
HAL Id: hal-01796722
https://hal.science/hal-01796722v1

Submitted on 21 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constraint Satisfaction and Semilinear Expansions of
Addition over the Rationals and the Reals

Peter Jonsson, Johan Thapper

To cite this version:
Peter Jonsson, Johan Thapper. Constraint Satisfaction and Semilinear Expansions of Addition over
the Rationals and the Reals. Journal of Computer and System Sciences, 2016, 82 (5), pp.912 - 928.
�10.1016/j.jcss.2016.03.002�. �hal-01796722�

https://hal.science/hal-01796722v1
https://hal.archives-ouvertes.fr

Constraint Satisfaction and Semilinear Expansions of
Addition over the Rationals and the Reals

Peter Jonsson1

Department of Computer and Information Science, Linköpings universitet
SE-58183 Linköping, Sweden

Johan Thapper∗

Laboratoire d’Informatique Gaspard-Monge, Université Paris-Est Marne-la-Vallée
5 boulevard Descartes, F-77420 Champs-sur-Marne, France

Abstract
A semilinear relation is a finite union of finite intersections of open and
closed half-spaces over, for instance, the reals, the rationals, or the integers.
Semilinear relations have been studied in connection with algebraic geometry,
automata theory, and spatiotemporal reasoning. We consider semilinear
relations over the rationals and the reals. Under this assumption, the compu-
tational complexity of the constraint satisfaction problem (CSP) is known
for all finite sets containing R+ = {(x, y, z) | x+ y = z}, ≤, and {1}. These
problems correspond to expansions of the linear programming feasibility prob-
lem. We generalise this result and fully determine the complexity for all finite
sets of semilinear relations containing R+. This is accomplished in part by
introducing an algorithm, based on computing affine hulls, which solves a
new class of semilinear CSPs in polynomial time. We further analyse the
complexity of linear optimisation over the solution set and the existence of
integer solutions.
Keywords: Constraint satisfaction problems, Semilinear sets, Algorithms,
Computational complexity

∗Corresponding author.
Email addresses: peter.jonsson@liu.se (Peter Jonsson), thapper@u-pem.fr

(Johan Thapper)
1The first author was partially supported by the Swedish Research Council (VR) under

grant 621-2012-3239.

Preprint submitted to Journal of Computer and System Sciences March 11, 2016

1. Introduction

We work over a ground set (or domain) X, which will either be the
rationals, Q, or the reals, R. We say that a relation R ⊆ Xk is semilinear if it
can be represented as a finite union of finite intersections of open and closed
half-spaces in Xk. Alternatively, R is semilinear if it is first-order definable
in {R+,≤, {1}} where R+ = {(x, y, z) ∈ X3 | x + y = z} [1]. Semilinear
relations appear in many different contexts within mathematics and computer
science: they are, for instance, frequently encountered in algebraic geometry,
automata theory, spatiotemporal reasoning, and computer algebra. Semilinear
relations have also attained a fair amount of attention in connection with
constraint satisfaction problems (CSPs). In a CSP, we are given a set of
variables, a (finite or infinite) domain of values, and a finite set of constraints.
The question is whether or not we can assign values to the variables so that
all constraints are satisfied. From a complexity theoretical viewpoint, solving
general constraint satisfaction problems is obviously a hard problem. Various
ways of refining the problem can be adopted to allow a more meaningful
analysis. A common refinement is that of introducing a constraint language;
a finite set Γ of allowed relations. One then considers the problem CSP(Γ) in
which all constraint in the input must be members of Γ. This parameterisation
of constraint satisfaction problems has proved to be very fruitful for CSPs
over both finite and infinite domains. Since Γ is finite, the computational
complexity of such a problem does not depend on the actual representation
of the constraints.

The complexity of finite-domain CSPs has been studied for a long time
and a powerful algebraic toolkit has gradually formed [2]. Much of this
work has been devoted to the Feder-Vardi conjecture [3, 4] which posits that
every finite-domain CSP is either polynomial-time solvable or NP-complete.
Infinite-domain CSPs, on the other hand, constitute a much more diverse
set of problems. In fact, every computational problem is polynomial-time
equivalent to an infinite-domain CSP [5]. Obtaining a full understanding
of their computational complexity is thus out of the question, and some
further restriction is necessary. In this article, this restriction will be to study
semilinear relations and constraint languages.

A relation R ⊆ Xk is said to be essentially convex if for all p, q ∈ R there
are only finitely many points on the line segment between p and q that are
not in R. A constraint language Γ is said to be essentially convex if every
relation in Γ is essentially convex. The main motivation for this study is the
following result:

Theorem 1 (Bodirsky et al. [6]). Let Γ be a finite set of semilinear rela-
tions over Q or R such that {R+,≤, {1}} ⊆ Γ. Then,

2

1. CSP(Γ) is polynomial-time solvable if Γ is essentially convex, and NP-
complete otherwise; and

2. the problem of optimizing a linear polynomial over the solution set of
CSP(Γ) is polynomial-time solvable if and only if CSP(Γ) is polynomial-
time solvable (and NP-hard otherwise).

One may suspect that there are semilinear constraint languages Γ such
that CSP(Γ) ∈ P but Γ is not essentially convex. This is indeed true and
we identify two such cases. In the first case, we consider relations with
large “cavities”. It is not surprising that the algorithm for essentially convex
relations (and the ideas behind it) cannot be applied in the presence of such
highly non-convex relations. Thus, we introduce a new algorithm which solves
CSPs of this type in polynomial time. It is based on computing affine hulls
and the idea of improving an easily representable upper bound on the solution
space by looking at one constraint at a time; a form of “local consistency”
method. In the second case, we consider relations R that are not necessarily
essentially convex, but look essentially convex when viewed form the origin.
That is, any points p and q that witness a not essentially convex relation lie
on a line that passes outside of the origin. We show that we can remove all
such holes from R to find an equivalent constraint language that is essentially
convex, and thereby solve the problem in polynomial time.

Combining these algorithmic results with matching NP-hardness results
and the fact that CSP(Γ) is always in NP for a semilinear constraint language
Γ (cf. Theorem 5.2 in Bodirsky et al. [6]) yields a dichotomy:

Theorem 2. Let Γ be a finite set of semilinear constraints that contains R+.
Then, CSP(Γ) is either in P or NP-complete.

Our result immediately generalises the first part of Theorem 1. It also
generalises another result by Bodirsky et al. [7] concerning expansions of
{R+} with relations that are first-order definable in {R+}. One may note
that this class of relations is a severely restricted subset of the semilinear
relations since it admits quantifier elimination over the structure {+, {0}},
where + denotes the binary addition function. This follows from the more
general fact that the first-order theory of torsion-free divisible abelian groups
admits quantifier elimination (see e.g. Theorem 3.1.9 in [8]). One may thus
alternatively view relations that are first-order definable in {R+} as finite
unions of sets defined by homogeneous linear systems of equations.

We continue by generalising the second part of Theorem 1, too: if Γ is
semilinear and contains {R+, {1}}, then the problem of optimising a linear
polynomial over the solution set of CSP(Γ) is polynomial-time solvable if

3

and only if CSP(Γ) is polynomial-time solvable (and NP-hard otherwise).
We also study the problem of finding integer solutions to CSP(Γ) for certain
semilinear constraint languages Γ. Here, we obtain some partial results but a
full classification remains elusive. Our results shed some light on the scalability
property introduced by Jonsson and Lööw [9].

This article has the following structure. We begin by formally defining
constraint satisfaction problems and semilinear relations together with some
terminology and minor results in Section 2. The algorithms and tractability
results are presented in Section 3 while the hardness results can be found
in Section 4. By combining the results from Sections 3 and 4, we prove
Theorem 2 in Section 5. We partially generalise Theorem 2 to optimisation
problems in Section 6, and we study the problem of finding integer solutions
in Section 7. Finally, we discuss some obstacles to further generalisations
in Section 8. This article is a revised and extended version of a conference
paper [10].

2. Preliminaries

2.1. Constraint satisfaction problems
Let Γ = {R1, . . . , Rn} be a finite set of finitary relations over some domain

X (which will usually be infinite). We refer to Γ as a constraint language.
In order to avoid some uninteresting trivial cases, we will assume that all
constraint languages are non-empty and contain non-empty relations only.

A first-order formula is called primitive positive if it is of the form
∃x1, . . . , xn . ψ1 ∧ · · · ∧ ψm, where each ψi is an atomic formula, i.e., ei-
ther x = y or R(xi1 , . . . , xik) with R the relation symbol for a k-ary relation
from Γ. We call such a formula a pp-formula. Note that not all variables have
to be existentially quantified; if they are, then we say that the formula is a
sentence. Given a pp-formula Φ, we let Vars(Φ) denote the set of variables
appearing in Φ. The atomic formulas R(xi1 , . . . , xik) in a pp-formula Φ are
also called the constraints of Φ.

The constraint satisfaction problem for a constraint language Γ (CSP(Γ)
for short) is the following decision problem:

Problem: CSP(Γ), where Γ is a finite set of relations over a domain
X.
Input: A primitive positive sentence Φ over Γ.
Output: ‘yes’ if Φ is true in Γ, ‘no’ otherwise.

The exact representation of the relations in Γ is unessential since we
exclusively study finite constraint languages.

4

A relation R(x1, . . . , xk) is pp-definable from Γ if there exists a quantifier-
free pp-formula ϕ over Γ such that

R(x1, . . . , xk) ≡ ∃y1, . . . , yn . ϕ(x1, . . . , xk, y1, . . . , yn).

The set of all relations that are pp-definable over Γ is denoted by 〈Γ〉. The
following easy but important result explains the role of primitive positive
definability for studying the computational complexity of CSPs. We will use
it extensively in the sequel without making explicit references.

Lemma 1 (Jeavons [11]). Let Γ be a constraint language and Γ′ ⊆ 〈Γ〉 a
finite subset. Then CSP(Γ′) is polynomial-time reducible to CSP(Γ).

Let Γ = {R1, . . . , Rk} and Γ′ = {R′1, . . . , R′k} be two constraint languages
such that Ri and R′i are relations of the same arity, for all i = 1, . . . , k. Given
an instance Φ of CSP(Γ), let Φ′ denote the instance where each occurrence of
a relation Ri is replaced by R′i. We say that CSP(Γ) is equivalent to CSP(Γ′)
if Φ is true in Γ if and only if Φ′ is true in Γ′. It is clear that if CSP(Γ) and
CSP(Γ′) are equivalent CSPs, then they have the same complexity (up to a
trivial linear-time transformation).

2.2. Semilinear relations
The domain, X, of every relation in this article will be the set of rationals,

Q, or the set of reals, R. In all cases, the set of coefficients, Y , will be the set
of rationals, but in order to avoid confusion, we will still make this explicit in
our notation. We define the following sets of relations.

• LEX [Y] denotes the set of linear equalities over X with coefficients in
Y .

• LIX [Y] denotes the set of (strict and non-strict) linear inequalities over
X with coefficients in Y .

