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Abstract Multidimensional Retiming (MR) is a software pipelining approach that ensures 
increasing the instruction-level parallelism across all the nested loops. All the MR techniques aim 
at achieving a full parallelism in order to schedule applications with a minimal cycle period. 
However, the growth of code sizes in terms of parallelism level engenders the rise in cycle period 
numbers. Thus, fully parallel multidimensional applications frequently face limiting factors when 
implemented on real-time systems. 
This paper presents a novel technique, called delayed MR, which schedules nested loops with a 
minimal cycle period, without achieving full parallelism. It is formulated into two efficient steps 
whose first one sweeps the nested loops with the target of selecting and ordering paths, whereas 
the second one applies an optimal MR to the selected paths. Our technique is verified by 
implementing several nested loops in NVIDIA architectures. The experimental results show that 
our technique achieves average improvements on execution time of 32.8% compared to the 
incremental technique and 19.35% compared to the chained one. 
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1. INTRODUCTION 
A large proportion of real-time applications include loop nests, such as the ones used on signal and 

image processing, high-definition vision and remote sensing. The loop bodies generally present the 
most critical section in terms of execution time. In this context, several parallelization techniques are 
proposed to reduce the loop body execution time. The parallelism principle aims to select the 
independent processing in order to execute them into the same time interval. These techniques can be 
classified in terms of granularity, which are the iteration level parallelism and the instruction level 
parallelism. The first type guarantees exploring the nested loops in order to identify and parallelize the 
independent iterations [Grosser et al. 2013; Liu et al. 2011; Qasem and Kennedy 2008; Liu et al. 2009, 
Xue et al. 2007; Wang et al. 2014]. The second one consists in applying the software pipelining in 
order to parallelize the independent instruction [Rong et al. 2007; Khan 2011; Zhuge et al. 2008]. Other 
optimization approaches targets applying both parallelism levels to enhance the performances of the 
provided implementations [O’neil and Sha 2005; Pouchet et al. 2008 ; Elloumi et al. 2013]. 

Regarding the instruction level parallelism, several techniques have been suggested for a single 
loop. Some ones consist of a software pipelining a specific loop level like the innermost loop [O’neil et 
al. 1999; Fellahi et al. 2007; Ferlin et al. 2011] or the outermost one [Turkington et al. 2008]. Others 
define the loop to pipeline in terms of parallelism performance enhancement [Rong et al. 2007]. 
Nevertheless, their performance improvement is limited since they parallelize one loop level. Few 
techniques explore the instruction level parallelism across all the nested loops [Morvan et al. 2011; 
Muthukumar and Doshi 2001] whose Multidimensional Retiming (MR) is distinguished as one of the 
most important technique [Passos and Sha 1996; Sheliga et al. 1996; Zhuge et al. 2008]. It models the 
loop body into a multidimensional Data Flow Graph (MDFG) [Xue et al. 2007; Lee et al. 2005; Liu et 
al. 2011; Zhuge et al. 2008] which allows explicitly featuring the granularity of instructions and their 
data dependencies. Then, it formulates the parallelism as a graph transformation theory. 

All the MR techniques aim at scheduling nested loops with a minimal cycle period. For this purpose, 
they iteratively apply the parallelism until achieving a full parallelism in the instruction level. Due to 
the loop-carried dependencies, the parallelism leads to shift instructions in both sides of the nested 
loops, which are called prologue and epilogue. The code size goes up proportionally with the 
parallelism level. Accordingly, reaching a full parallelism requires adding a large code overhead. Yet, 
the code rise implies several implementation disadvantages. First, the shifted code size needs a similar 
cycle period number to be executed, which represents a wasted execution time [Zhuge et al. 2008]. 
Second, it leads to raise the amount of local and cache memories [Khan 2011; Fellahi and Cohen 
2009]. Therefore, with the purpose of achieving a minimal cycle period, the full parallel instruction in 
the nested loops results in a non-optimal execution time. 

In this paper, we show how to schedule the loop body with the minimal cycle period without getting 
a full parallelism. We put forward a new technique of MR, called “delayed MR”. It efficiently insures 
exploring the characteristics of data dependencies and computation times in order to retime data paths. 
Then, it employs a theoretical process to select and thereafter iteratively performs an MR function. 
Thus, the parallelism level, and consequently the overhead are reduced, compared to the existing 
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techniques, while scheduling applications with the minimal cycle period. As a result, it provides 
implementations with enhanced execution times. 

The rest of the paper is organized as follows. In section 2, we present the basic concepts of modeling 
and retiming multidimensional applications. In section 3, we present the theory of extracting the 
algorithmic characteristics, selecting an MR function, and iteratively applying the selected function. In 
section 4, we describe the delayed MR technique and we present the corresponding algorithms. The 
experimental results are presented in section 5, followed by concluding remarks in section 6. 

