
HAL Id: hal-01796771
https://hal.science/hal-01796771v1

Submitted on 22 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

WCET Nested-Loop Minimization in Terms of
Instruction-Level-Parallelism

Yaroub Elloumi, Mohamed Akil, Mohamed Hedi Bedoui

To cite this version:
Yaroub Elloumi, Mohamed Akil, Mohamed Hedi Bedoui. WCET Nested-Loop Minimization in Terms
of Instruction-Level-Parallelism. International Conference on High Performance Computing & Simu-
lation (HPCS), Jul 2015, Amsterdam, Netherlands. �hal-01796771�

https://hal.science/hal-01796771v1
https://hal.archives-ouvertes.fr

WCET Nested-Loop Minimization in Terms of
Instruction-Level-Parallelism

Yaroub Elloumi1,2, Mohamed Akil
1Université Paris-Est, ESIEE Paris

Laboratoire d’Informatique Gaspard Monge, Equipe A3SI
93162 Noisy-le-Grand, France

Emails: {yaroub.elloumi, mohamed.akil}@esiee.fr

Mohamed Hedi Bedoui
2University of Monastir, Faculty of Medicine of Monastir
Laboratory of Medical Technology and Image Processing

5019, Monastir, Tunisia
Email: medhedi.bedoui@fmm.rnu.tn

Abstract—Several high-performance applications integrate loop
bodies which represent the most critical sections. This aspect
brings two challenges. First, the Worst Case Execution Time
(WCET) must be determined in order to define the nested loop
timing behaviour. The second challenge consists in raising the
parallelism-level to enhance the performance. In particular, the
Multidimensional Retiming (MR) is an important optimization
approach that offers several instruction-level-parallelism
solutions. Despite the fact that full parallelism allows achieving
the optimal WCET, it leads to a high growth in processing cores,
which is inadequate to embedded real-time implementations.

The main idea of this paper consists in driving the parallelism-
level rise in terms of WCET development. First, the MR
parameters that correspond to the nested loops are extracted.
Thereafter, the WCET is formulated in term of the parallelism
level rise. Then, an optimization heuristic is proposed which
identifies the parallelism level that allows respecting the WCET
constraint. Our experiments indicate the WCET prediction is
accurate within an error rate of 8.54%. Secondly, the
optimization heuristic implementations show an average
improvement on number of cores of 27.18% compared to full
parallel ones.

Keywords— HW/SW codesign, design space exploration,
optimization, WCET, nested loops, parallelism.

I. INTRODUCTION
The loop bodies compose a large group of embedded real-

time applications. They imply a higher rise in the execution
time, which generally results in overtaking the real-time
properties. Therefore, the performance is handled through all
the design levels in terms of analysis and optimization, to
ensure a safe final implementation.

Several WCET estimation approaches are proposed, which
are generally classified in two kinds [5]. The first one consists
in running test codes and estimating the WCET, based on the
measured performances. However, those approaches are
inefficient in the case of complex codes. The other approaches
are based on a WCET static analysis. They model the
implementation code in order to identify the data flow and the
control flow parameters and use them on an equation system.
The WCET static analyses are integrated on a general
workflow that intercepts both code and micro-architecture
parameters to provide a safe WCET [1,2]. Several workflows

are implemented in efficient software tools and compilers for
real-time applications [4, 5, 19].

Actually, the real-time application complexity is increased
due to an intensive utilization of nested loops. Moreover,
parallel architecture implies different parallel scheduling,
hence different timing behaviours. In this context, many works
have focused on analysing the nested loop structures in order
to purpose adequate equation systems for WCET estimation
[6, 7, 8], which are in the scope of our work. The main idea is
to explore the nested loop model to define the loop iteration
numbers, the loop dependencies and the critical task inter-
loops, etc. Some works have focused on specific loop bodies
such as the one containing unfeasible paths like “if …else”
instruction and “do … while” loop [2, 6], which are not
considered in the paper.

Elsewhere, several parallelism approaches have led to
enhance the nested loop performances. They generally
represent the data flow and the control flow in a formal model
such as the polyhedral model [9, 10] and the Multidimensional
Data Flow Graph (MDFG) [11, 12]. Thereafter, they transform
the model to parallelize the processing. The MDFG is an
acyclic data flow graph that ensures an adequate
representation of nested loops. It allows modelling the loop-
carried dependencies across several loops. It is distinguished
by a detailed instruction granularity compared to the
polyhedral model. A lot of optimization approaches are
proposed to parallelize the MDFG. The Multidimensional
Retiming (MR) is a theoretical approach that guarantees
parallelizing instructions inside nested loops. All MR
techniques aim to iteratively increasing the instruction-level-
parallelism until achieving a full parallel implementation,
hence the minimal WCET [12, 13, 14]. However, the higher
the parallelism level is, the more intensively the processing
core number grows. Moreover, admitting that the application
complexity keeps growing, the parallelism transformation
implies a data overhead which requires a large cache memory
size. As a result, even the optimal WCET is achieved, the MR
provides implementations with important material resources.

