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Abstract
The computational complexity of the constraint satisfaction problem (CSP)
with semilinear relations over the reals has gained recent attraction. As
a result, its complexity is known for all finite sets of semilinear relations
containing the relation R+ = {(x, y, z) ∈ R3 | x+ y = z}. We consider larger
and more expressive classes of relations such as semialgebraic and o-minimal
relations. We present a general result for characterising computationally
hard fragments and, under certain side conditions, this result implies that
polynomial-time solvable fragments are only to be found within two limited
families of sets of relations. In the setting of semialgebraic relation, our result
takes on a simplified form and we provide a full complexity classification for
constraint languages that consist of algebraic varieties. Full classifications
like the one obtained here for algebraic varieties or the one for semilinear
relations appear to be rare and we discuss several barriers for obtaining
further such results. These barriers have strong connections with well-known
open problems concerning the complexity of various restrictions of convex
programming.
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1. Introduction

1.1. The constraint satisfaction problem
The constraint satisfaction problem (CSP) is an important computational

problem in many areas of computer science and mathematics. In this problem,
we are given a set of variables that take their values from a (finite or infinite)
domain. The assignments to the variables are further subjected to a set of
constraints. A constraint is defined by requiring that a tuple of variables
belongs to some specified relation. The question is whether the variables
can be assigned values such that all constraints are satisfied. Since even
the general finite-domain CSP is NP-hard, the complexity of CSPs is often
studied by introducing an additional parameter, a set Γ of allowed relations,
known as a constraint language (or template). This leads to a problem CSP(Γ)
where the relations of all constraints in the input are required to come from
Γ. This way of parameterizing constraint satisfaction problems has proved to
be very fruitful for both finite and infinite domains. In the sequel, when we
talk about a CSP, we will mean a problem CSP(Γ) for some fixed Γ.

The complexity of finite-domain CSPs has been extensively investigated,
beginning with Schaefer [31]. This has lead to the development of a set of
standard tools, including the powerful universal-algebraic approach [12]. Much
of this effort has been devoted to the Feder-Vardi Dichotomy Conjecture [14]
which posits that every finite-domain CSP is either polynomial-time solvable
or NP-complete. This conjecture has recently been resolved in the positive in
two independent works [11, 35].

Infinite-domain CSPs, on the other hand, constitute a much more diverse
set of problems: Every computational problem is polynomial-time equivalent
to some infinite-domain CSP [4]. Obtaining a full understanding of their
computational complexity is thus too ambitious. Instead, restricted classes
of problems are studied. For example, one can consider CSPs over numeric
domains, such as the reals, the rationals, or the integers, with constraints
derived from arithmetic operations and the natural order on these domains.
We refer the reader to [10] for a recent survey of such CSPs.

In this article, we study CSPs over the reals with constraints based on
o-minimal and in particular semialgebraic relations. The point of departure
of our investigation is recent progress on the project of classifying semilinear
CSPs. We describe this next.

1.2. Semilinear CSPs
A relation is semilinear if it can be written as a finite union of finite

intersections of open and closed half-spaces over, for instance, the reals, the
rationals or the integers. Let SLX [Y ] denote the set of semilinear relations

2



with domain X and coefficients in Y . We will mainly consider SLR[Q]; this set
of relations equals the set of first-order definable relations over {+,≤, {1}} [15].

Characterising the polynomial-time solvable cases of SLR[Q] is a challeng-
ing task. The construction presented in [21, Section 6.3] proves the following:
for every finite constraint language Γ over a finite domain, there exists a finite
Γ′ ⊆ SLR[Q] such that CSP(Γ) and CSP(Γ′) are polynomial-time equivalent
problems. Hence, the classification task of semilinear CSPs is inextricably
linked to the classification task of finite-domain CSPs, and thereby to the
Feder-Vardi dichotomy conjecture. We also observe that the complexity of ev-
ery finite temporal constraint language would be determined as a by-product of
a full classification of SLR[Q]. A temporal constraint language is a constraint
language that is first-order definable in (Q;<). The complexity of temporal
constraint languages has been fully determined [7] and the polynomial-time
solvable cases fall into nine different categories. The proof is complex and
makes heavy use of the universal-algebraic approach.

One way of obtaining classes of semilinear constraint languages that are
more manageable is to restrict attention to expansions of certain natural
sets of relations. One such choice is the set Γlin = {R+,≤, {1}}, where
R+ = {(x, y, z) ∈ R3 | x+ y = z}. Studying the computational complexity of
expansions of Γlin is well motivated by the fact that CSP(Γlin) is polynomial-
time many-one equivalent to the linear programming feasibility problem [5].
This direction has been pursued in a number of recent works [5, 6, 21, 22].
A complete classification for semilinear expansions of Γlin was obtained
in [5]. This was generalised to semilinear expansions of {R+} by Jonsson and
Thapper [23]. Here, we describe an intermediate classification for semilinear
expansions of {R+, {1}} [22].

A relation is primitive positive (pp) definable from a constraint language
Γ if it can be expressed using existential quantification over conjunctions of
atoms. The importance of pp-definability is explained by Lemma 4 below.

We say that a relation R ⊆ Rk is essentially convex if for all p, q ∈ R there
are only finitely many points on the line segment between p and q that are
not in R. A BNU (for bounded, non-constant, and unary) is a bounded unary
relation that contains more than one point.

Theorem 1 (Jonsson and Thapper [22]). Let {R+, {1}} ⊆ Γ ⊆ SLR[Q] be a
finite constraint language. If

1. Γ contains a relation that is not essentially convex, and
2. Γ can primitive positively define a BNU relation,

then CSP(Γ) is NP-hard. Otherwise, CSP(Γ) is tractable.
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Our goal will be to extend Theorem 1 as far as possible to semialgebraic
and o-minimal constraint languages. We say that a relation R ⊆ Rk is
semialgebraic if it can be first-order defined in {+, ·,≤} with parameters in
R. The classical Tarski-Seidenberg theorem [33] implies that semialgebraic
constraint languages have a clear geometric interpretation: every semialgebraic
relation can be written as a finite union of solution sets of strict and non-strict
polynomial inequalities. Semialgebraic relations appear in many different
contexts within mathematics and computer science (cf. the textbook by Basu,
Pollack, and Roy [3]).

A constraint language Γ that contains a total ordering of the domain R is
called o-minimal if every first-order definable set (with parameters from R)
can be represented as a union of finitely many intervals and points. Structures
that are o-minimal have been studied thoroughly in model theory (cf. van
Den Dries [34] and Macpherson [26]). A well-known class of relations that
give rise to o-minimal but not semialgebraic constraint languages is the set of
Semi-Pfaffian relations, cf. Khovanskii [24]. A concrete example of a semi-
Pfaffian constraint language that is not semialgebraic is SAR[R] ∪ {(x, y) ∈
R2 | y = ex}.

1.3. Contributions
Let LEX [Y ] be the set of relations defined by linear equations over X

with coefficients in Y . In Section 3, we prove the following theorem.