2. BASIC CONCEPTS 
2.1 Multidimensional data flow graph 

The MDFG is an extension of the classic data flow graph where each node presents an instruction 
and each edge presents a data dependency. The main characteristic is the ability to represent nested 
iterative and recursive structures. In fact, one iteration is similar to executing all nodes once. The 
repetitive aspect is formulated by two concepts: the dimension n of the MDFG which is the nested loop 
number, and the delays which are edge weights formulating the loop-carried dependencies. An MDFG 
is modelled as G = (V, E, d, t), where V is the node set, E is the edge set, d(e) is the multidimensional 
delay of edge e, and t(u) is the computation time of the node u. For e ∶  u → v, A d(e) edge delay is 
modelled by a vector with n indexes such as d(e) =  (c , c , … , c ). Each index corresponds to a 
single loop in a way that c  presents the difference between the iteration executing v and the other one 
executing u of the loop k: If the node u is executed in the iteration x of the loop k, then the node v is 
executed in the iteration (x + c ). 

As an example, the Jacobi algorithm [Bondhugula et al. 2008], shown in Fig. 1(a), is modelled by 
the MDFG in Fig. 1(b). It is composed by four nodes like the number of the innermost loop 
instructions. While the algorithm includes two nested loops, each edge in the MDFG is labelled by a 
delay with two indexes, where d(e) = (d. x, d. y). The "d. x" and "d. y" terms are in relation with the 
outermost loop and the innermost one, respectively. The A1 and A2 instructions are computed in the 
same iteration whether for the innermost or the outermost loops. For this purpose, the A1 → A2 edge is 
labelled by the delay d(e ) = (0,0) which is called “zero-delay edge”. For the data dependencies 
between D2 and A2, if D2 is executed in the iteration i of the outermost loop, then A2 is executed in 
the iteration i + 1. Similarly to the innermost loop, D2 is executed in the previous iteration of the A2 
execution. For this purpose, the delay value of the edge D2 → A2 is equal to (1,−1). 

The notation p: v …→ v  is used to mean that p is a path from v  to v . The delay and the 
computation time of a p path are respectively equal to d(p) = ∑ d(e ) and t(p) = ∑ t(v ). A p 
path, whose d(p) = (0, … ,0), is called “zero-delay path”. Critical p  paths are the ones having the 
maximum computation time among all zero-delay paths in the MDFG (t(p ) = max{t(p), d(p) = 0}). 
The period during which all computation nodes in iteration are executed according to existing data 
dependencies and without resource constraints is called a cycle period C(G), where C(G) ≥ t(p ). For 
example, the critical paths is structured as p: A1 → A2 → D1 → D2. Assuming that t(A1) = t(A2) = 1 
and t(D1) = t(D2) = 2, the cycle period of the Jacobi algorithm is C(G) = 6. The theoretical schedule 
is represented in Fig. 2 where the nodes belonging to the same iteration are modelled by the same 
pattern. In the case where T = 10 and N = 10, the algorithm requires 90 cycle periods and hence 540 
time units to be executed. 
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Fig. 1. The Jacobi algorithm : (a) code, (b) MDFG, (c) static schedule 

2.2 Multidimensional retiming 
The MR aims at reducing the cycle period of the nested loop execution. It proceeds to reduce the 

critical path execution times by decreasing their node numbers. With this objective, it shifts nodes from 
their original iteration in order to execute them inside another one. Thus, it implies increasing 
parallelism at the instruction level with the aim of optimizing the cycle period. For a retimed node, 
modifying its belonging iteration consists in modifying their edge delays. Therefore, the MR is 
modelled as a graphical transformation that modifies the MDFG delays, while preserving the functional 
behaviour of the initial MDFG [Passos and Sha 1996]. The MR is modelled as a retiming vector 
r(u) = (r , … , r ), where u ∈ V and n is the loop dimension. The r(u) function presents the offset 
between the original iterations containing u and the ones after retiming; i.e., for each r  index such as 
1 ≤ k ≤ n, the execution of the node u in the iteration i is moved to the iteration i − r . Figure 2(b) 
shows the Jacobi algorithm after applying r(A1) = (0,1). Each i  occurrence of A1 is shifted up and 
executed in the previous iteration of the innermost loop, where 1 ≤ i ≤ n. The first A1 occurrence 
belonging to the first iteration of the innermost loop is shifted upstream the retimed loop as the first 
instruction in Fig. 2(a), which is called prologue. This implies that all A1 = (i, 0) instructions are 
executed outside the innermost loop whatever the i index is. Correspondingly, the complementary 
instructions of the last iteration, which are called epilogue, are executed downstream the innermost 
loop. 