In fact, the MR approach offers a significant solution space
with a corresponding different parallelism level.
Consequently, it is sufficient to apply a partial parallelism that
enables attaining the WCET constraint, instead of applying a

full parallelism. However, it is inefficient to extract each
solution and then define its WCET, due to the nested loop
complexity. The works described in [17, 18] partially explore
the solution space to provide a safe implementation, but they
do not give optimal solutions. Few works have been interested
in analyzing the WCET development in terms of parallelism
techniques. As described in [15], the work combines the
theory of both WCET model and loop unrolling to enhance the
performance. Furthermore, an instruction-level-parallelism
controlled by the WCET development is suggested for super-
scalar processors in [16]. However, both works were proposed
for specific nested loops without modeling general loop-
carried dependencies.

In this paper, we aim to drive the instruction-level-
parallelism rising of nested loops by the WCET development.
First of all, The WCET equation system is formulated in terms
of MR parameters. Then, the parallelism level is increased
iteratively until respecting the WCET constraint.

The rest of the paper is organized as follows. In section II,
we present the basic concepts of modelling nested loops with
MDFG, parallelizing the loop body with MR and predicting
nested loop WCET. In section III, we present the theory of the
WCET estimation and the optimization heuristic that drives
MR in terms of WCET. The experimental results are given in
section IV, followed by the concluding remarks in section V.

II. BASIC CONCEPTS

A. Multidimensional data flow graph
The MDFG is an extension of the classic data flow graph

where each node presents an instruction and each edge
presents a data dependency. The main characteristic is the
ability to represent nested iterative and recursive structures.
Indeed, one iteration is similar to executing all nodes once.
The repetitive aspect is formulated by two concepts: the
dimension 푛 of the MDFG, which is the nested loop number,
and the delays, which are edge weights formulating the loop-
carried dependencies. An MDFG is modelled as 퐺 =
(푉,퐸,푑, 푡), where 푉 is the node set, 퐸 is the edge set, 푑(푒) is
the multidimensional delay of edge 푒, and 푡(푢) is the
computation time of the node 푢. For 푒 ∶ 푢 → 푣, A 푑(푒) edge
delay is modelled by a vector with n indexes such as 푑(푒) =
 (푐 , 푐 , … , 푐). Each index corresponds to a single loop in a
way that 푐 presents the difference between the iteration
executing 푣 and the other one executing 푢 of the loop 푘: If the
node 푢 is executed in the iteration 푥 of the loop 푘, then the
node 푣 is executed in the iteration (푥 + 푐).

As an example, the Jacobi algorithm [25] shown in Fig.
1(a) is modelled by the MDFG in Fig. 1(b). It is composed by
four nodes like the number of the innermost loop instructions.
Each edge in the MDFG is labelled by a delay with two
indexes, where 푑(푒) = (푑.푥,푑.푦). The "푑.푥" and "푑. 푦" terms
are in relation with the outermost loop and the innermost one,
respectively. The 퐴1 and 퐴2 instructions are computed in the
same iteration whether for the innermost or the outermost
loops. Therefore, the 퐴1 → 퐴2 edge is labelled by the delay
푑(푒) = (0,0) which is called “zero-delay edge”. For the data
dependencies between D2 and A2, if D2 is executed in the

iteration 푖 of the outermost loop, then 퐴2 is executed in the
iteration 푖 + 1. Similarly to the innermost loop, 퐷2 is executed
in the previous iteration of the 퐴2 execution. For this purpose,
the delay value of the edge 퐷2 → 퐴2 is equal to (1,−1).

The notation 푝: 푣 …→ 푣 is used to mean that 푝 is a
path from 푣 to 푣 . The delay and the computation time of a 푝
path are respectively equal to 푑(푝) = ∑ 푑(푒) and
푡(푝) = ∑ 푡(푣). A 푝 path, whose 푑(푝) = (0, … ,0), is
called “zero-delay path”. The critical paths p are the ones
having the maximum computation time among all zero-delay
paths in the MDFG (푡(푝) = 푚푎푥{푡(푝), 푑(푝) = 0}). The
period during which all computation nodes in iteration are
executed according to existing data dependencies and without
resource constraints is called an Iteration Time 퐼푇(퐺), where
퐼푇(퐺) ≥ 푡(푝). For example, the critical paths is structured
as 푝:퐴1 → 퐴2 → 퐷1 → 퐷2. Assuming that 푡(퐴1) = 푡(퐴2) =
1 푡푖푚푒 푢푛푖푡푠 (푡. 푢.) and 푡(퐷1) = 푡(퐷2) = 2 푡. 푢., the Jacobi
algorithm 퐼푇 is equal to 6 푡.푢. . The theoretical schedule is
represented in Fig. 2 where the nodes belonging to the same
iteration are modelled by the same pattern which can be
executed using one core.

Fig.1. The Jacobi algorithm : (a) code, (b) MDFG, (c) static schedule

B. Multidimensional retiming
The MR is an instruction-level-parallelism approach of

nested loops. It reduces the 퐼푇 by decreasing nodes in critical
paths. With this objective, it shifts nodes from their original
iteration in order to execute them in parallel with other nodes.
For a retimed node, modifying its belonging iteration consists
in modifying their edge delays with respect to a MR function.
For the MR function 푟(푢) = (푟 , … , 푟), the execution of the
node 푢 in the iteration 푖 is moved to the iteration 푖 − 푟 [12].
Thus, the MR is modelled as a graphical transformation that
modifies the MDFG delays, while preserving the functional
behaviour of the initial MDFG [12,13]. All MR techniques
aim to achieve the 퐼푇 . The incremental and chained MR
techniques [12] apply the MR successively to each critical
path nodes until having a full parallelism; i.e., all instructions
in the same iterations are executed in parallel. However, the
provided implementation requires processing cores as more as
the nodes are.

