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Abstract—Several high-performance applications integrate loop 
bodies which represent the most critical sections. This aspect 
brings two challenges.  First, the Worst Case Execution Time 
(WCET) must be determined in order to define the nested loop 
timing behaviour. The second challenge consists in raising the 
parallelism-level to enhance the performance. In particular, the 
Multidimensional Retiming (MR) is an important optimization 
approach that offers several instruction-level-parallelism 
solutions. Despite the fact that full parallelism allows achieving 
the optimal WCET, it leads to a high growth in processing cores, 
which is inadequate to embedded real-time implementations. 

The main idea of this paper consists in driving the parallelism-
level rise in terms of WCET development. First, the MR 
parameters that correspond to the nested loops are extracted. 
Thereafter, the WCET is formulated in term of the parallelism 
level rise. Then, an optimization heuristic is proposed which 
identifies the parallelism level that allows respecting the WCET 
constraint. Our experiments indicate the WCET prediction is 
accurate within an error rate of 8.54%. Secondly, the 
optimization heuristic implementations show an average 
improvement on number of cores of 27.18% compared to full 
parallel ones. 

Keywords— HW/SW codesign, design space exploration, 
optimization, WCET, nested loops, parallelism. 

I. INTRODUCTION 
The loop bodies compose a large group of embedded real-

time applications. They imply a higher rise in the execution 
time, which generally results in overtaking the real-time 
properties. Therefore, the performance is handled through all 
the design levels in terms of analysis and optimization, to 
ensure a safe final implementation.  

Several WCET estimation approaches are proposed, which 
are generally classified in two kinds [5]. The first one consists 
in running test codes and estimating the WCET, based on the 
measured performances. However, those approaches are 
inefficient in the case of complex codes. The other approaches 
are based on a WCET static analysis. They model the 
implementation code in order to identify the data flow and the 
control flow parameters and use them on an equation system. 
The WCET static analyses are integrated on a general 
workflow that intercepts both code and micro-architecture 
parameters to provide a safe WCET [1,2]. Several workflows 

are implemented in efficient software tools and compilers for 
real-time applications [4, 5, 19]. 

Actually, the real-time application complexity is increased 
due to an intensive utilization of nested loops. Moreover, 
parallel architecture implies different parallel scheduling, 
hence different timing behaviours. In this context, many works 
have focused on analysing the nested loop structures in order 
to purpose adequate equation systems for WCET estimation 
[6, 7, 8], which are in the scope of our work. The main idea is 
to explore the nested loop model to define the loop iteration 
numbers, the loop dependencies and the critical task inter-
loops, etc. Some works have focused on specific loop bodies 
such as the one containing unfeasible paths like “if …else” 
instruction and “do … while” loop [2, 6], which are not 
considered in the paper. 

Elsewhere, several parallelism approaches have led to 
enhance the nested loop performances. They generally 
represent the data flow and the control flow in a formal model 
such as the polyhedral model [9, 10] and the Multidimensional 
Data Flow Graph (MDFG) [11, 12]. Thereafter, they transform 
the model to parallelize the processing. The MDFG is an 
acyclic data flow graph that ensures an adequate 
representation of nested loops. It allows modelling the loop-
carried dependencies across several loops. It is distinguished 
by a detailed instruction granularity compared to the 
polyhedral model. A lot of optimization approaches are 
proposed to parallelize the MDFG. The Multidimensional 
Retiming (MR) is a theoretical approach that guarantees 
parallelizing instructions inside nested loops. All MR 
techniques aim to iteratively increasing the instruction-level-
parallelism until achieving a full parallel implementation, 
hence the minimal WCET [12, 13, 14]. However, the higher 
the parallelism level is, the more intensively the processing 
core number grows. Moreover, admitting that the application 
complexity keeps growing, the parallelism transformation 
implies a data overhead which requires a large cache memory 
size. As a result, even the optimal WCET is achieved, the MR 
provides implementations with important material resources.  