Sets defined by finite conjunctions of inequalities from LIX [Y] are called
linear sets or linear relations. The set of semilinear sets or semilinear relations,
SLX [Y], is defined to be the set of finite unions of linear sets. We will refer
to SLQ[Q] and SLR[Q] as semilinear relations over Q and R, respectively.
One should be aware of the representation of objects in LEX [Y] and LIX [Y]
compared to SLX [Y]. In LEX [Y] and LIX [Y], we view the equalities and
inequalities as syntactic objects which we can use for building logical formulas.
Now, recall the definition of a linear set: it is defined by a conjunction of
inequalities. However, a linear set is not a logical formula, it is a subset of
Xk. The same thing holds for semilinear sets: they are defined by unions of

5

linear sets and should thus not be viewed as logical formulas. This distinction
has certain advantages when it comes to terminology and notation but it
also emphasises a difference in the way we view and use these objects. The
objects in LEX [Y] and LIX [Y] are often used in a logical context (such as
pp-definitions) while semilinear relations are typically used in a geometric
context.

Given a relation R of arity k, let R|X = R∩Xk and Γ|X = {R|X | R ∈ Γ}.
We demonstrate that CSP(Γ) and CSP(Γ|Q) are equivalent as constraint
satisfaction problems whenever Γ ⊆ SLR[Q]. Thus, we will exclusively
concentrate on relations from SLQ[Q] in the sequel. Let Γ ⊆ SLR[Q] and
let Φ be an instance of CSP(Γ). Construct an instance Φ′ of CSP(Γ|Q) by
replacing each occurrence of R in Φ by R|Q. If Φ′ has a solution, then Φ has
a solution since R|Q ⊆ R for each R ∈ Γ. If Φ has a solution, then it has a
rational solution by Lemma 3.7 in Bodirsky et al. [6] so Φ′ has a solution, too.

The following lemma is a direct consequence of our definitions: this
particular property is often referred to as o-minimality in the literature [12].

Lemma 2. Let R ∈ SLX [Y] be a unary semilinear relation. Then, R can be
written as a finite union of open, half-open, and closed intervals with endpoints
in Y ∪ {−∞,∞} together with a finite set of points in Y .

The set of semilinear relations can also be defined as those relations that
are first-order definable in {R+,≤, {1}} [1]. In particular, SLX [Y] is closed
under pp-definitions.

Lemma 3 (Bodirsky et al. [7, Lemma 4.3]). Let r1, . . . , rk, r ∈ Q. The
relation {(x1, . . . , xk) ∈ Qk | r1x1+. . .+rkxk = r} is pp-definable in {R+, {1}}
and it is pp-definable in {R+} if r = 0. Furthermore, the pp-formulas that
define the relations can be computed in polynomial time.

It follows that LEQ[Q] ⊆ 〈{R+, {1}}〉 and LIQ[Q] ⊆ 〈{R+, <,≤, {1}}〉.
One may also note that every homogeneous linear equation (with coefficients
from Q) is pp-definable in {R+}.

2.3. Unary semilinear relations
For a rational c, and a unary relation U ⊆ Q, let c · U = {c · x | x ∈ U} ∈

〈{R+, U}〉. When c = −1‚ we will also write −U for (−1) · U .
Given a relation R ⊆ Qk and two distinct points a, b ∈ Qk, we define

LR,a,b(y) ≡ ∃x1, . . . , xk . R(x1, . . . , xk) ∧
∧k
i=1 xi = (1− y) · ai + y · bi.

The relation LR,a,b is a parameterisation of the intersection between the
relation R and a line through the points a and b. Note that LR,a,b is a member

6

of 〈LEQ[Q] ∪ {R}〉 so, by Lemma 3, LR,a,b is a member of 〈{R+, {1}, R}〉,
too.

A k-ary relation R is bounded if there exists an a ∈ Q such that R ⊆
[−a, a]k. A unary relation U is unbounded in one direction if U is not bounded,
but there exists an a ∈ Q such that one of the following holds: U ⊆ [a,∞); or
U ⊆ (−∞, a]. A unary relation is called a BNU (for bounded, non-constant,
and unary) if it is bounded and contains more than one point.

Lemma 4. Let U be a unary relation in SLQ[Q] that is unbounded in one
direction. Then,

1. 〈{R+, {1}, U}〉 contains a BNU.

2. if, in addition, U contains both positive and negative elements, then
〈{R+, U}〉 contains a non-empty bounded unary relation.

Proof. (1) By Lemma 2, there exists an a > 0 such that either

(i) (−∞,−a] ∩ U = ∅ and [a,∞) ⊆ U ; or

(ii) (−∞,−a] ⊆ U and [a,∞) ∩ U = ∅.

Assume that (i) holds. (The remaining case follows by considering −U .)
By choosing a rational b > 2a, it is not hard to see that the relation

U ′(x) ≡ ∃y . y = b− x ∧ U(x) ∧ U(y)

is bounded and contains an interval. The result then follows from Lemma 3.
(2) Assume that (i) holds and let c ∈ U be a negative element. (The

remaining case follows by considering −U .) Then,

U ′′(x) ≡ ∃y . ay = cx ∧ U(x) ∧ U(y)

is bounded and contains the element a. The result again follows from Lemma 3.
�

For a unary semilinear relation T ⊆ Q, and a rational δ > 0, let T + I(δ)
denote the set of unary semilinear relations U such that T ⊆ U and for all
x ∈ U , there exists a y ∈ T with |x− y| < δ.

Example 1. The set {−1, 1}+I(1
2) contains all unary relations U such that

{−1, 1} ⊆ U ⊆ (−3
2 ,−

1
2) ∪ (1

2 ,
3
2).

7

Lemma 5. Let U 6= ∅ be a bounded unary semilinear relation such that U ⊆
(ε,∞) for some ε > 0. Then, 〈{R+, U}〉 contains a relation Uδ ∈ {1}+ I(δ),
for every rational δ > 0.

Proof. Let U+ = supU and U− = inf U . By Lemma 2, there exist elements
p+, p− ∈ U with p+ > U+(1 + δ)−1 and p− < U−(1 + δ). The relation
Uδ := (p−)−1 · U ∩ (p+)−1 · U is pp-definable in {R+, U} and satisfies: 1 ∈ Uδ,
supUδ ≤ U+(p+)−1 < 1+δ, and inf Uδ ≥ U−(p−)−1 > 1−δU−(p−)−1 ≥ 1−δ.

�

Lemma 6. Let U be a bounded unary semilinear relation such that U ∩
(−ε, ε) = ∅ for some ε > 0 and U ∩ −U 6= ∅. Then, 〈{R+, U}〉 contains a
relation Uδ ∈ {−1, 1}+ I(δ), for every rational δ > 0.

Proof. Let T = U∩−U . The proof then follows using a similar construction
as in the proof of Lemma 5. �

2.4. Essential convexity
Let R be a k-ary relation over Q. The relation R is convex if for all

p, q ∈ R, R contains all points on the line segment between p and q. We say
that R is essentially convex if for all p, q ∈ R there are only finitely many
points on the line segment between p and q that are not in R.

We say that R excludes an interval if there are p, q ∈ R and real numbers
0 < δ1 < δ2 < 1 such that p+ (q − p)y 6∈ R whenever δ1 ≤ y ≤ δ2. Note that
we can assume that δ1, δ2 are rational numbers, since we can choose any two
distinct rational numbers γ1 < γ2 between δ1 and δ2 instead of δ1 and δ2.

If R is not essentially convex, and if p and q are such that there are
infinitely many points on the line segment between p and q that are not in R,
then we say that p and q witness that R is not essentially convex. Due to
Lemma 2, we conclude that a semilinear relation is essentially convex if and
only if it does not exclude an interval. We say that a constraint language is
essentially convex if all its relations are essentially convex.

Theorem 3 (Bodirsky et al. [6, Theorems 5.1 and 5.4]). If Γ is a fi-
nite set of essentially convex semilinear relations, then CSP(Γ) is in P.

3. Tractability

In this section, we present our two main sources of tractability. Section 3.1
contains a new algorithm for semilinear constraint languages Γ containing
{R+, {1}} and such that 〈Γ〉 does not contain a BNU. In Section 3.2, we extend
the applicability of Theorem 3 from essentially convex semilinear constraint
languages to a certain class of semilinear CSPs that are not essentially convex.

8

3.1. Affine consistency
Instead of computing the exact solution set to a CSP instance, our approach

will be to reduce an upper bound on this set as far as possible. In particular,
we will maintain a representation of an affine subspace that is guaranteed to
contain the solution set, and repeatedly intersect this subspace with every
constraint in order to attempt to reduce it further. This can be seen as a
form of local consistency. If we manage to reduce the upper bound to an
empty set, then we are certain that the instance is unsatisfiable. We will
show that under certain conditions, the converse holds; if the upper bound is
non-empty, then there are necessarily solutions. To formalise this idea, we
will need some definitions.

For a subset S ⊆ Qn, let aff(S) denote the affine hull of S in Qn:

aff(S) = {
k∑
i=1

xipi | k ≥ 1, xi ∈ Q, pi ∈ S,
k∑
i=1

xi = 1}.

An affine subspace is a subset S ⊆ Qn for which aff(S) = S. The points
p1, . . . , pk ∈ Qn are said to be affinely independent if x1p1 + · · · + xkpk = 0
with x1 + · · ·+ xk = 0 implies x1 = · · · = xk = 0. The dimension, dim(S), of
a set S ⊆ Qn is defined to be one less than the maximum number of affinely
independent points in S.

We define a notion of consistency for sets of semilinear constraints which
we call affine consistency. Let V be a finite set of variables and let n = |V |. A
set of constraints Ri(xi1 , . . . , xik) with {xi1 , . . . , xik} ⊆ V is affinely consistent
with respect to a non-empty affine subspace ∅ 6= A ⊆ QV if aff(R̂i ∩ A) = A
for all i, where R̂i := {(x1, . . . , xn) ∈ QV | (xi1 , . . . , xik) ∈ Ri}.

Algorithm 1: Affine consistency
Input: A set of constraints {Ri(xi1 , . . . , xik)} over variables V
Output: “yes” if establishing affine consistency among the constraints

results in a non-empty affine subspace, “no” otherwise
1 A := QV

2 repeat
3 foreach constraint Ri(xi1 , . . . , xik) do
4 A := aff(R̂i ∩ A)
5 end
6 until A does not change
7 if A 6= ∅ then return “yes” else return “no”

To find an affine subspace A with respect to which a given set of constraints
is affinely consistent, it suffices to initialise A := QV and repeatedly apply the

9

operation A := aff(R̂i∩A) with each of the constraints until A does not change.
Algorithm 1 carries out this procedure, which we refer to as establishing affine
consistency, and answers “yes” if the resulting affine subspace is non-empty
and “no” otherwise. In the rest of this section, we show that this algorithm
correctly solves CSP(Γ) when {R+, {1}} ⊆ Γ is a semilinear constraint
language such that 〈Γ〉 does not contain a BNU. Furthermore, we show that
the algorithm can be implemented to run in polynomial time when applied
to constraint languages of this kind.

We begin by proving a technical lemma which is the basis for these results.