By focusing on the innermost loop algorithm in Fig. 2(a), we notice that instruction A1 does not 
have any direct data dependency to the other instructions belonging to the same iteration. Accordingly, 
the A1 instruction is to be executed in parallel with the remaining instructions. As an example, we 
choose to execute A1 instructions in parallel with A2 ones, as shown in the static schedule of Fig. 2(c). 
Thus, the cycle period is reduced from 6 to 5 time units. However, the code size is doubled due to the 
prologue and epilogue instructions. Therefore, in the case where T = 10 and N = 10, the Jacobi 
algorithm requires 100 cycle periods. Despite the fact that the cycle period number is raised, the 
execution time is reduced from 540 to 500 time units, due to the cycle period value. 
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Fig. 2. Jacobi algorithm after (퐀ퟏ) = (ퟎ,ퟏ) : (a) code, (b) MDFG, (c) static schedule 

A retiming function is called legal if it preserves the functionalities of the original code. In this 
context, the retiming function selection is based on the MDFG scheduling vector. It consists in 
identifying the set of all s vectors where d(e) × s > 0 for every d(e) ≠ (0, … ,0). A legal MR r is any 
vector orthogonal to s [Passos and Sha 1996; Sheliga et al. 1996]. The provided MDFG is called 
realizable and can be executed following an updating scheduling vector. In the case of the Jacobi 
algorithm, the original MDFG can be scheduled following the vector s = (1,0), hence r(D) = (0,1) is 
a legal MR of the Jacobi algorithm. So, it provides a realizable MDFG that can be executed following 
the scheduling vector s = (3,1). 
2.3 Multidimensional retiming techniques 

All MR techniques aim at reaching the minimal cycle period by achieving a fully parallel algorithm, 
and hence a final MDFG without any zero-delay edge. The incremental and chained MR techniques 
[Passos and Sha 1996; Sheliga et al. 1996] re-apply successively the MR transformation to shift each 
time the first nodes of critical paths. Therefore, if p: v → ⋯ → v  is a critical path, then any existing 
technique employs (n− 1) MR transformations. To fully parallelize the Jacobi algorithm, the MR is 
applied respectivelly to A1, A2 and D1 nodes. Accordingly, the minimal cycle period is got where each 
iteration requires two time units to be executed. 

On the other hand, when analyzing the static schedule in Fig. 3(c), we deduce that the data provided 
by A1 and A2 nodes are used one time unit after their generations, which presents an untapped time. 
Furthermore, the fully parallel scheduling implies adding 6 instructions in both prologue and epilogue 
in comparison to the original one, as shown in Fig.3(a). Knowing that the overhead is executed with a 
low parallelism level, it requires 6 cycle periods added to each outmost loop iteration execution. 
Consequently, in the case where T = 10 and N = 10, the cycle periods of the fully parallelized MDFG 
increase from 90 to 120 and then requires 240 time units to be executed. As a result, although fully 
parallel applications are scheduled with a minimum cycle period, they do not allow respecting strict 
timing constraints. 
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Fig. 3. Fully parallel Jacobi algorithm : (a) code, (b) MDFG, (c) static schedule  

An MR technique, called Software Pipelining for NEsted loops (SPINE) [Zhuge et al. 2008], applies 
the acyclic graph retiming [Leiserson and Saxe 1991] to the MDFG by simulating the delays as 
registers. This technique is not performing in all cases. Firstly, the classical retiming theory is based in 
the non-negativity of register numbers belonging to data dependencies, while the MR allows using 
negative delays. Secondly, some multidimensional delays are invariant while the classical retiming 
[Leiserson and Saxe 1991] redistributes all registers. Another MR technique was described in [Elloumi 
et al. 2011], which groups nodes in the same cycle period after achieving the full parallel MDFG, to 
decrease the prologue and epilogue codes. Despite the originality of the idea, this technique is 
constrained by the data dependencies of the full parallel applications. 

3. THEORY OF DELAYED MULTIDIMENSIONAL RETIMING FOR NESTED LOOPS 
3.1 Motivating example and approach overview 

The MDFG shown in Fig.3(b) can be executed following the schedule vector s = (1,0) and hence 
retimed through (0,1) or (0,−1). While all A1 incomming edges are non-zero delays, the r = (0,−1) 
function is to be applied to the A1 node, which results in the MDFG in Fig. 4(b). Based on the delay 
values, the transformation provides a realizable MDFG and preserves the functionality of the whole 
application [Passos and Sha 1996; Sheliga et al. 1996]. Indeed, the A1 → A2 path has a zero-delay; i.e., 
A1 and A2 nodes are still executed in the same cycle period and thus in the same iteration. Moreover, 
the 푑(A1 → A2) = (0,0) and 푑(A2 → D1) = (0,1) delays mean that if A1(i, j) and A2(i, j) are 
executed in the (i) iteration, then D1(i, j) is executed in the (i + 1) iteration, as shown in the static 
schedule of Fig.4(c). This modification can be considered as performing the MR to the whole path 
p: A1 → A2. 