Other MR techniques lead to schedule an MDFG with a
퐼푇 , without getting a full parallelism [12, 14, 27]. Retiming
the whole path is carried out, instead of a node only, in order

to minimize the processing cores when enhancing the
performance. The delayed MR technique [14, 27] proposes a
theoretical approach to select and retime paths. It defines two
terms to reflect the timing and data dependency characteristics
of each path in the MDFG: the 퐷(푢, 푣) which represents the
minimum delay between the paths connecting 푢 and 푣, as
described in Equation (1) (if just one path among those
connecting 푢 and 푣 has a zero-delay then 퐷(푢, 푣) = (0, … ,0);
else, 퐷(푢,푣) ≠ (0, … ,0)), and the 푇(푢,푣) which defines the
maximum execution time among the zero delay path
connecting 푢 and 푣, as described in Equation (2).
퐷(푢,푣) = 푚푖푛{푑(푝),푤ℎ푒푟푒 푝 :푢 → 푣,푢 ∈ 푉 푎푛푑 푣 ∈ 푉}(1)

푇(푢,푣) = 푚푎푥 푡(푝) 푤ℎ푒푟푒 푝 :푢 → 푣, 푢 ∈ 푉, 푣 ∈
푉 푎푛푑 푑(푝) = 퐷(푢,푣) (2)

Their values are ranged respectively in two matrices called
퐷 and 푇 with 푉 × 푉 size, such as 푉 in the node set. Each
푝 :푢 → 푣 path is indexed by the cell with the line 푢 and the
column 푣. Taking the Jacobi algorithm as an example, the
MDFG in Fig. 1(b) is composed by four nodes, hence the
4 × 4 matrix dimension whose 퐷 and 푇 matrices are
respectively illustrated in Table I and Table II.

Table I. D matrix of the initial Jacobi Algorithm

u\v A1 A2 D1 D2
A1 (0,0) (0,0) (0,0) (0,0)
A2 (1,0) (0,0) (0,0) (0,0)
D1 (1,0) (1,0) (0,0) (0,0)
D2 (1,0) (1,0) (1,0) (0,0)

Table II. T matrix of the initial Jacobi Algorithm

u\v A1 A2 D1 D2
A1 1 2 4 6
A2 6 1 3 5
D1 5 6 2 4
D2 3 4 6 2

Thus, achieving the 퐼푇 is synonymous to providing an
MDFG whose 퐷(푢, 푣) = 0 and 푇(푢,푣) > 퐼푇 . Therefore,
the delayed MR technique explores both matrices to define the
sub-critical paths with respect to the previous condition. For
the Jacobi algorithm, the delayed MR selects the MR function
푟 = (0,1) to software pipeline the 푃1:퐴1 → 퐴2 path, which
the retimed Jacobi algorithm is shown in Figure 2(a). Each 푖
occurrence of 푃1 path is shifted up and executed in the
previous iteration of the innermost loop, where 1 ≤ 푖 ≤ 푛.
The first 푃1 occurrence belonging to the first iteration of the
innermost loop is shifted upstream the retimed loop as the first
instruction in Fig. 2(a), which is called prologue. This implies
that all 푃1 paths, belonging to (푖, 0) iteration, are executed
outside the innermost loop whatever the 푖 index is.
Correspondingly, the complementary instructions of the last
iteration, which are called epilogue, are executed downstream
the innermost loop. This transformation permits executing any
P1 path in the innermost loop in parallel with other nodes, as
shown in the static schedule of Fig. 2(c). Accordingly, the 퐼푇
is reduced from 6 to 4 . 푢. . In addition, the innermost loop is
iterated (푁− 1) times, though requiring two cores to execute
the implementation.

Fig.2. The Jacobi algorithm after r(퐀ퟏ → 퐀ퟐ) = (ퟎ,ퟏ) : (a) code, (b)

MDFG, (c) static schedule

the second MR function is applied to the 퐷1 node. The
final MDFG is scheduled with the 퐼푇 = 2 푡. 푢. using three
processing cores as shown in the Fig.3.

A1 A2(1,-2)

(1,-1)

(1,-3)

(a) (b)
Time units

5

6

7

8

9

10

11

12

(c)

For t from 1 to T do
…
 For i from 2 to N−2 do
A1 : X = a[t -1,i+1] + a[t-1,i]
A2 : Y = X + a[t-1,i+2]

 D1 : Z = Y/3
 D2 : a[t,i] = Z / α
 End for
...
End for

(0,1)
A1(0,1)
A2(0,1)

D2(0,0)

Ite
ra

tio
n

tim
e D1(0,1)

A1(0,1)
A2(0,1)

D2(0,0)D1(0,1)

A1(0,1)
A2(0,1)

D2(0,0)D1(0,1)
D2

D1(0,1)

.

.

Fig. 3. The Jacobi algorithm provided by the delayed MR : (a) code, (b)

MDFG, (c) static schedule

C. Nested loop WCET
The WCET analysis involves defining all parameters to

quantify the execution time upper bound. For parallel
architecture, the scheduling ensures distributing the processing
into several cores, hence its running times. In addition, the
growth in the grid dimension and the extension of the memory
hierarchy implies an additional timing component that
corresponds to the access memories. Therefore, several works
[4, 26] split the 푊퐶퐸푇 into a Worse Case Running Time
(푊퐶푅푇) and a Worse Case Stall Time (푊퐶푆푇) as indicated in
Equation 3.