Lemma 7. Let P = P1 ∪ · · · ∪ Pk, Q = Q1 ∪ · · · ∪ Ql ∈ SLQ[Q] be two
n-ary relations and P1, . . . , Pk, Q1, . . . , Ql linear sets. Assume that neither
〈LEQ[Q]∪{P}〉 nor 〈LEQ[Q]∪{Q}〉 contains a BNU. If aff(P) = aff(Q) =: A,
then aff(Pi ∩Qj) = aff(P ∩Q) = A for some i and j.

Proof. The proof is by induction on the dimension d = dim(A). For d = 0,
both P and Q consist of a single point p. Clearly, Pi = {p} for some i and
Qj = {p} for some j. Now assume that d > 0 and that the lemma holds for
all P ′, Q′ with aff(P ′) = aff(Q′) = A′ and dim(A′) < d. Let p0, p1, . . . , pd be
d+ 1 affinely independent points in P and let q0, q1, . . . , qd be d+ 1 affinely
independent points in Q. For 1 ≤ i ≤ d, consider the lines Lpi through p0
and pi, and the lines Lqi through q0 and qi. Let H = {y ∈ Qn | α · y = 0}
(α ∈ Qn) be a hyperplane in Qn through the origin that is not parallel to
any of the lines Lpi or Lqi . Then, H intersects each of the 2d lines. Let
H(c) = {y ∈ Qn | α · y = c} and let B(c) = {y ∈ Qn | α · y 6∈ [−c, c]}.

Let T = LP,p0,pi
∈ 〈LEQ[Q] ∪ {P}〉. Since P contains p0 and pi, it

follows that T contains 0 and 1. Therefore, T is not a constant, hence it is
unbounded. By Lemma 4(1), T is unbounded in both directions. By Lemma 2,
(−∞,−c) ∪ (c,∞) ⊆ T for some large enough constant c > 0. Therefore,
B(cpi)∩L

p
i ⊆ P , for some positive constant cpi . An analogous argument shows

that B(cqj) ∩ L
q
j ⊆ Q, for some positive constant cqj . Let c′ be a positive

constant such that p0, q0 6∈ B(c′) and let c = max{c′, cpi , c
q
j | 1 ≤ i, j ≤ d}.

This ensures that for any x > c, H(x) ∩ P intersects the lines Lpi in d
affinely independent points, and H(x) ∩Q intersects the lines Lqj in d affinely
independent points.

Let P ′(x) = H(x)∩P , P ′i (x) = H(x)∩Pi, Q′(x) = H(x)∩Q, and Q′j(x) =
H(x) ∩Qj. We now have aff(P ′(x)) = aff(Q′(x)) = A′(x) with dim(A′(x)) =
dim(A) − 1, for every x > c. By induction on P ′(x) = P ′1(x) ∪ · · · ∪ P ′k(x)
and Q′(x) = Q′1(x) ∪ · · · ∪Q′l(x), it follows that aff(H(x) ∩ (Pi(x) ∩Qj(x))) =
aff(P ′i(x)(x) ∩Q′j(x)(x)) = A′(x) for some i(x) and j(x). Thus, to every x > c,
we associate a pair (i(x), j(x)). But there are only finitely many such pairs,

10

so there exist distinct x1, x2 > c with i(x1) = i(x2) = i′ and j(x1) = j(x2) =
j′. Since A′(x1), A′(x2) ⊆ aff(Pi′(x) ∩ Qj′(x)), A′(x1) ∩ A′(x2) = ∅, and
dim(A′(x2)) = d− 1 ≥ 0, it follows that aff(Pi′ ∩Qj′) strictly contains A′(x1),
so we have A′(x1) ⊂ aff(Pi′ ∩ Qj′) ⊆ aff(P ∩ Q) ⊆ A, and dim(A′(x1)) =
dim(A)− 1. Therefore we have the equalities aff(Pi′ ∩Qj′) = aff(P ∩Q) = A.
The lemma follows. �

Algorithm 2: Calculate aff(R ∩ A)
Input: A semilinear relation R = R1 ∪ · · · ∪Rk and an affine subspace

A.
Output: A set of inequalities defining aff(R ∩ A), or ⊥ if

aff(R ∩ A) = ∅.
1 Find i that maximises di := dim(aff(Ri ∩ A)).
2 if aff(Ri ∩ A) = ∅ then return ⊥
3 Let I be the set of inequalities for Ri and J be the set of inequalities
for A.

4 S := I ∪ J
5 foreach inequality ι ∈ I ∪ J do
6 if dim(aff(S \ {ι})) = di then
7 S := S \ {ι}
8 end
9 end

10 return S

For a semilinear relation R, we let size(R) denote the representation size
of R, i.e., the number of bits needed to describe the arities and coefficients of
each inequality in some fixed definition of R.

Lemma 8. Let R ∈ SLQ[Q] be a relation such that 〈LEQ[Q] ∪ {R}〉 does
not contain a BNU and let A ⊆ Qn be an affine subspace. Algorithm 2
computes a set of linear inequalities S defining aff(R ∩A) in time polynomial
in size(R) + size(A) and with size(S) ≤ size(R) + size(A).

Proof. Let R = R1 ∪ · · · ∪ Rk be the representation of R as the union of
linear sets Ri. By Lemma 7, there exists an i such that aff(R∩A) = aff(Ri∩A)
and since aff(Rj ∩A) ⊆ aff(R ∩A) for all j, the algorithm will find such an i
on line 1 by simply comparing the dimensions of these sets. If aff(R∩A) = ∅,
then the algorithm returns ⊥, signalling that the affine hull is empty.

Otherwise, the affine hull of a non-empty polyhedron can always be
obtained as a subset of its defining inequalities (cf. Schrijver [13, Section 8.2]).

11

Here, some of the inequalities may be strict, but it is not hard to see that
removing them does not change the affine hull. If ι ∈ I ∪ J is an inequality
that cannot be removed without increasing the dimension of the affine hull,
then it is clear that ι still cannot be removed after the loop. Hence, after the
loop, no inequality in S can be removed without increasing the dimension
of the affine hull. It follows that S itself defines an affine subspace, AS, and
AS = aff(AS) = aff(Ri ∩ A) = aff(R ∩ A).

Using the ellipsoid method, we can determine the dimension of the affine
hull of a polyhedron defined by a system of linear inequalities in time polyno-
mial in the representation size of the inequalities [13, Corollary 14.1f]. To han-
dle strict inequalities on line 1, we can perturb these by a small amount, while
keeping the representation sizes polynomial, to obtain a system of non-strict
inequalities with the same affine hull. The algorithm does at most |I ∪ J |+ k
affine hull calculations. The total time is thus polynomial in size(R) + size(A).
Finally, the set S is a subset of I ∪ J , so size(AS) ≤ size(R) + size(A). �

Theorem 4. Let {R+, {1}} ⊆ Γ ⊆ SLQ[Q] be a constraint language. If
there is no BNU in 〈Γ〉, then Algorithm 1 correctly solves CSP(Γ) and can be
implemented to run in polynomial time.

Proof. First, we show that the algorithm terminates with A equal to the
affine hull of the solution space of the constraints. Assume that the input
consists of the constraints Ri(xi1 , . . . , xik) over variables V , i = 1, . . . ,m. Let
Z = ⋂m

i=1 R̂i denote the solution space of the instance. Let A∗ denote the
value of A when the algorithm terminates. It is clear that Z is contained in A
throughout the execution of the algorithm. Therefore, aff(Z) = aff(Z∩A∗) so
it suffices to show that aff(Z∩A∗) = A∗. We will show that aff(⋂j

i=1 R̂i∩A∗) =
A∗ for all j = 1, . . . ,m. When the algorithm terminates, we have aff(R̂i∩A∗) =
A∗ for every i = 1, . . . ,m. In particular, the claim holds for j = 1. Now
assume that the claim holds for j−1. Then, P = ⋂j−1

i=1 R̂i∩A∗ and Q = R̂j∩A∗
satisfy the requirements of Lemma 7 with aff(P) = aff(Q) = A∗. Therefore,
we can use this lemma to conclude that aff(⋂j

i=1 R̂i ∩A∗) = aff(P ∩Q) = A∗.
Finally, we show that the algorithm can be implemented to run in polyno-

mial time. The call to Algorithm 2 in the inner loop is carried out at most
mn times, where n = |V |. To represent R̂i we use the inequalities in the
representation of Ri and add O(n) additional coefficients with value 0 for
the variables in {x1, . . . , xn} \ {xi1 , . . . , xik}. The size of R̂i is therefore at
most size(Ri) + O(n), so the size of A never exceeds O(mn(size(R) + n)),
where R is a relation with maximal representation size. Therefore, each call
to Algorithm 2 takes polynomial time and consequently, the entire algorithm
runs in polynomial time. �

12

3.2. Essential convexity
We will now identify another family of polynomial-time solvable semilinear

CSPs. This time, we base our result on essentially convex semilinear constraint
languages (Theorem 3). We extend this result to the situation where we
are only guaranteed that all unary relations that are pp-definable in the
language are essentially convex. The idea is that even if we do not have
the constant relation {1} to help us identify excluded intervals, we are still
able to see excluded full-dimensional holes. We follow up this by showing
that we can remove certain lower-dimensional holes and thus recover an
equivalent essentially convex constraint language. We remind the reader
that the dimension of a set is defined with respect to its affine hull, as in
Section 3.1.

For x, y ∈ Qk, we let ‖x‖ denote the euclidean norm of x, and dist(x, y) =
‖x− y‖ the euclidean distance between x and y.

Lemma 9. Let U ∈ {1} + I(c) for some 0 < c < 1 and assume that R ∈
SLQ[Q] is a semilinear relation such that every unary relation in 〈{R+, U,R}〉
is essentially convex. Then, R can be defined by a formula ϕ0∧¬ϕ1∧· · ·∧¬ϕk,
where ϕ0 defines a convex semilinear set, and ϕ1, . . . , ϕk are conjunctions
over LIQ[Q] that define convex sets of dimensions strictly lower than the
dimension of the set defined by ϕ0.

Proof. Let conv(R) denote the convex hull of R and let d denote its dimen-
sion. The set conv(R) is semilinear (see, for instance, Stengle et al. [14]). Let
ϕ0 be a formula for conv(R) and let ϕ1∨· · ·∨ϕk be a formula for conv(R)\R
on quantifier-free DNF over LIQ[Q]. It remains to show that for each i, the
dimension of the convex set Si defined by ϕi is smaller than d. To prove this,
we show that for every point p in Si, and every ε > 0, there exists a point x
in R such that dist(p, x) < ε. Since every d-dimensional convex set contains
a small d-dimensional open ball around every point in its interior, it follows
from this that none of the sets Si can be d-dimensional.

