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INTRODUCTION

Support vector machines (SVMs) have gained much popularity in solving large-scale classification problems, thanks to their excellent performance and their ability to efficiently deal with large datasets. In order to predict the class z ∈ {1, . . . , K} that best matches an observation u ∈ R N (e.g. a signal, an image or a graph), SVMs rely on a discriminant function D : R N × {1, . . . , K} → R which is built from a set of L input-output pairs S = (u ( ) , z ( ) ) ∈ R N ×{1, . . . , K} | ∈ {1, . . . , L} . This function aims at partitioning the observation space into K regions (one for each expected class) and it is estimated so that the separating hyperplanes maximize the distance to the nearest training point of any class. Such a maximum-margin principle was originally formulated in [START_REF] Cortes | Support-vector networks[END_REF] for K = 2 and then generalized in [START_REF] Crammer | On the algorithmic implementation of multiclass kernel-based vector machines[END_REF] for K ≥ 2.

Most of the applications considered in the literature deal with a large amount of training data [START_REF] Laptev | Learning realistic human actions from movies[END_REF][START_REF] Martín-Iglesias | A speech recognizer based on multiclass SVMs with HMM-guided segmentation[END_REF] or a huge (even infinite) number of classes [START_REF] Tsochantaridis | Large margin methods for structured and interdependent output variables[END_REF]. Consequently, the major difficulty encountered in this kind of applications stems from the computational cost. On the other hand, in some applications, only a small number of training data is available. This is undoubtedly true in medical contexts, where the goal is to classify a patient as "being in good health", "being contaminated", or "being infected", but the verified cases of infected patients might be just a few. In such applications, the lack of training data may lead to the so-called overfitting, eventually leading to a prediction which is too strongly tailored to the particularities of the training set and poorly generalizes to new data.

Formally, the discriminant function is assumed to be linear in some combined feature representation of inputs and outputs [START_REF] Cover | Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition[END_REF]. This assumption leads to

∀(u, z) ∈ R N × {1, . . . , K} D(u, z) = x Ψ(u, z),
where, for every z ∈ {1, . . . , K}, Ψ(•, z) : R N → R M K is such that x Ψ(u, z) = (x (z) ) φ(u), the function φ : R N → R M denotes a mapping1 from the input space R N onto an arbitrary feature space R M , and x = (x (z) ) 1≤z≤K ∈ R M K denotes the vector to be estimated, block decomposed into vectors x (z) ∈ R M with z ∈ {1, . . . , K}.

Related works. The multiclass SVM proposed in [START_REF] Crammer | On the algorithmic implementation of multiclass kernel-based vector machines[END_REF] amounts to solving the following convex optimization problem minimize

(x,ξ)∈R M K ×R L 1 2 x 2 + λ L =1 ξ ( ) subj. to      (∀ ∈ {1, . . . , L})(∀j ∈ {1, . . . , K -1}) x w ( ,j) ≥ 1 -ξ ( ) , (∀ ∈ {1, . . . , L}) ξ ( ) ≥ 0, (1) 
where ξ = (ξ ( ) ) 1≤ ≤L is the vector of slack variables, λ > 0 is a regularization constant, while for every ∈ {1, . . . , L},

(w ( ,j) ) 1≤j≤K-1 = Ψ(u ( ) , z) -Ψ(u ( ) , z ( ) ) z∈{1,...,K}\{z ( ) }
.