푊퐶퐸푇 = 푊퐶푅푇 +푊퐶푆푇 (3)

The 푊퐶푅푇 static analysis explores the software
parameters of the loop nests. The equation system is always
formulated using the computation time 푡 of all 푖 tasks and
their instance numbers 푐 [1, 4, 5, 21, 22, 23]. Each task is
defined by exploring the control flow in order to define the
critical path instructions. Therefore, its execution time 푡 is
determined by associating a timing parameter for each
computation instruction. The 푐 instance number is computed
based on the iteration loop bounds that are identified from the
code. In the case of parallel processing, the 푊퐶푅푇 consists in
selecting the task executed in parallel to identify the ones
having the maximal computation time [3, 20, 24]. Thus, the
whole 푊퐶푅푇 value is generally the maximal value of
multiplying 푡 and 푐 parameters, as indicated in Equation 4. In
the case of nested loops, Equation 4 is enabling its application
by considering each loop as a task in its outermost one.

푊퐶푅푇 = 푚푎푥 푡 × 푐 (4)

The 푊퐶푆푇 represents the necessary time to schedule data
to parallel cores, which is in terms of the thread number.
Accordingly, the more the threads are, the higher the stall time
is. Moreover, nested loops iterate the execution of the parallel
processing which leads to a similar stall time rise, resulting in
computing the 푊퐶푆푇 as indicated in Equation 5 [4, 20].

푊퐶푆푇 = 푁 × (푇 − 1) × 퐶 (5)

Where 푁 is the iteration number, 푇 is the thread number
and 퐶 is timing parameter that is experimentally defined as in
[4, 20].

III. WCET DEVELOPEMENT IN TERMS OF
MULTIDIMENSIONAL RETIMING

A. Approach principle
The main idea of this paper consists in driving the

instruction-parallelism-level rise in terms of WCET
development. For this purpose, our approach requires an
efficient WCET estimation.

As indicated in the last paragraph, the WCRT is expressed
in terms of computation times and instance numbers of tasks.
For the MDFG, those tasks corresponding to the instructions
belong either to the innermost loop or the prologue/epilogue
codes. Instance numbers are to be computed directly from
their outermost loop bounds, irrespective of their number. As
indicated in section II, to obtain iteration time, the
identification of the critical paths is vital. For the WCST, it
depends of the thread number that ensures implementing any
code block, which is similar to the parallelism level. In this
objective, the MDFG is to be swept in order to compute the
maximal node count executed in parallel.

Elsewhere, The MR iteratively increases the parallelism
level by software pipelining nodes. Accordingly, each MR
function consists in decreasing the loop bounds, modifying the
data paths either inside or both side loops, and increasing the
parallelism level. Moreover, those transformations rise with
respect to the applied MR function number. In this objective,
the approach formulates the loop bound, the iteration time and
the parallelism level developments into equations in terms of
MR function and its application numbers. Thereafter, those
equations are employed to estimate the WCET nested loops.

Based on the MR modification and equations 4 and 5, the
MR leads to reduce the WCET despite increasing the
parallelism level, hence the core rise. Thus, the approach
proceeds iteratively to estimate the WCET and raises the
parallelism level using the MR until achieving the WCET
constraint or the 퐼푇 .

Within this framework, figure 4 illustrates a step-by-step
approach. It starts by providing an optimal MR function r and
defining the 퐼푇 [12, 13, 14]. Then, it sweeps the MDFG to
identify the maximal number of MR that can be applied and
their corresponding data paths that will be shifted, as
described in section B. In section C, those data paths are
explored to compute the iteration times 퐼푇 and the parallelism
levels 푃퐿 , which correspond to each MR order. The
development of the iteration loop bounds LB is formulated in
terms of MR retiming function in section D. As a

consequence, the WCET prediction of the whole nested loops
is then detailed in section E. Finally, an optimization heuristic
is proposed in section F, which drives the instruction-level-
parallelism in terms of WCET development.

Fig. 4. The approach flow graph

B. Multidimensional retiming analysis
Each MR consists in reducing the critical path sizes by

shifting nodes from the innermost loop and adding them in
both sides of loop nests. Both actions affect the timing
behaviour of the nested loops. To evaluate this modification, it
is necessary to identify the possible MR modifications and the
data-paths that are shifted. Those sub-paths can be identified
by their latest nodes 푅 with respect to the data dependency
direction, where and 푅 ⊆ 푉. Accordingly, this section
objective is defining a set 푉 of vector (푖, 푢) where 푢 is the
node to retime and 푖 is its MR order. In fact, those nodes are
defined based on the timing and data dependency
characteristics of the MDFG which are modelled on the D and
T matrices, as described in section II. Thus, both matrices are
swept to define the maximal number of MR functions, the
retimed nodes and their MR function order. The D and T
matrices are incrementally swept in the direction of the data
dependencies. The node set S, having all incoming edges with
non-zero-delays, are extracted in order to identify the last
nodes R of the critical paths. So, each node is added to the set
R if the computation time path is under 퐼푇 and 퐷 =
(0, … ,0)[13, 14]. Accordingly, the R list is filtered to remove
redundancy and save the last ones. The first MR function adds
delays to the R node outcoming edges. Hence, the R nodes are
saved in the 푉 list with their MR function order (푘 = 1).
These steps are repeated by sweeping from the R successors
and incrementing the K level, as described in algorithm 2.