These delay values lead to the algorithm given in Fig.4 (a), which contains 6 instructions as a 
prologue and 3 instructions as an epilogue. The overhead is then decreased by 25% compared to the 
fully parallel algorithm in Fig. 3(a). Thereafter, the cycle number is reduced from 120 to 110. Besides, 
all zero-delay paths are executed in two cycle periods, and accordingly scheduling the algorithm with 
the minimal cycle period C(G)=2. Consequently, the execution time is decreased from 240 to 220 time 
units, which presents an improvement of 8.33% even though the MDFG is not fully parallelized. 
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Fig. 4. The Jacobi algorithm provided by delayed MR: (a) code, (b) MDFG, (c) static schedule  

Therefore, we present in this paper a novel approach that schedules an MDFG with a minimal cycle 
period, without achieving a full parallelism. Retiming the whole path is carried out instead of a node 
only. Contrary to the existing techniques, retiming functions are not applied to successive nodes but to 
distant ones. Thus, we call our technique “delayed MR”. 
3.2 Path selection 

Our work aims to select zero-delay paths p : u → ⋯ → v in order to retime them. Knowing that each 
u and v nodes can be connected by several paths, the zero-delay condition should be verified by all 
paths connecting u and v. Accordingly, based on [Leiserson and Saxe 1991], D(u, v) is defined as the 
minimum delay among all delay paths connecting u and v, as described in Equation (1). If just one path 
among those connecting u and v has a zero-delay, then D(u, v) = (0, … ,0); else, D(u, v) ≠ (0, … ,0).  

D(u, v) = min{d(p), where p: u → v, u ∈ V and v ∈ V}    (1) 
In addition, the u and v nodes can be connected with several zero-delay paths having different 

execution times. Based on our approach, all paths should be executed in the bound of the cycle period. 
Thus, T(u, v) is defined as the maximum execution time among all zero-delay path connecting u and v 
nodes, as described in Equation (2). 

T(u, v) = max{t(p) where p: u → v, u ∈ V, v ∈ V and d(p) = D(u, v)}     (2) 
Our technique principle consists in scheduling the algorithm under the minimal cycle period. 

Generally, scheduling with a c cycle period means that all zero-delay paths are executed under c. This 
objective is formulated using the D and T parameters, as described in theorem 1. 

Theorem 1. Let G = (V, E, d, t) a realizable MDFG and c a cycle period. The following 
notions are equivalent:  
1. φ(G) ≤ c 
2. For all nodes u, v ∈ V, if T(u, v) > 푐 then D(u, v) ≠ 0. 
Proof. We suppose that φ(G) ≤ c, and u, v ∈ V where T(u, v) > 푐. If D(u, v) = 0, then there 
exists a p path from u to v having an execution time t(p) = T(u, v) that exceeds c, and a delay 
d(p) = D(u, v) = 0, which is in contradiction with the first supposition. We suppose now that 
the second condition is verified, and let u → v be any zero-delay path p in G, then we have 
D(u, v) = d(p) = (0,0) which implies that t(p) ≤ T(u, v) ≤ c.  
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Based on theorem 1, achieving the first condition is synonymous to providing an MDFG whose D 
and T matrices respect the second one; i.e, no path having an execution time exceeding c  should 
have a non-zero delay. Therefore, the paths to retime are the ones having D(u, v) = (0, … ,0) and 
T(u, v) ≤ c . Consequently, the delayed multidimensional retiming technique proceeds to explore 
the D(u, v) and T(u, v) values in order to select the paths to retime. 

So, those values are defined and ranged respectively in two matrices (푉 × 푉) called D and T, in a 
way that each p : u → v path is indexed by the cell with the u line and the v column, as indicated in 
algorithm 1. It starts by computing D(u, u) and T(u, u) which represent the diagonal line values of both 
matrices, and D(u, v) and T(u, v) corresponding each edge. Afterwards, each path is associated to its 
outcoming edges to compute its D(u, v) and T(u, v). This step is incrementally repeated in the direction 
of the data dependencies. The D and T matrices of the Jacobi algorithm are respectively exposed in 
Table I and Table II where zero-delay path cells are represented by a gray color. 

 
3.3 Path retiming 

The work described in [Sheliga et al. 1996; Passos and Sha 1998] admits that any r retiming 
function is deduced only from the non-zero-delay edges. The theoretical choice is independent from the 
node that will be retimed. However, the previous techniques are restricted to applying the MR only to 
the nodes having all incoming edges with non-zero-delays. Our objective consists in verifying if the 
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selected function is able to retime a whole path. For this purpose, theorem 2 proves that a legal retiming 
function of a u node can shift a zero-delay path composed by two nodes. 