In fact, the MR approach offers a significant solution space 
with a corresponding different parallelism level. 
Consequently, it is sufficient to apply a partial parallelism that 
enables attaining the WCET constraint, instead of applying a 



full parallelism. However, it is inefficient to extract each 
solution and then define its WCET, due to the nested loop 
complexity. The works described in [17, 18] partially explore 
the solution space to provide a safe implementation, but they 
do not give optimal solutions. Few works have been interested 
in analyzing the WCET development in terms of parallelism 
techniques. As described in [15], the work combines the 
theory of both WCET model and loop unrolling to enhance the 
performance. Furthermore, an instruction-level-parallelism 
controlled by the WCET development is suggested for super-
scalar processors in [16]. However, both works were proposed 
for specific nested loops without modeling general loop-
carried dependencies. 

In this paper, we aim to drive the instruction-level-
parallelism rising of nested loops by the WCET development. 
First of all, The WCET equation system is formulated in terms 
of MR parameters. Then, the parallelism level is increased 
iteratively until respecting the WCET constraint.  

The rest of the paper is organized as follows. In section II, 
we present the basic concepts of modelling nested loops with 
MDFG, parallelizing the loop body with MR and predicting 
nested loop WCET. In section III, we present the theory of the 
WCET estimation and the optimization heuristic that drives 
MR in terms of WCET. The experimental results are given in 
section IV, followed by the concluding remarks in section V. 

II. BASIC CONCEPTS 

A. Multidimensional data flow graph 
The MDFG is an extension of the classic data flow graph 

where each node presents an instruction and each edge 
presents a data dependency. The main characteristic is the 
ability to represent nested iterative and recursive structures. 
Indeed, one iteration is similar to executing all nodes once. 
The repetitive aspect is formulated by two concepts: the 
dimension 푛 of the MDFG, which is the nested loop number, 
and the delays, which are edge weights formulating the loop-
carried dependencies. An MDFG is modelled as 퐺 =
(푉,퐸,푑, 푡), where 푉 is the node set, 퐸 is the edge set, 푑(푒) is 
the multidimensional delay of edge 푒, and 푡(푢) is the 
computation time of the node 푢. For 푒 ∶  푢 → 푣, A 푑(푒) edge 
delay is modelled by a vector with n indexes such as 푑(푒) =
 (푐 , 푐 , … , 푐 ). Each index corresponds to a single loop in a 
way that 푐  presents the difference between the iteration 
executing 푣 and the other one executing 푢 of the loop 푘: If the 
node 푢 is executed in the iteration 푥 of the loop 푘, then the 
node 푣 is executed in the iteration (푥 + 푐 ). 

As an example, the Jacobi algorithm [25] shown in Fig. 
1(a) is modelled by the MDFG in Fig. 1(b). It is composed by 
four nodes like the number of the innermost loop instructions. 
Each edge in the MDFG is labelled by a delay with two 
indexes, where 푑(푒) = (푑.푥,푑.푦). The "푑.푥" and "푑. 푦" terms 
are in relation with the outermost loop and the innermost one, 
respectively. The 퐴1 and 퐴2 instructions are computed in the 
same iteration whether for the innermost or the outermost 
loops. Therefore, the 퐴1 → 퐴2 edge is labelled by the delay 
푑(푒 ) = (0,0) which is called “zero-delay edge”. For the data 
dependencies between D2 and A2, if D2 is executed in the 

iteration 푖 of the outermost loop, then 퐴2 is executed in the 
iteration 푖 + 1. Similarly to the innermost loop, 퐷2 is executed 
in the previous iteration of the 퐴2 execution. For this purpose, 
the delay value of the edge 퐷2 → 퐴2 is equal to (1,−1). 

The notation 푝: 푣 …→ 푣  is used to mean that 푝 is a 
path from 푣  to 푣 . The delay and the computation time of a 푝 
path are respectively equal to 푑(푝) = ∑ 푑(푒 ) and 
푡(푝) = ∑ 푡(푣 ). A 푝 path, whose 푑(푝) = (0, … ,0), is 
called “zero-delay path”. The critical paths p  are the ones 
having the maximum computation time among all zero-delay 
paths in the MDFG (푡(푝 ) = 푚푎푥{푡(푝), 푑(푝) = 0}). The 
period during which all computation nodes in iteration are 
executed according to existing data dependencies and without 
resource constraints is called an Iteration Time 퐼푇(퐺), where 
퐼푇(퐺) ≥ 푡(푝 ). For example, the critical paths is structured 
as 푝:퐴1 → 퐴2 → 퐷1 → 퐷2. Assuming that 푡(퐴1) = 푡(퐴2) =
1 푡푖푚푒 푢푛푖푡푠 (푡. 푢. ) and 푡(퐷1) = 푡(퐷2) = 2 푡. 푢., the Jacobi 
algorithm 퐼푇 is equal to 6 푡.푢. . The theoretical schedule is 
represented in Fig. 2 where the nodes belonging to the same 
iteration are modelled by the same pattern which can be 
executed using one core. 

