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Abstract

Masures are generalizations of Bruhat-Tits buildings introduced by Gaussent and
Rousseau in order to study Kac-Moody groups over valued fields. A masure admits
a building at infinity Ch(∂∆), which is a twin building. Ciobotaru, Mühlherr and
Rousseau equipped Ch(∂∆) with a topology called the cone topology. They proved that
this equips Ch(∂∆) with a structure of weak topological twin building in the definition
of Hartnick, Köhl and Mars. In this note, we prove however that unless G is reductive,
Ch(∂∆) is not a topological twin building.

1 Introduction
Bruhat-Tits buildings are an important tool in the study of reductive groups over non-
archimedean local fields. Kac-Moody groups are interesting generalizations of reductive
groups. In order to have an analogous tool in the Kac-Moody frameworks, Gaussent and
Rousseau defined masures in [GR08] (where they are called hovels). Thanks to the works of
Charignon and Rousseau, a masure is now associated to each almost-split Kac-Moody group
over a non-archimedean valued field, see [Cha10], [Rou11], [Rou16] and [Rou17]. Rousseau
gave an axiomatic definition of masures in [Rou11] and we simplified it in [Héb17].

Let G be a split Kac-Moody group over a non-archimedean local field and ∆ be its masure.
As in the Bruhat-Tits theory, ∆ is a union of apartments, all isomorphic to a standard one
A. The group G acts on ∆ and the apartments of ∆ are the g.A for g ∈ G. Let us describe
A. There is still a Weyl group W v and a system Φ of roots but contrary to the reductive
case, W v and Φ are infinite except if G is reductive. One can consider Φ as a set of linear
forms on a finite dimensional affine space A and we can define a fundamental chamber Cv

f .
The Tits cone is the set T =

⋃
w∈W v w.Cv

f . When G is reductive, T = A but when G is not
reductive, T is a proper convex cone of A. If ε ∈ {−,+}, one defines ∂∆ε to be the set of
g.εξ such that g ∈ G and ξ is the direction of a ray included in εT̊ . Then ∂∆+ and ∂∆−
are buildings of type W v. Moreover, ∂∆+ and ∂∆− are naturally twinned and one obtains a
twin building ∂∆ at infinity of ∆. This twin building coincides with the twin building of G.

If G is reductive, then ∆ is a Bruhat-Tits building. It is thus equipped with a structure
of CAT(0)-space. This enables in particular to define a topology - the cone topology - on
the set of chambers ∂∆ of the building at infinity ∂∆. When G is no more reductive, no
structure of CAT(0)-space on ∆ is known. However, motivated by the study of actions of
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groups on ∆, Ciobotaru and Rousseau generalized the definition of the cone topology to the
frameworks of masures, see [CR15].

It seems that topological twin buildings were first studied and axiomatized by Kramer
in [Kra02]. In [HKM13], Hartnick, Köhl and Mars propose an (a priori non equivalent)
axiomatization of topological twin buildings. For them a topological twin building is a twin
building satisfying the axioms TTB1 to TTB4 of Section 3 of [HKM13]. In [CMR17], which
contains the results of [CR15], Ciobotaru, Mühlherr and Rousseau study the properties of the
cone topology. They prove that it satisfies the axioms TTB1, TTB2 and TTB4. Thus ∂∆ is
a weak topological building in the terminology of [HKM13]. They also prove that it satisfies
additional axioms and variations, see 3.4 of [CMR17]. The aim of this note is to prove that
when G is not reductive, then TTB3 is not satisfied and thus ∂∆ is not a topological twin
building (see Proposition 3.1).

Actually we do not limit our study to masures associated to Kac-Moody groups: for us
a masure is a set satisfying the axioms of [Héb17] (which are equivalent to the axioms of
[Rou11]) and whose apartments are associated to a root generating system (and thus to a
Kac-Moody matrix). We do not assume that there exists a group acting strongly transitively
on it. In order to simplify the notation, we consider only semi-discrete masures, which means
that if M is a wall of A, the set of walls parallel to it is discrete. When the masure is
associated to a Kac-Moody group over a valued field, this is equivalent to assuming that the
valuation is discrete. This hypothesis can be suppressed with minor changes.