For example, the initial MDFG of the Jacobi algorithm,
whose the critical path is 푝 :퐴1 → 퐴2 → 퐷1 → 퐷2, is shown
in Fig.1(b). As indicated in algorithm 1, sweeping leads to
select the 퐴2 node to be retimed first. The second iteration in
algorithm 1 implies the selection of the 퐷1 node to be the
second one to retime. As a result, 푉 = {(퐴2,1), (퐷1,2)}.

Inputs: the D and T matrices, the minimal iteration time ITmin
Outputs: The list VR, the MR number k

 /*identify the last nodes S of critical paths*/
For e∈E where e:u→v do

If d(e)≠(0,…,0) then
Add v to S list

End if
End for
k ← 0
Repeat

k←k+1
 /*explore the successors R of the S nodes */

For each node v∈S do
For each node x∈V do

If D(v,x)=(0,…,0) and T(v,x) ≤ ITmin and x∉R then
Add x to R list

End if
End for

End for
 /* identify the R nodes to retime*/

For each node p∈R do
For each node q∈R do

If D(p,q)=(0,…,0) then
Delete p from R

End if
End for

End for
 /*save the nodes to retime on VR and their MR order k*/

For each node x∈R do
add (x,k) to VR

End for
S←R

Until all nodes are tested

ALGORITHM 1. MR analisys

C. Innermost IT and parallelism level in terms of MR
WCET prediction requires defining the innermost iteration

time and the parallelism level for the initial MDFG and for
each eventual MR function. Therefore, the parallelism levels
are modeled as a set 푃퐿 of vector (푖,푃퐿 ,푃퐿 ,푃퐿)
where 푖 is the MR order, and 푃퐿 , 푃퐿 and 푃퐿 are the
parallelism levels respectively of the innermost loop, the
prologue and the epilogue. Similarly, the innermost 퐼푇푠 are
modeled as a set 퐼푇 of vector (푖, 퐼푇). Based on the MR
principles, the instructions added to the prologue are executed
under 퐼푇 . Therefore, the prologue and epilogue
computation time are estimated in terms of 퐼푇 and the
current MR order.

The 퐼푇 is equal to the computation time of the critical path,
as 퐼푇 = 푚푎푥{푡(푝),푑(푝) = 0}. For the initial MDFG, the
critical path is defined by sweeping it from the nodes 푉 ,
having all incoming edges with non-zero-delays, until the
nodes 푉 , having all outcoming edges with non-zero-delays.
Each MR modifies the critical-path in a way that it is defined
from the retimed nodes 푉 , extracted by algorithm 1, to the 푉
nodes. Similarly, the parallelism level of the initial MDFG
corresponds to the maximal nodes that are executed in

parallel, which are determined basing on their computation
times. Taking as an example the Jacobi algorithm shown in
Fig1, the MDFG is swept to identify the 푝:퐴1 → 퐴2 → 퐷1 →
퐷2 critical path. Knowing that the first MR is to be applied to
the 퐴2 node, sweeping is done from the 퐴2 successor nodes to
the V nodes. Consequently, the 퐷1 → 퐷2 path is swept twice.
The longer the critical path is, the more repeatedly the nodes
are swept. For this purpose, the main idea is to compute the
execution time of critical path once, for all MR functions that
can be applied. In this purpose, the MDFG should be swept in
the opposition direction of data dependencies and
incrementally defining the critical-path computation-time in
each node, where the result is stored in the 푉 list. To identify
the execution time critical path after each MR function, the
node having the same level is selected from the V , to extract
the one having the maximal-execution-time critical path.
Elsewhere, for each MR function, the parallelism level 푝 of
retimed sub-paths is computed. Thereafter, 푝 is added to the
previous 푃퐿 and 푃퐿 , and (푝 _ − 푝) is added to the
previous 푃퐿 where 푝 _ is the initial innermost loop
parallelism level, as described in algorithm 2.

In the case of the Jacobi algorithm MDFG shown in
Fig.1(b), the 퐷2 node is the last one for all zero-delay paths,
which are saved in the L list. The MDFG is swept in the
opposite direction to compute all the path execution times,
which are finished by 퐷2, whose values are stored in the 푉
list, where 푉 = {(퐴1,6), (퐴2,5), (퐷1,4), (퐷2,2)}. The
following loop in algorithm.2 ensures defining the innermost
iteration times after applying respectively the first and second
MR functions, where 퐼푇 = {(0,6), (1,4), (2,2)}. The last loop
ensures defining the set푃퐿 = {(0,1,0,0), (1,2,1,1), (2,3,2,2)}.

D. Loop bounds analysis
The MDFG allows modelling 푙 nested loops, whatever the

loop iteration bounds are. Therefore, all iteration loop bounds
are modelled as 퐿퐵 = (푛 ,푛 … , 푛), where 푛 is the loop
bound of the 푖 loop and 1 ≤ 푘 ≤ 푙. As indicated in section II,
the MR leads to reduce the loop bounds with respect to the
MR function 푟 in a way that if 푟 = (푟 , 푟 … , 푟), the 푛 loop
bound is reduced by |푟 |. This decline is ensured either the 푟
value, which is positive or negative. Thus, the nested loop
bounds after the first 푟 MR function is as shown in Equation 6.

