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Abstract: 

Background and objective: The detection of optic nerve head 

(ONH) in retinal fundus images plays a key role in identifying 

Diabetic Retinopathy (DR) as well as other abnormal conditions in 

eye examinations. This paper presents a method and its associated 

software towards the development of an Android smartphone app 

based on a previously developed ONH detection algorithm. The 

development of this app and the use of the D-Eye lens which can be 

snapped onto a smartphone provide a mobile and cost-effective 

computer-aided diagnosis (CAD) system in ophthalmology. In 

particular, this CAD system would allow eye examination to be 

conducted in remote locations with limited access to clinical 

facilities.  

Methods: A pre-processing step is first carried out to enable the 

ONH detection on the smartphone platform. Then, the optimization 

steps taken to run the algorithm in a computationally and memory 

efficient manner on the smartphone platform is discussed. 

Results: The smartphone code of the ONH detection algorithm 

was applied to the STARE and DRIVE databases resulting in about 

96% and 100% detection rates, respectively, with an average 

execution time of about 2s and 1.3s. In addition, two other databases 

captured by the D-Eye and iExaminer snap-on lenses for smartphones 

were considered resulting in about 93% and 91% detection rates, 

respectively, with an average execution time of about 2.7s and 2.2s, 

respectively.  
 

Index Terms—Optic Nerve Head detection, smartphone-based 

CAD in ophthalmology, fundus image processing, Radon 

Transform.  

1. Introduction 

Mobile platforms, in particular smartphones, are evolving 

continuously in terms of processing power, storage capacity 

and captured image quality. It has now become possible to run 

computationally intensive image processing algorithms, such 

as face detection and recognition, object identification and 

tracking, on smartphones. In the medical area, smartphones 

are now being used for Computer-Aided-System (CAS) of 

physical activity detection (Liang-Hsuan et al., 2017), 

neurology performance evaluation (Vianello et al., 2017), etc.; 

and for Computer-Aided-Diagnosis (CAD) systems including 

electroencephalogram EEG (Von Luhmann et al., 2016) and 

electrocardiograph (ECG) (Zhang and Lian, 2009; Arunan et 

al., 2016). In this paper, we are focusing on a smartphone-

based CAD system for retinopathy. Such systems are already 

known to provide ophthalmologists with a non-labor intensive 

approach for the detection of abnormalities in retinal fundus 

images. Another advantage of these systems is their capability 

to allow eye examination in remote locations with limited 

access to clinical facilities. The work described in (Bourouis et 

al., 2014) implements a diabetic feature detection approach 

proposed in (Gardner et al., 1996), on Android smartphones. 

The app is compared with retinograph-captured fundus images 

where the detection accuracy is about 87%. 

The localization of Optic Nerve Head (ONH) plays a key 

role towards identifying conditions such as Diabetic 

Retinopathy (DR) (Gagnon et al., 2001; Tolias and Panas, 

1998; Gupta et al., 2017). ONH appears as a yellowish region 

in a color retinal fundus image (see Fig.1). The main 

characteristic of ONH is its rapid intensity variations due to 

dark blood vessels that appear in its vicinity. Three 

characteristics of ONH have been utilized in the literature to 

localize it. These characteristics include: (1) appearance as a 

bright disk nearly 1600μm in diameter; (2) presence of arteries 

leaving from and veins entering it; and (3) diverging blood 

vessels from it. As noted in (Kochner et al., 1998), the 

detection of ONH is a challenging task due to the 

discontinuity of its boundary caused by large vessels and its 

considerable color and intensity variations.  

There are many algorithms in the literature that determine 

the location of ONH or its boundary. In (Shahri et al., 2014), 

an overview of the existing algorithms was provided and a 

computationally efficient algorithm in comparison with the 

existing algorithms was proposed. The algorithm in (Shahri et 

al., 2014) employed Radon Transform (RT) to localize ONH 

based on its brightness and roundness. RT processing was 

applied to overlapped sub-images in order to detect the sub-

image containing the ONH. RT was applied using different 

orientations with respect to the ONH circular shape. It 

basically involved computing transforms of intensity 

projections through sub-images. The processing was repeated 

for overlapping sub-images and different projection 

orientations. Besides its high computational cost, the RT 

computation increases when projections along tilted 

orientations are considered due to an increase in the amount of 

memory accesses.  