Theorem 2. Let F be any subfield of R. Let LER[F] ⊆ Γ be a constraint
language over R such that every primitive positively definable unary relation
over Γ can be written as a finite union of intervals with endpoints in F.
Assume that the following hold:

1. Γ contains a relation that is not essentially convex and this is witnessed
by points with coordinates in F, and

2. Γ can primitive positively define a BNU relation.

Then, CSP(Γ) is NP-hard.

Theorem 2 narrows the possible tractable fragments dramatically. In fact,
if we are considering constraint languages that contain a sufficiently large
set of linear equations and behave well with respect to pp-definable unary
relations, then one should only search for tractable fragments in the following
two cases.

1. Γ only contains relations that are essentially convex, or
2. Γ cannot primitive positively define a BNU relation.
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These two cases are analogous to the tractable cases of Theorem 1 for
semilinear relations. Hence, we cannot expect to identify any profoundly new
tractable classes when turning our attention from semilinear relations to more
general classes of o-minimal relations. Furthermore, even though we know
where candidates for tractable fragments are to be found, we do not expect
it to be easy to actually identify concrete tractable constraint languages.
Consider the first case: it includes many problems that are concerned with
convex objects. This is a very well-studied topic, especially in connection with
optimisation. Despite this, the complexity of many such problems remains
a mystery: an important and well-known example is the feasibility problem
for semidefinite programming. The second case is less well-studied; as far as
we know, the only algorithm exploiting this property works with semilinear
constraints and involves computing affine hulls [22]. This is tractable in the
semilinear setting, but it is not clear that the same approach could be applied
to non-linear relations. A more thorough discussion concerning these topics
can be found in Section 5.

We exemplify the use of Theorem 2 on semialgebraic constraint languages
by showing that semialgebraic constraint languages containing the set LER[A]
(where A denotes the set of algebraic numbers) satisfy the preconditions of
Theorem 2. We can thus conclude that there are only two families of constraint
languages, analogous to the cases (1) and (2) above, that may contain tractable
languages, and that exactly identifying these tractable languages may be
difficult. However, there are natural subclasses of semialgebraic relations
where full complexity classifications can indeed be obtained by using available
techniques. We examine such a class in Section 4. An algebraic variety is
a relation R that can be defined as the zero-locus of a set, p1, . . . , pm, of
polynomials in k real variables with coefficients from A:

R = {x ∈ Rk | p1(x) = 0 ∧ · · · ∧ pm(x) = 0}.

Algebraic varieties are the fundamental objects studied in algebraic geometry,
and are consequently of great general interest. Using the hardness result
for semialgebraic constraint languages from Section 3 and an algorithm for
linear programming with algebraic coefficients by Adler and Beling [1], we
present a complete complexity classification of CSP(Γ), when LE0

R[A] ⊆ Γ
and Γ contains algebraic varieties only. Here, LE0

R[A] denotes the set of
homogeneous linear equations with coefficients in A.

2. Preliminaries

This section provides the definitions and basic results that are needed
in the rest of the article. It is divided into three parts. We are concerned
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with constraint languages, CSPs, and pp-definitions in the first part, with
relations over an ordered structure in general in the second part, and with
semialgebraic relations in particular in the last part.

2.1. Constraint satisfaction problems
Let Γ be a set of finitary relations over some domain D (which will usually

be infinite). We refer to Γ as a constraint language. A first-order formula is
called primitive positive if it is of the form ∃x1, . . . , xn.ψ1 ∧ · · · ∧ ψm, where
ψi are formulas of the form x = y or R(xi1 , . . . , xik) with R the relation
symbol for a k-ary relation from Γ. We call such a formula a pp-formula.
The conjuncts in a pp-formula Φ are also called the constraints of Φ. The
constraint satisfaction problem for Γ (CSP(Γ) for short) is the computational
problem to decide whether a given primitive positive sentence Φ is true in Γ
or not.

Definition 3. We say that CSP(Γ) is globally NP-hard if CSP(Γ) is NP-hard.
We say that CSP(Γ) is locally NP-hard if CSP(Γ′) is NP-hard for some finite
Γ′ ⊆ Γ. Analogously, we say that CSP(Γ) is globally tractable if CSP(Γ) is
polynomial-time solvable, and that CSP(Γ) is locally tractable if CSP(Γ′) is
polynomial-time solvable for all finite Γ′ ⊆ Γ.

We will exclusively prove local NP-hardness results in this article so we
equate “NP-hard” with “locally NP-hard”. The actual representation of
relations is not important when proving local NP-hardness while the choice
of representation may be crucial when proving global NP-hardness results.1

A relation R is said to be pp-definable from a constraint language Γ if
there exists a primitive positive formula ϕ over Γ such that

R = {(x1, . . . , xk) ∈ Dk | Γ |= ϕ(x1, . . . , xk)}.

In this case, we will also write R(x1, . . . , xk) ≡ ϕ(x1, . . . , xk). Let 〈Γ〉 denote
the set of all relations that are pp-definable in Γ. The following straightforward
but important result explains the importance of primitive positive definability.
We will use it extensively in the sequel without making explicit references to
it.

Lemma 4 (Jeavons [20]). Let Γ be a constraint language and R a relation
pp-definable from Γ. Then CSP(Γ∪{R}) polynomial-time reduces to CSP(Γ).

1One example is the problem Monotone TVPI Integer Programming which is in
P with a unary representation [19], but NP-complete with a binary representation [25].
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We will make extensive use of constructions involving linear equations.
Recall that LEX [Y ] denotes the set of relations defined by linear equations
over the set X with coefficients in Y . We similarly let LE0

X [Y ] denote the
set of relations defined by homogeneous linear equations over the set X with
parameters from Y .

Lemma 5 (Bodirsky, Jonsson, and von Oertzen [5, Lemma 2.11]). Let
r0, r1, . . . , rk ∈ Q. The relation

{(x1, . . . , xk) ∈ Rk | r1x1 + . . .+ rkxk = r0}

is pp-definable in {R+, {1}}. If r0 = 0, then the relation is pp-definable in
{R+}. The pp-definition can in both cases be computed in polynomial time.

From Lemma 5, we conclude that LER[Q] = 〈{R+, {1}}〉 and LE0
R[Q] =

〈{R+}〉.
Given a relation R ⊆ Rk and two distinct points a, b ∈ Rk, we define the

relation LR,a,b as the parameterisation of the intersection between the relation
R and a line through the points a and b. Formally,

LR,a,b(y) ≡ ∃x1, . . . , xk.R(x1, . . . , xk) ∧
∧k
i=1 xi = (1− y) · ai + y · bi.

Note that LR,a,b is pp-definable in LER[R] ∪ {R}. Furthermore, if F is a
subfield of R, and a, b ∈ Fk, then LR,a,b is pp-definable in LER[F] ∪ {R}.
In particular, if a, b ∈ Qk, then LR,a,b is pp-definable in LER[Q] ∪ {R} and,
consequently, in {R+, {1}, R} by Lemma 5. Also note that if a = (0, . . . , 0),
then LR,a,b is pp-definable in LE0

R[·] ∪ {R}.