Acknowledgement I thank Guy Rousseau for remarks on the proof of the main proposi-
tion of this note.

Funding The author was supported by the ANR grant ANR-15-CE40-0012.

2 Masure and cone topology
In this section we give the definition of abstract masures as defined in [Rou11]. We use the
axiomatic of [Héb17]. We only define semi-discrete masures, see [Rou11], [Rou17] or [Héb17]
for a definition in a full generality.

2.1 Vectorial apartment

2.1.1 Root generating system

A Kac-Moody matrix (or generalized Cartan matrix) is a square matrix A = (ai,j)i,j∈I with
integers coefficients, indexed by a finite set I and satisfying:

1. ∀i ∈ I, ai,i = 2

2. ∀(i, j) ∈ I2|i 6= j, ai,j ≤ 0

3. ∀(i, j) ∈ I2, ai,j = 0⇔ aj,i = 0.

A root generating system is a 5-tuple S = (A,X, Y, (αi)i∈I , (α
∨
i )i∈I) made of a Kac-

Moody matrix A indexed by I, of two dual free Z-modules X (of characters) and Y (of
cocharacters) of finite rank rk(X), a family (αi)i∈I (of simple roots) in X and a family
(α∨i )i∈I (of simple coroots) in Y . They have to satisfy the following compatibility condition:
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ai,j = αj(α
∨
i ) for all i, j ∈ I. We also suppose that the family (αi)i∈I is free in X and that

the family (α∨i )i∈I is free in Y .
We now fix a Kac-Moody matrix A and a root generating system with matrix A.
Let A = Y ⊗ R. Every element of X induces a linear form on A. We will consider X as

a subset of the dual A∗ of A: the αi’s, i ∈ I are viewed as linear forms on A. For i ∈ I, we
define an involution ri of A by ri(v) = v − αi(v)α∨i for all v ∈ A. Its space of fixed points
is kerαi. The subgroup of GL(A) generated by the αi’s for i ∈ I is denoted by W v and is
called the Weyl group of S. The system (W v, {ri|i ∈ I}) is a Coxeter system.

Let Q∨Z =
⊕

i∈I Zα∨i be the coroot lattice of A.
One defines an action of the group W v on A∗ by the following way: if x ∈ A, w ∈ W v and

α ∈ A∗ then (w.α)(x) = α(w−1.x). Let Φ = {w.αi|(w, i) ∈ W v×I}, Φ is the set of real roots.
Then Φ ⊂ Q , where Q =

⊕
i∈I Zαi is the root lattice ofA. Let W = Q∨ oW v ⊂ GA(A)

be the affine Weyl group of S, where GA(A) is the group of affine isomorphisms of A.

2.2 Vectorial faces and Tits cone

Define Cv
f = {v ∈ A| αi(v) > 0, ∀i ∈ I}. We call it the fundamental chamber. For

J ⊂ I, one sets F v(J) = {v ∈ A| αi(v) = 0 ∀i ∈ J, αi(v) > 0 ∀i ∈ J\I}. Then the closure
Cv
f of Cv

f is the union of the F v(J) for J ⊂ I. The positive (resp. negative) vectorial
faces are the sets w.F v(J) (resp. −w.F v(J)) for w ∈ W v and J ⊂ I. A vectorial face is
either a positive vectorial face or a negative vectorial face. We call positive chamber (resp.
negative) every cone of the shape w.Cv

f for some w ∈ W v (resp. −w.Cv
f ). For all x ∈ Cv

f

and for all w ∈ W v, w.x = x implies that w = 1. In particular the action of w on the positive
chambers is simply transitive. The Tits cone T is defined by T =

⋃
w∈W v w.Cv

f . We also
consider the negative cone −T . We define a W v-invariant relation ≤ on A by: ∀(x, y) ∈ A2,
x ≤ y ⇔ y − x ∈ T . This relation is called the Tits preorder.