The above problem was solved in [START_REF] Crammer | On the algorithmic implementation of multiclass kernel-based vector machines[END_REF] by using standard Lagrangian duality techniques. While the dual formulation brings in several advantages (e.g. the kernel trick [START_REF] Aizerman | Theoretical foundations of the potential function method in pattern recognition learning[END_REF]), the problem size becomes prohibitive when the number of classes is high. Hence, recent works [START_REF] Tsochantaridis | Large margin methods for structured and interdependent output variables[END_REF][START_REF] Joachims | Cutting-plane training of structural SVMs[END_REF] proposed to approximate the dual problem using cutting plane approaches, in order to address scenarios with thousands or even an infinite number of classes. Since the features are not equally informative, a common solution to prevent overfitting consists of imposing a sparsity condition on the vector x. In this respect, the 1 -norm and, more generally, the mixed 1,p -norm have proven to be useful in several machine-learning applications [START_REF] Bach | Optimization with sparsity-inducing penalties[END_REF][START_REF] Jalali | A dirty model for multi-task learning[END_REF][START_REF] Quattoni | An efficient projection for 1,∞ regularization[END_REF]. However, when a nonsmooth penalty is substituted for the 2 -norm, the dual formulation becomes non trivial. For this reason, when sparse classification is proposed, the maximum-margin principle is equivalently formulated by using the hinge loss function [START_REF] Wang | On L1-norm multi-class support vector machines[END_REF][START_REF] Langford | Sparse online learning via truncated gradient[END_REF][START_REF] Bot | Employing different loss functions for the classification of images via supervised learning[END_REF][START_REF] Blondel | Block coordinate descent algorithms for large-scale sparse multiclass classification[END_REF]. A different approach for sparse classification consists of replacing the hinge loss with other types of loss functions, such as the logistic loss [START_REF] Koh | An interior-point method for large-scale 1-regularized logistic regression[END_REF][START_REF] Langford | Sparse online learning via truncated gradient[END_REF][START_REF] Krishnapuram | Sparse multinomial logistic regression: Fast algorithms and generalization bounds[END_REF]. All these solutions aim at simplifying the optimization procedure, but they do not solve rigorously (1) with a sparse penalization.

Contributions. In this work, we propose an efficient solution to exactly solve (1) in the case when the 2 -norm is replaced by any convex, lower semi-continuous, and proper function

g from R M K to ]-∞, +∞].
The only assumption required by our method is that the proximity operator [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] of g can be calculated explicitly. This is certainly the case for the mixed [START_REF] Chaux | A variational formulation for frame-based inverse problems[END_REF][START_REF] Combettes | A proximal decomposition method for solving convex variational inverse problems[END_REF][START_REF] Fadili | Total variation projection with first order schemes[END_REF]. The paper is organized as follows. In Section 2, we formulate the multiclass problem in terms of nonlinear epigraphical constraints, in Section 3 we provide the proximal tools and the epigraphical projection needed to solve the proposed problem, and in Section 4 we compare our solution with the conventional 2 -SVM on a standard database.

1,p -norm with p ∈ {1, 2, +∞}
Notation. Γ 0 (R N ) denotes the set of proper, lower semicontinuous, convex functions from

R N to ]-∞, +∞]. The epigraph of ϕ ∈ Γ 0 (R N ) is the nonempty closed convex subset of R N × R defined as epi ϕ = (y, ζ) ∈ R N × R ϕ(y) ≤ ζ . For every y ∈ R N , the proximity operator of ϕ is prox ϕ (y) = argmin u∈R N u -y 2 + ϕ(u) and the projection onto a nonempty closed convex subset C ⊂ R N is P C (y) = prox ι C (y) = argmin u∈C u -y 2
, where ι C is the indicator function of C, equal to 0 on C and +∞ otherwise.

SPARSE MULTICLASS SVM

We extend Problem (1) by replacing the 2 -norm regularization with a generic function g ∈ Γ 0 (R M K ) and by considering a constrained structural-risk minimization. To do so, for every ∈ {1, . . . , L}, we introduce the function

(∀y ( ) = (y ( ,j) ) 1≤j≤K-1 ∈ R (K-1) ) h ( ) (y ( ) ) = max 1≤j≤K-1 y ( ,j) + µ, (2) 
where y ( ,j) = -x w ( ,j) and µ is a positive constant that allows us to model the margin-rescaling criterion in [START_REF] Taskar | Max-margin Markov networks[END_REF]. Con-sequently, in order to estimate the vector x from the training data in S, we aim at solving the convex problem:

minimize (x,ξ)∈R M K ×R L g(x) subj. to        ξ (1) + • • • + ξ (L) ≤ η, (∀ ∈ {1, . . . , L}) h ( ) (y ( ) ) ≤ ξ ( ) , (∀ ∈ {1, . . . , L}) ξ ( ) ≥ 0, (3) 
where η is a positive constant. Note that the above decomposition yields the same reformulation of Problem (1) as considered in [START_REF] Crammer | On the algorithmic implementation of multiclass kernel-based vector machines[END_REF], except for the function g and the half-space constraint over the slack vector. Indeed, the above constrained formulation is equivalent to Problem (1) for some specific values of η and λ, but the constrained one allows us to control more easily the effect of slack variables. The advantage of the constrained formulation is that the choice of η may be easier, since it is directly related to the properties of training data. The function g is chosen so as to prefer a simple solution rather than a complex one. This condition is typically achieved by promoting a sparse solution. Sparsity can be enforced with different regularization functions. A popular example is the 1 -norm [START_REF] Bach | Optimization with sparsity-inducing penalties[END_REF], which is known to induce sparsity: the solution will have a number of coefficients exactly equal to zero, depending on the strength of the regularization. Another example is given by the mixed 1,p -norm [START_REF] Bach | Optimization with sparsity-inducing penalties[END_REF], defined for each x = (x (z) ) 1≤z≤K ∈ R M K which is block-decomposed, for every z ∈ {1, . . . , K}, as

x (z) = [x (z,1) . . . x (z,B) ] ∈ R M : x 1,p = K z=1 B b=1 x (z,b) p. ( 4 
)
The mixed-norm is known to induce block-sparsity: the solution is partitioned into groups and the variables of each group are ideally either all zeros or all non-zeros. In this context, the exponent values p = 2 or p = +∞ are the most popular choices. In particular, the 1,∞ -norm tends to favour solutions with many components of equal magnitude.

ALGORITHMIC SOLUTION

Within the proposed constrained optimization framework, a possible reformulation of Problem (3) is the following:

minimize (x,ξ)∈R M K ×V g(x) subj. to (W x, ξ) ∈ E, (5) 
where W ∈ R L(K-1)×M K is the linear operator such that

W x = y = (y ( ) ) 1≤ ≤L , (6) 
the set V denotes the simplex

V = ξ ∈ [0, +∞[ L ξ (1) + • • • + ξ (L) ≤ η , (7) 
and the set E is a collection of epigraphs

E = (y, ξ) ∈ R L(K-1) × R L (∀ ∈ {1, . . . , L}) (y ( ) , ξ ( ) ) ∈ epi h ( ) . (8) 

Epigraphical projection

The advantage of the epigraphical decomposition is that the projections P E and P V onto E and V have closed-form expressions. Indeed, the projection P V is given in [START_REF] Rockafellar | Variational analysis[END_REF], while the projection P E is block-decomposed as

P E (y, ξ) = P epi h ( ) (y ( ) , ξ ( ) ) 1≤ ≤L , (9) 
where, for every (y ( ) , ξ ( )

) ∈ R K-1 × R, P epi h ( ) (y ( ) , ξ ( ) )
denotes the solution of

min (p ( ) ,θ ( ) )∈epi h ( ) p ( ) -y ( ) 2 + (θ ( ) -ξ ( ) ) 2 (10) 
which is equivalent to find

min θ ( ) ∈R (θ ( ) -ξ ( ) ) 2 + min p ( ,1) ≤θ ( ) -µ ... p ( ,K-1) ≤θ ( ) -µ p ( ) -y ( ) 2 .
For every θ ( ) ∈ R, the inner minimization is achieved when, for every j ∈ {1, . . . , K -1}, p ( ,j) is the projection of y ( ,j) onto the real interval ] -∞, θ ( ) -µ]. Consequently, Problem (10) reduces to

min θ ( ) ∈R (θ ( ) -ξ ( ) ) 2 + K-1 j=1 (max{y ( ,j) + µ -θ ( ) , 0}) 2
which is also equivalent to calculate, at the point ξ ( ) , the proximity operator [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] of the following convex function:

(∀v ∈ R) ϕ(v) = 1 2 K-1 j=1 (max{y ( ,j) + µ -v, 0}) 2 .
(11) The closed form expression of this proximity operator is given by [24, Proposition II.8] and it is summarized in the following proposition.