This paper proposes a mobile CAD system in 

ophthalmology that insures locating the fundus on 

smartphone-captured image and then detecting ONH using the 

RT-based ONH detection algorithmreported in (Shahri et al., 

2014). The paper discusses the optimization of the RT 

computation for the purpose of running it as an app on 

smartphone platforms. Adecomposition is performed to 

enhance the efficiency of the RT computation by first 
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performing RT projection by an angle plane-rotation, followed 

by orthogonal RT projection that is similar to a line matrix 

sum. Furthermore, the roundness of ONH is used to reduce the 

plane-rotation processing time by considering orthogonal 

projections applied to the same rotated sub-image. This has 

allowed using the OpenCV library. All the computational 

steps taken are then implemented on Android smartphones.  

The rest of this paper is organized as follows: Section2 

provides an overview of the computationally efficient RT-

based ONH detection algorithm. Section 3 discusses the 

computational issues of this ONH detection algorithm. Section 

4 proposes the steps taken to improve the computational 

efficacy ofthe RT-based ONH detection algorithm. The use of 

OpenCV and the Android smartphone implementation are 

presented in section 5. The results obtained in terms of the 

performance, the computational efficiency and the validation 

of the developed smartphone app are covered in section 6 

followed by discussion in section 7. The paper is then 

concluded in section 8.  

2. Overview of Computationally Efficient ONH Detection 

Algorithm Based on Radon Transform 

The ONH detection algorithm developed in (Shahri et al., 

2014) is based on Radon Transform (RT). In this algorithm, 

the fundus image is partitioned into overlapping blocks or sub-

images to which RT is applied. The Radon space is then 

explored several times to identify the ONH.The processing 

pipeline of the algorithm is illustrated in Fig.1. 

First of all, the fundus area is separated from the 

background with the help of a fundus mask which is either 

available or can be generated by using the intensity channel. 

Then, the fundus area is partitioned into sub-images or sliding 

windows for the detection of the ONH as illustrated in Fig.2. 

The approximate size of the ONH is used to determine the size 

of the sub-image or sliding window, denoted by n. Another 

parameter that has influence on the outcome is the windows 

shifting ratio which is named step. In (Shahri et al., 2014), it is 

discussed how to set these parameters. 

Next, RT is applied to the sub-images as follows: 
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where  and   indicate the direction and line parameter, 

respectively. This equation corresponds to a single projection 

where the Dirac function   denotes the path of the line 

integral. The projection       is interpreted as the one-

dimensional function        of a single variable s with θ as a 

parameter. RT is able to transform a pattern to a line in the 

Radon space allowing the pattern to be easily distinguished 

from other patterns. 

RT is then applied to all sub-images along      

directions from 0° to 165° degrees with 15° degrees 

increment. An ONH location candidate in a sub-image is 

associated with a peak in the Radon space. At this stage, all 

the sub-images which have a peak higher than a threshold are 

considered to be candidates containing the ONH, such as sub-

images Y and Z shown in Fig.1. In (Shahri et al., 2014), it is 

discussed how this threshold is selected. The ONH candidates 

 

Fig. 1. Processing pipeline of the ONH detection algorithm 

 
Fig. 2.Window size and overlapping ratio (n, step) in retinal fundus image 



are then refined to find the final ONH location. The 

refinement is done by using the roundness of ONH, which 

prevents the related profiles to differ from each other, to a 

certain extent.Therefore, a mean vector of the Radon space    
is computed as noted in (2): 
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where   θ    denotes the (s,θ)th component of the Radon space, 

s and   indicate the dimensions of the Radon space. Then, the 

mean square error (MSE) between the   projections, as 

computed in (3), is used as a similarity measure to identify the 

ONH location.  
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The ONH is located by the sub-image exhibiting the least 

MSE among all the ONH candidates. As illustrated in Fig.1, 

sub-image Y leads to a Radon space having similar curvatures 

in terms of Radon projections, compared to sub-image Z. The 

least MSE corresponds to the ONH location. 