A vectorial face is spherical if its fixer in W v is finite.

2.3 Masure

2.3.1 Filters

Definition 2.1. A filter in a set E is a nonempty set F of nonempty subsets of E such that,
for all subsets S, S ′ of E, if S, S ′ ∈ F then S ∩ S ′ ∈ F and, if S ′ ⊂ S, with S ′ ∈ F then
S ∈ F .

If F is a filter in a set E, and E ′ is a subset of E, one says that F contains E ′ if every
element of F contains E ′. If E ′ is nonempty, the set FE′ of subsets of E containing E ′ is
a filter. By abuse of language, we will sometimes say that E ′ is a filter by identifying FE′
and E ′. If F is a filter in E, its closure F (resp. its convex hull) is the filter of subsets of E
containing the closure (resp. the convex hull) of some element of F . A filter F is said to be
contained in an other filter F ′: F ⊂ F ′ (resp. in a subset Z in E: F ⊂ Z) if and only if any
set in F ′ (resp. if Z) is in F .

If x ∈ A and Ω is a subset of A containing x in its closure, then the germ of Ω in x is
the filter germx(Ω) of subsets of A containing a neighborhood in Ω of x.

A sector in A is a set of the shape s = x + Cv with Cv = ±w.Cv
f for some x ∈ A and

w ∈ W v. The point x is its base point and Cv is its direction. The intersection of two
sectors of the same direction is a sector of the same direction.

The sector-germ of a sector s = x + Cv is the filter S of subsets of A containing an
A-translate of s. It only depends on the direction Cv.
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A sector-face in A is a set of the shape s = x+F v with F v = ±w.F v(J) for some x ∈ A,
w ∈ W v and some J ⊂ I. The the germ at infinity or simply the germ of a sector-face
s = x+ F v is the filter S of subsets of A containing u+ x+ F v for some u ∈ F v.

A ray Ξ with base point x and containing y 6= x (or the interval ]x, y] = [x, y]\{x} or
[x, y]) is called preordered if x ≤ y or y ≤ x and generic if y−x ∈ ±T̊ , the interior of ±T .

Let Ξ be a generic ray. The germ germ∞(Ξ) of Ξ is the set of subsets E of A such that
Ξ \ E is bounded.

2.3.2 Definitions of walls, enclosures, faces and related notions

Enclosure A hyperplane of the form α−1({k}) with α ∈ Φ and k ∈ Z is called a wall.
A half-space of A delimited by a wall is a half-apartment. If α ∈ Φ and k ∈ Z, one sets
M(α, k) = {x ∈ A| α(x) + k = 0}, D(α, k) = {x ∈ A|α(x) + k ≥ 0} and D◦(α, k) = D̊(α, k).

A set P ⊂ A is said to be enclosed if there exist n ∈ N and half-apartments D1, . . . , Dn

such that P =
⋂n
i=1Di.

If X is a filter of A, its enclosure is the filter cl(X ) defined as follows. A set E is in
cl(X ) if and only if there exists an enclosed set E ′ ⊂ E such that E ′ is enclosed and E ′ ∈ X .

Faces A local face F ` in A is a filter associated to a point x ∈ A, its vertex and a
vectorial face F v ⊂ A, its direction. It is defined by F ` = germx(x + F v) and we denote
it by F `(x, F v). A face F in A is a filter associated to a point x ∈ A and a vectorial face
F v ⊂ A. More precisely, a subset S of A is an element of the face F = F (x, F v) if and
only if it contains a finite intersection of half-apartments or open half-apartments containing
F `(x, F v).

There is an order on the (local) faces: if F ⊂ F ′ we say that “F is a face of F ′ ” or “F ′
contains F ” or “F ′ dominates F ”. The dimension of a face F is the smallest dimension of
an affine space generated by some S ∈ F . Such an affine space is unique and is called its
support.