Fig.1. The Jacobi algorithm : (a) code, (b) MDFG, (c) static schedule 

B. Multidimensional retiming 
The MR is an instruction-level-parallelism approach of 

nested loops. It reduces the 퐼푇 by decreasing nodes in critical 
paths. With this objective, it shifts nodes from their original 
iteration in order to execute them in parallel with other nodes. 
For a retimed node, modifying its belonging iteration consists 
in modifying their edge delays with respect to a MR function. 
For the MR function 푟(푢) = (푟 , … , 푟 ), the execution of the 
node 푢 in the iteration 푖 is moved to the iteration 푖 − 푟  [12]. 
Thus, the MR is modelled as a graphical transformation that 
modifies the MDFG delays, while preserving the functional 
behaviour of the initial MDFG [12,13]. All MR techniques 
aim to achieve the 퐼푇 . The incremental and chained MR 
techniques [12] apply the MR successively to each critical 
path nodes until having a full parallelism; i.e., all instructions 
in the same iterations are executed in parallel. However, the 
provided implementation requires processing cores as more as 
the nodes are. 

Other MR techniques lead to schedule an MDFG with a 
퐼푇 , without getting a full parallelism [12, 14, 27]. Retiming 
the whole path is carried out, instead of a node only, in order 



to minimize the processing cores when enhancing the 
performance. The delayed MR technique [14, 27] proposes a 
theoretical approach to select and retime paths. It defines two 
terms to reflect the timing and data dependency characteristics 
of each path in the MDFG: the 퐷(푢, 푣) which represents the 
minimum delay between the paths connecting 푢 and 푣, as 
described in Equation (1) (if just one path among those 
connecting 푢 and 푣 has a zero-delay then 퐷(푢, 푣) = (0, … ,0); 
else, 퐷(푢,푣) ≠ (0, … ,0)), and the 푇(푢,푣) which defines the 
maximum execution time among the zero delay path 
connecting 푢 and 푣, as described in Equation (2).  
퐷(푢,푣) = 푚푖푛{푑(푝),푤ℎ푒푟푒 푝 :푢 → 푣,푢 ∈ 푉 푎푛푑 푣 ∈ 푉}(1) 

푇(푢,푣) = 푚푎푥 푡(푝) 푤ℎ푒푟푒 푝 :푢 → 푣, 푢 ∈ 푉, 푣 ∈
푉 푎푛푑 푑(푝) = 퐷(푢,푣)  (2) 

Their values are ranged respectively in two matrices called 
퐷 and 푇 with 푉 × 푉 size, such as 푉 in the node set. Each 
푝 :푢 → 푣 path is indexed by the cell with the line 푢 and the 
column 푣. Taking the Jacobi algorithm as an example, the 
MDFG in Fig. 1(b) is composed by four nodes, hence the 
4 × 4 matrix dimension whose 퐷 and 푇 matrices are 
respectively illustrated in Table I and Table II.  

Table I. D matrix of the initial Jacobi Algorithm 

u\v A1 A2 D1 D2 
A1 (0,0) (0,0) (0,0) (0,0) 
A2 (1,0) (0,0) (0,0) (0,0) 
D1 (1,0) (1,0) (0,0) (0,0) 
D2 (1,0) (1,0) (1,0) (0,0) 