2.2. Relations over a totally ordered domain
Let (R;≤, . . .) be a totally ordered structure. By an interval we mean

either an open, half-open, or closed interval (with respect to the total order)
containing at least one point. Given elements a, b ∈ R∪ {−∞,∞}, a ≤ b, we
let [[a, b]] denote either of the intervals [a, b], (a, b], [a, b), or (a, b) if a < b, and
{a} if a = b.

For a subfield F ⊆ R, we let OR,F be the set of all unary relations
U ⊆ R such that there are finitely many intervals I1, . . . , Im with endpoints in
R∪{−∞,∞} such that U = I1 ∪ · · · ∪ Im. When F = R, we simply write OR.
The structure (R;≤, . . .) is o-minimal (see, for instance, Marker [27]) if every
unary relation that is first-order definable in (R;≤, . . . ) (with parameters
from R) is a member of OR.

A relation R ⊆ Rk is convex if for all p, q ∈ R, R contains all points on
the line segment between p and q. We say that R is essentially convex if for
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all p, q ∈ R, there are only finitely many points on the line segment between
p and q that are not in R. We say that R excludes an interval if there are
p, q ∈ R and real numbers 0 < δ1 < δ2 < 1 such that (1− y) · p + y · q 6∈ R
whenever δ1 ≤ y ≤ δ2.

The following lemma connects essential convexity and the exclusion of
intervals.

Lemma 6. Let F be a subfield of R, and let R be a relation over R such that
every unary relation in 〈LER[F] ∪ {R}〉 is a member of OR,F. Let p, q ∈ R be
distinct points with coefficients in F. The following are equivalent:

1. p and q witness that R is not essentially convex.
2. p and q witness that R excludes an interval.

Proof. We prove the non-trivial implication (1) =⇒ (2). Let k be the arity
of the relation R. Let p, q ∈ R ∩ Fk be such that an infinite number of points
on the line segment between p and q are not in R. Define the unary relation
U = LR,p,q ∈ 〈LER[F]∪{R}〉. Since every unary relation in 〈LER[F]∪{R}〉 is a
member of OR,F, we know that U can be written as ⋃mi=1 Ii, where Ii = [[si, ti]],
for 1 ≤ i ≤ m, and −∞ < s1 ≤ t1 ≤ s2 ≤ t2 ≤ · · · ≤ sm ≤ tm <∞. Clearly,
0, 1 ∈ U but an infinite number of points on the line segment between 0 and
1 are not in U , so there exists 1 ≤ j < m such that 0 < tj < sj+1 < 1. Let
δ = sj+1− tj > 0. Then, p, q ∈ R and for δ1 = ti+δ/3 and δ2 = si+1−δ/3, we
have that δ1 ≤ y ≤ δ2 implies y 6∈ U which in turn implies (1−y) ·p+y ·q 6∈ R.
It follows that p and q witness an excluded interval in R.

2.3. Semialgebraic relations
We consider first-order formulas in the language L of ordered fields, that

is, the set of first-order formulas with atoms being polynomial equations and
inequalities with coefficients from a given field. We refer to such a formula as
an L-formula.

A relationR ⊆ Xk is a member of SAX [Y ] if and only ifR = {(x1, . . . , xk) ∈
Xk | ϕ(x1, . . . , xk)} where ϕ is an L-formula with free variables x1, . . . , xk
and with coefficients taken from the set Y .

Tarski [33] has shown the following important result.

Theorem 7 ([17, Theorem 33.1.1]). Let ϕ be an L-formula interpreted over
the real numbers and with real coefficients. There is a quantifier-free formula
ψ logically equivalent to ϕ. If ϕ involves only rational coefficients, then so
does the formula ψ.

The following well-known result is a consequence of Theorem 7.
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Theorem 8. SAR[R] is o-minimal.

Lemma 9. SAR[A] = SAR[Q].

Proof. Arbitrarily choose a ∈ A. By definition, a is the kth smallest root
of some non-zero polynomial p(x) with rational coefficients. One may thus
define an L-formula ψa(x) with coefficients in Q such that ψa(x) ≡ x = a.
Thus, every L-formula with coefficients in A can be rewritten as an equivalent
L-formula with coefficients in Q. This implies that SAR[A] = SAR[Q].

Lemma 10. Every unary relation in SAR[A] is a member of OR,A.

Proof. Let U be an arbitrary unary relation in SAR[A]. The relation U is a
member of SAR[Q] by Lemma 9, and there exists a quantifier-free L-formula
ψ(x) in one variable with coefficients in Q such that U = {x ∈ R | ψ(x)} by
Theorem 7. We may without loss of generality assume that ψ(x) is given in
disjunctive normal form. It is easy to verify that each clause holds on a finite
union of intervals [[a, b]] with a, b ∈ A ∪ {−∞,∞}. Thus, the same holds for
the formula ψ, so U ∈ OR,A.

Note that Theorem 8 combined with Lemma 6 implies that a relation
in SAR[R] excludes an interval if and only if it is not essentially convex.
Furthermore, Lemma 10 combined with Lemma 6 implies that a relation in
SAR[A] excludes an interval with witnesses in A if and only if it not essentially
convex with witnesses in A.

3. The main hardness result

In this section, we prove our main hardness result in Section 3.1 and
exemplify its use on semialgebraic constraint languages in Section 3.2.

3.1. Proof of hardness result
We begin by providing two auxiliary results.

Lemma 11 (Jonsson and Thapper [23, Lemma 10]). Let {−1, 1} ⊆ T ⊆
(−3

2 ,−
1
2) ∪ (1

2 ,
3
2). Then, CSP({R+, T}) is NP-hard.

Lemma 12. Let F be a subfield of R and S ⊆ R be a BNU in OR,F that
excludes an interval. Then, CSP(LER[F] ∪ {S}) is NP-hard.

Proof. The proof reduces to an application of Lemma 11 by intersecting two
appropriately affinely transformed copies of S. The details follow.

Let S = ⋃m
i=1 Ii, where Ii = [[si, ti]], for 1 ≤ i ≤ m, and −∞ < s1 ≤ t1 ≤

s2 ≤ t2 ≤ · · · ≤ sm ≤ tm <∞.
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The relation S excludes an interval, so there is an index 1 ≤ j < m such
that tj < sj+1. Let δ1 = sj+1− tj > 0 and let a, b ∈ S ∩F be such that a ∈ sj ,
b ∈ sj+1, and δ1 ≤ b− a < 5

4δ1. Note that [a+ δ1
4 , b−

δ1
4 ] ∩ S = ∅.

Let δ2 = tm − s1 and let c, d ∈ S ∩ F be such that c ∈ s1, d ∈ sm, and
4
5δ2 < d− c ≤ δ2. Note that S ⊆ (c− δ2

5 , d+ δ2
5 ).