Theorem 2. Let G = (V, E, d, t) be a realizable MDFG, and u, v ∈ V where v has only one 
incoming edge e: u → v where d(e)=(0,...,0). If r is a legal multidimensional retiming of u, 
then r is a legal multidimensional Retiming of v. 
PROOF. Let p: …

( ,…, )
⎯⎯⎯⎯⎯ u

( ,…, )
⎯⎯⎯ v

( ,…, )
⎯⎯⎯⎯⎯ … be a path in G. r(u) = (r , … , r ) is a legal 

multidimensional retiming of G, which means that there exists a scheduling vector s where 
(r , … , r ) × s ≥ 0 and (b , … , b ) × s ≥ 0. Adding those two inequalities shows that 
(b + r , … , b + r ) × s ≥ 0. Knowing that (a − r , … , a − r ) × s ≥ 0 and so (0, … ,0) ×
s ≥ 0, the MDFG containing p: …

( ,…, )
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ u

( , )
⎯ v

( ,…, )
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ … is realizable, which 

can be executed following the scheduling vector s. Thus, r(v) is a legal multidimensional 
retiming.  

This theorem proves that the legal MR for a node can be applied on its successor, if the latter has 
only one incoming edge. Moreover, it is easy to observe that the previous theorem can be used on 
successive nodes that respect the same condition. Therefore, theorem 2 allows identifying a legal 
retiming function for a zero-delay path.  

Table I. D matrix of the initial Jacobi Algorithm 

u\v A1 A2 D1 D2 

A1 (0,0) (0,0) (0,0) (0,0) 

A2 (1,0) (0,0) (0,0) (0,0) 

D1 (1,0) (1,0) (0,0) (0,0) 

D2 (1,0) (1,0) (1,0) (0,0) 
Table II. T matrix of the initial Jacobi Algorithm 

u\v A1 A2 D1 D2 

A1 1 2 4 6 

A2 6 1 3 5 

D1 5 6 2 4 

D2 3 4 6 2 

The growing size of the MDFG is proportional to the set of the selected zero-delay paths, and thus 
to the number of required MR transformation. Nevertheless, defining a retiming function for each path 
cannot be an adequate solution. In fact, the set of nodes that have all incoming edges with non-zero-
delays can be retimed using the same MR function. So, we identify the zero-delay paths that can be 
retimed with the same function, as described in theorem 3. 

Theorem 3. Let G = (V, E, d, t) be a realizable MDFG, X, YCV, X ∩ Y = ∅ and e: x
( ,…, )
⎯⎯⎯ y for 

all y incoming edges, where y ∈ Y and x ∈ X. If r(X) is a legal multidimensional retiming, 
then r(Y) is a legal multidimensional retiming. 
PROOF. Let s a scheduling vector where d(e) × s > 0 and r is orthogonal to s. based on 
[Passos and Sha 1996], if X is a node set whose all incoming edges having non-zero delays, 
then r(X) is a legal multidimensional retiming function. Taking into account the theorem 4.2, 
the r(Y) is a legal multidimensional retiming function.  

This theorem gives us the alternative to retime several zero-delay paths which start by the nodes 
having all incoming edges with a non-zero-delay, using just one MR function. 
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3.4 Successive path retiming 
Basically, achieving the c  requires applying the MR several times. Taking the example of the 

Jacobi algorithm, reaching the cmin needs applying three retiming functions. In fact, the values of the 
retiming indexes d. x and d. y increase in terms of retiming function rank; i.e., the greater the retiming 
rank is, the more important the index values are. Theorem 4 verifies that the first retiming function is 
the one having the smallest index values in relation with the successive function indexes. 

Theorem 4. Let G = (V, E, d, t) be a realizable MDFG, r(u) = (r , … , r )  a legal 
multidimensional retiming of G, and 퐺  = (V, E,푑 , t) be the MDFG provided by retiming 
퐺 by 푟. If R(u) = (R , … , R ) a legal multidimensional retiming of 퐺  then r < R  where 
1 ≤ 푖 ≤ 푛. 
PROOF. Let (a , … , a ) a non-zero delay edge of G, 푠 = (푠. 푥, 푠.푦) a scheduling vector of 퐺 ,  
which means that (a − r , … , a − r ) × (푠. 푥, 푠.푦) ≥ 0 and so (r , … , r ) × (푠.푥, 푠. 푦) ≥ 0. 
Adding those two inequalities shows that (a − r − R , … , a − r − R ) × (푠. 푥, 푠. 푦) ≥ 0, 
which means that r < R .  