퐿퐵() = (푛 − |푟 | , 푛 − |푟 | , … , 푛 − |푟 |)(6)

 Elsewhere, the 푟 function is enabled to be applied several
times, as much as the full parallelism is required. Therefore,
the more the MR is applied, the loop bounds decrease with
respect to the 푟 values. The LB loop bound is formulated in
terms of the 푖 MR function rank, as described in Equation 7.

퐿퐵() = (푛 − 푖 × |푟 | , 푛 − 푖 × |푟 | , … , 푛 − 푖 × |푟 |)(7)

After applying the MR function 푟 = (1,−1), the
outermost and innermost loop bounds are respectively
decreased by |1| and |-1|. The same growth is implied after
each MR function, as shown in Fig.3(b). Accordingly, the
final 퐿퐵(,) is formulated as described in Equation 8.

퐿퐵() = (푛 − 푖 , 푛 − 푖) (8)

E. WCET prediction
The WCET is predicted for all the nested loops in terms

parallelism level that corresponds to the 푖 order of the MR
function. Since the prologue and epilogue are added in both
sides of each retimed loop, the nested loop WCET is
incrementally computed from the innermost loop 푊퐶퐸푇(,) to
the outermost one 푊퐶퐸푇(,). For the innermost loop, the
푊퐶퐸푇(,) represents the addition of the 푊퐶푅푇(,) and the
푊퐶푆푇(,) as described in Equation 3. The first term is equal to
the iteration time 퐼푇 multiplied by its loop bound 퐿퐵(,),
which corresponds to the ith MR function. The second term is
the multiplication of the loop bound 퐿퐵(,), the parallelism
level 푃퐿(,) and the 퐶 constant. If r ≠ 0 and 1 < 푙 ≤ 푘, a
prologue is added in both sides of the 푙 loop. As indicated in
[13], the instructions shifted outside the loop are executed in

퐼푇 . The greater |r | is, the more the prologue execution
time increases. Moreover, the prologue and epilogue WCSTs
are computed in terms of 푃퐿 , 푃퐿 and 퐿퐵(,).
Accordingly, the prologue and epilogue WCET is computed as
described in Equation 9.

푊퐶퐸푇 (,) = (|푟 | × 퐼푇) + (퐿퐵(,) × 퐶 ×
(푃퐿 (,) + 푃퐿 (,))) (9)

Therefore, each 푙 loop 푊퐶퐸푇(,), where 1 < 푙 ≤ 푘, is
formulated in terms of the 푊퐶퐸푇 (,) and the
푊퐶퐸푇(,). Hence, the whole loop nested loop WCET is
defined as shown in Equation 10.

푊퐶퐸푇(,) =

⎩
⎪
⎨

⎪
⎧ 퐿퐵(,) × 퐼푇 + 푃퐿(,) × 퐶 ,

푖푓 푙 = 1
 (10)
퐿퐵(,) × 푊퐶퐸푇(,) +푊퐶퐸푇 (,) ,

 푖푓 1 < 푙 ≤ 푘

F. Optimization heuristic
Our approach aims to provide the MR function number

that allows achieving the execution time constraint. In this
context, it determines the MR parameters. Thereafter, the
WCET is formulated in terms of MR parameters. Thus, the
approach starts by computing the 퐼푇 , the MR function r and
the D and T matrices, as indicated respectively in [12, 13].
Accordingly, the both suggested algorithms are called, where
the first one generates the MR function number and the nodes
to retime, while the second one provides the 퐼푇 and 푃퐿 sets.
Hence, the approach iteratively computes the WCET in order
to compare it to the constraint. The first iteration corresponds
to the initial MDFG. The last one corresponds to the retimed
MDFG with an increased MR function number. The whole
steps of our proposed optimization heuristic are described in
algorithm 3.

IV. EXPERIMENTAL RESULTS
In our experiments, the first step consists of verifying the

WCET estimation, by comparing its values to the ones
provided by the SWEET software tool [5, 19]. The second
step, the optimization heuristic is compared to the delayed MR
technique by evaluating the core number development of the
provided implementations in terms of WCET constraints. Our
benchmarks include several 2D nested loops which are the
Infinite Impulse Response Filter (IIRF) [13], the Jacobi
Algorithm (JA) [25], the Walsh-Fourier Transform (WFT)
[12], and the Wave Digital Filter (WDF) [14]. The core
numbers are respectively shown in Fig.6.

All benchmarks are explored to define the MR function
and the required function number to achieve the full
parallelism, as indicated in algorithm 1. Then, the estimation
model, described on section III, is applied to define the WCET
in terms of MR function, whose values are cited in table III.

Table III. MR parameters and WCETs of applications

Benchmarks MR
function

MR
number

Execution time

Without
MR

MR function number
1 2 3 4

IIRF (1, -1) 4 1000 890 720 560 316
JA (0, 1) 2 540 400 240 -- --

WFT (1, -1) 2 368 242 138 -- --
WDF (0, 1) 2 1324 917 504 -- --
The SWEET software tool intercepts the nested loop code

and the architectural timing parameter to provide the upper
bound WCET. The verification main idea compares the
SWEET provided values to those computed by the proposed
equation system. This step is done for all benchmarks exposed
in Table III, which values are shown in Fig. 5. As a
consequence, the proposed WCET estimation offers an
efficient prediction with an error rate equal to 8.54 %
compared to the SWEET tool.