All the ONH detection steps are illustrated in the flowchart 

shown in Fig.3. The fundus area is detected from the fundus 

image blue component using a binary mask. Then, the RT is 

applied and the peak value is extracted for each sub-image. All 

RT peaks are then examined in order to set a threshold.All the 

sub-images with peaks exceeding the threshold are considered 

to be ONH candidates for which       and MSE are computed. 

The ONH is located in the sub-image having the minimum 

MSE. In (Shahri et al., 2014), this ONH detection algorithm 

was shown to achieve the detection accuracies of 100% and 

96.3% when applied to the DRIVE and STARE database 

images, respectively. 

3. Analysis of ONH Detection Algorithm for Smartphone 

APP Development  

3.1. Computational Complexity Analysis of ONH Detection 

Algorithm 

The computational complexity of ONH detection was stated 

in (Shahri et al., 2014). For an input image of size    , the 

fundus area detection is of complexity      . The 

complexity of the refinement component is        , where c 

indicates the number of ONH candidates, n the sub-image size 

and   the RT projection number. A single RT projection 

involves covering all the sub-image pixels and hence has a 

complexity of       . Each sub-image requires   RT 

projections with predefined angles. RT is applied to all the 

sub-images thus making the complexity           , where 

  denotes the window step. Consequently, for an input of 

size     with the window size   and the step  , the total 

number of operations involved in the algorithm is 

        ). For the optimal values of  ,  ,   and   

parameters noted in (Shahri et al., 2014), RT requires to be 

computed more than 1000 times as compared to the fundus 

area detection and refinement components. In other words, the 

optimization of RT processing plays the major or key role in 

the efficiency of the algorithm running on a smartphone 

platform. 

3.2. Discrete Aspect of Radon Transform 

A Radon projection beam runs in a straight line across an 

image at an orientation   in the x-y plane. A radon projection 

is a set of parallel beams perpendicular to the line at angle   

(Nacereddine et al., 2015). Due to the discrete nature of 

images, Discrete Radon Transform (DRT) as proposed in 

(Kingston, 2006) is computed. DRT consists of two equations 

that correspond to projections with         and 

projections with          . The equation below 

provides the DRT computation (Dai et al., 2010; Kingston and 

Svalbe,2003): 
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where   is an input sub-image of size     where       and 

  are the pixel indexes in  ,   is the Dirac function where 

       if     and        in all other cases,   
            θ    ,  θ        θ   θ ,  θ and  θ denote the 

horizontal and vertical distances from the nearest pixels, 

respectively. The DRT of a sub-image are stored in a      

matrix, called Radon space, where   denotes the projection 

line index and    the angle number. 

 

Fig.3.Flowchart of RT-based ONH detection algorithm 



3.3. DRT ComputationalComplexity 

DRT requires the processing of several beams for each sub-

image. As indicated in (4), a RT projection     θ  requires 

examining all the sub-image pixels. For each pixel, a Dirac 

delta computation is required that involves trigonometric 

functions. The work described in (Kim and Kim, 2007; Schmit 

and Thomas, 1995) indicates that the index calculation causes 

a delay due to the memory access latency. Consequently, the 

index calculation poses an implementation bottleneck that 

significantly impacts the ONH detection computation. 

Furthermore, all the pixels that cross a beam should be 

taken into account where their number might reach 

                 . For a DRT projection with   
 

 
 as 

depicted in Fig. 4(a), each beam involves accessing 19 pixels 

for an image size of      . Thus, the projection angle has 

also an impact on the computational complexity of processing 

a beam. 