Table II. T matrix of the initial Jacobi Algorithm 

u\v A1 A2 D1 D2 
A1 1 2 4 6 
A2 6 1 3 5 
D1 5 6 2 4 
D2 3 4 6 2 

Thus, achieving the 퐼푇  is synonymous to providing an 
MDFG whose 퐷(푢, 푣) = 0 and 푇(푢,푣) > 퐼푇 . Therefore, 
the delayed MR technique explores both matrices to define the 
sub-critical paths with respect to the previous condition. For 
the Jacobi algorithm, the delayed MR selects the MR function 
푟 = (0,1) to software pipeline the 푃1:퐴1 → 퐴2 path, which 
the retimed Jacobi algorithm is shown in Figure 2(a). Each 푖  
occurrence of 푃1 path is shifted up and executed in the 
previous iteration of the innermost loop, where 1 ≤ 푖 ≤ 푛. 
The first 푃1 occurrence belonging to the first iteration of the 
innermost loop is shifted upstream the retimed loop as the first 
instruction in Fig. 2(a), which is called prologue. This implies 
that all 푃1 paths, belonging to (푖, 0) iteration, are executed 
outside the innermost loop whatever the 푖 index is. 
Correspondingly, the complementary instructions of the last 
iteration, which are called epilogue, are executed downstream 
the innermost loop. This transformation permits executing any 
P1 path in the innermost loop in parallel with other nodes, as 
shown in the static schedule of Fig. 2(c). Accordingly, the 퐼푇 
is reduced from 6 to 4 . 푢. . In addition, the innermost loop is 
iterated (푁− 1) times, though requiring two cores to execute 
the implementation. 

 

 

 
Fig.2. The Jacobi algorithm after r(퐀ퟏ → 퐀ퟐ) = (ퟎ,ퟏ) : (a) code, (b) 

MDFG, (c) static schedule 

the second MR function is applied to the 퐷1 node. The 
final MDFG is scheduled with the 퐼푇 = 2 푡. 푢. using three 
processing cores as shown in the Fig.3. 
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…
 For i from 2 to  N−2 do
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Fig. 3. The Jacobi algorithm provided by the delayed MR : (a) code, (b) 

MDFG, (c) static schedule 

C. Nested  loop WCET 
The WCET analysis involves defining all parameters to 

quantify the execution time upper bound. For parallel 
architecture, the scheduling ensures distributing the processing 
into several cores, hence its running times. In addition, the 
growth in the grid dimension and the extension of the memory 
hierarchy implies an additional timing component that 
corresponds to the access memories. Therefore, several works 
[4, 26] split the 푊퐶퐸푇 into a Worse Case Running Time 
(푊퐶푅푇) and a Worse Case Stall Time (푊퐶푆푇) as indicated in 
Equation 3. 

푊퐶퐸푇 = 푊퐶푅푇 +푊퐶푆푇    (3) 

The 푊퐶푅푇 static analysis explores the software 
parameters of the loop nests. The equation system is always 
formulated using the computation time 푡  of all 푖 tasks and 
their instance numbers 푐  [1, 4, 5, 21, 22, 23].  Each task is 
defined by exploring the control flow in order to define the 
critical path instructions. Therefore, its execution time 푡  is 
determined by associating a timing parameter for each 
computation instruction. The 푐  instance number is computed 
based on the iteration loop bounds that are identified from the 
code. In the case of parallel processing, the 푊퐶푅푇 consists in 
selecting the task executed in parallel to identify the ones 
having the maximal computation time [3, 20, 24]. Thus, the 
whole 푊퐶푅푇 value is generally the maximal value of 
multiplying 푡  and 푐  parameters, as indicated in Equation 4. In 
the case of nested loops, Equation 4 is enabling its application 
by considering each loop as a task in its outermost one. 

푊퐶푅푇 = 푚푎푥 푡 × 푐   (4) 



The 푊퐶푆푇 represents the necessary time to schedule data 
to parallel cores, which is in terms of the thread number. 
Accordingly, the more the threads are, the higher the stall time 
is. Moreover, nested loops iterate the execution of the parallel 
processing which leads to a similar stall time rise, resulting in 
computing the 푊퐶푆푇 as indicated in Equation 5 [4, 20].  

푊퐶푆푇 = 푁 × (푇 − 1) × 퐶 (5) 

Where 푁 is the iteration number, 푇 is the thread number 
and 퐶 is timing parameter that is experimentally defined as in 
[4, 20]. 

III. WCET DEVELOPEMENT IN TERMS OF 
MULTIDIMENSIONAL RETIMING 

A. Approach principle 
The main idea of this paper consists in driving the 

instruction-parallelism-level rise in terms of WCET 
development. For this purpose, our approach requires an 
efficient WCET estimation. 

