are 

only two θ3 values in total. The number of solutions in the 

inverse kinematic model is the product of 4 by 4 by 2, i.e. 16 

solutions. 

SINGULARITY ANALYSIS 

The singularity analysis of parallel robots has been well-

documented in the literature. We can find the parallel and serial 

Jacobian matrix, named A and B respectively [19, 20], by 

differentiating the constraint equations with respect to time. 
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Then we obtain the parallel and serial singularities by studying 

det(A)  and det(B) , respectively [21]. 

For the mechanism studied, the singularities are similar to those 

of a Delta robot. A new singular configuration exists because 

the mobile platform is made in two parts. When β is equal to 

/2  or 3 /2 , the robot admit a new singular configuration 

because the determinant of the parallel Jacobian matrix A 

vanished. This defines in the workspace, a vertical plane 

passing through the origin and parallel to the plane (xz). 

CASE STUDY 

To illustrate this study, we refer to the dimension parameters of 

the ABB robot 14R, i.e, 1 300l  , 2 70l  , 3 350l  , 4 800l  , 

5 100l  , 6 10l   and 7 50l  . Its parallel and serial singularity 

can be computed with the Siropa library [22]. The determinant 

of matrix A can be written 

       
1 1 1

sin 35cos 3 16 35sin 2 0C C Cx x z       (16) 

and that of matrix B as 

   

 
1 1 1 2 1 2

3 1 3 3 1 3

2100 70 1400 70

350 70 1120 70 0

C C

C C

zS C S C

C

z

x z CS S S C

   

     

  

   
  (17) 

By using Groebner base elimination methods, these surfaces 

can be plotted in the Cartesian space. Figure 4 depicts the 

singular configurations in the Cartesian space and Fig. 5 the 

serial singularities with a different color for each term of the 

Eqs (15) and (16). 

   
FIGURE 4. PARALLEL SINGULARITIESOF THE ROBOT 

 
FIGURE 5. SERIAL SINGULARITIESOF THE ROBOT 

CONCLUSIONS  

In this article, a new asymmetrical new parallel 

mechanism of pure parallel translation with a degree of zero 

coupling and complete motion decoupling has been proposed. 

The inverse and direct kinematic models are obtained. The 

mechanism is simple in structure and easy to manufacture, 

which can be used in transportation, positioning and other 

operations of the manufacturing industry. The study of singular 

configurations is simple because of the independence of the 

kinematic chains. 
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