Carathéodory’s theorem (cf. Schrijver [13, Section 7.7]) states that for
every p ∈ conv(R), we can find m + 1 ≤ d + 1 affinely independent points,
x0, . . . , xm ∈ R, such that p lies in B = conv({x0, . . . , xm}). By induction
over m, we show that for every point b ∈ B, and every ε > 0, there is a
point z ∈ R such that dist(b, z) < ε. For m = 0, this statement follows
trivially as each xj was chosen from R. Now assume that 0 < m ≤ d and that
the statement holds for all 0 ≤ m′ < m. By the induction hypothesis, the
statement holds for the set A = conv({x0, . . . , xm−1}). Every b ∈ B can be
written as b = yb ·a+(1−yb)·xm for some a ∈ A and 0 ≤ yb ≤ 1. Let a′ ∈ R be

13

a point that is at distance at most ε/2 from a and let b′ = yb ·a′+ (1−yb) ·xm.
Then,

dist(b, b′) = ‖(yb · a+ (1− yb) · xm)− (yb · a′ + (1− yb) · xm)‖
≤ yb‖a− a′‖
≤ ε/2.

xm

xm−1x0

a a′

b b′

z

A

Figure 1: An illustration of the entities involved in the induction step.

Let δ > 0 be a small constant to be fixed later. By Lemma 5, there exists
a unary relation Uδ ∈ {1}+I(δ)∩〈{R+, U}〉. Consider the following relation:

T (y) ≡ ∃t, z . Uδ(t) ∧R(z) ∧ z = y · a′ + (t− y) · xm.

Since Uδ ∈ 〈{R+, U}〉, we also have T ∈ 〈{R+, U,R}〉. By assumption, T does
not exclude an interval, so there exists a y′b such that T (y′b) and |y′b − yb| < δ.
Then, by the definition of T , there exists a t ∈ (1− δ, 1 + δ) and a point z ∈ R
such that:

dist(b′, z) = ‖ (yb · a′ + (1− yb) · xm)− (y′b · a′ + (t− y′b) · xm) ‖
= ‖(yb − y′b) · a′ + (1− t) · xm + (y′b − yb) · xm‖
≤ ‖(yb − y′b) · a′‖+ ‖(1− t) · xm‖+ ‖(y′b − yb) · xm‖
≤ (|yb − y′b|+ |1− t|+ |y′b − yb|) max{‖a′‖, ‖xm‖}
< 3δC,

where C := max{‖a′‖, ‖xm‖, 1} is a constant for a fixed B, and the first
inequality follows from the triangle inequality.

The claim now follows for the point b by taking δ = (ε/2) · (3C)−1 since
dist(b, z) ≤ dist(b, b′) + dist(b′, z) < ε. �

14

Theorem 5. Let {R+} ⊆ Γ ⊆ SLQ[Q] be a constraint language. Assume that
there exists a unary relation U ∈ {1}+I(c)∩〈Γ〉, for some 0 < c < 1, and that
every unary relation in 〈Γ〉 is essentially convex. Then, CSP(Γ) is equivalent
to CSP(Γ′) for an essentially convex constraint language Γ′ ⊆ SLQ[Q].

Proof. If Γ is essentially convex, then there is nothing to prove. Assume
therefore that Γ is not essentially convex. By Lemma 9, each R ∈ Γ can
be defined by a formula ϕ0 ∧ ¬ϕ1 ∧ · · · ∧ ¬ϕk, where ϕ0, ϕ1, . . . , ϕk are
conjunctions over LIQ[Q], and ϕ1, . . . , ϕk define sets whose affine hulls are
of dimensions strictly lower than that of the set defined by ϕ0. Assume
additionally that the formulas are numbered so that the affine hulls of the
sets defined by ϕ1, . . . ϕm do not contain (0, . . . , 0) and that the affine hulls
of the sets defined by ϕm+1, . . . , ϕk do contain (0, . . . , 0). Define R′ by

ϕ ∧ ¬ϕ′1 ∧ · · · ∧ ¬ϕ′m ∧ ¬ϕm+1 ∧ · · · ∧ ¬ϕk,

where ϕ′i defines the affine hull of the set defined by ϕi. Then, the constraint
language Γ′ = {R′ | R ∈ Γ} is essentially convex since witnesses of an
excluded interval only occur inside an affine subspace not containing (0, . . . , 0);
otherwise we could use such a witness to pp-define a unary relation excluding
an interval.

Let Φ be an instance of CSP(Γ) over the variables V = {x1, . . . , xn} and
assume Φ ≡ ∃x1, . . . , xn . ψ where ψ is quantifier-free. Construct an instance
Φ′ of CSP(Γ′) by replacing each occurrence of a relation R in Φ by R′. Clearly,
if Φ′ is satisfiable, then so is Φ. Conversely, let s ∈ QV be a solution to
Φ and assume that Φ′ is not satisfiable. Let L be the line in QV through
(0, . . . , 0) and s and let U be the unary relation Lψ,(0,...,0),s. Note that an
equation defining the line through (0, . . . , 0) and s is homogeneous. Since
R+ ∈ Γ‚ it follows from Lemma 3 that U ∈ 〈Γ〉. The instance Φ has at least
the solution s which corresponds to the point 1 ∈ U . In fact, every point in
U corresponds to a solution to Φ on the line L that is not a solution to Φ′
since, by assumption, Φ′ is not satisfiable.

Fix a constraint R(x1, . . . , xl) in Φ and consider the points on the line L
that satisfy this constraint but not R′(x1, . . . , xl). These are the points p ∈ QV

on L for which (p(x1), . . . , p(xl)) satisfies (ϕ′1 ∨ · · · ∨ ϕ′m) ∧ ¬(ϕ1 ∨ · · · ∨ ϕm).
For each 1 ≤ i ≤ m, ϕ′i satisfies at most one point on L since otherwise the
affine hull of the relation defined by ϕi would contain (0, . . . , 0). Hence, each
constraint R(x1, . . . , xl) in Φ can account for at most a finite number of points
in U , so U is finite.

Assume first that |U | > 1. Then, U is not essentially convex which
contradicts the assumption that every unary relation in 〈Γ〉 is essentially
convex. Assume instead that U = {1}, where the single point in U corresponds

15

to the solution s. Recall that Γ is not essentially convex. Let R ∈ Γ be a
k-ary relation that is not essentially convex and let p, q ∈ Qk witness this.
The relation LR,p,q ∈ 〈Γ〉 since {1} ∈ 〈Γ〉. Then, LR,p,q ∈ 〈Γ〉 is unary and
not essentially convex which leads to a contradiction. It follows that if Φ is
satisfiable, then so is Φ′. �

4. NP-hardness

We now derive a unified condition for all hard CSPs classified in this
article. It is based on a polynomial-time reduction from the NP-hard problem
Not-All-Equal 3SAT [15], i.e. the problem CSP({RNAE}) where RNAE =
{−1, 1}3 \ {(−1,−1,−1), (1, 1, 1)}. The proof is divided into three different
lemmas. First, we present a reduction from Not-All-Equal 3SAT to a simple
semilinear CSP. We then show that having a BNU T that is bounded away
from 0 allows us to pp-define unary relations that are, in a certain sense, close
to being either the relation {1} or {−1, 1}. In the final step, we combine
these two results and show that having a BNU T that excludes an interval
and that is bounded away from 0 is a sufficient condition for CSP({R+, T})
to be NP-hard.

Lemma 10. Let T ∈ {−1, 1}+ I(1
2). Then, CSP({R+, T}) is NP-hard.

Proof. The proof is by a polynomial time reduction from CSP({RNAE}).
Let Φ denote an arbitrary instance of CSP({RNAE}). Construct an instance Φ′
of CSP({R+, T}) as follows. Impose the constraint T (v) on each variable. For
each constraint RNAE(x, y, z) in Φ, introduce the constraints x+y+z+w = 0
and T (w), where w is a fresh variable.

Assume that Φ has a solution. Consider a constraint RNAE(x, y, z) in Φ. If
two of the variables are assigned the value 1, then the equation x+y+z+w = 0
is satisfied by choosing w = −1. If two of the variables are assigned the value
−1, then the equation x+y+ z+w = 0 is satisfied by choosing w = 1. Hence,
Φ′ is satisfiable.

Assume that Φ′ has a solution s′. Then, Φ has a solution s defined by
s(x) = 1 if s′(x) > 0 and s(x) = −1 if s′(x) < 0. Assume to the contrary that
s(x) = s(y) = s(z) = 1 for some variables with a constraint RNAE(x, y, z).
Consider the equation x + y + z + w = 0 in Φ′. By the assumption on T ,
we have s′(x) + s′(y) + s′(z) > 3

2 , and hence s′(w) < −3
2 . But this is a

contradiction as the constraint T (w) is also in Φ′. We can similarly rule out
the case s(x) = s(y) = s(z) = −1. This proves that s is a solution to Φ. �

Lemma 11. Let T 6= ∅ be a bounded unary relation such that T∩(−ε, ε) = ∅,
for some ε > 0. Then, either 〈R+, T 〉 contains a unary relation Uδ ∈ {1}+I(δ)

16

for every δ > 0; or 〈R+, T 〉 contains a unary relation Uδ ∈ {−1, 1} + I(δ),
for every δ > 0.

Proof. If T ∩−T 6= ∅, then the result follows from Lemma 6. Otherwise, by
Lemma 2, there exists a constant c+ > 0 such that the set T+ = {x ∈ T | |x| ≥
c+} is non-empty and contains points that are either all positive or all negative.
Similarly, there exists a constant c− > 0 such that T− = {x ∈ T | |x| ≤ c−}
is non-empty and contains points that are either all positive or all negative.
Let a ∈ T+ and b ∈ T−. Assume that both sets contain positive points only
or that both sets contain negative points only. Then, the result follows using
Lemma 5 with the relation U = a−1 · T ∩ b−1 · T (or −U if the points of
U are negative). The case when the one set contains positive points and
the other contains negative points is handled similarly using the relation
U ′ = a−1 · T ∩ b−1 · (−T). �

Lemma 12. Let T be a BNU such that T ∩ (−ε, ε) = ∅, for some ε > 0,
and U be a unary relation that excludes an interval. Then, CSP({R+, T, U})
is NP-hard.

Proof. We show that 〈R+, T, U〉 contains a unary relation {−1, 1}+ I(1
2).

The result then follows from Lemma 10. If already 〈R+, T 〉 contains such a
relation, then we are done. Otherwise, by Lemma 11, 〈R+, T 〉 contains a unary
relation Uδ ∈ {1}+ I(δ), for every δ > 0. Since U excludes an interval, there
are points p, q ∈ U and 0 < δ1 < δ2 < 1 such that p+ (q − p)y 6∈ U whenever
δ1 ≤ y ≤ δ2. Furthermore, p and q can be chosen so that δ1 < 1/2 < δ2, and
by scaling U , we may assume that |q − p| = 2. Let m = (p+ q)/2. Note that
U ∩ (m− ε′,m+ ε′) = ∅, for some ε′ > 0. Similarly, possibly by first scaling
T , let p′, q′ ∈ T be distinct points with |q′ − p′| = 2 and let m′ = (p′ + q′)/2.

Now, define the following unary relations:

T0(x) ≡ ∃y∃z . Uδ(y) ∧ U(z) ∧ z = x · (q − p)/2 + y ·m
T∞(x) ≡ ∃y′∃z′ . Uδ(y′) ∧ T (z′) ∧ z′ = x · (q′ − p′)/2 + y′ ·m′.

