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Abstract

This paper addresses the understanding and characterization of residual networks
(ResNet), which are among the state-of-the-art deep learning architectures for a
variety of supervised learning problems. We focus on the mapping component of
ResNets, which map the embedding space towards a new unknown space where
the prediction or classification can be stated according to linear criteria. We show
that this mapping component can be regarded as the numerical implementation of
continuous flows of diffeomorphisms governed by ordinary differential equations.
Especially, ResNets with shared weights are fully characterized as numerical
approximation of exponential diffeomorphic operators. We stress both theoretically
and numerically the relevance of the enforcement of diffeormorphic properties and
the importance of numerical issues to make consistent the continuous formulation
and the discretized ResNet implementation. We further discuss the resulting
theoretical and computational insights on ResNet architectures.

1 Introduction

Deep learning models are the reference models for a wide range of machine learning problems.
Among deep learning (DL) architectures, Residual networks (also called ResNets) have become
state-of-the-art ones [10, 12]. Experimental evidences emphasize critical aspects in the specification
of these architectures for instance in terms of network depths or combination of elementary layers as
well as in their stability and genericity. The understanding and the characterization of ResNet and
more widely DL architectures from a theoretical point of view remains a key issue despite recent
advances for CNN [18].

Interesting insights on ResNets have recently been presented in [19, 8, 25] from an ordinary/partial
differential equation (ODE/PDE) point of view. ResNets are regarded as numerical schemes of
differential equations. Especially, in [19], this PDE-driven setting stresses the importance of numerical
stability issues depending on the selected ResNet configuration. Interestingly, it makes explicit the
interpretation of the ResNet architecture as a depth-related evolution of an input space towards a
new space where the prediction of the expected output (for instance classes) is solved according to a
linear operator. This interpretation is also pointed out in [9] and discussed in terms of Riemannian
geometry.

In this work, we deepen this analogy between ResNets and deformation flows to relate ResNet and
registration problems [21], especially diffeomorphic registration [24, 5, 3, 2]. Our contribution is
three-fold: (i) we restate ResNet learning as the learning of a continuous and integral diffeomorphic
operator and investigate different solutions, especially exponential operator of velocity fields [2], to
enforce diffeomorphic properties; (ii) we make explicit the interpretation of ResNets as numerical
approximations of the underlying continuous diffeomorphic setting governed by ordinary differential
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Figure 1: A schematic view of ResNet architecture [10], decomposed into three blocks: embedding,
mapping and prediction. ’conv’ means convolution operations followed by non linear activations, and
’fc’ means fully connected layer.

equations (ODE); (iii) we provide theoretical and computational insights on the specification of
ResNets and on their properties.

This paper is organized as follows. Section 2 relates ResNets to diffeomorphic registrations. We
introduce in Section 3 the proposed diffeomorphism-based learning framework. Section 4 reports
experiments. Our key contributions are further discussed in Section 5.

2 From ResNets to diffeomorphic registrations

ResNets [10, 11] have become state-of-the-art deep learning architectures for a variety of issues,
including for instance image recognition [10] or super-resolution [13]. This architecture has been
proposed in order to explore performances of very deep models, without training degradation accuracy
when adding layers. ResNets proved to be easier to optimize and made it possible to learn very deep
models (up to hundreds layers).

As illustrated in Fig.1, ResNets can be decomposed into three main building blocks:

• the embedding block which aims to extract relevant features from the input variables for the
targeted task (such as classification or regression). In [10], the block consists in a set of 64
convolution filters of size 7× 7 followed by non-linear activation function such as ReLU.

• the mapping block, which aims to incrementally map the embedding space to a new unknown
space, in which the data are, for instance, linearly separable in the classification case.
In [10], this block consists in a series of residual units. A residual unit is defined as
y = F (x, {Wi}) + x where the function F is the residual mapping to be learned. In
[10], F (x) = W2σ(W1x) where σ denotes the activation function (bias are omitted for
simplifying notations). The operation F (x) + x is performed by a shortcut connection and
element-wise addition.