Processing a beam requires accessing non-successive pixels 

with different indexes in terms of rows and columns. Consider 

the example of the RT projection illustrated in Fig. 4(a), the 

pixel row indices and pixel column indices are both varied in 

the ranges [1..10]. In fact, the memory has several banks; each 

bank consists of two-dimensional arrays which are referred by 

its rows and columns (Subramanian et al., 2016; Lee et al., 

2013). Due to the image size, pixels are saved in different 

array rows. Every memory access allows reading one row data 

per cycle, named buffer. Thus, pixels belonging to different 

row buffer lead to a pipeline stall. The row switches imply a 

time that is unavailable (Yin et al., 2016; Yuan et al., 2009) 

and thus a throughput bottleneck is created. In (Subramanian 

et al., 2016), it has been shown that reading data from 

different row buffers leads to a double or triple increase in the 

memory access latency. 

4. Optimization of RT-Based ONH Detection Algorithm  

4.1. RT Computation UsingPlane Rotation 

Image rotation is employed in many computer vision 

applications. The rotation transformation in Cartesian 

coordinates as noted in (5) can be done by a one-pass 

approach to determine each rotated point as described in 

(Ashtari et al., 2015; Nouvel and Rémila, 2006; Chen et al., 

2014). 
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where θ denotes the rotation angle,       the coordinates of a 

pixel in the input image,         the rotated coordinates of the 

pixel in the output image, respectively. The rotation given in 

(5) is of complexity        as mentioned in (Kingston, A., 

2006) for a rotated image of size    . The work described in 

(Yu et al., 2016) proposes an incremental rotation that requires 

             operations. A one-pass method for image 

rotation is also discussed in (Ashtari et al., 2015) which is of 

complexity       while preserving image quality. Parallel 

processing implementations of image rotation on hardware 

platforms have also appeared in the literature, e.g. (Yu et al., 

2016; Mazumdar and Mukhopadhyay, 2017). 

There are a number of papers that address rotation and RT 

jointly. In (Svalbe, 2011), it was shown that an exact 2D 

image rotation can be achieved by re-ordering the elements of 

RT projections. In (Lidong et al., 2015), the relation between 

RT and plane-rotation was formulated by applying RT with an 

angle θ to a rotated image by angle   similar to applying RT 

with an angle (θ+ε), as indicated in(6), 

    sfsrotf  


(6) 

In fact, using     in the RT function shown in (4) 

implies that Dirac component is equal to       . Hence, 

each   beam depends only on  indices. Therefore, the DRT 

becomes equal to the pixels sum where    , as indicated in 

(7). Consequently, RT needs to be performed n times. Fig.4(b) 

shows an example of a vertical beam where the crossed pixels 

are indicated by gray color. 
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Thus, RT is formulated here with angle  as RT with angle 0° 

after rotating the image with  . This property leads to 

computing RT as noted in (8), 

    srotfsf  0


 (8) 

Given the computational complexity of (5) and (7), Eq. 

(8)becomes of complexity          instead of       , 

which denotes a reduction in the processing time. 

Furthermore, successive pixel indices are foundfrom minimal 

row buffers that lead to a reduction of the memory access 

latency. Moreover, the beam value is computed using the 

minimum pixel number which is equal to          for an 

image of size    . In addition, no index parameters are 

involved. Thus, applying RT with angle      leads to a 
 

Fig.4. Beam projections: (a)with      ; (b) with      



reduction in the computational complexity of the beam 

processing and DRT. 

4.2. Merging of RT Projection Processing 

ONH detection based on RT involves applying RT along 

different projection angles in order to capture the ONH pattern 

in a sub-image. The detection outcome increases with the 

number of projection angles. The angle range       is equally 

partitioned in order to have the same projection on both halves 

of a sub-image. The value chosen are applied in 12 directions 

from 0 to 165° in 15° increments. As a result, for any angle 

         , there is an angle           where     
 

  , as depicted in Fig. 6. Therefore, angles can be merged 

based on         of       angles, where   denotes the angle 

number. 