Define the following unary relations in LER[F] ∪ {S}:

T1(x) ≡ ∃y.S(y) ∧ y = b− a
2 x+ b+ a

2 (1)

T2(x) ≡ ∃y.S(y) ∧ y = d− c
2 x+ d+ c

2 (2)

The relations T1 and T2 satisfy the following properties:

• {−1, 1} ⊆ T1 ∩ T2;

• [−1
2 ,

1
2 ] ∩ T1 = ∅, since |x| ≤ 1

2 in (1) implies y = b−a
2 x + b+a

2 ∈
[− b−a

4 + b+a
2 , b−a4 + b+a

2 ] = [a+ b−a
4 , b− b−a

4 ] ⊆ [a+ δ1
4 , b−

δ1
4 ], so y 6∈ S.

• T2 ⊆ (−3
2 ,

3
2), since y ∈ S implies y ∈ (c− δ2

5 , d + δ2
5 ) in (2) , we have

2
d−c

(
c− δ2

5 −
d+c

2

)
< x < 2

d−c

(
d+ δ2

5 −
d+c

2

)
. Using δ2 <

5
4(d − c), we

have x ∈ (−3
2 ,

3
2).

Define T (x) ≡ T1(x)∧T2(x). It follows from Lemma 11 that CSP(LER[Q]∪
{T}) is NP-hard. Since T is pp-definable in LER[F] ∪ {S}, it follows that
CSP(LER[F] ∪ {S}) is NP-hard as well.

We are now ready to prove Theorem 2 which we restate here for the
reader’s convenience.

Theorem 2. Let F be any subfield of R. Let LER[F] ⊆ Γ be a constraint
language over R such that every primitive positively definable unary relation
over Γ can be written as a finite union of intervals with endpoints in F.
Assume that the following hold:

1. Γ contains a relation that is not essentially convex and this is witnessed
by points with coordinates in F, and

2. Γ can primitive positively define a BNU relation.

Then, CSP(Γ) is NP-hard.

Proof. Let R ∈ Γ be a k-ary relation that is not essentially convex and assume
that this is witnessed by p, q ∈ Fk. By Lemma 6, p and q also witness the
exclusion of an interval in R. Define R′ = LR,p,q ∈ 〈LER[F] ∪ {R}〉 ⊆ 〈Γ〉.
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The unary relation R′ is a member of OR,F and excludes an interval between
0 and 1.

Let T ∈ 〈Γ〉 be a BNU. Since T is a member of OR,F, it follows that
it contains at least two distinct points u, v ∈ F. Define T ′ = LT,u,v ∈
〈LER[F] ∪ {T}〉 ⊆ 〈Γ〉. Note that T ′ is a BNU containing 0 and 1.

Finally, define U(x) ≡ R′(x) ∧ T ′(x). We conclude that U is a bounded
unary relation in OR,F that contains 0 and 1 and excludes an interval. It
follows from Lemma 12 that CSP(LER[F] ∪ {U}) is NP-hard. Since U is
pp-definable in Γ, and LER[F] ⊆ Γ, it follows that CSP(Γ) is NP-hard as
well.

Let us consider a few immediate applications of Theorem 2.

Example 13. Let Γ be an o-minimal constraint language over R such that
LER[R] ⊆ Γ. If Γ contains a relation that is not essentially convex and 〈Γ〉
contains a BNU relation, then CSP(Γ) is NP-hard by Theorem 2 with F = R.

It may appear problematic that we require the constraint language Γ
in Example 13 to contain an uncountable set LER[R]. Formally, this is no
problem since we will always identify a finite subset of relations that yield NP-
hardness. Naturally, there are many cases when we do not need to consider
uncountable sets of relations. One such case is provided by an earlier hardness
result for semialgebraic relations.

Example 14. Consider the countable constraint language Γ = LER[Q]∪{≤}.
Note that Γ pp-defines the BNU U = {x ∈ R | −1 ≤ x ∧ x ≤ 1} and that U
contains an infinite number of rational points. Hence, Theorem 2 with F = Q
is applicable. The set LER[Q] can be replaced with the finite set {R+, {1}}
(cf. Lemma 4 and 5), so we recover the following result.

Lemma 15 (Bodirsky, Jonsson, and von Oertzen [5, Lemma 3.5]). Let
R ∈ Rk be a semialgebraic relation that is not essentially convex, and this is
witnessed by two rational points. Then, CSP(Γlin ∪ {R}) is NP-hard where
Γlin = {R+,≤, {1}}.

Example 16. Theorem 2 also implies the hardness-part of Theorem 1. In
this case, the exclusion of intervals is always witnessed by rational points [5,
Lemma 3.9]. Every non-empty unary relation that is semilinear contains at
least one rational point [5, Lemma 3.7] so, in particular, every semilinear BNU
contains at least one rational point. If a semilinear BNU U contains exactly
one rational point p, then it contains no intervals so U = {p, q1, . . . , qk} where
q1, . . . , qk 6∈ Q. This implies that one can pp-define a non-rational constant in
Γlin∪{U} and this, as we have already noted, is impossible. Thus, Theorem 2
is applicable by setting F = Q.
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3.2. Semialgebraic constraint languages
In this section, we study constraint languages Γ ⊆ SAR[Q]. For this

application, we need to understand which unary relations that are pp-definable
in LER[A] ∪ Γ. First, we show (in Lemma 17) that every non-empty relation
in SAR[Q] contains an algebraic point. Second, we use this result to show (in
Lemma 18), that a non-essentially convex semialgebraic relation R ∈ SAR[A]
has algebraic witnesses. Finally, by combining this with Lemma 10, we
conclude that Theorem 2 is applicable.

It follows that if Γ is a semialgebraic constraint language and CSP(LER[A]∪
Γ) is in P, then either every relation in Γ is essentially convex or 〈Γ〉 does not
contain any BNU. The important question of whether the reverse implication
holds (as is the case in Theorem 1) is discussed in Section 5.

Lemma 17. Every non-empty relation R ∈ SAR[A] contains an algebraic
point.

Proof. The reals and the algebraic numbers are both real closed fields (see,
for instance, Marker [27]). The theory of real closed fields is complete (this is
one of the consequences of Theorem 7). This implies that any two models
(e.g., the reals and the algebraic numbers) are elementarily equivalent: every
L-sentence is true in one if and only if it is true in the other.

Let R be defined by an L-formula ϕ(x). Since R is non-empty, the sentence
∃x.ϕ(x) is true over the reals. Furthermore, ∃x.ϕ(x) is true over the reals if
and only if it is true over the algebraic numbers, so R contains an algebraic
point.

Lemma 18. Let R ∈ SAR[A] be a relation that is not essentially convex.
Then, this is witnessed by algebraic points p, q ∈ R ∩ A.