On the one hand, the rise in the index values implies a similar increase in the prologue and epilogue 
size. Knowing that those codes are executed with a low parallelism level, they lead to a significant 
growth of the cycle number and hence in the execution time. On the other hand, the MR feasibility 
admits a restriction with respect to the iteration bounds of the nested loops [Passos et al. 2001]. The 
retiming function term "d. x" should not exceed the iteration bounds n of the corresponding loop. 
Taking as an example the IIR filter, the first retiming function is (1,-1), whereas the last one is (8, -15) 
[Passos and Sha 1996], which means that 15 innermost iterations are to be overlapped. Consequently, 
extracting and applying several retiming functions results in providing implementations with a large 
overhead and so with non-optimal execution times. 

The delayed technique principle consists in applying optimal retiming functions. Indeed, Theorem 4 
proves that the MR having the minimal index values is the first one to be applied. In this context, 
theorem 5 presents the way to extract several MR functions directly from only one. 

Theorem 5. Let G = (V, E, d, t) be a realizable MDFG, X, YCV, X ∩ Y = ∅ and e: x
( ,…, )
⎯⎯⎯ y for 

all y incoming edges, where y ∈ Y and x ∈ X, and an integer k > 1. If r(X) is a legal MD 
retiming then (k × r) (Y) is a legal multidimensional retiming. 
PROOF. r(X) is a legal multidimensional retiming function implies the existence of a 
scheduling vector s where r ⊥ s and then  r × s = 0. Knowing that k > 0, the equation 
(k × r) × s = 0 is prooved. Thus, (k × r)(X) is a legal multidimensional retiming. Based on 
theorem 3, (k × r)(Y) is also a legal mltidimensional retiming.  

This theorem allows retiming two successive paths with the same function r. We take as an example 
the initial MDFG of the Jacobi algorithm whose the critical path is p : A1 → A2 → D1 → D2. There 
are two zero-delay paths to be retimed which are p : A1 → A2 and p2:퐷1. Since (0,1) is a legal MR, 
theorem 5 allows applying (2 × (0,1)) to the p1 path. Therefore, the d(퐴2 → 퐷1) delay enables 
retiming p2 with (1 × (0,1)) leading to the MDFG, shown in Fig. 4(b), whose code is composed by 19 
instructions and then executed in 462 cycle periods. However, if p1: A1 → A2  is retimed with (0,1), 
p2:퐷1 is to be retimed with (1,-2), then the final code made up of 35 instructions and requires 557 
cycle periods to be executed. Consequently, using the minimal MR function leads to implementations 
with reduced code sizes, and thereafter execution times whose improvement average is 36.66%. 



Execution Time Optimization Using Delayed Multidimensional Retiming   
 

 
 

Thus, based on theorem 5, successive zero-delay paths can be retimed using the same function; i.e., 
each one has a retiming function (k × r) where k is a strict positive integer and is smaller than the one 
allocated to the predecessor path. So, using the optimal MR function provides an implementation with 
a minimal execution time compared to the one provided by using several MR functions. 

4. DELAYED MULTIDIMENSIONAL RETIMING TECHNIQUE 
The present work aims to achieve the cmin with a reduced overhead in order to optimize the 

execution time. The target idea consists in retiming whole paths instead of nodes. Theorem 5 gives us 
the alternative to use the optimal MR function to successive zero-delay paths. It is based on associating 
each path’s integer level whose values are decreased in the direction of data path. Thus, all paths 
should be identified before retiming them. 

For that purpose, our technique follows two steps that are described in sections 4.1 and 4.2, 
respectively. The first one explores the MDFG in order to identify the paths to retime and their level 
values. The selected paths are modelled in a similar graph called “Labelled Multidimensional Data 
Flow Graph (LMDFG)”. The second step ensures the selection of an MR function r and applies it on 
the selected paths indicated in the LMDFG. 
4.1 LMDFG generation 

The MR function should have the minimal values to provide an MDFG with optimal code sizes and 
execution times. Therefore, the k levels must have the minimal values, and hence start from 1 and 
increase by just one unit. To guarantee this criterion, identifying and allocating the k level should be 
done in the opposite direction of the data flow. So, our approach consists in swepping the MDFG 
incrementally in the opposite direction of the data dependencies, starting by the nodes having all 
outcoming edges with non-zero-delays. 

Actually, the 푝 path to retime should respect the second condition of theorem 1. Furthermore, to 
minimize the retiming function, the selected path should integrate nodes as many as possible. These 
constraints will be proved by exploring the D and T matrices, as described in algorithm 2. 