When applying RT by using   
 

 
   , the Dirac 

component of RT function is equal to       . Therefore, the 

DRTbecomes similar to a horizontal projection where each 

beam is equal to the pixel sum where    , as indicated in 

(9). 
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Based on (6), applying RT projection with angle    
   is 

similar to applying RT projection with     applied to a rotated 

image with angle  , as noted in (10). Therefore, the DRT is 

computed as in (10) which involves row sums thus avoiding 

the limits mentioned earlier.  
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In other words, merging of RT projection processing is 

done by performing both  and   RT projections by rotating a 

sub-image by  , followed by RT projection with angle  via 

adding all the rows, while RT projection with angle   is done 

via adding all the columns. As an example, Fig. 5(a)  

illustrates the RT projections with angle       and 

       . First, the sub-image is rotated by     as shown in 

Figure 5(b). Then,       and         are performed, respectively, 

with horizontal and vertical directions, as illustrated in 

Fig.5(c). 

To preserve accuracy, the plane rotation need to maintain 

the same pattern size as the intput image. Thus, a rotated sub-

image of size     is transformed to a matrix of size     

where         as mentioned in (Svalbe, 2011; Jadhav and 

Holambe,  2010). This matrix has a dark background in order 

to avoid getting  noise into  the RT processing, see Fig. 7(b). 

In fact, each input sub-image is filtered via  a binary mask in 

order to preserve a circular form with respect to the ONH. 

Knowing that a circular object remains invariant to a plane 

rotation, the middle matrix of size     incorporates all the 

patterns of interest. Therefore, the orthogonal DRT is applied 

only to the       centered portion which has the same size 

as the input sub-image, as shown in Fig. 7(c). Hence, the DRT 

complexity remains the same despite the sub-image rotation. 

In other words, the sub-image plane rotation leads to halving 

the rotation processing that is performed only        instead 

of   times, while preserving the sub-image size and hence the 

number of RT beams of    , where      
   and    . 

Note that such optimization is achieved regardless of the   

pair projection number. 

All the DRT projections are computed and collected in the 

RT space, as outlined in Algorithm 1. The outermost loop 

correspond to          iterations that in turn corresponds to 

the sub-image rotation. Thereafter, all pixels of the central 

component are examined in order to compute     and      
  
 

 
Fig. 5. Processing RT projections with     and     : (a) initial sub-image; (b) rotation of the sub-image by    ; (c) processing RT projections with     and     

applied to the rotated sub-image 

 
Fig. 6. Orientation of RT projections 



simultaneously. For this purpose, the two innermost loops 

ensure the browsing of all the image pixels when          is 

added to         and       
     . The innermost loops need 

to be computed        times. Hence, an iteration of the 

outermost loop is performed            times. 

Consequently, the RT spacecomplexity becomes        

      instead of          as described in (Shahri et al., 

2014). 

5. Smartphone-Based ONH Detection CAD System 

Smartphones are increasingly being used in medical 

applications. The number of individuals using smartphones 

was estimated to be 1000 million in 2012, and is expected to 

reach 2500 million by 2020 (Harwood et al., 2017). 

Smartphones have dramatically improved in terms of 

processing power, storage capacity and connectivity. In 

ophthalmology, several mobile lens units have been developed 

for capturing retinal fundus images (Besenczi et al., 2015; 

Blanckenberg et al., 2011). In particular, the lens unit in 

(Sharma, 2017; Russo et al., 2015) named D-Eye is designed 

to be easily snapped onto a smartphone.  

The main thrust here is to provide a smartphone-based 

Computer-Aided-Diagnostic (CAD) system for the detection 

of ONH. The smartphone-captured fundus images express the 

same characteristics as of retinograph-captured ones. This will 

allow the above processing pipeline to be run on smartphones 

as apps.  

5.1. Fundus Location in Smartphone-Captured Images 

Retinograph-captured images are characterized by a 

sufficient contrast level that allows distinguishing between 

optic disc and blood vessels from eye fundus. This 

characteristic allows a higher accuracy performance when 

image processing is performed based on brightness, as 

discussed in (Shahri et al., 2014). Moreover, due to the fixed 

distance to the camera lens, the fundus always occupies more 

or less the same image area. A static binary mask is then 

applied to attribute dark color to the fundus background.  