The relations T0 and T∞ are roughly translations of U and T , where the
constant relation {1} has been approximated by the relation Uδ. Since 1 ∈ Uδ,
we have {−1, 1} ⊆ T0, T∞. Hence, if δ is chosen small enough, then the
relation T0 ∩ T∞ ∈ 〈R+, T, U〉 will satisfy the conditions of Lemma 6. This
finishes the proof. �

5. Semilinear expansions of {R+}

In this section, we prove our main result: Theorem 2. We divide the proof
into two parts. Consider the following two properties:

17

(P0) There is a unary relation U in 〈Γ〉 that contains a positive point and
satisfies U ∩ (0, ε) = ∅ for some ε > 0.

(P∞) There is a unary relation U in 〈Γ〉 that contains a positive point and
satisfies U ∩ (M,∞) = ∅ for some M <∞.

In the first part of the proof (Section 5.1), we consider constraint languages
that simultaneously satisfy the properties (P0) and (P∞). In the second part
(Section 5.2), we consider constraint languages that violate at least one of
them. In both parts, we give a detailed description of the boundary between
easy and hard problems. By combining Theorem 6 and Theorem 8, we
establish Theorem 2.

In addition to the two algorithmic results in Sections 3.1 and 3.2, there
is also a trivial source of tractability. A relation is 0-valid if it contains the
tuple (0, . . . , 0) and a constraint language is 0-valid if every relation in it is
0-valid. Every instance of a CSP over a 0-valid constraint language admits
the solution that assigns 0 to every variable.

When we consider constraint languages that are not 0-valid, the following
lemma shows that there is always a pp-definable unary relation that is not
0-valid.

Lemma 13. Let {R+} ⊆ Γ ⊆ SLQ[Q] be a constraint language. If Γ is not
0-valid, then 〈Γ〉 contains a non-empty unary relation that is not 0-valid.

Proof. By assumption, Γ contains some k-ary relation R that is not 0-valid,
and by our definition of a constraint language, R is non-empty. Let t ∈ R be
a tuple that contains the largest possible number m of zeroes. Assume for
simplicity that the first m entries of t equals 0. Consider the following unary
relation in 〈Γ〉.

U = {x ∈ Q | ∃ym+1 . . . yk−1 . R(0, 0, . . . , 0, ym+1, . . . , yk−1, x)}

The relation U is non-empty and not 0-valid. �

5.1. The case (P0) and (P∞)
The following theorem covers the case when the constraint language satis-

fies both of the properties (P0) and (P∞). As a corollary, we obtain a complete
classification for semilinear constraint languages containing {R+, {1}}. The
latter result is interesting in itself and it will also be used in Section 5.2 and
Section 6.

Theorem 6. Let {R+} ⊆ Γ ⊆ SLQ[Q] be a constraint language that satisfies
(P0) and (P∞). The problem CSP(Γ) is in P if

18

• Γ is 0-valid (trivially);

• 〈Γ〉 does not contain a BNU (by establishing affine consistency); or

• all unary relations in 〈Γ〉 are essentially convex (by a reduction to an
essentially convex constraint language).

Otherwise, CSP(Γ) is NP-hard.

Proof. Let U be the set of all bounded, non-empty unary relations U in 〈Γ〉
such that U ∩ (−ε, ε) = ∅ for some ε > 0. Assume that Γ is not 0-valid. First,
we show that U is non-empty. By Lemma 13, 〈Γ〉 contains a non-empty unary
relation that is not 0-valid. Scale this relation so that it contains 1 and call
the resulting relation U ′. Let U0 ∈ 〈Γ〉 be a unary relation witnessing (P0)
and let U∞ ∈ 〈Γ〉 be a unary relation witnessing (P∞). Scale U0 and U∞ so
that some positive point from each coincides with 1 and let T = U ′∩U0∩U∞.
If T does not contain a negative point, then T ∈ U . Otherwise, T contains a
negative point b. It follows that T ∩ b · T ∈ U . Hence, the set U is non-empty.

Assume that 〈Γ〉 does not contain a BNU. Then, neither does U and hence
U contains only constants. It follows by Theorem 4 that establishing affine
consistency solves CSP(Γ).

Otherwise, U contains a BNU. If all unary relations of 〈Γ〉 are essentially
convex, then by Lemma 11 and Theorem 5, CSP(Γ) is equivalent to CSP(Γ′)
for an essentially convex constraint language Γ′. Tractability follows from
Theorem 3.

Finally, if U contains a BNU and 〈Γ〉 contains a unary relation that
excludes an interval, then NP-hardness follows from Lemma 12. �

Corollary 1. Let {R+, {1}} ⊆ Γ ⊆ SLQ[Q] be a constraint language. The
problem CSP(Γ) is in P if 〈Γ〉 does not contain a BNU or if Γ is essentially
convex. Otherwise, CSP(Γ) is NP-hard.

Proof. If 〈Γ〉 does not contain a BNU, then tractability follows from Theo-
rem 4. If all relations in Γ are essentially convex, then tractability follows
from Theorem 3.

Otherwise, 〈Γ〉 contains a BNU and Γ contains a relation R that is not
essentially convex. Let p, q ∈ R be witnesses to this, and note that LR,p,q is
a unary relation that is not essentially convex and that LR,p,q ∈ 〈Γ〉, since
{R+, {1}} ⊆ Γ. Since {1} ∈ Γ is not 0-valid, NP-hardness then follows from
Theorem 6. �

19

5.2. The case ¬(P0) or ¬(P∞)
Let {R+} ⊆ Γ ⊆ SLQ[Q] be a constraint language such that either (P0)

or (P∞) is violated. In this section, we show that Γ can be replaced by an
equivalent constraint language of a restricted type. Let HSLQ[Q] denote the
set of relations that are are finite unions of homogeneous linear sets. We
will call such relations homogeneous semilinear relations. We remind the
reader that we can always pp-define the relations {0} and M = {(x,−x) |
x ∈ Q} in Γ: x = 0 ⇔ R+(x, x, x) and (x, y) ∈ M ⇔ R+(x, y, 0) ⇔
∃z . R+(x, y, z) ∧ R+(z, z, z). Hence, we can freely use the constant 0 and
negation in forthcoming pp-definitions.

From now on, let Q+ = {a ∈ Q | a > 0}, Q− = {a ∈ Q | a < 0}, and
Q 6=0 = Q−∪Q+ = Q\{0}. For a relationR ∈ SLQ[Q], define cone(R) = {λ·x |
λ ∈ Q+, x ∈ R} to be the cone over R. For a constraint language Γ ⊆ SLQ[Q],
let cone(Γ) = {cone(R) | R ∈ Γ}. Note that, for {R+} ⊆ Γ ⊆ SLQ[Q],
we have cone(Γ) ⊆ HSLQ[Q], and since cone(R+) = R+, we also have
R+ ∈ cone(Γ).

For an assignment s : V → Q and a rational c ∈ Q, let c · s denote the
assignment x 7→ c · s(x).

Theorem 7. Let {R+} ⊆ Γ ⊆ SLQ[Q] be a constraint language such that
either (P0) or (P∞) is violated. Then, CSP(Γ) is equivalent to CSP(cone(Γ)).

Proof. Assume that Γ does not satisfy (P0). The proof for the case when Γ
does not satisfy (P∞) follows similarly.

Let R be a relation in Γ and let ϕ = ϕ1 ∨ · · · ∨ ϕk be a quantifier-
free DNF formula for R, where each formula ϕj is a conjunction of strict
and non-strict inequalities. Remove every disjunct ϕj that contains a non-
homogeneous inequality which is not satisfied by the (0, . . . , 0)-tuple. Let S
be the relation defined by the resulting formula ϕ′ = ϕ′1 ∨ · · · ∨ ϕ′k′ . Since
Γ does not satisfy (P0), it follows that for every point x in R \ S, there is
a point x′ in S that lies on the open line segment between (0, . . . , 0) and
x. Therefore, cone(S) = cone(R). Next, for each j, let Sj be the relation
defined by ϕ′j. Remove every non-homogeneous inequality from ϕ′j, let ϕ′′j
be the resulting formula and let Tj be the relation defined by ϕ′′j . Clearly,
cone(Sj) ⊆ cone(Tj). Let λ · x be a point in cone(Tj) with λ ∈ Q+ and
x ∈ Tj. Since every non-homogeneous inequality in ϕ′j is satisfied by the
(0, . . . , 0)-tuple, it follows that they are satisfied by every point in a small ball
B centred at (0, . . . , 0). Let x′ be a point in B on the line segment between
(0, . . . , 0) and x and note that every homogeneous inequality in ϕ′j satisfies x
and therefore also x′. It follows that x′ is in Sj so x and λ · x are in cone(Sj),
which shows that cone(Tj) ⊆ cone(Sj). Let ϕ′′ = ϕ′′1 ∨ · · · ∨ ϕ′′k′ and let T be

20

the relation defined by ϕ′′. Then, cone(R) = cone(T) and cone(T) = T since
ϕ′′ only contains homogeneous inequalities. Therefore, ϕ′′ defines cone(R), so
cone(R) ∈ HSLQ[Q] and cone(Γ) ⊆ HSLQ[Q].

For the equivalence of CSP(Γ) and CSP(cone(Γ)), arbitrarily choose an
instance Φ of CSP(Γ). Construct an instance Φ′ of CSP(cone(Γ)) by replacing
each occurrence of a relation R in Φ by cone(R). Every solution to Φ is also
a solution to Φ′. It remains to show that if Φ′ has a solution, then so does Φ.

Let s : Vars(Φ′) → Q be a solution to Φ′. If s ≡ 0, then it follows
immediately that s is a solution to Φ since, for every R ∈ Γ, (0, . . . , 0) ∈
cone(R) if and only if (0, . . . , 0) ∈ R. Assume therefore that s 6≡ 0. For every
constraint Ri(xi1 , . . . , xik) of Φ, (s(xi1), . . . , s(xik)) ∈ cone(Ri) holds. By the
construction of cone(Ri), this implies that r · (s(xi1), . . . , s(xik)) ∈ Ri, for
some r > 0. Define the unary relation U ∈ 〈Γ〉 by the pp-formula:

ψ(y) ≡ ∃z1, . . . , zk . z1 = y · s(xi1) ∧ · · · ∧ zk = y · s(xik) ∧Ri(z1, . . . , zk).

Now r ∈ U , so by the assumption on Γ and using Lemma 2, it follows that
(0, εi) ⊆ U , for some εi > 0, and hence that y · (s(xi1), . . . , s(xik)) ∈ Ri, for
all y ∈ (0, εi). Let ε = mini εi. Then (ε/2) · s is a solution to Φ. �

By Theorem 7, it is thus sufficient to determine the computational com-
plexity of CSP(Γ) for {R+} ⊆ Γ ⊆ HSLQ[Q].

Given a relation R ⊆ Qk, we say that a function e : Q→ Q is an endomor-
phism of R if for every tuple (a1, . . . , ak) ∈ R, the tuple (e(a1), . . . , e(ak)) ∈ R.
One may equivalently view an endomorphism as a homomorphism from R
to R. We extend this notion to constraint languages Γ = {R1, . . . , Rn}: a
function e : Q→ Q is an endomorphism of Γ if e is an endomorphism of Ri,
1 ≤ i ≤ n.

Lemma 14. Let a > 0 be a rational number. Every R ∈ HSLQ[Q] has the
endomorphism e(x) = a · x.