Proof. From Lemma 6 with F = R and Theorem 8, it follows that R excludes
an interval. Consider the following relation:

Z(x1, . . . , xm, y1, . . . , ym) ≡ R(x) ∧ R(y) ∧
∃δ1δ2.0 < δ1 < δ2 < 1 ∧
∀t.(δ1 ≤ t ≤ δ2)→ ¬R(t · x+ (1− t) · y),

where x = (x1, . . . , xm) and y = (x1, . . . , ym). Clearly, Z ∈ SAR[A].
We see that Z(x, y) holds if and only if x, y witness the exclusion of an

interval in R. By Lemma 17, Z = ∅ or Z ∩ A2m 6= ∅. The case Z = ∅
is impossible since R excludes an interval. Hence, there exist witnesses
p, q ∈ R ∩ Am. These also witness that S is not essentially convex.

Theorem 19. Let LER[A] ⊆ Γ ⊆ SAR[A]. Assume that the following hold:

12



1. Γ contains a relation that is not essentially convex, and
2. 〈Γ〉 contains a BNU relation.

Then, CSP(Γ) is NP-hard.

Proof. By Lemma 10, every unary relation in SAR[A] is a member of OR,A.
Let R ∈ Γ be a relation that is not essentially convex. By Lemma 18, this is
witnessed by algebraic points in R. It follows that Theorem 2 is applicable
with F = A.

4. Algebraic varieties

We will now turn our attention to constraint languages based on algebraic
varieties. A set V ⊆ Rn is called an (algebraic) variety if it can be defined by
V = {x ∈ Rn | p1(x) = 0∧ · · · ∧ pm(x) = 0} where p1, . . . , pm are polynomials
with algebraic coefficients. Let V denote the set of all algebraic varieties.
Clearly, V ⊆ SAR[A]. We will prove (in Theorem 25) that for every finite set
Γ ⊆ V, the problem CSP(LE0

R[A] ∪ Γ) is either locally tractable or locally
NP-hard. The proof is based on Theorem 19 but it also makes use of a number
of auxiliary results that we will present below. Observe that Theorem 25 is
based on exploiting the set of homogeneous linear equations and not the full
set of equations as in the proof of Theorem 19.

The following result (which is well-known and easy to prove) will be used
numerous times in the sequel.

Lemma 20. Let V ⊆ Rn be a variety and let L ⊆ Rn be a line. If infinitely
many points of L are in V , then L ⊆ V .

4.1. Tractability
We begin by proving a tractability result that is strictly stronger than

what we need for proving Theorem 25. Let LIR[A] denote the set of linear
inequalities with coefficients in A. We prove that if Γ contains only convex
varieties, then CSP(LIR[A]∪Γ) is locally tractable. This immediately implies
that CSP(LE0

R[A] ∪ Γ) is locally tractable, too.
For a subset R ⊆ Rn, let aff(R) denote the affine hull of R in Rn:

aff(R) = {∑k
i=1 cixi | k ≥ 1, ci ∈ R, xi ∈ R,

∑k
i=1 ci = 1}. The set R is said

to be affine if R = aff(R).
The points x1, . . . , xk ∈ Rn are said to be affinely independent if∑k

i=1 aixi =
0 with ∑k

i=1 ai = 0 implies a1 = · · · = ak = 0. The dimension, dim(R), of
R ⊆ Rn is defined to be one less than the maximum number of affinely
independent points in R.

13



If R is affine and dim(R) = d, then R can be written as the affine hull of
any d+ 1 affinely independent points, and alternatively as the set of solutions
to a (finite) linear system of equations. Furthermore, if these points are
members of An, then the linear system of equations can be chosen to have
coefficients in A only.

We can now characterise the convex algebraic varieties.

Lemma 21. Let V ⊆ Rn be a non-empty algebraic variety. If V is convex,
then V is the solution to a finite linear system of equations with coefficients
in A.

Proof. We first show that V is affine. To this end, let x1, . . . , xk ∈ V and let
c1, . . . , ck ∈ R be such that ∑k

i=1 ci = 1. We want to show that y = ∑k
i=1 cixi

is also in V . Since V is convex, the point x = 1
k

∑k
i=1 xi lies in V . But then,

for some ε > 0, the line segment {(1 − p) · x + p · y | 0 ≤ p ≤ ε} lies in V .
Therefore, by Lemma 20, the entire line {(1− p) · x+ p · y | p ∈ R} lies in V .
It follows that y ∈ V , so V is affine.

Next, we show that V can be defined by a linear system of equations with
coefficients in A. Since V 6= ∅, we have dim(V ) = d ≥ 0. Define a relation Z
as follows:

Z(x0, . . . , xd) ≡ V (x0) ∧ · · · ∧ V (xd)∧

∀a0, . . . , ad
( d∑
i=0

ai = 0 ∧ ¬(a0 = · · · = ad = 0)
)
→

d∑
i=0

aixi = 0

The relation Z contains all (d + 1)-tuples of affinely independent points in
V . Since Z is non-empty, it follows from Lemma 17 that it contains an
algebraic point. Thus, there exist d+ 1 affinely independent algebraic points
x0, . . . , xd ∈ V . Since V is affine, it follows that V = aff({x0, . . . , xd}) can be
defined by a linear system of equations with coefficients in A.

Thus, a convex algebraic variety can always be viewed as a conjunction
of linear equations with coefficients in A. This enables us to use a result by
Adler and Beling [1]. They prove that the complexity of linear programming
with algebraic coefficients depends on certain parameters that can be deduced
from the coefficients. However, if only a finite number of algebraic coefficients
are used, then these parameters are bounded and linear programming can
be performed in polynomial time. We get the following result using our
terminology.

Theorem 22 (Adler and Beling [1]). CSP(LIR[A]) is locally tractable and
globally tractable if the coefficients are represented by their minimal polyno-
mials.
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Corollary 23. Let Γ be a set of convex algebraic varieties. Then, CSP(LIR[A]∪
Γ) is locally tractable.

4.2. Complexity classification
We begin by presenting an NP-hardness result. For arbitrary c ∈ A

and unary relation U ⊆ R, let c · U = {c · x | x ∈ U}. The relation
Tc = {(x, y) ∈ R2 | c · x = y} is a member of LE0

R[A] for every c ∈ A. Hence,
we can pp-define c · U in LE0

R[A] ∪ {U} via

(c · U)(y) ≡ ∃x.U(x) ∧ Tc(x, y).

Lemma 24. If U ⊆ A \ {0} is finite and |U | > 1, then CSP(LE0
R[A] ∪ {U})

is NP-hard.

Proof. First, suppose that U = −U . This implies that

U = {−ak, . . . ,−a1, a1, . . . , ak}

where 0 < a1 < · · · < ak. Thus, {−1, 1} = (a−1
1 · U) ∩ (a−1

k · U) ∈ 〈LE0
R[A] ∪

{U}〉, so CSP(LE0
R[A] ∪ {U}) is NP-hard by Lemma 11.

Now, suppose instead that U 6= −U . If U ∩ (−U) 6= ∅, then we can apply
Case 1 on the relation U ∩ −U . Otherwise, let a = minU and b = maxU .
Then, {1} = (a−1 ·U)∩ (b−1 ·U) is a member of 〈LE0

R[A]∪ {U}〉. Now, every
equation b1x1 + · · ·+ bnxn = b (with b, b1, . . . , bn ∈ A) can be pp-defined in
LE0

R[A] ∪ {{1}}:

b1x1 + · · ·+ bnxn = b⇔ ∃y, z.b1x1 + · · ·+ bnxn = y ∧ {1}z ∧ bz = y.