Each 푝 path is defined by its first and last node, respectively 푢 and 푣. For each v node having all 
outcoming edges with non-zero-delays, we verify the v column in the matrices D and T as follows. If 
the cells D(푢, 푣) = (0, … ,0) and T(푢, 푣) ≤ c ,  the node u is added to the R list. Afterwards, the R 
list is filtered to remove redundancy and save the longest paths. The R list contains the u first nodes of 
the path to be retimed. Accordingly, the predecessor nodes of the R list are labelled by a level value 
k = 1 and stored in the S list. Thereafter, the sweeping process is repeated starting from the S list 
nodes. The next selected path is labelled by an incremented level value. The process is stopped when 
all the MDFG nodes are tested. 

In the case of the Jacobi algorithm, the sweeping process starts by the D2 node. Knowing that it is 
executed in two cycle periods, it is identified as paths to retime, and hence labeling its D1 predecessor 
node by a k = 1 level. Likewise, sweeping is pursued from the D1 node to labelling the A2 node by 
k = 2, as shown in the final LMDFG in Fig.5. 
4.2 Delayed multidimensional retiming algorithm 

The current technique aims at scheduling the MDFG with the 푐 . An MR function r is extracted in 
order to apply it on the selected path. For this purpose, the selection of a legal MR 푟 is carried out, as it 
is done in the existing techniques [Sheliga et al. 1996]. Then, algorithm 2 is used to generate the 
LMDFG that indicates the paths to retime and deduce the maximal 푘 level. 
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Input: a realizable MDFG G =(V,E,d,t)
Output: LMDFG, level k
Identify the minimal cycle period cmin
Compute the matrices D et T (as described in algorithm 1)
/*identify the nodes having all incoming edges with non-zero delays*/
For e∈E where e:u→v do

If d(e)≠(0,…,0) then
Add v to S list

End if
End for
init k ← 1
Repeat
/*explore the D and T columns of the S nodes */

For each node v∈S do
For each node x∈V do

If D(x,v)=(0,…,0) and T(x,v)≤cmin and x∉R then
Add x to R list

End if
End for

End for
/* identifying the nodes to retime*/

For each node p∈R do
For each node q∈R do

If D(p,q)=(0,…,0) then
Delete q from R

End if
End for

End for
/*labelling the nodes to retime*/

For each node x∈R do
For each u predecessor node of x do

Add u to S1 list
Label u by k

End for
End for
Increase k
S←S1

Until all nodes are tested

ALGORITHM 2. LMDFG generation

 
Afterthat, the selected MR r is applied on the LMDFG in the direction of the data dependencies. It 

starts from the nodes S having all incoming edges with non-zero-delays. Then, it sweeps the graph until 
finding the ones labelled by the maximal k level, which are called A nodes. Thereafter, it computes the 
퐷  = 푟 × 푘, subtracts it from all the delays of the S incoming edges, and adds it to the outcoming 
edges of the labelled A nodes. These steps are repeated in a descending order of level values, until 
getting nodes whose levels are equal to 1, as described in Algorithm 3. 
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Fig. 5. Jacobi Algorithm LMDFG 

Using the delayed MR, an MDFG scheduled with the minimal cycle period is always achievable and 
its efficiency is proved by theorem 6. 

Theorem 6. Let G = (V, E, d, t) be a realizable MDFG, the delayed multidimensional 
retiming algorithm transforms G to Gr, in at most O(V² + E) times, in a way that Gr is 
scheduled with a minimal cycle period. 
PROOF. Algorithm 1 allows the computation of D and T for each pair of nodes in the MDFG, 
which requires O(E + V²) times. Thereafter, algorithm 2 tests at most all cells of D and T 
matrices, which can be performed in (n × V) instructions where n is an integer value n > 0. 
Finally, algorithm 3 selects one multidimensional retiming function, which requires at most E 
instructions, and applies it on each selected paths. Thus, the delayed multidimensional 
retiming technique requires only O(V² + E) times to be performed.  

 

5. EXPERIMENTAL RESULTS  
In our experiments, the delayed technique is compared to the “incremental” and “chained” ones in 

terms of execution time. Our benchmarks include a set of 2D nested loops which are the Jacobi 
Algorithm (JA) [Bondhugula et al. 2008], the Wave Digital Filter (WDF) [Elloumi et al. 2013], the 
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Walsh-Fourier Transform (WFT) [Passos et al. 2001], and the Infinite Impulse Response Filter (IIRF) 
[Passos and Sha 1996]. To evaluate the parallelism level of the retiming techniques, the experiments 
should be conducted with a parallel architecture integrating an important core number. For this 
purpose, the provided implementations are evaluated using GPU architectures. In this context, we use 
the QUADRO-600 and the G-105-M NVIDIA devices, whose GPU-core numbers and frequencies are 
indicated in Table V. We recall that the parallelism in the delayed technique is chosen based on 
execution-time nodes. Therefore, the different computational instructions are identified in order to 
measure their execution times, as described in [Lai and Seznec 2011]. The used multidimensional 
applications are composed by adders, multipliers and dividers, whose execution time values are shown 
in the fifth column of Table V. to take it simpler, these execution time values are converted from 
seconds to cycle periods, which are indicated in the last column of Table V. 