• the prediction block, which addresses the classification or regression steps from the mapped
space to the output space. This prediction block is expected to involve linear models. In
[10], this step is performed with a fully connected layer.

In this work, we focus on the definition and characterization of the mapping block in ResNets. The
central idea of ResNets is to learn the additive residual function F such that the layers in the mapping
block are related by the following equation:

xl+1 = xl + F (xl,Wl) (1)

where xl is the input feature to the lth residual unit. Wl is a set of weights (and biases) associated
with the lth residual unit. In [11], it appears that such formulation exhibits interesting backward
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propagation properties. More specifically, it implies that the gradient of a layer does not vanish even
when the weights are arbitrarily small.

Here, we relate the incremental mapping defined by these ResNets to diffeomorphic registration
models [21]. These registration models, especially Large Deformation Diffeomorphic Metric Map-
ping (LDDMM) [24, 5], tackle the registration issue from the composition of a series of incremental
diffeomorphic mappings, each individual mapping being close to the identity. Conversely, in ResNet
architectures, the lth residual block provides an update of the form xl + F (xl,Wl). Under the
assumption that ‖F (xl,Wl)‖ � ‖xl‖, the deformation flows generated by ResNet architectures may
be expected to implement the composition of a series of incremental diffeomorphic mappings.

In [10, 11], it is mentioned that the form of the residual function F is flexible. Several residual
blocks have been proposed and experimentally evaluated such as bottleneck blocks [10] or various
shortcut connections [11]. However, by making the connection between ResNet and diffeomorphic
mapping, we show here that the function F is a parametrization of an elementary deformation flow,
constraining the space of admissible residual unit architectures.

We argue this registration-based interpretation motivates the definition of ResNet architectures as the
numerical implementation of continuous flows of diffeomorphisms. Section 3 details the proposed
diffeomorphism-based learning framework in which diffeomorphic flows are governed by ODEs as
in the LDDMM setting. Interestingly, ResNets with shared weights relate to a particularly interesting
case yielding the definition of exponential diffeomorphism subgroups in the underlying Lie algebra.
Overall, the proposed framework results in: i) a theoretical characterization of the mapping block as
an integral diffeomorphic operator governed by an ODE, ii) in considering deformation flows and
Jacobian maps for the analysis of ResNets, iii) the derivation of ResNet architectures with additional
diffeomorphic constraints.

3 Diffeomorphism-based learning

3.1 Diffeomorphisms and driving velocity vector fields

Registration issues have been widely stated as the estimation of diffeomorphic transformations
between input and output spaces, especially in medical imaging [21]. Diffeomorphic properties
guarantee the invertibility of the transformations, which includes the conservation of topology features.
The parameterization of diffeomorphic transformations according to time-varying velocity vector
fields has been shown to be very effective in medical imaging [16]. Beyond its computational
performance, this framework embeds the group structure of diffeomorphisms and results in geodesic
flows of diffeomorphisms governed by an Ordinary Differential Equation (ODE):

dφ(t)

dt
= Vt (φ(t)) (2)

with φ(t) the diffeomorphism at time t, and Vt the velocity vector field at time t. φ(0) is the identity
and φ(1) the registration transformation between embedding space X and output space X ∗, such
that for any element X in X its mapped version in X ∗ is φ(1)(X). Given velocity fields (Vt)t, the
computation of φ(1)(X) comes from the numerical integration of the above ODE.

A specific class of diffeomorphisms refers to stationary velocity fields, that is to say velocity fields
which do not depend on time (Vt = V,∀t). As introduced in [2], in this case, the resulting dif-
feomorphisms define a subgroup structure in the underlying Lie group and yield the definition
of the exponential operators. We here only briefly detail these key properties. We let the reader
refer to [1] for a detailed and more formal presentation of their mathematical derivation. For a
stationary velocity field, the resulting diffeomorphisms belong to the one-parameter subgroup of
diffeomorphisms with infinitesimal generator V . In particular, they verify the following property:
∀s, t, φ(t) · φ(s) = φ(s + t), where · stands for the composition operator in the underlying Lie
group. This implies for instance that φ(1) comes to apply n times φ(1/2n) for any integer value
n. Interestingly, this one-parameter subgroup yields the definition of diffeomorphisms (φ(t))t as
exponentials of velocity field V denoted by (exp(tV ))t and governed by the stationary ODE