It follows that LER[A] ⊆ 〈LE0
R[A] ∪ {U}〉.

The relation U is a BNU that excludes an interval, so CSP(LER[A] ∪
{U}) is (locally) NP-hard by Lemma 12. It follows from Lemma 4 that
CSP(LE0

R[A] ∪ {U}) is (locally) NP-hard as well.

We are now ready to prove the main result of this section. We say that a
relation R ⊆ Rk is 0-valid if (0, . . . , 0) ∈ R. Similarly, we say that a constraint
language Γ is 0-valid if every relation in it is 0-valid. If Γ is a 0-valid constraint
language, then CSP(Γ) is trivially tractable: we do not even need to look
at the instance to say that it is satisfied by the assignment that gives every
variable the value 0. We have not encountered 0-valid constraint languages
earlier in this article since (for instance) the constant relation {1} has always
been a member of the languages under consideration.

Theorem 25. Let LE0
R[A] ⊆ Γ ⊆ V . Then, one of the following holds:
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1. Γ is 0-valid and CSP(Γ) is trivially tractable,
2. Γ contains convex relations only and CSP(Γ) is locally tractable, or
3. CSP(Γ) is NP-hard.

Proof. If Γ is 0-valid, then CSP(Γ) is trivially tractable. Thus, we assume
that Γ contains a (non-empty) relation S that is not 0-valid.

If the relations in Γ are convex, then CSP(Γ) is locally tractable by
Corollary 23. We can henceforth assume that Γ contains at least one non-
convex relation R.

Assume R is essentially convex and has arity n. Since R is non-convex,
there exist two distinct points p, q ∈ R such that the line segment M between
them intersected with R excludes some finite number of points, i.e. M \ R
is a finite set. Now note that the line L ⊆ Rn through p and q intersects
R in an infinite number of points. Consequently, L ⊆ R by Lemma 20.
This contradicts that the line segment between p and q excludes points. We
conclude that R is not essentially convex.

Arbitrarily choose an algebraic point a ∈ S; such a point exists due to
Lemma 17. Let k be the arity of S and consider the line L ⊆ Rk through
(0, . . . , 0) and a. If L ∩ S is infinite, then L ⊆ S by Lemma 20 and this
contradicts the fact that S is not 0-valid. Hence, L ∩ S is a finite set and
(0, . . . , 0) 6∈ L ∩ S. Let T = LS,(0,...,0),a and note that T is a unary relation
containing a finite number of points, 0 6∈ T , and T ⊆ A by Lemma 10.

Assume first that |T | > 1. By Lemma 24, CSP(LE0
R[A]∪{T}) is NP-hard.

Assume instead that |T | = 1 so that T = {a} for some a 6= 0, a ∈ A by
Lemma 17. It follows that LER[A] ⊆ 〈Γ〉. The relation R is not essentially
convex, and by Lemma 18, this is witnessed by algebraic points p, q ∈ R∩An.
Let L ⊆ Rn be the line through p and q. If L ∩ R is an infinite set, then
L ⊆ R by Lemma 20. This contradicts that p and q are witnesses of R being
not essentially convex. Hence, L ∩ R is a finite set and |L ∩ R| > 1 since
p, q are distinct. It follows that 〈Γ〉 contains the BNU LR,p,q together with
the relation R that is not essentially convex. NP-hardness of CSP(Γ) follows
from Theorem 19.

Constraint languages that are 0-valid are, in a sense, trivial from a CSP
point of view. In certain cases, it makes sense to verify if there is a solution
that does not assign zero to all variables. This problem and several variants
of it have been studied in the literature, cf. the survey [8]. Finding non-zero
solutions to CSPs may increase the computational complexity considerably,
and this holds also when we restrict ourselves to algebraic varieties. Define U =
{x ∈ R | x3−x = 0} and consider the constraint language Γ = LE0

R[Q]∪{U}.
We note that U is an algebraic variety and that U = {−1, 0, 1}. Furthermore,
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the language Γ is 0-valid so CSP(Γ) is in P. The following problem (which is
sometimes referred to as Weak Partition) is known to be NP-hard [32].
Input. A finite vector (a1, . . . , an) of integers.
Question. Is the equation ∑n

i=1 aixi = 0 solvable with all xi ∈ {−1, 0,−1}
and with at least one xj 6= 0?
By using the relation U and Lemma 5, it is easy to see that Weak Partition
is polynomial-time reducible to the problem of finding a non-zero solution to
CSP(Γ).

5. Discussion

We finish this article with a discussion of a number of interesting and
non-trivial questions that have materialised along the way.

Q1. What is the computational complexity of CSP(Γ) when Γ is essentially
convex or when 〈Γ〉 does not contain any BNU?

Q2. What is the computational complexity of CSP(Γ) when LER[Q] ⊆ Γ ⊆
SAR[Q]?

Q3. What is the computational complexity of CSP(Γ) when LE0
R[A] ⊆ Γ ⊆

SAR[A]?

5.1. Q1: Tractable numeric CSPs
In this section, we will discuss a number of apparent barriers to determining

the complexity of the fragments remaining after applying Theorem 2 and
Theorem 19.

We note that there are some recent results by Bodirsky and Mamino [9]
concerning the complexity of CSP(Γ) when Γ is semilinear, convex and
additionally invariant under the max operation [9]: here, a relation R is
invariant under a function f if it is preserved by applying f componentwise
on arbitrary tuples in R. Such CSPs have important connections with, for
example, mean payoff games. It is easy to verify that R+ is not invariant
under the max operation so the approach by Bodirsky and Mamino cannot
immediately be used for refining results like Theorem 2 and Theorem 19.

5.1.1. Essentially convex languages
In order to see the difficulties in classifying essentially convex languages, it

suffices to consider the convex case. Take the innocuous-looking semialgebraic
constraint language Γ = {R+,≤, {1}, {(x, y) ∈ R2 | y ≥ x2}}. It is easy to
verify that this constraint language contains convex relations only. We will
first compare CSP(Γ) with the following well-known problem.

17



Sums of Square Roots
Input: a0, . . . , an ∈ N (represented in binary).
Question: Is ∑n

i=1
√
ai ≥ a0.

The complexity of this problem is unknown and it has been discussed (at
least) since 1976 when Garey, Graham, and Johnson [16] observed that its
complexity may be difficult to determine; in fact, it is not even known if the
problem is in NP. It is, however, known to be in PSPACE and in the counting
hierarchy [2]. The second inclusion point in the direction that the problem
is not PSPACE-complete if we believe that the counting hierarchy does not
collapse to a finite level. It can be verified that

n∑
i=1

√
ai ≥ a0 ⇔ ∃b1, . . . , bn.