Fig. 5. Benchmark WCETs in terms of SWEET tool and WCET equation

Each application is submitted to five execution time
constraints, as indicated in the first column of Table IV.
Therefore, the optimization approach selects the MR
parallelism and estimates its execution time that respects the
target constraint, which are listed in the third column of Table
IV. To get each constraint, the optimization approach provides
implementation with a different parallelism level, which is in

relation to the core number. The full parallel implementations
are only achieved in the case of minor execution time
constraints.

Table IV. WCETs and core numbers in terms of WCET Constraints

Benchmarks WCET
constraint WCET Core

number

IIRF

400 316 16
650 560 15
800 720 14
950 890 12
1100 1000 8

JA

300 240 3
400 400 2
500 400 2
600 540 1
700 540 1

WFT

200 138 4
250 242 3
300 242 3
350 242 2
400 368 2

WDF

600 504 4
800 504 4
1000 917 3
1200 917 3
1400 1324 2

After analyzing the optimization approach results, we
compare its implementations to those provided by the delayed
MR retiming in terms of core number, as shown in Fig.6. As a
consequence, the optimization approach presents a benefit in
terms of core numbers regarding the delayed MR technique
for an average improvement of 27.18%.

(a)

(b)

(c) (d)
Delayed MR technique Optimization heuristic

Fig. 6. The core number development in term of delayed MR
technique and the optimization heuristic : (a) IIRF, (b) JA, (c) WFT and

(d) WDF

0

200

400

600

800

1000

1200

1400

IIRF JA WFT WDF

W
C

E
T

 (t
im

e
un

its
)

SWEET tool WCET estimation

0
2
4
6
8

10
12
14
16

Co
re

 n
um

be
r

WCET constraint

0

1

2

3

300 400 500 600 700

Co
re

 n
um

be
r

WCET constraint

0

1

2

3

4

Co
re

 n
um

be
r

WCET constraint

0

1

2

3

4

200 250 300 350 400

Co
re

 n
um

be
r

WCET constraint

V. CONCLUSION AND FUTURE WORKS
In this paper, we have proposed a nested loop WCET static

analysis and an optimization heuristic that allows increasing
the instruction-level-parallelism in order to achieve a WCET
constraint. The main idea consists in providing an optimal
parallelism level instead of a full parallel implementation. The
experimental results show a noticeable efficiency of the
WCET prediction and an important optimization of the
heuristic in terms of processing cores.

In our future works, we aim to extend the approach to
optimize the cache memory and overhead ratio, which allow
enhancing the WCET estimation. Moreover, this work is
enabled to be extended to other parallelism techniques such as
the loop tilling and loop stripping, hence the whole parallelism
solution space, which consequently leads to optimal
implementations.

VI. REFERENCES
[1] Pascal Raymond, Claire Maiza, Catherine Parent-Vigouroux and Fabienne

Carrier, “Timing Analysis Enhancement for Synchronous Program”,
journal of Real-Time Systems, March 2015, Volume 51, Issue 2, pp 192-
220.

[2] Julien Henry, Mihail Asavoae, David Monniaux, Claire Maîza, “How to
Compute Worst-Case Execution Time by Optimization Modulo Theory
and a Clever Encoding of Program Semantics”, in the ACM SIGPLAN
Conference on Languages, Compilers and Tools for Embedded Systems
(LCTES 2014), Pages 43-52, ISBN: 978-1-4503-2877-7.

 [3] Stefan Bygde, Andreas Ermedahl and Bjorn Lisper, “An Efficient
Algorithm for Parametric WCET Calculation”, Journal of Systems
Architecture, Volume 57, Issue 6, June 2011, Pages 614–624.

 [4] Haluk Ozaktas, Christine Rochange and Pascal Sainrat, “Minimizing the
Cost of Synchronisations in the WCET of Real-Time Parallel Programs”,
 Proceedings of the 17th International Workshop on Software and
Compilers for Embedded System (SCOPES 2014) , pages 98-107,
table of contents ISBN: 978-1-4503-2941-5.

[5] Mark Bartlett, Iain Bate and Dimitar Kazakov, “Guaranteed Loop Bound
Identification from Program Traces for WCET”, 15th IEEE Real-Time
and Embedded Technology and Applications Symposium, 2009 (RTAS
2009), 13-16 April 2009, Page(s): 287 – 294, ISSN : 1545-3421.

[6] Marianne De Michiel, Armelle Bonenfan, Hugues Cassé, “Normalisation
of Loops with Covariant Variables”, Electronic Notes in Theoretical
Computer Science, Volume 289, 6 December 2012, Pages 41–51.

[7] Duc-Hiep Chu, Joxan Jaffar, “Symbolic simulation on complicated loops
for WCET Path Analysis”, Proceedings of the International Conference
on Embedded Software (EMSOFT), 2011, October 9–14, 2011, Taipei,
Taiwan, Page(s): 319 – 328, Print ISBN: 978-1-4503-0714-7

[8] Jens Knoop, Laura Kovacs, and Jakob Zwirchmayr, “Symbolic Loop
Bound Computation for WCET Analysis”, Lecture Notes in Computer
Science Perspectives of Systems Informatics, Volume 7162, 2012, pp
227-242.