Proof. We know that R can be written as R = ⋃m
i=1 Hi where Hi, 1 ≤ i ≤ m,

is defined by a (finite) system of homogeneous linear (strict or non-strict)
inequalities. Consider an inequality ∑n

i=1 ci · xi ≥ 0 in such a system. We
immediately see that

n∑
i=1

ci · xi ≥ 0⇔ a ·
n∑
i=1

ci · xi ≥ 0⇔
n∑
i=1

a · ci · xi ≥ 0⇔
n∑
i=1

ci · e(xi) ≥ 0.

This equivalence also holds if we consider strict inequalities. Therefore, each
Hi, 1 ≤ i ≤ m, has the endomorphism e.

21

Now, arbitrarily choose a tuple t = (t1, . . . , tk) ∈ R and assume that
t ∈ Hi. It follows that (e(t1), . . . , e(tk)) ∈ Hi ⊆ R, so the function e is an
endomorphism of R. �

A direct consequence of Lemma 14 is the following: if an instance Φ of
CSP(HSLQ[Q]) has a solution s, then a · s is a solution for every rational
number a > 0.

The complexity classification of constraint languages that violate either
(P0) or (P∞), in Theorem 8, follows from two intermediate results which we
now present in Lemma 15 and Lemma 16.

Lemma 15. Let Γ be a subset of HSLQ[Q] and let U be a unary relation in
〈Γ〉. If U contains an element p > 0, then Q+ ⊆ U . If U contains an element
p < 0, then Q− ⊆ U .

Proof. Let q ∈ Q be any element with the same sign as p. By Lemma 14,
e(x) = (q/p) · x is an endomorphism of U . Since p ∈ U , it follows that
q = e(p) ∈ U . �

Lemma 16. Let {R+} ⊆ Γ ⊆ HSLQ[Q] be a constraint language. Either

• Γ is 0-valid; or

• CSP(Γ) is polynomial-time equivalent to CSP(Γ ∪ {{1}}).

Proof. Assume that Γ is not 0-valid. By Lemma 13, 〈Γ〉 contains a non-
empty unary relation that is not 0-valid. The lemma follows by considering
three different cases.
Case 1. 〈Γ〉 contains a non-empty unary relation U such that 0 6∈ U and U ⊆
Q+. By Lemma 15, Q+ ⊆ U so U = Q+. We claim that CSP(Γ ∪ {{1},Q+})
is polynomial-time equivalent to CSP(Γ ∪ {Q+}). The polynomial-time
reduction from right to left is trivial. To show the other direction, let Φ be an
arbitrary instance of CSP(Γ ∪ {{1},Q+}). Assume without loss of generality
that the relation {1} appears in exactly one constraint {1}(x). Construct Φ′
by replacing this constraint with Q+(x).

If Φ′ has no solution, then Φ has no solution. Suppose instead that Φ′
has the solution s. Then we know that s(x) > 0. Choose a ∈ Q such that
a · s(x) = 1. By Lemma 14, the function a · s is then a solution to Φ.
Case 2. 〈Γ〉 contains a non-empty unary relation U such that 0 6∈ U and
U ⊆ Q−. By Lemma 15, Q− ⊆ U so U = Q−. We can now pp-define Q+
since x > 0⇔ −x < 0 and go back to Case 1.

22

Case 3. 〈Γ〉 contains a non-empty unary relation U such that 0 6∈ U and
no unary relation U ′ ∈ 〈Γ〉 equals Q+ or Q−. Lemma 15 implies that
U = Q− ∪Q+.

We claim that CSP(Γ) is polynomial-time equivalent to CSP(Γ ∪ {{1}}).
The reduction from left to right is trivial. To show the other direction, let
Φ ≡ ∃x1, . . . , xm .ϕ(x1, . . . , xm) be an arbitrary instance of CSP(Γ∪{{1}, U}),
where ϕ is quantifier-free, and assume without loss of generality that the
relation {1} appears in exactly one constraint {1}(xm). Construct Φ′ by
replacing this constraint with Q6=0(xm).

If Φ′ has no solution, then Φ has no solution. Suppose instead that Φ′ has
a solution. Assume first that every solution assigns a negative number to the
variable xm. Then we can pp-define a unary relation T ⊆ Q− by

T (xm) ≡ ∃x1, . . . , xm−1 . ϕ(x1, . . . , xm)

and this contradicts our initial assumptions. Thus, there is a solution s such
that s(xm) > 0. Choose a ∈ Q such that a · s(x) = 1. By Lemma 14, the
function a · s is a solution to Φ. �

Theorem 8. Let {R+} ⊆ Γ ⊆ SLQ[Q] be a constraint language that violates
(P0) and/or (P∞). The problem CSP(Γ) is in P if

• Γ is 0-valid;

• 〈cone(Γ) ∪ {{1}}〉 does not contain a BNU; or

• cone(Γ) is essentially convex.

Otherwise, CSP(Γ) is NP-hard.

Proof. By Theorem 7, CSP(Γ) is equivalent to CSP(cone(Γ)). By Lemma 16,
CSP(cone(Γ)) is either trivially in P, if it is 0-valid, or CSP(cone(Γ)) is
polynomial-time equivalent to CSP(cone(Γ) ∪ {{1}}). In the latter case, the
result follows from Corollary 1. �

6. Optimisation

In this section, we study the optimisation problem where the objective is
to maximise a linear function over the solution set of a semilinear CSP. For
an arbitrary constraint language Γ ⊆ SLQ[Q], we formally define the problem
Opt(Γ) as follows.

23

Problem: Opt(Γ)
Input: A CSP(Γ)-instance Φ and a vector c ∈ QVars(Φ).
Output: One of the following four answers.

• ‘unbounded’ if for every K ∈ Q, there exists a solution x such
that cTx ≥ K.

• ‘optimum: K’ if there exists a K ∈ Q and a solution x such
that cTx = K, but there is no solution x′ such that cTx′ > K.

• ‘optimum is arbitrarily close to K’ if there exists a K ∈ Q such
that there is no solution x satisfying cTx ≥ K, but for every
K ′ < K there is a solution x′ with cTx′ ≥ K ′.

• ‘unsatisfiable’ if there is no solution.

By Lemma 3, the problem Opt({R+,≤, {1}) is polynomial-time equivalent
to linear programming. Bodirsky et al. [6] have shown that for semilin-
ear constraint languages containing {R+,≤, {1}}, the problem CSP(Γ) is
polynomial-time solvable (NP-hard) if and only if the problem Opt(Γ) is
polynomial-time solvable (NP-hard) (cf. Theorem 1).

In Theorem 10, we show that, for semilinear constraint languages contain-
ing {R+, {1}}, the complexity of the decision problem and of the optimisation
problem is similarly related. We first prove an analogue of Theorem 4 for the
optimisation problem.

Theorem 9. Let {R+, {1}} ⊆ Γ ⊆ SLQ[Q] be a constraint language. If there
is no BNU in 〈Γ〉, then Opt(Γ) can be solved in polynomial time.

Proof. Let Φ be an instance of CSP(Γ), let V = Vars(Φ) = {x1, . . . , xm},
and let c ∈ QV be a vector. Assume Φ ≡ ∃x1, . . . , xm . ϕ where ϕ is quantifier-
free. Algorithm 1 in Section 3 finds the affine hull A of the set of satisfying
assignments to Φ in polynomial time. If A = ∅, then we answer ‘unsatisfiable’.

Otherwise, the affine hull A is represented by a set of inequalities, each
with representation size that is polynomial in the input size. Therefore, we can
solve the system z1, z2 ∈ A, cT (z1− z2) > 0, in polynomial time. Assume that
this system has a solution. Let k = dim(A) + 1 and let y1, . . . , yk be affinely
independent satisfying assignments to Φ. Then, we can write z1 = ∑k

i=1 a1iyi
and z2 = ∑k

i=1 a2iyi with
∑k
i=1 a1i = ∑k

i=1 a2i = 1. Since

cT (z1 − z2) =
k∑
i=1

a1ic
Tyi −

k∑
i=1

a2ic
Tyi > 0,

24

we must have cTyi 6= cTyj for some 1 ≤ i, j ≤ k. Let U = LRϕ,yi,yj
∈ 〈Γ〉,

where Rϕ = {(x1, . . . , xn) ∈ QV | ϕ(x1, . . . , xn) is true in Γ} and for each
a ∈ U , let ya ∈ QV denote the corresponding point on the line through yi
and yj. Fix an arbitrary constant K ∈ Q. Since there is no BNU in 〈Γ〉, it
follows from Lemma 4(1) that U is unbounded in both directions. Since cTya
is linear and non-constant, it attains arbitrarily large values, and since U is
unbounded in both directions, there is a point a ∈ U such that ya ∈ Rϕ and
cTya > K. We can therefore answer ‘unbounded’.

Otherwise, cT (z1 − z2) = 0 for all z1, z2 ∈ A, so cT z is constant for z ∈ A.
Since A is the affine hull of the set of satisfying assignments to Φ, cT z = cT z′

for every z ∈ A and every satisfying assignment z′ to Φ. In polynomial time,
we can find a z ∈ A with polynomial representation size. It then suffices to
evaluate K = cT z and answer ‘optimum: K’. �

Theorem 10. Let {R+, {1}} ⊆ Γ ⊆ SLQ[Q] be a constraint language. The
problem Opt(Γ) is polynomial-time solvable if 〈Γ〉 does not contain a BNU or
if Γ is essentially convex. Otherwise, Opt(Γ) is NP-hard.

Proof. The polynomial-time solvable cases follow from Theorem 1 and
Theorem 9. The hardness follows from Corollary 1. �

A comparison between Theorem 10 and Corollary 1 shows that, for a
semilinear constraint language Γ containing {R+, {1}}, CSP(Γ) is polynomial-
time solvable (NP-hard) if and only if Opt(Γ) is polynomial-time solvable
(NP-hard). The following example shows that this tight relationship between
the complexity of a constraint satisfaction problem and its corresponding
optimisation problem cannot be further extended to the class of all semilinear
constraint languages containing the relation R+.

Example 2. Let R = {(0, 0, 0, 0)} ∪ {(x, y, z, 1) | (x, y, z) ∈ RNAE} (cf. Sec-
tion 4). Then, Γ = {R,R+} is semilinear, 0-valid, and LR,(0,0,0,0),(0,1,1,1) =
{0, 1} is a unary relation in 〈Γ〉 and hence, Γ satisfies both (P0) and (P∞).
Let Φ be an arbitrary instance of CSP({RNAE}). Construct an instance Φ′
of Opt(Γ) by introducing an auxiliary variable w, and for each constraint
RNAE(x, y, z) in Φ, introduce a constraint R(x, y, z, w) in Φ′. Finally, let the
vector c ∈ QVars(Φ′) be defined by cw = 1 and cx = 0 for all other variables x.
Then, the instance Φ has a solution if and only if an optimal solution of Φ′
has value 1. We conclude that CSP(Γ) is polynomial-time solvable (since Γ is
0-valid), but that Opt(Γ) is NP-hard.