Proposition 3.1. Let ν ( ,j) 1≤j≤K-1 be a sequence obtained by sorting y ( ,j) + µ 1≤j≤K-1 in ascending order, and set ν ( ,0) = -∞ and ν ( ,K) = +∞. Then, for every

(y ( ) , ξ ( ) ) ∈ R K-1 × R, the projection P epi h ( ) (y ( ) , ξ ( ) ) = (p ( ) , θ ( ) ) is such that p ( ) = (p ( ,j) ) 1≤j≤K-1 with, for every j ∈ {1, . . . , K -1}, p ( ,j) = y ( ,j) , if y ( ,j) ≤ θ ( ) -µ, θ ( ) -µ, otherwise, (12) 
and

θ ( ) = 1 K -j ( ) + 1   ξ ( ) + K-1 j=j ( ) ν ( ,j)   , ( 13 
)
where j ( ) is the unique integer in {1, . . . , K} such that

ν ( ,j ( ) -1) < θ ( ) ≤ ν ( ,j ( ) ) (14) 
(with the convention

K-1 j=K • = 0).

Proposed algorithm

The solution of ( 5) requires an efficient algorithm for dealing with nonsmooth functions. We resort here to proximal algorithms. Among the large panel of existing proximal algorithms [START_REF] Pesquet | A parallel inertial proximal optimization method[END_REF][START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF][START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF], we consider the primal-dual M+LFBF algorithm recently proposed in [START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF], which is able to address general convex optimization problems involving nonsmooth functions and linear operators without requiring any matrix inversion. This algorithm is able to solve:

minimize v∈H φ(v) + Q i=1 ψ i (T i v) ( 15 
)
where H is a real Hilbert space, φ : H → ]-∞, +∞] is a proper convex lower-semicontinuous function, for every i ∈ {1, . . . , Q}, T i : H → R Si is a bounded linear operator and ψ i : R Si → ]-∞, +∞] is a proper convex lowersemicontinuous function.

Our minimization problem fits nicely into this framework by setting

H = R M K × R L , v = (x, ξ), Q = 1 and S 1 = L(K -1) + M K. The linear operator is T 1 = W 0 0 Id
and the functions are the following ones:

(∀(x, ξ) ∈ R M K × R L ) φ(x, ξ) = g(x) + ι V (ξ), (∀(y, ξ) ∈ R L(K-1) × R L ) ψ 1 (y, ξ) = ι E (y, ξ).
The iterations associated with Problem (3) are summarized in Algorithm 1, where the sequence (x [i] ) i∈N is guaranteed to converge to a solution to [START_REF] Laptev | Learning realistic human actions from movies[END_REF], provided that such a solution exists [START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF].

Algorithm 1 M+LFBF for solving Problem (3)

Initialization       (y [0] , ν [0] ) ∈ R L(K-1) × R L (x [0] , ξ [0] ) ∈ R M K × R L β = max{ W , 1} ∈]0, 1/(β + 1)[ For i = 0, 1, . . .                γi ∈ [ , (1 -)/β] p [i] , ρ [i] = prox γ i g (x [i] -γiW y [i] ), PV (ξ [i] -γiν [i] ) y [i] , ν [i] = y [i] , ν [i] + γi W x [i] , ξ [i] a [i] , α [i] = y [i] , ν [i] -γiPE y [i] /γi, ν [i] /γi y [i+1] , ν [i+1] = a [i] , α [i] + γi W (p [i] -x [i] ), ρ [i] -ξ [i] x [i+1] , ξ [i+1] = p [i] , ρ [i] -γi W (a [i] -y [i] ), α [i] -ν [i]

Formulation based on linear constraints

At this point, we would like to emphasize that more standard formulations of Problem (3) are possible. For example, one may naturally think of introducing a vector ζ ∈ R L(K-1) and rewrite the inequalities in Problem (3) in terms of an extended number of linear constraints

                   (∀ ∈ {1, ..., L})(∀j ∈ {1, ..., K -1}) ζ ( ,j) ≥ 0, (∀ ∈ {1, ..., L})(∀j ∈ {1, ..., K -1}) y ( ,j) + µ ≤ ζ ( ,j) , (∀ ∈ {1, ..., L}) ζ ( ,1) = • • • = ζ ( ,K-1) , L =1 K-1 j=1
ζ ( ,j) ≤ (K -1) η. [START_REF] Koh | An interior-point method for large-scale 1-regularized logistic regression[END_REF] In this regard, we will show in Section 4 that the proposed epigraphical reformulation converges much faster than the solution based on linear constraints.