Fundus images captured by smartphones via D-Eye have 

lower quality than the ones captured with retinographs. 

Smartphone captured fundus images often have a non-

balanced contrast. A light leakage normally occurs which 

leads to fundus and background having a similar contrast. To 

avoid this problem, the Contrast Limited Adaptive Histogram 

Equalization (CLAHE) approach in (Lidong et al., 2015) is 

applied here to the blue component of the fundus image, as 

illustrated inFig. 8. 

The eye fundus size and location differ from one image to 

another due to the handholding of a smartphone. Thus, no 

predefined binary mask can be applied to outline the fundus. 

Here, the roundness is used to outline the fundus. For this 

purpose, the image is dilated in order to dispose blood vessels. 

Then, the circular Hough transform is applied to detect the 

circular pattern of the fundus. A radius range is assigned to 

avoid detecting the ONH instead of the fundus. This way, the 

radius and center indices represent the parameters of the 

binary mask applied to outline the fundus, see Fig.8. 

5.2. Mobile ONH Detection CAD System 

The developed mobile ONH detection CAD system consists 

of the lens described in (Sharma, 2017; Russo et al., 2015). 

(b)

n

n

(c)(a)

Rotate 

with π/4

 
Fig. 7.Processing RT projections with     and 3.   : (a) initial sub-image; (b) rotated sub-image by     and saved in dark background; (c) the region of interest 

Algorithm 1 :RT space processing 

Inputs: sub-image    with size      ;  

vector   of projection angles where           

Outputs:RT space        

                           

      
            

                

Begin 

For  from     to          do 

Rotate    on     with angle   

For from            to            do 

For from            to            do 

End for 

End for 

End for 

End 
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The smartphone is then used to capture and process the fundus 

image, and shows the ONH detection outcome on its screen, 

as illustrated in Fig. 9. To achieve a comparable detection 

accuracy reported in (Shahri et al., 2014), the pre-processing 

step described in the previous subsection is applied to outline 

the fundus location and then the optimized ONH algorithm 

described in section IV is executed. 

The OpenCV library is used in the above processing steps 

in order to guarantee computationally efficient execution. The 

entire system is implemented on an Android smartphone 

where the processing time takes about 2s. A video clip of the 

developed CAD system for ONH detection appears at 

(Elloumi et al., 2017a). The developed CAD system also 

works when using the iExaminer lens (Sharma, 2017) by 

which better quality fundus images can be captured as 

reported in (Besenczi et al., 2015).  

5.3.  Software Environment 

The implementation was carried out for Android 

smartphones using the Android Software development kit 

(SDK). When processing complex operations are written in 

the Android language Java, they run in many cases slower 

than the ones written in native C/C++ code (Sun and Tan, 

2014; Sun and Tan, 2014; Lee and WookJeon, 2010; Mitrovic 

et al., 2016). The use of C allows accessing advanced libraries 

towards efficient implementations (Harwood and Revell, 

2017). Android Native Development Kit (NDK) allows the 

codes written in C/C++ to integrate into the Android SDK 

environment. The Java Native Interface (JNI) is used here 

which is the programming framework that allows Java codes 

to embed native C/C++ codes. 

Open Computer Vision (OpenCV) is a widely used open 

source library for image processing and computer vision 

written in C++ ((Harwood and Revell, 2017; De Marsico et 

al., 2014). It provides more than 2500 optimized image 

processing functions. The coding for the ONH detection 

algorithm was done by combining OpenCV and Java 

programming languages. When the ONH detection app is run, 

the OpenCV functions are called from the JNI as modeled by 

the arrows illustrated in Fig. 10. Therefore, the JNI is then 

compiled using the NDK software tool. The following steps 

were taken to develop an Android app using the OpenCV 

library of image processing functions: 

- Importing OpenCV onto a project in the Android 

environment. 

- Configuring the project features by creating dependency 

with the OpenCV library and by updating the compile and 

target SDK versions in order to integrate OpenCV syntax 

in the Android Java code. 