25

7. Integer solutions

In this section, we study the problem of finding integer solutions to CSPs
defined by semilinear relations. We consider two different approaches: (1)
allowing an additional unary constraint that forces a chosen variable to take
an integral value, and (2) identifying constraint languages which guarantee
the existence of integer solutions.

The reader should note that in the first approach we do not consider
semilinear relations defined over the integers. Instead, we consider ways
of checking whether a given problem instance has a solution where some
variables are assigned integral values. Some of the problems in the second
approach can be seen as semilinear CSPs over the integers, but our methods
do not lend themselves to a systematic study of such problem. See Bodirsky
et al. [16] for a recent approach to such a systematic study.

7.1. The relation Z
The unary relation Z can be used to ensure that a variable is given an

integral value. By Lemma 2, this relation is not semilinear over Q, so the
constraint languages that we classify in the next theorem are formally not
semilinear.

Theorem 11. Let {R+} ⊆ Γ ⊆ SLQ[Q] be a constraint language that satisfies
(P∞). The problem CSP(Γ ∪ {Z}) is in P if

• Γ is 0-valid; or

• 〈Γ〉 does not contain a BNU.

Otherwise, CSP(Γ ∪ {Z}) is NP-hard.

Proof. If Γ is 0-valid, then Γ ∪ {Z} is 0-valid, so every instance admits the
solution (0, 0, . . . , 0).

Otherwise, assume first that 〈Γ〉 does not contain a BNU. Suppose that Γ
does not satisfy (P0) and let U be a unary relation witnessing that Γ satisfies
(P∞). Then U contains a positive point, so (0, ε1) ⊆ U for some ε1 > 0.
Since U is not a BNU, it follows that it must contain negative points. But
then, (−ε2, 0) ⊆ U for some ε2 > 0, so U ∩ −U is a BNU, contradicting the
assumption. Therefore Γ must satisfy (P0). By an argument on the set of all
bounded, non-empty unary relations in 〈Γ〉 similar to that used in the proof
of Theorem 6, it follows that 〈Γ〉 contains the relation {1}.

Let Φ be an arbitrary instance of CSP(Γ ∪ {Z}), let I ⊆ Vars(Φ) be the
set of variables that are constrained by Z in Φ, and let Φ′ be the instance of

26

CSP(Γ) obtained from Φ by removing all Z-constraints. Let S be the set of
satisfying assignments to Φ′. By running Algorithm 1, we obtain a system of
inequalities that defines the affine hull A of the satisfying assignments S. We
now substitute each such inequality for an equality. The resulting system of
linear equalities still defines A. Let A′ = {πI(x) | x ∈ A}, where πI(x) is the
projection of x to the coordinates given by the variables in I. We can compute
a system of linear equations for A′ in polynomial time by first computing
a parameter form for A, removing the coordinates not corresponding to I,
and then computing the equivalent system of linear equations. This can
be in polynomial time by being careful with the representation sizes of
the intermediary results (cf. Schrijver [13, Section 3]). We then solve the
resulting system of linear equations for an integer solution in polynomial
time (cf. Schrijver [13, Corollary 5.3]). If no such solution exists, then
Φ is unsatisfiable. Otherwise, the integer points in A′ are given by L =
{c0 + ∑k

i=1 λici | λ1, . . . , λk ∈ Z}, for some linearly independent vectors
c0, . . . , ck ∈ ZI , where k = dim(A′). The vectors ci can be found explicitly in
polynomial time, but since we are only interested in showing that there exists
a satisfying assignment to Φ, it suffices that L has the aforementioned form.

For p ∈ A′ and constant ε > 0, define B(p, ε) = {x ∈ A′ | ‖p − x‖ < ε}.
Let S ′ = {πI(x) | x ∈ S} and note that S ′ ∈ 〈Γ〉. Then, by assumption,
〈R+, {1}, S ′〉 ⊆ 〈Γ〉 does not contain a BNU. Furthermore, S ′ is semilinear,
so we can write S ′ = S ′1 ∪ · · · ∪ S ′l as a union of linear sets. Since aff(S ′) =
aff(A′) = A′, Lemma 7 is applicable with S ′ = S ′1 ∪ · · · ∪ Sl and A′ (which
is itself linear). It follows that S ′ contains a linear set S ′j ⊆ QI such that
aff(S ′j) = A′. Let p ∈ S ′j and ε > 0 be such that B(p, ε) ⊆ S ′j ⊆ S ′. We
claim that there exist distinct q1, q2 ∈ L such that the line through q1 and q2
intersects B(p, ε) in an open line segment. Let U = LS′,q1,q2 . Since 〈Γ〉 does
not contain a BNU, it follows that (M,∞) ⊆ U for some M <∞. Therefore,
q′ = q1 + t(q2 − q1) ∈ S ′ for a large enough integer t. Hence, there exists a
point q ∈ S such that πI(q) = q′, so Φ is satisfiable.

To prove the claim, let B = B(p, ε) and let q1 ∈ L \ B. Consider
the cone C = {q1 + t(x − q1) | x ∈ B, t ≥ 0} and note that C contains
B′ := {q1 + δε−1(x − q1) | x ∈ B} = B(q1 + δε−1(p − q1), δ). For a large
enough positive constant δ, the set B′ ∩L is non-empty. Let q2 ∈ B′ ∩L ⊆ C.
Then, the line through q1 and q2 intersects B in an open line segment.

Finally, assume that 〈Γ〉 contains a BNU U . We may assume that U is
not 0-valid: By Lemma 13, 〈Γ〉 contains a non-empty unary relation T that
is not 0-valid. Let c ∈ Q be a non-zero constant such that U ∩ c · T 6= ∅. If
U ∩ c ·T contains more than one element, then it is a BNU that is not 0-valid.
Otherwise, U ∩ c · T is a constant unary relation, so 〈Γ〉 contains {1}. In this
case, for a large enough constant c ∈ Q, the relation U + c ∈ 〈Γ〉 is a BNU

27

that is not 0-valid.
Let r1, r2 ∈ U be two distinct points and let c ∈ Q be a non-zero constant

such that c · r1, c · r2 ∈ Z. Then, U ′ = c · U ∩ Z is a BNU that excludes an
interval and U ′∩ (−1, 1) = ∅. NP-hardness of {R+, U

′} ⊆ 〈Γ∪{Z}〉 therefore
follows from Lemma 12. �

7.2. The integer property
In this section, we will determine those semilinear constraint languages

containing R+ for which knowing that there is a solution guarantees that
there is an integer solution. We make the following definition.

Definition 1. Let Γ be a constraint language over Q. We say that Γ has the
integer property if every instance of CSP(Γ) has a solution if and only if it
has an integer solution.

The integer property can be used to infer tractability of certain semilinear
constraint languages over Z. In particular, if Γ is a semilinear constraint
language over Q that satisfies the integer property, then CSP(Γ) and CSP(Γ|Z)
are equivalent. To see that Γ|Z is a semilinear constraint language over Z,
take an arbitrary R ∈ Γ and let ϕ be a quantifier-free definition of R over
LIQ[Z]. Then, ϕ is also a quantifier-free definition of R|Z over LIZ[Z].

The following lemma shows that the integer property is preserved under
pp-definitions.

Lemma 17. Let Γ be a constraint language over Q. If Γ has the integer
property, then so does 〈Γ〉.

Proof. Let Ψ be an CSP-instance with relations R1, . . . , Rk from 〈Γ〉, let
ϕ1, . . . , ϕk be pp-definitions of R1, . . . , Rk in Γ, and let Ψ′ be the CSP(Γ)-
instance obtained from Ψ by replacing each relation Ri by the quantifier-free
part of ϕi, and adding existential quantifiers for all auxiliary variables. If
Ψ has a rational solution, then Ψ′ has a rational solution, so Ψ′ has an
integer solution. Note that the restriction of any solution of Ψ′ to Vars(Ψ)
is a solution to Ψ. Therefore, the restriction of an integer solution of Ψ′ to
Vars(Ψ) is an integer solution to Ψ, which proves the lemma. �

Let Γ denote a semilinear constraint language that contains R+. Observe
that if {1} ∈ 〈Γ〉, then CSP(Γ) cannot have the integer property since the
following CSP(R+ ∪ {{1}})-instance has the unique solution x = 1

2 , y = 1:

∃x, y . x+ x = y ∧ {1}y.

28

Definition 2. Let Γ be a constraint language over Q. We say that Γ is
scalable if the following holds: for each R ∈ Γ and for each x = (x1, . . . , xk) ∈
R, there exists a positive constant A such that (ax1, . . . , axk) ∈ R, for all
a ≥ A.

Clearly, scalable constraint languages cannot contain any unary constant
relation {c} except when c = 0. Note that if Γ has endomorphisms e(x) = a ·x
for all rational a > A > 0, then Γ is indeed scalable. Inferring the existence of
endomorphisms from the scalability property is, in general, not straightforward
or even possible. The scalability property was originally defined slightly
differently [9] but it is easy to verify that the two definitions coincide.

The following result completely characterises the semilinear constraint
languages that contain R+ and have the integer property.

Theorem 12. Let {R+} ⊆ Γ ⊆ SLQ[Q] be a constraint language that is not
0-valid. Then, the following are equivalent:

1. Γ has the integer property.

2. every non-empty unary relation in 〈Γ〉 is either {0} or unbounded.

3. Γ does not satisfy (P∞).

4. Γ is scalable.

Proof. (1) ⇒ (2). We show ¬(2) ⇒ ¬(1). Suppose that T1 6= {0} is a non-
empty bounded unary relation in 〈Γ〉. By Lemma 13, there is a non-empty
unary relation T2 in 〈Γ〉 that is not 0-valid. Therefore, for some c ∈ Q, the
unary relation U = T1 ∩ c · T2 in 〈Γ〉 is non-empty, bounded, and not 0-valid.
Let k = 1 + dmax(| supU |, | inf U |)e. Consider the CSP instance

∃x, y . U(x) ∧ k · y = x,

and note that it has a solution: arbitrarily choose x ∈ U and let y = x/k.
However, it cannot have any integer solution since 0 6∈ U and k was chosen
such that k > |x|. Both U and the equation k · y = x are pp-definable in Γ,
so the claim follows from Lemma 17.

(2) ⇒ (3). We show ¬(3) ⇒ ¬(2). Assume that there exists a unary
relation U in 〈Γ〉 containing a positive point and (M,∞) ∩ U = ∅, for some
M < ∞. If U is bounded, then ¬(2) follows immediately. Otherwise, by
Lemma 2, there exists some M ′ < ∞ such that (M ′,∞) ∩ U = ∅ and
(−∞,−M ′) ⊆ U . By Lemma 4(2), there exists a non-empty bounded unary
relation in 〈{R+, U}〉 and, consequently, there exists such a relation in 〈Γ〉.

29

(3)⇒ (4). We show ¬(4)⇒¬(3). Arbitrarily choose an n-ary relation R ∈
Γ such that R is not scalable. Arbitrarily choose a tuple p = (p1, . . . , pn) ∈ R
that witnesses that R is not scalable, i.e., the set Y = {y ≥ 1 | y · p 6∈ R} is
unbounded. Consider the set U = {a ∈ Q | a · p ∈ R} and note that U is
pp-definable in {R,R+} by Lemma 3:

U(x) ≡ ∃y1, . . . , yn . y1 = x · p1 ∧ · · · ∧ yn = x · pn ∧R(y1, . . . , yn).