As indicated in the last paragraph, the WCRT is expressed 
in terms of computation times and instance numbers of tasks. 
For the MDFG, those tasks corresponding to the instructions 
belong either to the innermost loop or the prologue/epilogue 
codes. Instance numbers are to be computed directly from 
their outermost loop bounds, irrespective of their number. As 
indicated in section II, to obtain iteration time, the 
identification of the critical paths is vital. For the WCST, it 
depends of the thread number that ensures implementing any 
code block, which is similar to the parallelism level. In this 
objective, the MDFG is to be swept in order to compute the 
maximal node count executed in parallel. 

Elsewhere, The MR iteratively increases the parallelism 
level by software pipelining nodes. Accordingly, each MR 
function consists in decreasing the loop bounds, modifying the 
data paths either inside or both side loops, and increasing the 
parallelism level. Moreover, those transformations rise with 
respect to the applied MR function number. In this objective, 
the approach formulates the loop bound, the iteration time and 
the parallelism level developments into equations in terms of 
MR function and its application numbers. Thereafter, those 
equations are employed to estimate the WCET nested loops. 

Based on the MR modification and equations 4 and 5, the 
MR leads to reduce the WCET despite increasing the 
parallelism level, hence the core rise. Thus, the approach 
proceeds iteratively to estimate the WCET and raises the 
parallelism level using the MR until achieving the WCET 
constraint or the  퐼푇 . 

Within this framework, figure 4 illustrates a step-by-step 
approach. It starts by providing an optimal MR function r and 
defining the 퐼푇  [12, 13, 14]. Then, it sweeps the MDFG to 
identify the maximal number of MR that can be applied and 
their corresponding data paths that will be shifted, as 
described in section B. In section C, those data paths are 
explored to compute the iteration times 퐼푇  and the parallelism 
levels 푃퐿 , which correspond to each MR order. The 
development of the iteration loop bounds LB is formulated in 
terms of MR retiming function in section D. As a 

consequence, the WCET prediction of the whole nested loops 
is then detailed in section E. Finally, an optimization heuristic 
is proposed in section F, which drives the instruction-level-
parallelism in terms of WCET development. 

 
Fig. 4. The approach flow graph 

B. Multidimensional retiming analysis 
Each MR consists in reducing the critical path sizes by 

shifting nodes from the innermost loop and adding them in 
both sides of loop nests. Both actions affect the timing 
behaviour of the nested loops. To evaluate this modification, it 
is necessary to identify the possible MR modifications and the 
data-paths that are shifted. Those sub-paths can be identified 
by their latest nodes 푅 with respect to the data dependency 
direction, where and 푅 ⊆ 푉. Accordingly, this section 
objective is defining a set 푉  of vector (푖, 푢) where 푢 is the 
node to retime and 푖 is its MR order. In fact, those nodes are 
defined based on the timing and data dependency 
characteristics of the MDFG which are modelled on the D and 
T matrices, as described in section II. Thus, both matrices are 
swept to define the maximal number of MR functions, the 
retimed nodes and their MR function order. The D and T 
matrices are incrementally swept in the direction of the data 
dependencies. The node set S, having all incoming edges with 
non-zero-delays, are extracted in order to identify the last 
nodes R of the critical paths. So, each node is added to the set 
R if the computation time path is under 퐼푇  and 퐷 =
(0, … ,0)[13, 14]. Accordingly, the R list is filtered to remove 
redundancy and save the last ones. The first MR function adds 
delays to the R node outcoming edges. Hence, the R nodes are 
saved in the 푉  list with their MR function order (푘 = 1). 
These steps are repeated by sweeping from the R successors 
and incrementing the K level, as described in algorithm 2. 

For example, the initial MDFG of the Jacobi algorithm, 
whose the critical path is 푝 :퐴1 → 퐴2 → 퐷1 → 퐷2, is shown 
in Fig.1(b). As indicated in algorithm 1, sweeping leads to 
select the 퐴2 node to be retimed first. The second iteration in 
algorithm 1 implies the selection of the 퐷1 node to be the 
second one to retime. As a result, 푉 = {(퐴2,1), (퐷1,2)}. 