Table V. Timing parameters of the NVDIA architectures 

Architecture GPU-
cores 

GPU 
frequency 

(GHZ) 

Memory 
frequency 

(MHZ) 

Execution time 
instruction 

(10-5 second) 

Execution time node 
(cycle period) 

Add. Mul. Div. Add. Mul. Div. 
QUADRO-600 96 1.28 800 0.3 0.31 0.61 1 1 2 

G-105-M 8 1.23 790 0.59 0.61 1.19 1 1 2 

Thereby, the execution time nodes are used when running the MR techniques whose the employed 
MR functions and code sizes resulting from the provided algorithms are shown in Table VI. The 
delayed technique has used MR functions either less than the existing techniques or with decreased 
index values. Thus, the code size values mention that our technique achieves an average improvement 
of 25.52% for the incremental technique and 66.39% of the chained one. 

Table VI. Code sizes in terms of multidimensional retiming techniques 

Multidim. 
Appl. Delayed technique Chained technique Incremental technique 

 MR functions Code size MR functions Code size MR functions Code size 
JA (0,2),(0,1) 13 (0,3),(0,2), (0,1) 16 (0,1),(1,-3),(2,-4) 37 

WDF (0,1) 8 (0,2), (0,1) 12 (0,1), (1,-3) 41 

WFT (1,-1) 16 (2,-2), (1,-1) 32 (1,-1), (2,-3) 68 

IIRF (4, -4), (3,-3), 
(2,-2), (1,-1) 144 (4, -4), (3,-3), 

(2,-2), (1,-1) 144 (1,-1), (2,-3), 
(4,-7),(8,-15) 256 

Improve  25.52%  66.39% 
Accordingly, each algorithm is implemented with different input matrix sizes among (64*64, 96*96, 

128*128). Each code is edited with the parallel computing platform CUDA. The parallel instructions 
are implemented in separately warps and the data dependencies are insured using the “_syncthreads()” 
directive. Subsequently, each code is compiled and executed in both architectures. The execution time 
values of the four multidimensional applications are respectively shown in Fig.6, Fig.7, Fig. 8 and Fig. 
9. 

For each matrix size, the implementation provided by the delayed technique presents a benefit in 
terms of execution time compared to the implementation generated by any other existing technique. 
This improvement is in relation to the reduced prologue and epilogue code size. The delayed technique 
accounts for an average improvement of 32.8% compared to the incremental technique and 19.35% 
compared to the chained one. 
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Fig. 6 Execution times of the Jacobi Algorithm 

  

 
Fig. 7 Execution times of the Wave Digital Filter 

Moreover, the delayed technique offers a significant execution time enhancement with respect to the 
initial code, whatever the input matrix size is. Furthermore, for each input matrix size, the execution 
time improvement of the delayed technique is verified whether for the QUADRO-600 or the G-105-M, 
with respect to the code provided by the incremental technique or the chained technique. It indicates 
that our technique contribution is guaranteed independently from the used parallel architecture. 
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For instance, this improvement is important where the loops bounds are shortened, achieving more 
than 25% when implementing the WFT with a 64*64 input matrix size. However, the existing 
techniques do not allow an execution improvement in all cases. The incremental technique leads to an 
opposite effect by increasing the execution times in the case of the WFT with a 64*64 input matrix 
size. Using the same implementation, the chained technique presents an improvement average of only 
9.2% with respect to the initial code execution time.  

  

 
Fig. 8 Execution times of the Walsh Fourier Transform  

  

 
Fig. 9 Execution times of the Infinite Impulse Response Filter 
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This effect is caused by the ratio between the overlapped iterations and the loop bounds after the 
MR. in the case of the IIRF, the delayed and chained technique employ the same MR functions that 
engender generating the same implementation and hence the same execution time. 

6. CONCLUSION 
In this paper, we have proposed a new multidimensional retiming technique that allows scheduling 

the multidimensional applications with a minimal cycle period. The objectif is accomplished without an 
inevitable achievement of full parallelism. The experiment described in the last section proves that the 
current technique provides enhanced implementations in terms of execution time compared to those 
provided by the existing techniques. It should be noted that it is appropriate whatever the computational 
instructions are. Therefore, it is beneficial when applied on real-time systems. 

In our future works, we will be interested in extending our technique in order to parallelize the 
instruction level on imperfect nested loops. In addition, we aim to conduct the suggested parallelism 
approach to optimize material resources such as memory and processor units. Furthermore, we will 
focus on using our multidimensional retiming technique with other optimization approaches (such as 
loop stripping, loop fusion …). 
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