Note that 1 ∈ U so U contains a positive point. Furthermore, since Y is
unbounded, it follows from Lemma 2 that (M,∞) ⊆ Y for some M < ∞.
Hence, by definition of U , we have (M,∞) ∩ U = ∅, so Γ satisfies (P∞).

(4) ⇒ (1). This implication is not difficult to deduce from the proof of
Lemma 6 in [9]. We include an argument here for completeness. Assume
that Γ is scalable and let Φ be an arbitrary instance of CSP(Γ) with a
solution x. Let R1, . . . , Rm be an enumeration of the atoms of Φ that contain
a relation symbol from Γ. Since Γ is scalable, it follows that there exists
a constant Ai such that ax satisfies Ri(xi1 , . . . , xik) for all a ≥ Ai. Let
A = max{A1, . . . , Am}. Then, ax satisfies all atoms (including the equalities)
of Φ, for all a ≥ A. Therefore, if a is chosen to be a large enough common
multiple of the denominators in x, then ax is an integral solution to Φ. �

As an immediate application of Theorem 12 we give the complement to
Theorem 11 in the case when Γ violates (P∞).

Corollary 2. Let {R+} ⊆ Γ ⊆ SLQ[Q] be a constraint language that violates
(P∞). The problem CSP(Γ ∪ {Z}) is in P if

• Γ is 0-valid;

• 〈cone(Γ) ∪ {{1}}〉 does not contain a BNU; or

• cone(Γ) is essentially convex.

Otherwise, CSP(Γ ∪ {Z}) is NP-hard.

Proof. If Γ is 0-valid, then Γ ∪ {Z} is 0-valid, and hence in P. Otherwise,
Theorem 12 implies that Γ has the integer property. Therefore, every instance
of CSP(Γ) has a solution if and only if it has an integer solution. It follows
that CSP(Γ∪{Z}) is polynomial-time equivalent to CSP(Γ). Since Γ violates
(P∞), the result follows from Theorem 8. �

30

8. Discussion

8.1. Generalisations
A natural goal, following the proof of Theorem 2, would be to determine

the complexity of CSP(Γ) for an arbitrary semilinear constraint language Γ,
i.e., when Γ does not necessarily contain R+. Below we indicate a few such
attempts and the difficulties that accompany them.

Consider Corollary 1. Our main result, Theorem 2, generalises this by
removing the assumption that {1} is in Γ. A natural question is then what
happens if we instead remove the assumption that the addition relation needs
to be in Γ. To this end, let SL1 denote the set of semilinear constraint
languages such that {{1}} ⊆ Γ and {R+} 6⊆ 〈Γ〉. A straightforward modifi-
cation of the construction in Section 6.3 of Jonsson and Lööw [9] gives the
following: for every constraint language Γ′ over a finite domain, there exists
a Γ ∈ SL1 such that CSP(Γ′) and CSP(Γ) are polynomial-time equivalent
problems. Hence, a complete classification would give us a complete clas-
sification of finite-domain CSPs, and such a classification is a major open
question within the CSP community [3, 4, 17]. We also observe that for every
temporal constraint language (i.e., languages that are first-order definable in
{<} over the rationals), there exists a Γ ∈ SL1 such that CSP(Γ′) and CSP(Γ)
are polynomial-time equivalent problems. This follows from the fact that
every temporal constraint language Γ′ admits a polynomial-time reduction
from CSP(Γ′ ∪ {{1}}) to CSP(Γ′): simply equate all variables appearing in
{1}-constraints and note that any solution can be translated into a solution
such that this variable is assigned the value 1. The complexity of temporal
constraint languages is fully determined [18] and the polynomial-time solvable
cases fall into nine different categories. The proof is complex and it is based
on the universal-algebraic approach for studying CSPs. We conclude that a
complete classification of the languages in SL1 will require advanced tech-
niques and will have to be conditioned on the classification of finite-domains
CSPs.

A smaller first step towards removing R+ from Corollary 1 would be to
only slightly relax the addition relation. Consider the affine addition relation
A+ = {(a, b, c, d) ∈ Q4 | a − b + c = d}. This relation can be viewed as a
‘relaxed’ variant of R+ since A+ can be pp-defined in {R+} but not the other
way round. Let Γ be a constraint language such that {A+, {c}} ⊆ Γ ⊆ SLQ[Q]
for some c ∈ Q. It is not hard to reduce the complexity classification for such
constraint language to that of Theorem 2:

Given a relation R ⊆ Qk and a rational number c ∈ Q, let R+c denote the
relation {(x1 + c, . . . , xk + c) | (x1, . . . , xk) ∈ R}. For instance, A+ + c = A+.

31

Similarly, we define Γ + c = {R+ c | R ∈ Γ} for constraint languages Γ. Note
that CSP(Γ) and CSP(Γ + c) are polynomial-time equivalent problems.

Arbitrarily choose a constraint language {A+, {c}} ⊆ Γ ⊆ SLQ[Q] and
let Γ′ = Γ + (−c). The problem CSP(Γ′) is polynomial-time equivalent with
CSP(Γ), A+ ∈ Γ′ and {0} ∈ Γ′. The fact that A+ ∈ Γ′ and {0} ∈ Γ′ implies
that R+ ∈ 〈Γ′〉 since R+(x, y, z) can be pp-defined by

∃w . {0}(w) ∧ A+(x,w, y, z).

Consequently, CSP(Γ′) and CSP(Γ′ ∪ {R+}) are polynomial-time equivalent
problems. We conclude that CSP(Γ) is either in P or NP-complete by
Theorem 2.

An interesting way forward would be to classify the complexity of CSP(Γ)
for all {A+} ⊆ Γ ⊆ SLQ[Q]. Such a result would be a substantial generalisa-
tion of the results in Section 4 of Bodirsky et al. [7]. Here, we see no obvious
obstacles as in the case above for Γ ∈ SL1.

8.2. The metaproblem
Theorem 2 shows that for every constraint language {R+} ⊆ Γ ⊆ SLQ[Q],

the problem CSP(Γ) is either in P or NP-complete. This makes the following
computational problem (sometimes referred to as a metaproblem in the litera-
ture) relevant: Given a constraint language {R+} ⊆ Γ ⊆ SLQ[Q], is CSP(Γ)
in P or NP-complete?

We do not know the complexity of this problem and, in fact, it is not clear
whether it is decidable or not. Interesting methods for tackling similar ques-
tions have been identified by, for instance, Bodirsky et al. [19] and Dumortier
et al. [20, 21]. Bodirsky et al. analyse the decidability of abstract properties
of constraint languages such as whether certain relations are pp-definable
or not. Their results are based on a number of different techniques from
model theory, universal algebra, Ramsey theory, and topological dynamics.
Dumortier et al. [20, 21] show that it is decidable whether a given first-order
formula using the binary functions ∗ and +, and the binary relation ≤ over R
with parameters from Q defines a semilinear relation. These results indicate
that there are non-obvious properties of semilinear relations that may be
relevant for proving (un)decidability of the metaproblem.

Acknowledgements

The authors thank Manuel Bodirsky for suggesting the relation A+ as
a relaxation of R+ (cf. Section 8.1) and the anonymous reviewers for their
numerous useful comments and suggestions.

32

References

[1] J. Ferrante, C. Rackoff, A decision procedure for the first order theory
of real addition with order, SIAM J. Comput. 4 (1) (1975) 69–76.

[2] A. Bulatov, P. Jeavons, A. Krokhin, Classifying the computational
complexity of constraints using finte algebras, SIAM J. Comput. 34 (3)
(2005) 720–742.

[3] T. Feder, M. Y. Vardi, Monotone monadic SNP and constraint satis-
faction, in: Proceedings of the 25th ACM Symposium on Theory of
Computing (STOC-1993), 1993, pp. 612–622.

[4] T. Feder, M. Y. Vardi, The computational structure of monotone monadic
SNP and constraint satisfaction: a study through datalog and group
theory, SIAM J. Comput. 28 (1) (1998) 57–104.

[5] M. Bodirsky, M. Grohe, Non-dichotomies in constraint satisfaction com-
plexity, in: Proceedings of the 35th International Colloquium on Au-
tomata, Languages and Programming (ICALP-2008), 2008, pp. 184–196.

[6] M. Bodirsky, P. Jonsson, T. von Oertzen, Essential convexity and com-
plexity of semi-algebraic constraints, Log. Methods Comput. Sci. 8 (4)
(2012).

[7] M. Bodirsky, P. Jonsson, T. von Oertzen, Horn versus full first-order:
Complexity dichotomies in algebraic constraint satisfaction, J. Logic
Comput. 22 (3) (2012) 643–660.

[8] D. Marker, Model Theory: An Introduction, Springer, 2002.

[9] P. Jonsson, T. Lööw, Computational complexity of linear constraints
over the integers, Artif. Intell. 195 (2013) 44–62.

[10] P. Jonsson, J. Thapper, Affine consistency and the complexity of semi-
linear constraints, in: Proceedings of 39th International Symposium on
Mathematical Foundations of Computer Science (MFCS-2014), 2014, pp.
420–431.

[11] P. Jeavons, On the algebraic structure of combinatorial problems, Theoret.
Comput. Sci. 200 (1–2) (1998) 185–204.

[12] W. Hodges, A Shorter Model Theory, Cambridge University Press, New
York, 1997.

33

[13] A. Schrijver, Theory of linear and integer programming, John Wiley &
Sons, 1986.

[14] G. Stengle, J. McEnerney, R. Robson, Convex polarities over ordered
fields, J. Pure Appl. Algebra 214 (4) (2010) 370–379.

[15] T. J. Schaefer, The complexity of satisfiability problems, in: Proceedings
of the 10th ACM Symposium on Theory of Computing (STOC-1978),
1978, pp. 216–226.

[16] M. Bodirsky, B. Martin, A. Mottet, Constraint satisfaction problems over
the integers with successor, in: Proceedings of the 42nd International
Colloquium on Automata, Languages and Programming (ICALP-2015)
Part I, 2015, pp. 256–267.

[17] P. Hell, J. Nešetřil, Colouring, constraint satisfaction, and complexity,
Comput. Sci. Rev. 2 (3) (2008) 143–163.

[18] M. Bodirsky, J. Kára, The complexity of temporal constraint satisfaction
problems, J. ACM 57 (2).

[19] M. Bodirsky, M. Pinsker, T. Tsankov, Decidability of definability, J. Symb.
Log. 78 (4) (2013) 1036–1054.

[20] F. Dumortier, M. Gyssens, L. Vandeurzen, D. V. Gucht, On the decid-
ability of semilinearity for semialgebraic sets and its implications for
spatial databases, J. Comput. System Sci. 58 (3) (1999) 535–571.

[21] F. Dumortier, M. Gyssens, L. Vandeurzen, D. V. Gucht, On the decid-
ability of semilinearity for semialgebraic sets and its implications for
spatial databases – CORRIGENDUM, J. Comput. System Sci. 59 (3)
(1999) 557–562.

34