Inputs: the D and T matrices, the minimal iteration time ITmin
Outputs: The list VR, the MR number k

 /*identify the last nodes S of critical paths*/
For e∈E where e:u→v do

If d(e)≠(0,…,0) then
Add v to S list

End if
End for
k ← 0
Repeat

k←k+1
       /*explore the successors R of the S nodes */

For each node v∈S do
For each node x∈V do

If D(v,x)=(0,…,0) and T(v,x) ≤ ITmin and x∉R then
Add x to R list

End if
End for

End for
       /* identify the R nodes to retime*/

For each node p∈R do
For each node q∈R do

If D(p,q)=(0,…,0) then
Delete p from R

End if
End for

End for
       /*save the nodes to retime on VR and their MR order k*/

For each node x∈R do
add (x,k) to VR

End for
S←R

Until all nodes are tested

ALGORITHM 1. MR analisys

 
C. Innermost IT  and parallelism level  in terms of MR 
WCET prediction requires defining the innermost iteration 

time and the parallelism level for the initial MDFG and for 
each eventual MR function. Therefore, the parallelism levels 
are modeled as a set 푃퐿  of vector (푖,푃퐿 ,푃퐿 ,푃퐿 ) 
where 푖 is the MR order, and 푃퐿 , 푃퐿  and 푃퐿  are the 
parallelism levels respectively of the innermost loop, the 
prologue and the epilogue. Similarly, the innermost 퐼푇푠 are 
modeled as a set 퐼푇  of vector (푖, 퐼푇 ). Based on the MR 
principles, the instructions added to the prologue are executed 
under 퐼푇 . Therefore, the prologue and epilogue 
computation time are estimated in terms of 퐼푇  and the 
current MR order. 

The 퐼푇 is equal to the computation time of the critical path, 
as 퐼푇 =  푚푎푥{푡(푝),푑(푝) = 0}. For the initial MDFG, the 
critical path is defined by sweeping it from the nodes 푉 , 
having all incoming edges with non-zero-delays, until the 
nodes 푉 , having all outcoming edges with non-zero-delays. 
Each MR modifies the critical-path in a way that it is defined 
from the retimed nodes 푉 , extracted by algorithm 1, to the 푉  
nodes. Similarly, the parallelism level of the initial MDFG 
corresponds to the maximal nodes that are executed in 

parallel, which are determined basing on their computation 
times. Taking as an example the Jacobi algorithm shown in 
Fig1, the MDFG is swept to identify the 푝:퐴1 → 퐴2 → 퐷1 →
퐷2 critical path. Knowing that the first MR is to be applied to 
the 퐴2 node, sweeping is done from the 퐴2 successor nodes to 
the V  nodes. Consequently, the 퐷1 → 퐷2 path is swept twice. 
The longer the critical path is, the more repeatedly the nodes 
are swept. For this purpose, the main idea is to compute the 
execution time of critical path once, for all MR functions that 
can be applied. In this purpose, the MDFG should be swept in 
the opposition direction of data dependencies and 
incrementally defining the critical-path computation-time in 
each node, where the result is stored in the 푉  list. To identify 
the execution time critical path after each MR function, the 
node having the same level is selected from the V , to extract 
the one having the maximal-execution-time critical path. 
Elsewhere, for each MR function, the parallelism level 푝 of 
retimed sub-paths is computed. Thereafter, 푝 is added to the 
previous 푃퐿  and 푃퐿 , and (푝 _ − 푝) is added to the 
previous 푃퐿  where 푝 _  is the initial innermost loop 
parallelism level, as described in algorithm 2. 

 



In the case of the Jacobi algorithm MDFG shown in 
Fig.1(b), the 퐷2 node is the last one for all zero-delay paths, 
which are saved in the L list. The MDFG is swept in the 
opposite direction to compute all the path execution times, 
which are finished by 퐷2, whose values are stored in the 푉  
list, where 푉 = {(퐴1,6), (퐴2,5), (퐷1,4), (퐷2,2)}. The 
following loop in algorithm.2 ensures defining the innermost 
iteration times after applying respectively the first and second 
MR functions, where 퐼푇 = {(0,6), (1,4), (2,2)}. The last loop 
ensures defining the set푃퐿 = {(0,1,0,0), (1,2,1,1), (2,3,2,2)}. 