As W v stabilizes Φ, any element of W v permutes the sets of the shape D(α, k) where α
runs over Φ and k ∈ Z. Thus W permutes the enclosures, faces, ... of A.

A chamber (or alcove) is a maximal face, i.e a face F `(x,±w.Cv
f ) for x ∈ A and w ∈ W v.

A panel is a spherical face maximal among faces that are not chambers or equivalently
a spherical face of dimension dimA− 1.

Chimneys A chimney in A is associated to a face F = F (x, F v
0 ) and to a vectorial face

F v; it is the filter r(F, F v) = cl(F + F v). The face F is a basis of the chimney and the
vectorial face F v its direction. A chimney is splayed if F v is spherical.

A shortening of a chimney r(F, F v), with F = F (x, F v
0 ) is a chimney of the shape

r(F (x + ξ, F v
0 ), F v) for some ξ ∈ F v. The germ of a chimney r is the filter of subsets of A

containing a shortening of r.

2.3.3 Masure

An apartment of type A is a set A with a nonempty set Isom(A, A) of bijections (called
Weyl-isomorphisms) such that if f0 ∈ Isom(A, A) then f ∈ Isom(A, A) if and only if, there
exists w ∈ W satisfying f = f0 ◦ w. We will say isomorphism instead of Weyl-isomorphism
in the sequel. An isomorphism between two apartments φ : A → A′ is a bijection such that
(f ∈ Isom(A, A) if, and only if, φ ◦ f ∈ Isom(A, A′)). We extend all the notions that are
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preserved by W to each apartment. Thus sectors, enclosures, faces and chimneys are well
defined in any apartment of type A.

If A,A′ are apartments, φ : A → A′ is an isomorphism of apartments and E ⊂ A ∩ A′,
the notation φ : A

E→ A′ means that φ fixes E.

Definition 2.2. A masure of type A is a set I endowed with a covering A of subsets called
apartments such that:

(MA i): Any A ∈ A admits a structure of an apartment of type A.
(MA ii): if two apartments A,A′ contain a generic ray, then A∩A′ is enclosed and there

exists an isomorphism φ : A
A∩A′→ A′.

(MA iii): if R is the germ of a splayed chimney and if F is a face or a germ of a chimney,
then there exists an apartment containing R and F .

In this definition, one says that an apartment contains a germ of a filter if it contains
at least one element of this germ. One says that a map fixes a germ if it fixes at least one
element of this germ.

The masure is said to be thick if for each panel of ∆, there exists at least three chambers
dominating it.

When ∆ is associated to an affine Kac-Moody group, one can replace (MA ii) by
(MA af ii): if A,A′ are two apartments then A ∩ A′ is enclosed and there exists an

isomorphism φ : A
A∩A′→ A′.

2.4 Twin building at infinity and cone topology

2.4.1 Buildings at infinity

We now define the twin building of ∆, see also Section 3 of [Rou11] or 2.4.2 of [CMR17].
Let F and F ′ (resp. ξ and ξ′) be two spherical sector-faces (resp. two germs of generic

rays) of ∆. By (MA iii), there exists an apartment A containing their germs F and F′ (resp.
ξ and ξ′). One says that F and F ′ (resp. ξ and ξ′) are parallel if there exists a vectorial face
F v
A (resp. a generic ray ΞA) of A such that F = germ∞(x+F v

A) and F′ = germ∞(x′+F v
A) for

some x, x′ ∈ A (resp. ξ = germ∞(x+ ΞA) and ξ′ = germ∞(x′ + ΞA)). This does not depend
on the choice of A (this is a consequence of (MA ii)). Parallelism is an equivalence relation.
The parallelism class of a sector-face germ F is denoted F∞ and is called the direction of
F. The parallelism class of a generic ray is called its direction.

Let ∂∆+ (resp. ∂∆−) be the set of directions of positive (resp. negative) spherical sector-
faces of ∆. Then ∂∆+ and ∂∆− are disjoint unless ∆ is a Bruhat-Tits building (which
happens if and only if W v is finite), in which case ∂∆+ = ∂∆−. One sets ∂∆ = ∂∆+ ∪ ∂∆−.