NUMERICAL RESULTS

We perform our experimental analysis with an example of handwritten digit classification. More precisely, we consider the MNIST database, 2 which contains a large number of grayscale images displaying handwritten digits from 0 to 9. The images were size-normalized to fit into a 20 × 20 pixel box, and then centered in a 28 × 28 image [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF]. The database is organized in 60000 training images and 10000 test images.

In our experiments, we scaled the image dynamics range to the interval [0, 1] by dividing the pixel intensities by 255. Moreover, we selected L image-class pairs (u ( ) , z ( ) ) 1≤ ≤L ∈ R 28 2 × Z from the training set, with Z = {1, . . . , 10}, and we defined the mapping φ : R 28 2 → R M by resorting to the scattering convolution network recently proposed in [START_REF] Bruna | Invariant scattering convolution networks[END_REF], using m = 2 wavelet layers scaled up to 2 J = 4, yielding M = 15876.

We evaluated the impact of the regularization over the performance obtained with the considered multiclass SVM and we compared it with the sparse multinomial logistic regression [START_REF] Krishnapuram | Sparse multinomial logistic regression: Fast algorithms and generalization bounds[END_REF]. For SVM, we set µ ≡ 1 in (2) and, for the regularization, we considered the 2 -norm and the 1,∞ -norm, which recently gained much attention in learning tasks [START_REF] Jalali | A dirty model for multi-task learning[END_REF][START_REF] Quattoni | An efficient projection for 1,∞ regularization[END_REF]. To evaluate the quality of the estimated vector x ∈ R 10M , we collected in Table 1 the misclassification errors obtained by evaluating the prediction d x (u) = argmax z∈{1,...,K} x Ψ(u, z) on the 10000 test images. The results indicate that the block-sparse 1,∞ -norm regularization makes a significant difference in the case when a few examples are available for training.

In Fig. 1, we show that the epigraphical approach (solid blue line) leads to a faster convergence (about 4 times) than a more standard technique for handling linear constraints (dashed red line). The results refer to the case L = 100 with / x [∞] vs computational time (in seconds), where x [∞] denotes the solution computed after a large number (10000) of iterations. Red line: approach with linear constraints. Blue line: epigraphical approach.

2 -norm regularization. Our codes were completely developed in MATLAB and all the programs executed on an Intel Xeon CPU X5690 at 3.47 GHz and 24 GB of RAM.

CONCLUSIONS

We have proposed a new epigraphical technique for solving constrained convex optimization problems arising in machine learning with support vector machines. In particular, the epigraphical splitting allows us to handle the multiclass maximummargin loss function without resorting to Lagrangian duality techniques, hence adding more flexibility in the choice of the regularization function. The obtained results demonstrate the advantages of using nonsmooth sparsity-inducing regularization in this context. More specifically, we have shown that the 1,∞ -norm constitutes a good choice for preventing overfitting in the case when just a few training examples are available. Furthermore, our experiments indicate that the epigraphical method converges much faster than the solution based on standard techniques for handling linear constraints.

Fig. 1 .

 1 Fig. 1. Relative error x [n] -x [∞] / x[∞] vs computational time (in seconds), where x[∞] denotes the solution computed after a large number (10000) of iterations. Red line: approach with linear constraints. Blue line: epigraphical approach.

Table 1 .

 1 Classification errors obtained by using different regularizations within the considered multiclass SVM.

	2 available at http://yann.lecun.com/exdb/mnist

The mapping φ allows one to fit the maximum-margin hyperplanes in a transformed feature space, where the observations are more likely to be linearly separable.