dφ(t)

dt
= V (φ(t)) (3)
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Conversely, any one-parameter subgroup of diffeomorphisms is governed by an ODE with a stationary
velocity field. It may be noted that the above definition of exponentials of velocity fields generalizes
the definition of exponential operators for matrices and finite-dimensional spaces.

3.2 Diffeomorphism-based supervised learning

In this section, we view supervised learning issues as the learning of diffeomorphisms according to
some predefined loss function. Let us consider a typical supervised classification issue which the goal
is to predict a class Y from an N -dimensional real-valued observation X . Let Lθ be a linear classifier
model with parameter θ. Within a neural network setting, Lθ typically refers to a fully-connected
layer with softmax activations and parameter vector θ to the weight and bias parameters of this
layer. Let D be the group of diffeomorphisms inRN . We state the supervised learning as the joint
estimation of a diffeomorphism φ ∈ D and linear classification model Lθ according to:

φ̂, θ̂ = argmin
φ,θ

loss ({Lθ (φ (Xi)) , Yi}i) (4)

with {Xi, Yi}i the considered training dataset and loss an appropriate loss function, typically a
cross entropy criterion. Considering the ODE-based parametrization of diffeomorphisms, the above
minimization leads to an equivalent estimation of velocity field sequence (Vt)

(̂Vt), θ̂ = arg min
(Vt),θ

loss ({Lθ (φ(1) (Xi)) , Yi}i) (5)

subject to


dφ(t)

dt
= Vt (φ(t))

φ(0) = I

(6)

When considering stationary velocity fields [2, 3], this minimization simplifies as

V̂ , θ̂ = arg min
(Vt),θ

loss ({Lθ (exp(V ) (Xi)) , Yi}i) (7)

We may point out that this formulation differs from the image registration problem in the considered
loss function. Whereas image registration usually involves the minimization of the prediction error
Yi − φ(1) (Xi) with any pair Xi, Yi ∈ RN , we here state the inference of the registration operator
φ(1) according to classification-based loss function. It may also be noted that the extension to other
loss functions is straightforward.

3.3 Derived NN architecture

To solve for minimization issues (5) and (7), additional priors on the velocity fields can be considered.
One may consider the introduction of an additional term in the minimization, which typically
involves the integral of the norm of the gradient of the velocity fields and favours small registration
displacements between two time steps [5, 26]. Parametric priors may also be considred. They come
to set some parameterization for the velocity fields. In image registration studies, spline-based
parameterization has for instance been explored [3].

Here, we combine these two types of priors. We exploit a parametric approach and consider neural-
network based representations of the driving velocity fields in ODEs (2) and (3). More specifically,
the discrete parametrization of the velocity field, Vt(x), can be considered as a linear combination of
basis functions:

Vt(x) =
∑
i

νt,ift,i(x) (8)

where νt,i are weighting coefficients and ft,i is the ith basis function at time t. In this work,
ft,i(x) = σ(Wl,ix) and corresponds to the lth 2-layer residual unit. Various types of shortcut
connections and various usages of activations experimented in [11] correspond to various forms of the
parametrization of the velocity field. Understanding residual units in a registration-based framework
allows to provide a methodological guide to propose new valid residual units. For instance, it has
been noticed that adding an activation function such as ReLU after the shortcut connection (i.e. after
the addition layer) as in [10] makes the mapping no more bijective, and thus such architecture may
be less efficient, as shown experimentally in [11].
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In the registration-based framework considered so far, the transformation φ is only applied to the
observation X . This can introduce an undesirable asymmetry in the optimization process and have a
significant impact on the registration performance. Inverse consistency, first introduced by Thirion in
[23], can be performed by adding a variational penalty term. In order to implement inverse consistent
algorithms, it is useful to be able to integrate backwards as well as forwards. In the diffeomorphic
framework, the inverse consistency can be written as follows:

φ(1) ◦ φ(−1) = φ(−1) ◦ φ(1) = φ(0) (9)

This inverse consistency can then be achieved by adding the following term in the overall loss
function:

φ̂, θ̂ = argmin
φ,θ

loss ({Lθ (φ (Xi)) , Yi}i) + λ
∑
i

(Xi − φ(−1)(X∗
i ))

2 (10)

where X∗
i = φ(1)(Xi), Xi ∈ X and λ is a weighting parameter. We may stress that this term does

not depend on the targeted task (i.e. classification or regression) and only constraint the learning of
the mapping block. Thus, this regularization term can be extended to data points that do not belong
to the learning set, and more generally to points in a given domain, such that the inverse consistency
property does not depend on the sampling of the learning dataset.

4 Experiments

4.1 Experimental setting

In this work, following the work on differential geometry analysis of ResNet architectures of Hauser
et al. in [9], we consider a classification task of 2-dimensional spiral data. The purpose of the
mapping block is to warp the input data points Xi into an unknown space X ∗ where the transformed
data X∗ are linearly separable. We have considered the following setting: the loss function is the
binary cross-entropy between the output of a sigmoid function applied to the transformed data points
X∗ and the true labels. Each network is composed of 20 residual units for which nonlinearities are
modeled with tanh activation functions and 10 basis functions are used for the parametrization of the
velocity fields. Weights are initialized with the Glorot uniform initializer (also called Xavier uniform
initializer) [7]. We use `2 weight-decay regularization set to 10−4 and ADAM optimization method
[15] with a learning rate of 0.001, β1 = 0.9, β2 = 0.999, minibatch of 300, 1000 epochs.

We consider four ResNet architectures: a) a ResNet without shared weights (corresponding to time-
varying velocity fields modeling), b) ResNet with shared weights (corresponding to the stationary
velocity fields modeling), c) Data-driven Symmetric ResNet with shared weights (considering also
the inverse consistency criterion is computed over training data) and d) Domain-driven Symmetric
ResNet with shared weights (where the inverse consistency criterion is computed over the entire
domain using a random sampling scheme). Although all methods achieved very high classification
rates, it can be seen that adding constraints such as the use of stationary velocity fields (i.e. share
weights) and inverse consistency constraints lead to smoother decision boundaries with no effect on
the overall accuracy.

4.2 Characterization of ResNet properties

ResNet architectures have been recently studied from the point of view of differential geometry in
[9]. In this article, Hauser et al. have studied the impact of residual-based approaches (compared to
non-residual networks) in term of differentiable coordinate transformations. In our work, we propose
to go one step further by considering the characterization of the estimated deformation fields leading
to an adapted configuration for the considered classification task. More specifically, we consider in
this work the maps of Jacobian values.

The Jacobian (i.e. the determinant of the Jacobian matrices of the deformations) is defined in a
2-dimensional space as follows:

Jφ(x) =

∣∣∣∣∣∂φ1(x)
∂x1

∂φ1(x)
∂x2

∂φ2(x)
∂x1

∂φ2(x)
∂x2

∣∣∣∣∣ (11)
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From a physical point of view, the value of the Jacobian represents the local volume variation induced
by the transformation. A transformation with a Jacobian value equal to 1 is a transformation that
preserves volumes. A Jacobian value greater than 1 corresponds to an expansion and a value less than
1 corresponds to a contraction. The case where the Jacobian is zero means that several points are
warped onto a single point: this case corresponds to the limit case from which the bijectivity of the
transformation is not verified any more, thus justifying the constraint on the positivity of the Jacobian
in several registration methods [21].