Let ε ∈ {−,+}. One defines an order on ∂∆ε as follows. Let F∞1 ,F
∞
2 ∈ ∂∆ε. Let A

be an apartment containing F∞1 ,F
∞
2 . Then one says that F∞1 dominates F∞2 if there exists

sector-faces F1, F2 of A such that F1 dominates F2 and whose directions are F∞1 and F∞2 .
If A is an apartment, one denotes by ∂Aε the set of directions of sector-faces of sign ε and

one sets ∂A = ∂A+ ∪ ∂A−. Let A be the set of apartments of ∆ and ∂A = {∂A| A ∈ A}.
The elements of ∂A are called apartments at infinity. Then by Théorème 3.4 of [Rou11],
∂∆ε equipped with its system of apartments and the domination relation is a combinatorial
building of type W v (see 2.4.1 of [Rém02] for a definition, it is however not really a simplicial
complex, as we consider only directions of spherical sector-faces).

If ε ∈ {−,+, ∅}, one denotes by Ch(∂∆)ε ⊂ ∂∆ε the set of directions of sectors. The
elements of Ch(∂∆) are called chambers at infinity.
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2.4.2 W v-distance and codistance

Let ε ∈ {−,+}. Let (F∞1 ,F
∞
2 ) in (Ch(∂∆)ε)

2 (resp. in (Ch(∂∆)ε×Ch(∂∆)−ε)∪ (Ch(∂∆)−ε×
Ch(∂∆)ε)). Let A be an apartment containing F∞1 , F∞2 , which exists by (MA iii). Let
φ : A→ A be an isomorphism of apartments. Let F v

1 , F v
2 be vectorial chambers of A whose

directions are φ(F∞1 ) and φ(F∞2 ). Let w ∈ W v such that F v
1 = w.F v

2 (resp. F v
1 = −w.F v

2 ).
One sets δ(F∞1 ,F∞2 ) = w (resp. δ∗(F∞1 ,F∞2 ) = w). These definitions do not depend on the
choices we made. Then δ : Ch(∂∆)ε × Ch(∂∆)ε → W v is a W v-distance on Ch(∂∆)ε for the
definition of 2.3.1 of [Rém02].

By Théorème 3.7 of [Rou11], the codistance δ∗ : (Ch(∂∆)ε×Ch(∂∆)−ε)∪ (Ch(∂∆)−ε×
Ch(∂∆)ε)→ W v defines a twinning of Ch(∂∆)+ and Ch(∂∆)− (see 2.5.1 of [Rém02] for the
definition of a twinning).

2.4.3 Cone topology on Ch(∂∆)

Let +∞ be the germ at infinity of Cv
f . One chooses a ray Ξ+∞ ⊂ Cv

f based at 0 and one
denotes by ξ+∞ its germ. Let c ∈ Ch(∂∆). Then there exists ε ∈ {−,+} and a isomorphism
of apartments such that c = φ(ε∞). One sets ξc = φ(εξ+∞). This definition does not depend
on the choices we made.

Let x ∈ ∆ and F∞ ∈ ∂∆ (resp. ξ be the direction of a generic ray). Then there exists a
unique sector-face Qx,F∞ (resp. a unique generic ray [x, ξ)) based at x and whose direction is
F∞ (resp. whose direction is ξ). Indeed, by (MA iii), there exists an apartment A containing
x and F∞. Let F be a sector face of A whose direction is F∞. Then Qx,F∞ is the translate of
F in A based at x. This does not depend on the choices we made by Proposition 4.7 1) of
[Rou11]. One obtains the result for rays similarly.

Let x ∈ ∆, c ∈ Ch(∂∆) and r ∈ [x, ξc). One sets

Ux,r,c = {c′ ∈ Ch(∂∆)| [x, r] ⊂ [x, ξc′)}.