(
n∧
i=1

ai ≥ b2
i ∧ b1 + . . .+ bn ≥ a0

)
.

This implies that Sums of Square Roots is polynomial-time reducible
to CSP(Γ) and that CSP(Γ) is at least as hard Sums of Square Roots2.

We continue our analysis of CSP(Γ) by relating it to the following problem.
Feasibility of Convex Polynomial Inequalities
Input: A set of variables V and a set of polynomial inequalities each of which
defining a convex set; the coefficients of the polynomials are rational numbers.
Question: Is there a point in R|V | that satisfies all inequalities?

This problem has unknown complexity, too. It is a member of PSPACE [13]
but it is probably not PSPACE-complete since the unrestricted Feasibility
of Polynomial Inequalities is not believed to be PSPACE-complete.
In fact, the complexity class ∃R has been introduced with the purpose
of capturing the complexity of this problem [29, 30]. Obviously, CSP(Γ)
is polynomial-time reducible to Feasibility of Convex Polynomial
Inequalities which implies that CSP(Γ) is “sandwiched” between two
problems of unknown complexity. It is thus conceivable that determining the
complexity of CSP(Γ) is a non-trivial problem.

The difficulty of determining the complexity of CSP(Γ) is not an isolated
phenomenon: the computational complexity of problems based on convex
objects is to a large extent unknown. Even when considering extremely
well-studied convex sets, there are large gaps in our understanding. The
prime example is the feasibility problem for semidefinite programming: we
only know that this problem is either in NP ∩ coNP or that it is not in NP ∪
coNP due to duality results by Ramana [28]. Semidefinite programming is of
particular interest for understanding both convex and semialgebraic relations

2This example was suggested by Manuel Bodirsky and Marcello Mamino
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since every semidefinite representable relation is simultaneously convex and
semialgebraic. In fact, Helton and Nie [18] have showed that the converse
statement is true surprisingly often and they conjecture that it is true in
general.

One objection against the discussion above is that Γ may contain too few
linear equations: what happens if we instead study Γ′ = LER[A] ∪ Γ? This is
an interesting question but it does not seem to be much easier to answer. The
relations in LER[A] are all convex so the discussion concerning convexity is
still valid in this case. In the comparison with Sums of Square Roots, we
argue that Sums of Square Roots is polynomial-time reducible to CSP(Γ)
and since the complexity of Sums of Square Roots is unknown, we do
not get any concrete information concerning CSP(Γ). The very same holds
for CSP(Γ′) since CSP(Γ) is trivially polynomial-time reducible to CSP(Γ′).
Nevertheless, it may be a good idea to analyse CSP(Γ′) instead of CSP(Γ) as
long as one is interested in obtaining hardness results.

5.1.2. Languages where BNUs are not pp-definable
Let Γ be a constraint language and assume that 〈Γ〉 does not contain any

BNU. What can then be said about the complexity of CSP(Γ)? In [22], this
problem is studied in the special case when {R+, {1}} ⊆ Γ and Γ is semilinear
with coefficients in Q. The inclusion of R+ and {1} (essentially LER[Q])
ensures that the intersection of any relation in 〈Γ〉 with a line is either empty,
contains a single point, or is unbounded in both directions. The algorithm
is based on the idea of shrinking an upper bound A on the affine hull of
the solution space to the instance. The upper bound is stored as an affine
subspace. It is repeatedly intersected by a single constraint, and adjusted to
the affine hull of the intersection. When the procedure can no longer reduce
the dimension of A, it terminates and answers “unsatisfiable” if A is empty,
and “satisfiable” otherwise. This algorithm is called the affine consistency
algorithm. If A is empty, then the answer given by the algorithm is clearly
correct. However, if A is non-empty, then we cannot in general know whether
the instance has a solution. It is shown in [22] that the affine consistency
algorithm returns the correct answer for all instances of CSP(Γ) if and only
if 〈Γ〉 does not contain any BNU. In fact, this result extends to our setting:

if LER[A] ⊆ Γ and every unary relation in 〈Γ〉 is a member of
OR,A, then the affine consistency algorithm returns the correct
answer for all instances of CSP(Γ) if and only if 〈Γ〉 does not
contain any BNU.

In the semilinear setting, the affine consistency algorithm can be imple-
mented by computing the affine hulls of a number of polyhedra in each step.
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This, in turn, can be done in polynomial time using the ellipsoid method. In
the general setting, it is not at all clear how to carry out such an operation
in polynomial time. For example, for Γ ⊆ SAR[A], we need to compute the
affine hull of the intersection of an affine subspace with a semialgebraic set.
It should be noted that the semialgebraic sets appearing in these calculations
are not arbitrary, since we are assuming that 〈Γ〉 does not contain any BNU.
It is possible that one could leverage this additional information.

5.2. Q2: Semialgebraic languages with rational equations
Assume we want to strengthen Theorem 19 and only consider languages

containing LER[Q] instead of LER[A]. It is possible to show the following.

Proposition 26. Let LER[Q] ⊆ Γ ⊆ SAR[Q] and assume that the following
hold:

1. Γ contains a relation that is not essentially convex and this is witnessed
by rational points, and

2. 〈Γ〉 contains a BNU relation with at least two rational points.

Then, CSP(Γ) is NP-hard.

If we drop the requirements of rational witnesses in both (1) and (2), then
things are getting more complicated. One may observe that if some BNU
in 〈Γ〉 contains an interval, then it contains an infinite number of rational
points. It thus seems reasonable to begin by studying BNUs that are unions
of a finite number of points (and consequently are not essentially convex.)
We illustrate this in the following three examples.

Example 27. Let U1 = {−
√

2,
√

2} and Γ1 = LER[Q] ∪ {U1}. The relation
U1 is not essentially convex and this is only witnessed by irrational points.
Furthermore, U1 is a BNU that contains no rational points so CSP(Γ1) could
be a candidate for a polynomial-time solvable problem—it clearly avoids NP-
hardness implied by Proposition 26. However, CSP(Γ1) is NP-hard: Consider
the relation

N = {(x, y, z) ∈ R3 | ∃w.x+ y + z = w ∧ T (x) ∧ T (y) ∧ T (z) ∧ T (w)}.

This relation is pp-definable in Γ1 and

N = {−
√

2,
√

2}3 \ {(−
√

2,−
√

2,−
√

2), (
√

2,
√

2,
√

2)}

so NP-hardness of CSP(Γ1) follows by an immediate polynomial-time reduc-
tion from CSP({0, 1}3 \{(0, 0, 0), (1, 1, 1)}), which is an NP-hard problem [31].
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Example 28. Let U2 = {1,
√

2}. By Theorem 19, we know that CSP(LER[A]∪
{U2}) is NP-hard. We will now investigate the complexity of CSP(LER[Q] ∪
{U2}) and prove that this problem is polynomial-time solvable.