D. Loop bounds analysis 
The MDFG allows modelling 푙 nested loops, whatever the 

loop iteration bounds are. Therefore, all iteration loop bounds 
are modelled as 퐿퐵 =  (푛 ,푛  … , 푛 ), where 푛  is the loop 
bound of the 푖 loop and 1 ≤ 푘 ≤ 푙. As indicated in section II, 
the MR leads to reduce the loop bounds with respect to the 
MR function 푟 in a way that if 푟 =  (푟 , 푟  … , 푟 ), the 푛  loop 
bound is reduced by  |푟 |. This decline is ensured either the 푟  
value, which is positive or negative. Thus, the nested loop 
bounds after the first 푟 MR function is as shown in Equation 6. 

퐿퐵( )  =  ( 푛 − |푟 | ,  푛 − |푟 | , … , 푛 − |푟 |)(6)  

 Elsewhere, the 푟 function is enabled to be applied several 
times, as much as the full parallelism is required. Therefore, 
the more the MR is applied, the loop bounds decrease with 
respect to the 푟  values.  The LB loop bound is formulated in 
terms of the 푖 MR function rank, as described in Equation 7. 

퐿퐵( )  =  ( 푛 − 푖 × |푟 | ,  푛 − 푖 × |푟 | , … , 푛 − 푖 × |푟 |)(7)  

After applying the MR function 푟 = (1,−1), the 
outermost and innermost loop bounds are respectively 
decreased by |1| and |-1|. The same growth is implied after 
each MR function, as shown in Fig.3(b). Accordingly, the 
final 퐿퐵( , ) is formulated as described in Equation 8. 

퐿퐵( )  =  ( 푛 − 푖 ,  푛 − 푖)  (8) 

E. WCET prediction 
The WCET is predicted for all the nested loops in terms 

parallelism level that corresponds to the 푖 order of the MR 
function. Since the prologue and epilogue are added in both 
sides of each retimed loop, the nested loop WCET is 
incrementally computed from the innermost loop 푊퐶퐸푇( , ) to 
the outermost one 푊퐶퐸푇( , ). For the innermost loop, the 
푊퐶퐸푇( , ) represents the addition of the 푊퐶푅푇( , ) and the 
푊퐶푆푇( , ) as described in Equation 3. The first term is equal to 
the iteration time 퐼푇  multiplied by its loop bound 퐿퐵( , ), 
which corresponds to the ith MR function. The second term is 
the multiplication of the loop bound 퐿퐵( , ), the parallelism 
level 푃퐿( , ) and the 퐶 constant. If r ≠ 0 and 1 < 푙 ≤ 푘, a 
prologue is added in both sides of the 푙 loop. As indicated in 
[13], the instructions shifted outside the loop are executed in 

퐼푇 . The greater |r | is, the more the prologue execution 
time increases. Moreover, the prologue and epilogue WCSTs 
are computed in terms of 푃퐿 , 푃퐿  and 퐿퐵( , ). 
Accordingly, the prologue and epilogue WCET is computed as 
described in Equation 9. 

푊퐶퐸푇 ( , ) = (|푟 | × 퐼푇 ) + (퐿퐵( , ) × 퐶 ×
(푃퐿 ( , ) + 푃퐿 ( , )))   (9) 

Therefore, each 푙 loop 푊퐶퐸푇( , ), where  1 < 푙 ≤ 푘, is 
formulated in terms of the 푊퐶퐸푇 ( , ) and the 
푊퐶퐸푇( , ). Hence, the whole loop nested loop WCET is 
defined as shown in Equation 10. 

푊퐶퐸푇( , ) =

⎩
⎪
⎨

⎪
⎧ 퐿퐵( , ) × 퐼푇 + 푃퐿( , ) × 퐶  ,                           

푖푓   푙 = 1
                                                                           (10)
퐿퐵( , ) × 푊퐶퐸푇( , ) +푊퐶퐸푇 ( , ) ,

 푖푓 1 < 푙 ≤ 푘

 

F. Optimization heuristic 
Our approach aims to provide the MR function number 

that allows achieving the execution time constraint. In this 
context, it determines the MR parameters. Thereafter, the 
WCET is formulated in terms of MR parameters. Thus, the 
approach starts by computing the 퐼푇 , the MR function r and 
the D and T matrices, as indicated respectively in [12, 13]. 
Accordingly, the both suggested algorithms are called, where 
the first one generates the MR function number and the nodes 
to retime, while the second one provides the 퐼푇  and 푃퐿  sets. 
Hence, the approach iteratively computes the WCET in order 
to compare it to the constraint. The first iteration corresponds 
to the initial MDFG. The last one corresponds to the retimed 
MDFG with an increased MR function number. The whole 
steps of our proposed optimization heuristic are described in 
algorithm 3. 