4.3 Results

Classification algorithms are usually only evaluated using classification accuracy (as the number
of correct predictions from all predictions made). However, classification rate is not enough to
characterize performances of specific algorithm. In all the experiments shown in this work, the
classification rate is greater than 99%. Visualization of the decision boundary is an alternative way
to provide complementary insights on the regularity of the solution in the embedding space. Fig. 2
shows the decision boundary for the four considered ResNets. Although all methods achieved very
high classification rates, it can be seen that adding constraints such as the use of stationary velocity
fields (i.e. shared weights) and inverse consistency constraints lead to smoother decision boundaries
with no effect on the overall accuracy. This is regarded as critical for generalizability and adversarial
robustness [22].

Figure 2: Decision boundaries for the classification task of 2-dimensional spiral data. From left to
right: ResNet without shared weights, ResNet with shared weights, Data-driven Symmetric ResNet
with shared weights, Domain-driven Symmetric ResNet with shared weights. We refer the reader to
the main text for the correspondence between ResNet architectures and diffeomorphic flows.

Decision boundaries correspond to the projection of the estimated linear decision boundary in the
space X ∗ into the embedding space X . The visualization of decision boundaries does not however
provide information regarding the topology of the manifold in the output space X ∗. We also study
the deformation flow trough the spatial configuration of data points through the network layers as
in [9]. Figure3 shows how each network untangles the spiral data. Networks with shared weights
exhibit smoother layer-wise transformations. More specifically, this visualization provides insights
on the geometrical properties (such as topology preservation / connectedness) of the transformed set
of input data points.

Figure 3: Evolution of the spatial configuration of data points through the 20 residual units. From
top to bottom: ResNet without shared weights, ResNet with shared weights, Data-driven Symmetric
ResNet with shared weights, Domain-driven Symmetric ResNet with shared weights.
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To evaluate the quality of the estimation warping transformation, Fig.4 shows the Jacobian maps
for each considered network. Negative jacobian values correspond to locations where bijectivity
is not satisfied. It can be seen that adding constraints such as stationary velocity fields and inverse
consistency leads to more regular geometrical shapes of the deformed manifold. The domain-driven
regularization applied to a ResNet with shared weights leads to the most regular geometrical pattern.

Figure 4: Jacobian maps for the four ResNet architectures. From left to right: ResNet without shared
weights (Jmin = −5.59, Jmax = 6.34), ResNet with shared weights (Jmin = −1.41, Jmax = 2.27),
Data-driven Symmetric ResNet with shared weights (Jmin = 0.55, Jmax = 5.92), Domain-driven
Symmetric ResNet with shared weights (Jmin = 0.30, Jmax = 1.44). (colormap : Jmin = −2.5,
Jmax = 2.5, so dark pixels correspond to negative jacobian values).

5 Discussion: Insights on ResNet architectures from a diffeomorphic
viewpoint

As illustrated in the previous section, the proposed diffeomorphic formulation of ResNets provide
new theoretical and computational insights for their interpretation and characterization as discussed
below.

5.1 Theoretical characterization of ResNet architectures

In this work, we make explicit the interpretation of the mapping block of ResNet architectures
as a discretized numerical implementation of a continuous diffeomorphic registration operator.
This operator is stated as an integral operator associated with an ODE governed by velocity fields.
Importantly, ResNet architectures with shared weights are viewed as the numerical implementation of
exponential of velocity fields, equivalently defined as diffeomorphic operators governed by stationary
velocity fields. Exponentials of velocity fields are by construction diffeomorphic under smoothness
constraints on the generating velocity fields. Up to the choice of the ODE solver implemented by
ResNet architecture (in our case an Euler scheme), ResNet architectures with shared weights are then
fully characterized from a mathematical point of view.

The diffeomorphic property naturally arises as a critical property in registration problems, as it
relates to invertibility properties. Such invertibility properties are also at the core of the definition of
kernel approaches, which implicitly defines mapping operators [20]. As illustrated for the reported
classification experiments, the diffeomorphic property prevents the mapping operator from modifying
the topology of the manifold structure of the input data. When not imposing such properties, for
instance in unconstrained ResNet architectures as well as, the learned deformation flows may present
unexpected topology changes.