[9] M. W. Benabderrahmane, L. N. Pouchet, A. Cohen, C. Bastoul, “The
Polyhedral Model Is More Widely Applicable Than You Think”,
Compiler Construction Lecture Notes in Computer Science Volume
6011, 2010, pp 283-303.

[10] A. Morvan, S. Derrien, P. Quinton, “Efficient nested loop pipelining in
high level synthesis using polyhedral bubble insertion”, in International
Conference on Field-Programmable Technology (FPT), Page(s):1 – 10,
New Delhi (india), 12-14 Dec. 2011.

[11] Chun Xue, Zili Shao and Edwin Hsing-Mean Sha., “Maximize
parallelism minimize overhead for nested loops via loop Striping”. J.
VLSI Sig. Proc. Syst. 47, 2 (May 2007), pp: 153–167.

[12] Qingfeng Zhuge, Chun jason Xue, Meikang Qiu, Jingtong Hu, and
Edwin Hsing-Mean Sha. , “Timing Optimization via Nest-Loop
Pipelining Considering Code Size”. J. Microproc. & Microsyst. 32, 7
(October 2008), 351-363.

[13] Nelson Luiz Passos and Edwin Hsing-Mean Sha. “Achieving full
parallelism using multi-dimensional retiming”. J. IEEE Trans. Par. Dist.
Syst.7, 5 (Nov. 1996), pp : 1150-1163.

[14] Y. Elloumi, M.Akil, and M.H. Bedoui, “Execution time optimization
using delayed multidimensional retiming”, IEEE/ACM DSRT, Dublin
(Ireland),pp. 177-184, October 2012.

[15] Paul Lokuciejewski, Peter Marwedel, “Combining Worst-Case Timing
Models, Loop Unrolling, and Static Loop Analysis for WCET
Minimization”, 21st Euromicro Conference on Real-Time Systems, 2009.

[16] Jonathan Barre, Cédric Landet, Christine Rochange, Pascal Sainrat,
“Modeling Instruction-Level Parallelism for WCET Evaluation”,
Proceedings of the 12th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA'06), 2006.

[17] Yaroub Elloumi, Mohamed Akil, Mohamed Hedi Bedoui, “Execution
Time and Code Size Optimization using Multidimensional Retiming and
Loop Striping”, 16th Euromicro Conference on Digital System Design,
September 2013, Santander (Spain), pages 462-466.

[18] L. Kaouane, M. Akil, T. Grandpierre, “A methodology to implement
real-time applications on reconfigurable circuits“, The Journal of
Supercomputing, December 2004, Volume 30, Issue 3, pp 283-301.

[19] Jan Gustafsson, Andreas Ermedahl, Christer Sandb erg, and Bjorn Lisp
er, “Automatic Derivation of Loop Bounds and Infeasible Paths for
WCET Analysis using Abstract Execution”, Real-Time Systems
Symposium, 2006. RTSS '06. 27th IEEE International, Dec. 2006, pages :
57 – 66.

[20] Sadjadi, S.M. ; Florida Int. Univ. (FIU), Miami, FL ; Shimizu,
S. ; Figueroa, J. ; Rangaswami, R., “A Modeling Approach for Estimating
Execution Time of Long-Running Scientific Applications, Parallel and
Distributed Processing”, 2008. IPDPS 2008. IEEE International
Symposium on, 14-18 April 2008, pages:1-8, Miami, FL.

[21] Jukka Mäki-Turja, Mikael Sjödin, “Response-Time Analysis for
Transactions with Execution-Time Dependencies”, in 19th International
Conference on Real-Time and Network Systems (RTNS'11), Sep. 2011,
pages: 139- 145.

[22] Pascal Raymond, Claire Maiza, Catherine Parent-Vigouroux and
Fabienne Carrier, “Timing Analysis Enhancement for Synchronous
Program”, RTNS '13 Proceedings of the 21st International conference on
Real-Time Networks and Systems RTNS’2013, Pages 141-150.

[23] Peter Altenbernd , Andreas Ermedahl, Bjorn Lisper, Jan Gustafsson ,
“Automatic Generation of Timing Models for Timing Analysis of High-
Level Code”, in 19th International Conference on Real-Time and
Network Systems (RTNS'11), Sep. 2011, page 55-64.

[24] C. Ballabriga, H. Cassé,”Improving the WCET computation time by
IPET using control flow graph partitioning”, 8th Intl. Workshop on
Worst-Case Execution Time (WCET) Analysis, p. 19-27, jully 2008.

[25] Uday Bondhugula, Muthu Baskaran, Sriram Krishnamoorthy, J.
Ramanujam, Atanas Rountev, Ponuswamy Sadayappan. “Automatic
Transformations for Communication-Minimized Parallelization and
Locality Optimization in the Polyhedral Model”. Lecture Notes in
Computer Science, 2008. Vol. 4959. pp: 132-146.

[26] Radu Prodan, Thomas Fahringer, “Overhead Analysis of Scientific
Workflows in Grid Environments”, IEEE Transactions on parallel and
distributed systems, VOL. 19, NO. 3, MARCH 2008.

[27] Y. Elloumi, M.Akil, and M.H. Bedoui, “Execution time optimization
using delayed multidimensional retiming”, International Journal of High
Performance Systems Architecture (IJHPSA), ISSN: 1751-6528 , in
press.