- Setting up the JNI framework to ensure that the OpenCV 

 
Fig. 9. Smartphone graphical interface: (a) retina localization; (b) ONH 

detection 

 
Fig. 8. Pre-processing step of smartphone-captured fundus image 

 
Fig. 10.Using OpenCVin the Android software environment 



library methods are employed. A “jniLibs” folder is 

created in the project main folder. The CPU-architecture(s) 

of the target smartphone device among ARMv5, 

ARMv7, x86, MIPS, ARMv8, MIPS64 and x86_64 needs 

to be specified. A free software, called “Native Libs 

Monitor” would allow identifying the target CPU-

architecture. Then, the folders that correspond to the target 

CPU-architecture are copied from the OpenCV library to 

the created jniLibs folder.  

- Installing NDK and configuring the project to compile and 

run the app by modifying the gradle file. 
 

6. ExperimentalResults 
6.1. ONH Detection Evaluation 

6.1.1. Detection Accuracy  

The ONH detection algorithm was evaluated via a desktop 

implementation done in Matlab and by using two widely used 

databases of retinal images. The first experiment aimed at 

investigating the accuracy when the algorithm was run on an 

Android smartphone. The hardware features of the PC and 

smartphone used are listed in Table I. 

The STARE and DRIVE retinal database images were used 

for this detection accuracy study. We found that both the 

smartphone and desktop implementations achieved the same 

ONH detection accuracy on the two databases indicating the 

correct functionality of the smartphone app developed. The 

accuracy results have been summarized in Table II. 

6.1.2. Processing Time Improvement 

We conducted two experiments to examine the execution 

time. The first experiment examined the optimization steps 

taken to speed up the detection of ONH on a smartphone 

platform. The second experiment compared the ONH 

detection between the Android and the desktop codes. We 

chose 10 images at random for this study from each of the 

TABLE II 

ONH DETECTION ACCURACY IN TERMS OF RETINAL IMAGE DATABASE 

 Matlab code Android Code 

STARE 96.3% 96.3% 

DRIVE 100% 100% 

 

 

  
(a) (b) 

Fig. 11. Execution time of ONH detection Android code applied to retinal images: (a) STARE database images; (b) DRIVE database images 

  
(a) (b) 

Fig. 12. Optimization improvement ratio in terms of retinal images: (a) STARE database; (b) DRIVE database 
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TABLE I 

HARDWARE FEATURES OF IMPLEMENTATION PLATFORM 

 PC Mobile device 

Model HP ProDesk 400 Samsung Galaxy S5 

CPU architecture Core i(5) – 4590s 
Qualcomm 

MSM8974PRO-AC 

CPU number 4 cores 4 cores 

CPU frequency 3.30 Ghz 2.5 Ghz 

RAM 8GB 2GB 

OS Win 7 Professional Android 6.0.1 

 

 



STARE and DRIVE databases. Fig. 11 shows the execution 

time for 10 sample images of each database. The average 

execution time of non-optimized Android code was about 3s, 

whereas the execution time for the optimized version was 

about 1.8s, for the STARE retinal images. This exhibited 

about 40% improvement in the execution time. The same 40% 

improvement was observed for the DRIVE retinal images. 

Moreover, the variations in the execution time from STARE 

DB images to DRIVE DB images were attributed to the 

number of candidate sub-images that were selected to detect 

the ONH. It is important to note that the improvement in the 

execution time was found to be independent from the retinal 

anatomy, as illustrated in Fig.12. 

We compared the Android codes execution time to the 

reference Matlab code running on a desktop PC. The results 

are summarized in Fig.13 exhibiting the execution times for 

both PC and smartphone implementations. The Android 

smartphone execution times are found to be higher by about 

20% and 16% than the Matlab desktop execution times for the 

STARE and DRIVE database images, respectively. 