The cone topology on Ch(∂∆) is the topology generated by the Ux,r,c such that c ∈ Ch(∂∆)
and r ∈ [x, ξc). By Lemma 3.3 and Proposition 3.5 of [CMR17], this topology depend neither
on the choice of ξ+∞ nor on the choice of x ∈ ∆.

The cone topology is Hausdorff (Lemma 3.13 of [CMR17]). Indeed, if c 6= c′ ∈ Ch(∂∆),
one chooses an apartment A containing c, c′. One can suppose that x ∈ A. Then for all
r ∈ (x, ξc) and r′ ∈ (x, ξc′), one has c ∈ Ux,r,c, c′ ∈ Ux,r,c′ and Ux,r,c ∩ Ux,r′,c′ = ∅.

From now on, we assume that x = 0.

3 Non-satisfaction of the axiom (TTB3)
If c ∈ Ch(∂∆) and w ∈ W v, one sets E≤w(c) = {d ∈ Ch(∂∆)ε| δ(c, d) ≤ w}, where ε is the
sign of c and ≤ is the Bruhat order.

On says that Ch(∂∆)ε = lim
→
E≤w(c) topologically if it satisfies:

“ subset U ⊂ Ch(∂∆) is open if and only if U ∩E≤w(c) is open in E≤w(c) (for the topology
induced by the cone topology) for all w ∈ W v ”.

The aim of this note is to prove the following proposition:

Proposition 3.1. Let ∆ be a thick masure such that W v is infinite. We equip Ch(∂∆) with
the cone topology. Then the axiom (TTB3) of [HKM13] is not satisfied, which means that
for all c ∈ Ch(∂∆), one has topologically Ch(∂∆)ε 6= lim

→
E≤w(c), where ε is the sign of c. In

particular, Ch(∂∆) is not a topological twin building in the definition of [HKM13].
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In order to prove this, we construct for each chamber c in Ch(∂∆) a set U ⊂ Ch(∂∆)
such that:

- U ∩ E≤w(c) is open for all w ∈ W v

- U is not open.

Let us fix some notation. Let ∆ be a thick masure with W v infinite. Let c ∈ Ch(∂∆) and
ε be its sign. We will consider only chambers of sign ε. Let A be an apartment containing c.
One identifies A and A. If d ∈ Ch(∂∆) and r ∈ [0, ξd), one writes Ur,d instead of U0,r,d.

If w ∈ W v, one sets E≤w = E≤w(c) and Fw =
⋃
v∈W v | `(v)≤`(w)E≤v.

Let α ∈ Φ such that D(α, k) + c for all k ∈ R.
If w ∈ W v, one chooses an apartment Aw such that A ∩ Aw = D

(
α, `(w)

)
, which is

possible by Proposition 2.9 of [Rou11]. By (MA ii), there exists a unique isomorphism
φw : A→ Aw fixing A ∩ Aw pointwise. One identifies R+ and [0, ξc). Let rw ∈ R+ such that
D
(
α, `(w)

)
∩ [0, ξc) = [0, rw].

If A is an apartment such that A∩A contains 0 in its interior, there exists a unique chamber
d of ∂A such that [0, ξd)∩ [0, ξc) 6= {0} and we denote it by cA. Indeed, the enclosure d of the
ray of A based at 0 and containing the germ of [0, ξc) in 0 satisfies [0, ξd) ∩ [0, ξc) 6= 0. The
uniqueness is a consequence of the fact that two vectorial faces of A are equal or disjoint. In
particular if φ : A→ A is an isomorphism fixing a neighborhood of 0, then cA = φ(c).

Let d ∈ Ch(∂∆), A be an apartment containing Q0,d and φ : A → A be an isomorphism
sending Q0,c on Q0,d. If r ∈ R+, one sets [0, r]d = φ([0, r]) and Ur,d = Uφ(r),d.

3.1 Construction of a sequence (dw)w∈W v

The aim of this subsection is to construct a sequence (dw)w∈W v of chambers such that for all
w ∈ W v, dw /∈ Fw and [0, ξdw) ∩ [0, ξc) = [0, rw].