 



IV. EXPERIMENTAL RESULTS  
In our experiments, the first step consists of verifying the 

WCET estimation, by comparing its values to the ones 
provided by the SWEET software tool [5, 19]. The second 
step, the optimization heuristic is compared to the delayed MR 
technique by evaluating the core number development of the 
provided implementations in terms of WCET constraints. Our 
benchmarks include several 2D nested loops which are the 
Infinite Impulse Response Filter (IIRF) [13], the Jacobi 
Algorithm (JA) [25], the Walsh-Fourier Transform (WFT) 
[12], and the Wave Digital Filter (WDF) [14]. The core 
numbers are respectively shown in Fig.6. 

All benchmarks are explored to define the MR function 
and the required function number to achieve the full 
parallelism, as indicated in algorithm 1. Then, the estimation 
model, described on section III, is applied to define the WCET 
in terms of MR function, whose values are cited in table III. 

Table III. MR parameters and WCETs of applications 

Benchmarks MR 
function 

MR 
number 

Execution time 

Without 
MR 

MR function number 
1 2 3 4 

IIRF (1, -1) 4 1000 890 720 560 316 
JA (0, 1) 2 540 400 240 -- -- 

WFT (1, -1) 2 368 242 138 -- -- 
WDF (0, 1) 2 1324 917 504 -- -- 
The SWEET software tool intercepts the nested loop code 

and the architectural timing parameter to provide the upper 
bound WCET. The verification main idea compares the 
SWEET provided values to those computed by the proposed 
equation system. This step is done for all benchmarks exposed 
in Table III, which values are shown in Fig. 5. As a 
consequence, the proposed WCET estimation offers an 
efficient prediction with an error rate equal to 8.54 % 
compared to the SWEET tool. 

 
Fig. 5. Benchmark WCETs in terms of SWEET tool and WCET equation 

Each application is submitted to five execution time 
constraints, as indicated in the first column of Table IV. 
Therefore, the optimization approach selects the MR 
parallelism and estimates its execution time that respects the 
target constraint, which are listed in the third column of Table 
IV. To get each constraint, the optimization approach provides 
implementation with a different parallelism level, which is in 

relation to the core number. The full parallel implementations 
are only achieved in the case of minor execution time 
constraints. 

Table IV. WCETs and core numbers in terms of WCET Constraints 

Benchmarks WCET 
constraint WCET Core 

number 

IIRF 

400 316 16 
650 560 15 
800 720 14 
950 890 12 
1100 1000 8 

JA 

300 240 3 
400 400 2 
500 400 2 
600 540 1 
700 540 1 

WFT 

200 138 4 
250 242 3 
300 242 3 
350 242 2 
400 368 2 

WDF 

600 504 4 
800 504 4 
1000 917 3 
1200 917 3 
1400 1324 2 

After analyzing the optimization approach results, we 
compare its implementations to those provided by the delayed 
MR retiming in terms of core number, as shown in Fig.6. As a 
consequence, the optimization approach presents a benefit in 
terms of core numbers regarding the delayed MR technique 
for an average improvement of 27.18%. 

(a) 
 

(b) 

(c) (d) 
Delayed MR technique              Optimization heuristic 

Fig. 6. The core number development in term of delayed  MR 
technique and the optimization heuristic : (a) IIRF, (b) JA, (c) WFT and 

(d) WDF 
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V. CONCLUSION AND FUTURE WORKS 
In this paper, we have proposed a nested loop WCET static 

analysis and an optimization heuristic that allows increasing 
the instruction-level-parallelism in order to achieve a WCET 
constraint. The main idea consists in providing an optimal 
parallelism level instead of a full parallel implementation. The 
experimental results show a noticeable efficiency of the 
WCET prediction and an important optimization of the 
heuristic in terms of processing cores. 

In our future works, we aim to extend the approach to 
optimize the cache memory and overhead ratio, which allow 
enhancing the WCET estimation. Moreover, this work is 
enabled to be extended to other parallelism techniques such as 
the loop tilling and loop stripping, hence the whole parallelism 
solution space, which consequently leads to optimal 
implementations. 
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