The diffeomorphic property may be regarded as a regularization criterion on the mapping operator, so
that the learned mapping enables a linear separation of the classes while guaranteeing the smoothness
of the classification boundary and of the underlying deformation flow. It is obvious that a ResNet
architecture with shared weights is a special case of an unconstrained ResNet. Therefore, the training
of a ResNet architecture with shared weights may be viewed as the training of an unconstrained
ResNet within a reduced search space. The same holds for the symmetry property which further
constrains the search space during training. The later constraint is shown to be numerically important
so that the discretized scheme complies with the theoretical diffeomorphic properties of exponentials
of velocity fields.
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Overall, this analysis stresses that over an infinity of mapping operators reaching optimal training
performance one may favor those depicting diffeomorphic properties so that key properties such as
generalization performance, prediction stability and robustness to adversarial examples are greatly
improved. Numerical schemes which fulfill such diffeomorphic properties during the training
process could be further investigated and could benefit from the registration literature, including for
diffeomorphics flows governed by non-stationary velocity fields [24, 5, 4].

5.2 Computational issues

Besides theoretical aspects, computational properties also derive from the proposed diffeomorphism-
based formulation. Within this continuous setting, the depth of the network relates to the integration
time step and the precision of the integration scheme. The deeper the network, the smaller the
integration step. Especially, a large integration time step, i.e. a shallower ResNet architecture, may
result in numerical integration instabilities and hence in non-diffeomorphic transformations Therefore,
deep enough architectures should be considered to guarantee numerical stability and diffeomorphic
properties. The maximal integration step relates to the regularity of the velocity fields governing
the ODEs. In our experiments, we only consider an explicit first-order Euler scheme. Higher-order
explicit schemes, for instance the classic fourth-order Runge-Kutta scheme, seem of great interest
as well as implicit integration schemes [6]. Given the spatial variabilities of the governing velocity
fields, adaptive integration schemes also appear as particularly relevant.

Diffeomorphic mapping defined as exponential of velocity fields were shown to be computationally
more stable with smoother integral mappings. They lead to ResNet architectures with shared weights,
which greatly lower the computational complexity and memory requirements compared with the
classic ResNet architectures. They can be implemented as Recurrent Neural Networks [14, 17].
Importantly, the NN-based specification of the elementary of velocity field V (8) becomes the
bottleneck in terms of modeling complexity. The parametrization (Equation 8) may be critical
to reach good prediction performance. Here, we considered a two-layer architecture regarded as
a projection of V onto basis function. Higher-complexity architecture, for instance with larger
convolution supports, more filters or layers, might be considered while keeping the numerical stability
of the overall ResNet architectures. By contrast, considering higher-complexity elementary blocks
in a ResNet architectures without shared weights would increase numerical instabilities and may
required complementary regularization constraints across network depth [10, 19].

Regarding training issues, our experiments exploited a classic backpropagation implementation with a
random initialization. From the considered continuous log-Euclidean prospective, the training may be
regarded as the projection of the random initialization onto the manifold of acceptable solutions, i.e.
solutions satisfying both the minimization of the training loss and diffeomorphic constraints. In the
registration literature [21], the numerical schemes considered for the inference of the mapping usually
combine a parametric representation of the velocity fields and a multiscale optimization strategy
in space and time. The combination of such multiscale optimization strategy to backpropagation
schemes appears as a promising path to improve convergence properties, especially the robustness
to the initialization. The different solutions proposed to enforce diffeomorphic properties are also
of interest. Here, we focused on the invertibility constraints, which result in additional terms to be
minimized in the training loss.

6 Conclusion

This paper introduces a novel registration-based formulation of ResNets. We provide a theoretical
interpretation of ResNets as numerical implementations of continuous flows of diffeomorphisms.
Numerical experiments support the relevance of this interpretation, especially the importance of the
enforcement of diffeomorphic properties, which ensure the stability and generalization properties
of a trained ResNet. This work opens new research avenues to explore further diffeomorphism-
based formulations and associated numerical tools for ResNet-based learning, especially regarding
numerical issues.
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