An element s ∈ W v is called a reflection of A if it is of the shape w.ri.w−1 for some
w ∈ W v and i ∈ I. Using isomorphisms of apartments, we extend this notion to each
apartment of ∆. Let M be a wall of A. One writes M = (w.αi)

−1({0}) for some i ∈ I and
w ∈ W v. Then w.ri.w

−1 is a reflection fixing M and thus the number of reflections of A
fixing 0 is infinite.

Lemma 3.2. Let A be an apartment such that A∩A contains 0 in its interior. Let A1 be an
apartment such that A1∩A contains 0 in its interior and such that A∩A1 is a half-apartment
which does not contain cA. Let M be the wall of A ∩A1 and A2 = M ∪A1\A ∪A\A1. Let s
be the reflection of A2 fixing M . Then:

1. One has cA1 = s(cA).

2. Let s′ : A→ A be a reflection fixing M and f : A→ A be a isomorphism. Let s′′ ∈ W v

be the vectorial part of f ◦ s′ ◦ f−1 ∈ W v. Then δ(cA, cA1) = s′′.

Proof. Let φ0 : A1
A1∩A2→ A2, φ1 : A

A∩A2→ A2 and φ2 : A
A∩A1→ A1. Then by Lemma 3.4 of

[Héb16], the following diagram is commutative:

A

φ1
��

φ2 // A1

φ0
��

A2
s // A2.
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One has cA1 = φ2(cA) = φ0 ◦ φ2(cA) and cA = φ1(cA), which proves 1, from which we
deduce 2.

Lemma 3.3. The set {δ(cAw , c)| w ∈ W v} is finite.

Proof. Let c′ be a chamber of A such that c′ ⊂ D(α, k) for all k ∈ Z. Let w ∈ W v. One has
cAw = φw(c). One has δ(c′, c) = δ(φw(c′), φw(c)) = δ(c′, cAw) and the lemma follows.

For the next lemma, one uses the Tits preorder on ∆. Let us define it. As the Tits
preorder ≤ on A is W -invariant, one can define a Tits preorder ≤A on each apartment. Let
x, y ∈ ∆. By Proposition 5.4 of [Rou11], if there exists an apartment A containing {x, y}
for which x ≤A y, then x ≤A′ y for each apartment A′ containing {x, y}. Thus this defines a
relation ≤ on ∆. By Théorème 5.9 of [Rou11], this relation is a preorder and we call it the
Tits preorder.

Lemma 3.4. Let w ∈ W v. Then there exists dw ∈ Ch(∂∆) such that dw /∈ Fw and [0, ξdw)∩
[0, ξc) = [0, rw].

Proof. Let s′′ ∈ W v be a reflection such that `(s′′) > `(w) + 1 + max{`
(
δ(cAw , c)

)
| w ∈ W v}.

Let M ′′ be the fixed wall of s′′ and M ′ = φw(M ′′). Let A1 be an apartment satisfying the
following conditions:

- Aw ∩ A1 is a half-apartment containing [0, rw] in its interior,

- the wall of Aw ∩ A1 is parallel to M ′,

- Aw ∩ A1 does not contain cAw .

Let dw = cA1 . Then `
(
δ(dw, c)

)
≥ `
(
δ(dw, cAw)

)
− `
(
δ(cAw , c)

)
= `(s′′) − `

(
δ(cAw , c)

)
≥

`(w) + 1.
By construction, [0, ξdw) ∩ [0, ξc) contains [0, rw]. Suppose that there exists z ∈ [0, ξdw) ∩

[0, ξc)\[0, rw]. Then z ≥ rw. By Proposition 5.4 of [Rou11], [rw, z]A1 = [rw, z]A. Moreover
for z′ ∈ (rw, z)A1 near enough from rw, z′ ∈ Aw and consequently z′ ∈ Aw ∩ A. This is
absurd because Aw ∩ A ∩ [0, ξc) = [0, rw]. Therefore [0, ξdw) ∩ [0, ξc) = [0, rw] and the lemma
is proved.