6.2. Evaluation of Smartphone-Based CAD System 

To evaluate the developed CAD system for retinal images 

captured by the D-EYE lens, we considered a D-EYE database 

consisting of 14 images of size1200*1200 pixels, which are 

hosted in (Elloumi et al., 2017b).In addition, the database 

called “Retinal Image Acquired by Mobile Phone (RIAMP)” 

in (Besenczi et al., 2015) was used which consisted of 48 

fundus images of size 2000*1500 pixels. As noted in Table 

III, the experiments revealed that the ONH was localized in 

about 93% of the D-EYE database images and in about 91% 

of the RIAMP database images.  

As shown in Fig. 14, the computational time was also 

examined using 10 retinal images from both of these 

databases. The CAD system provided an efficient execution 

time of about 2.2s and 2.7s on average, respectively, for the 

RIAMP and D-EYE database images. 

7. Discussion 

The experimental results indicate that an effective ONH 

detection can be achieved based on contrast and roundness 

  
(a) (b) 

Fig. 13. Android code execution time of retinal images: (a) STARE database images; (b) DRIVE database images 
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TABLE III 

ONH DETECTION ACCURACY IN TERMS OF RETINAL IMAGE DATABASE 

 Matlab code Android Code 

D-EYE DB 92.85% 92.85% 

RIAMP-DB 91.66% 91.66% 

 

 

  
(a) (b) 

Fig. 14. CAD system execution time: (a) D-EYE database images; (b) RIAMP database images 
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from smartphone-captured fundus images noting that these 

images are challenging to work with due to the presence of 

motion blur and non-balanced contrast caused by the handheld 

holding of smartphones.  

Although higher detection as compared to conventional 

fundus images is achieved for the databases examined, it is 

worth noting that higher detection is not guaranteed for all 

possible shapes, colors and contrasts. As future work, we are 

developing a point spread function estimation approach 

similar to (Dash and Majhi, 2014) for deblurring and 

denoising smartphone captured fundus images. 

In terms of DR detection, its first stage, called non-

proliferative DR, is characterized by emerging different 

lesions such as hard exudates, microaneurysms and 

haemorrhages. Hard exudates appear as bright shapes in 

retinal images (Prentašić and Lončarić, 2016; Zhang et al., 

2014). Our CAD system has the potential to detect DR by 

examining the candidate sub-images which do not correspond 

to the ONH. For microaneurysms and haemorrhages lesions 

that appear as dark lesions, the work described in (Akram et 

al., 2014) provides an approach capable of extracting these 

lesions.  

Moreover, assessment of damaged optic nerve head is used 

to detect glaucoma. A higher ratio between vertical cup 

diameter and vertical disc diameter indicates a higher risk of 

glaucoma. Indeed, several works discuss detecting optic disk 

and cup based on their brightness (Yin et al., 2012; Cheng et 

al., 2013). Thus, our mobile CAD system may be extended to 

detect glaucoma. In addition, it can be extended to detect other 

anatomical structures (Chakravarty and Sivaswamy, 2017; 

Molina-Casado et al., 2017) or pathologies (Xiayu et al., 2017; 

Srivastava et al., 2017). 

Finally, it is worth pointing out that our proposed 

processing pipeline can also be implemented on other devices 

used in ophthalmology (Sharma, 2017), or on handheld 

embedded systems such as the ones described in (Spitzer and 

Kayange, 2015; Newman-Casey, 2016). 

8. Conclusion 

In this paper, the Optic Nerve Head (ONH) detection 

algorithm discussed in (Shahri et al., 2014) was implemented 

as an app running on Android smartphones. This algorithm 

uses Radon Transform (RT) to detect the ONH in retinal 

fundus images with high accuracy in the presence of high 

brightness and color variations in such images, in particular 

when captured by smartphones. The optimization steps taken 

allow this algorithm to run efficiently on Android 

smartphones. The experimental results based on fourfundus 

image databases have shown the effectiveness of the 

developed app in terms of both the ONH detection accuracy 

and the execution time of the app. The developed ONH 

detection system provides a mobile and cost-effective 

Computer Aided Diagnosis (CAD) system in ophthalmology 

which can be deployed in areas where the use of expensive 

ophthalmology equipment poses a challenge. 
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