We first recall a basic fact concerning linear equation systems. Let Ax = b
be a solvable linear system where x = (x1, . . . , xm) and all coefficients are
rational. Define S[Ax = b, xi] = {xi | A(x1, . . . , xm) = b}, 1 ≤ i ≤ m, and
note that S[Ax = b, xi] either equals R or S[Ax = b, xi] = {a} for some
a ∈ Q.

It is sufficient to study the complexity of CSP({R+, {1}, U2}) since LER[Q] ⊆
〈{R+, {1}}〉 so we let (V,C) denote an arbitrary instance of CSP({R+, {1}, U2}).
Let (V,C ′) be the same instance as (V,C) but with every occurrence of U2
replaced with {1}. We will show that (V,C) is satisfiable if and only if
(V,C ′) is satisfiable, and this implies that CSP({R+, {1}, U2}) is in P since
CSP({R+, {1}}) is in P.

If (V,C) is not satisfiable, then (V,C ′) is not satisfiable either. Hence, we
assume that (V,C) is satisfiable. If there is a solution s to (V,C) satisfying√

2 6∈ {s(v) | v ∈ V }, then (V,C ′) is satisfiable, too. Assume to the contrary
that no such solution exist and arbitrarily choose a solution s : V → R. Define
the non-empty set of variables V√2 = {v ∈ V | s(v) =

√
2}. Now, construct

a new instance (Ve, Ce) by equating V√2 in (V,C) into a fresh variable y, i.e.
we replace each occurrence of variables v ∈ V√2 with y. Note that y cannot
be assigned the value 1 by any satisfying assignment. If y is constrained
by U2, then remove this constraint. Replace each occurrence of U2 with
{1} and let (V ′e , C ′e) denote the resulting instance. Note that (V ′e , C ′e) is still
satisfiable and it can be viewed as a linear equation system Ax = b (with
x = (x1, . . . , xm, y)) with rational coefficients since it does not contain any
occurrence of the relation U2. We conclude the following.

• If S[Ax = b, y] = {a}, then a ∈ Q by the observation above. How-
ever, the solution s shows that

√
2 ∈ S[Ax = b, y] which leads to a

contradiction.

• If S[Ax = b, y] = R, then we reach a contradiction since 1 6∈ S[Ax =
b, y].

Thus, there exists a solution to (V,C) that assigns the value 1 to every
variable in V√2 and, consequently, (V,C ′) has a solution.

Example 29. Let U3 = U2 ∪ {1 + 2
√

2} = {1,
√

2, 1 + 2
√

2} and Γ3 =
LER[Q] ∪ {U3}. We claim that CSP(Γ3) is NP-hard. One can verify that the
relation

{(x, y, z) ∈ R3 | ∃w.x+ y + z = w ∧ U3(x) ∧ U3(y) ∧ U3(z) ∧ U3(w)}
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is pp-definable in Γ3 and that it only contains the three tuples (1,
√

2,
√

2)
(
√

2, 1,
√

2), and (
√

2,
√

2, 1). This implies that CSP(Γ3) is NP-hard by a
straightforward polynomial-time reduction from CSP({(1, 0, 0), (0, 1, 0), (0, 0, 1)}),
which is an NP-hard problem [31].

We conclude from these examples that the borderline between tractable and
NP-hard problems is not clear even if we restrict our attention to expansions
of LER[Q] with BNUs containing a finite number of points.

5.3. Q3: Semialgebraic languages with homogeneous equations
Assume we want to strengthen Theorem 19 and only consider languages

containing LE0
R[A] instead of LER[A]. By inspecting the proof, we see that

it breaks down when we want to apply the main hardness result Theorem 2:
this result requires that we have access to LER[A] and not merely LE0

R[A].
The reason is two-fold:

1. we cannot assume that one of the witnesses of an excluded interval
equals (0, . . . , 0), and

2. we cannot assume that there is a BNU that contains the point (0, . . . , 0).

We do not see a straightforward way of generalising Theorem 2. Unfortu-
nately, the hardness part of Theorem 25 (where we only need the set LE0

R[A])
does not seem to provide any guidance. Here, we crucially exploit Lemma 20,
i.e., if a line L intersects an algebraic variety V in infinitely many points,
then L ⊆ V .

A related problem is that it seems hard to generalise the basic NP-hardness
result for BNUs (Lemma 12). The proof is based on the possibility to scale
and translate unary relations and this is not possible when only having access
to LE0

R[A]. This is reflected in the fact that we need to take care of 0-valid
relations when studying algebraic varieties. It is thus inevitable that an
analogue of Theorem 2 for constraint languages that only contain LE0

R[A]
has to deal with additional cases.

An interesting question is whether there are any provably polynomial-
time solvable classes besides the 0-valid relations? Due to the triviality of
0-valid relations, one may hypothesise that there is some class of relations
that include the 0-valid relations and has a polynomial-time solvable CSP
problem. We will now demonstrate that this is not the case by showing a much
stronger result. Let R denote the 0-valid relation R = {(x, y) ∈ R2 | x2 = y},
let S be an arbitrary semialgebraic relation that is not 0-valid, and let
Γ = LE0

R[A] ∪ {R, S}. We claim that CSP(Γ) is NP-hard. We prove this
by pp-defining {1} in Γ. This implies that we can pp-define the relation
{−1, 1}(x) via ∃y.{1}y ∧R(x, y) and NP-hardness follows from Lemma 24.
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Now, let k denote the arity of S and consider the following relations

S1(x1, x2, x3, . . . , xk−1, xk) ≡ S(x1, x2, x3, . . . , xk−1, xk),
S2(x2, x3, . . . , xk−1, xk) ≡ S(0, x2, x3, . . . , xk−1, xk),

S3(x3, . . . , xk−1, xk) ≡ S(0, 0, x3, . . . , xk−1, xk),
... ...

Sk−1(xk−1, xk) ≡ S(0, 0, 0, . . . , 0, xk−1, xk),
Sk(xk) ≡ S(0, 0, 0, . . . , 0, 0, xk).

The relations S1, . . . , Sk are clearly pp-definable in Γ. Let M = {i |
Si is non-empty, 1 ≤ i ≤ k} and note that M is non-empty since S1 is non-
empty. Let m = maxM . If m = k, then Sk is a unary relation such that
0 6∈ Sk since S is not 0-valid. Arbitrarily choose t ∈ Sk ∩ A — we know that
Sk ∩ A 6= ∅ by Lemma 17. Consider the following relation.

U = {x ∈ R | ∃y.Sk(x) ∧ x2 = y ∧ y = t · x}

and note that it is pp-definable in Γ. The equation x2 = t · x has the two
solutions 0 and t so U = {t}. It follows that

{1} = {x ∈ N | U(x) ∧ ∃y.U(y) ∧ x · t = y}

and {1} is pp-definable in Γ.
Assume instead that m < k. Define the relation

U = {x ∈ N | ∃x1, . . . , xk−m.R( 0, . . . , 0︸ ︷︷ ︸
m− 1 zeroes

, x, x1, . . . , xk−m}

and note that it is pp-definable in Γ, it is unary, and 0 6∈ U . The
construction above can hence be used for pp-defining {1}.
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