3.2 Construction of U

Let (dw)w∈W v such that for all w ∈ W v, dw /∈ Fw and [0, ξdw) ∩ [0, ξc) = [0, rw], where
[0, rw] = [0, ξc) ∩D

(
α, ell(w)

)
. Let D = {dw|w ∈ W v} and D = D ∪ {c}. We now construct

a set U containing c, such that U ∩ D = ∅ and such that U ∩ E≤w is open for all w ∈ W v.

Lemma 3.5. Let V be an nonempty open set and d ∈ V . Then there exists r ∈ R∗+ such
that V ⊃ Ur,d.

Proof. By definition, there exist J ⊂ Ch(∂∆) and (rd′) ∈ (R∗+)J such that V =
⋃
d′∈J Urd′ ,d′ .

Let d′ ∈ J such that d ∈ Urd′ ,d′ . Then Urd′ ,d = Urd′ ,d′ , thus Urd′ ,d ⊂ V , which proves the
lemma.

Lemma 3.6. Let d ∈ Ch(∂∆). Then
⋂
r∈R∗+

Ur,d = {d}.

Lemma 3.7. Let d ∈ Ch(∂∆)\D. Then there exists ad ∈ R+ such that Uad,d ∩ D = ∅.
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Proof. As Ch(∂∆) is Hausdorff, there exist open sets Vd 3 d and Vc 3 c such that Vc∩Vd = ∅.
One has lim

`(w)→+∞
dw = c and thus for `(w) large enough, dw ∈ Vc. Therefore Vd ∩ D is finite.

By Lemma 3.5, one can suppose, reducing Vd if necessary that Vd = Ur,d for some r ∈ R+.
We conclude with Lemma 3.6.

Lemma 3.8. Let w ∈ W v. Then (Urw,c ∩ E≤w) ∩ D is empty.

Proof. Let v ∈ W v. If `(v) < `(w), then [0, ξdv)∩ [0, ξc) = [0, rv] ( [0, rw] and thus dv /∈ Urw,c.
If `(w) ≤ `(v), then dv /∈ Fv by construction. As Fv ⊃ E≤w, the lemma follows.

If w ∈ W v, one sets
Uw =

⋃
d∈(Urw,c∩E≤w)\{c}

Urw+ad,d,

which is well-defined by the lemma above. One sets U =
⋃
w∈W v Uw ∪ {c}. By construction,

U ∩ D = ∅.

Lemma 3.9. Let w ∈ W v. Then Uw ⊂ Urw,c.

Proof. Let d ∈ Urw,c and d′ ∈ Urw+ad,d. Then

[0, ξd′) ∩ [0, ξd) ⊃ [0, rw + ad]d ⊃ [0, rw]d = [0, rw]c,

thus d′ ∈ Urw,c and the lemma follows.

Lemma 3.10. Let w ∈ W v. Then (Uw ∪ {c}) ∩ E≤w = Urw,c ∩ E≤w.

Proof. Let d ∈ (Urw,c ∩ E≤w)\{c}. Then d ∈ Urw+ad,d and thus

d ∈
⋃

d′∈(Urw,c∩E≤w)\{c}

Urw+ad′ ,d
′ = Uw.

Therefore Urw,c ∩ E≤w ⊂ (Uw ∪ {c}) ∩ E≤w.
By Lemma 3.9, (Uw ∪ {c}) ∩ E≤w ⊂ Urw,c ∩ E≤w and the lemma follows.

The following lemma implies Proposition 3.1.

Lemma 3.11. The set U is not open but for all w ∈ W v, U ∩ E≤w is open in E≤w.

Proof. One has dw → c, U 3 c but U ∩ D = ∅ and thus U is not open.
Let w ∈ W v. Then

U ∩ E≤w =
(
(Uw ∪ {c}) ∩ E≤w

)
∪
( ⋃
v∈W v\{w}

(Uv ∩ E≤w)
)

= (Urw,c ∪
⋃

v∈W v\{w}

Uv) ∩ E≤w

is open in E≤w.
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