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Abstract

This article proposes a method for solving generalized eigenvalue problems on medium-power
computers with a moderate memory in the particular context of studying fluid-structure systems
with sloshing and capillarity. This research was performed following many RAM problems en-
countered when computing the modal characterization of the system studied. The methodology
proposed is one solution to reduce RAM and time required for the computation, by using methods
such as double projection or subspace iterations.

Keywords: Generalized eigenvalue problem, large scale computational models, algorithms,
fluid-structure, structure, acoustic, sloshing, capillarity, reduced-order model.

1. Introduction

The algorithms for solving eigenvalue problems (including generalized eigenvalue problems
for which one matrix is positive definite) have received a very great attention this last 40 years
from a mathematical point of view (see for instance, [1, 2, 3, 4, 5, 6, 7, 8, 9]), for algorithms
adapted to parallel computation (see for instance, [10, 11, 12, 13, 14, 15, 16, 17, 18]), and also for
massively parallel computers (see for instance, [19, 20, 21, 22, 23]). The majority of the efficient
algorithms have been implemented in a mathematical library for computers, parallel computers,
and massively parallel computers (see for instance, [24, 25, 26]).

This paper is devoted to the computation of very populated sparse matrices involved in general-
ized eigenvalue problems that have to be solved in the framework of fluid-structure problems.
Concerning the algorithms for solving these generalized eigenvalue problems for which one of
the two matrices is a positive-definite matrix, the mathematical libraries cited before could, a
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priori, be used (these algorithms are really efficient and are adapted to large scale models using
parallel and massively parallel computers). Although these algorithms are efficient on mid-power
computers that we define as workstations with, for instance, 264 GB to 1 TB for the RAM and
12 to 72 cores for the processors, we have encountered huge difficulties due to the limitation of
RAM and also to CPU-time consumption.

The framework of the developments proposed is the one relative to the computation of
reduced-order bases (ROB) in order to construct a reduced-order model (ROM) of a fluid-
structure computational model that corresponds to an elastic structure coupled with an internal
acoustic liquid with a free surface for which there are sloshing phenomena and surface tension
effects. This ROM is not constructed using a global ROB associated with the full coupled
problem, but is constructed using the elastic modes of the structure with the added-mass effects,
the acoustic modes of the liquid, and the sloshing/capillarity modes. The interest of such a
formulation (see [27, 28, 29]) is to be able to select the modes that contribute to the responses in
the frequency band of analysis and also to be able to implement the nonparametric probabilistic
approach of model uncertainties in each part of the coupled system for which the level of
uncertainties differs from a part to another one. It should be noted that this formulation differs
from the vibroacoustics problems (without sloshing and surface tension effects) for which a ROM
is constructed using a global ROB (see for instance [30]). The difficulties encountered in the
computation depends on the type of modes that have to be computed. Concerning the computation
of the elastic structural modes, the mass matrix of the generalized eigenvalue problem is made
up of the sparse mass matrix of the structure in which is added the added-mass matrix of the
internal liquid (the added-mass matrix is a full matrix with respect to the fluid-structure coupling
dofs). Due to a RAM consumption problem, the computation of the added-mass matrix cannot be
done as soon as the acoustic-stiffness matrix of the internal liquid is very populated. In addition,
assuming that the added-mass matrix has been computed, if the stiffness matrix of the structure
is also very populated, another difficulty arises for solving the generalized eigenvalue problem
inducing the same type of RAM consumption. The difficulties are exactly of the same nature for
the computation of the sloshing/capillarity modes. Concerning the computation of the acoustic
modes of the internal liquid, the difficulties are due to the generalized eigenvalue problem that
involves two very populated sparse matrices, the acoustic mass and the acoustic stiffness matrices.
These difficulties are detailed in Section 5 for which the fluid-structure computational model has
2 x 10° dofs and requires, among others, to solve a linear equation for a positive-definite matrix
that has 1.2 x 10® non-zeros entries requiring about 10° bytes.

Confronted with this situation, we have thus revisited the formulations in order to be able to
solve the three generalized eigenvalue problems on a mid-power computer. The authors think
that the substantial efforts, which have been performed, could be of interest for the community.
It should be noted that the formulations/algorithms proposed allow for computing a large scale
fluid-structure computational model on mid-power computers but certainly, would allow for
computing very large scale fluid-structure computational models on high-power computers.

The computational model of the considered fluid-structure system is constructed using the
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finite element method, assuming the structure is linear elastic and the internal acoustic liquid is
dissipative. The free surface of the liquid is submitted to an acceleration field independent of time
such as the gravitation field, inducing sloshing phenomena. The surface tension effects are taken
into account.

In the particular context of this fluid-structure interaction problem for which sloshing and
surface tension effects are taken into account, many research have been performed (see for
instance, [27, 31, 32, 33]). In this paper, the formulation used is the one presented in [28, 29] for
which the adapted reduced-order model (ROM) has been evoked and is more detailed hereinafter.
The construction of the ROM requires a modal characterization of the different parts of the
fluid-structure system. It consists in projecting the computational model using three ROB’s that
are computed by solving three generalized eigenvalue problems. The modal characterization of
the structure is obtained by computing the elastic eigenmodes of the structure taking into account
the influence of the internal acoustic liquid in order to assure a fast convergence with respect to
the number of elastic modes retained in the ROM. The modal characterization of the internal
acoustic liquid is obtained by computing the acoustic modes with a free surface on which the
pressure is zero. Finally, the modal characterization of the free surface in presence of surface
tensions is obtained by computing the sloshing modes that involve the internal acoustic liquid.
The finite element meshes of the fluid-structure system that will be considered in Section 5
have a large number of dofs and a high connectivity, inducing very populated sparse matrices
and consequently, leading us to an impossibility to construct the matrices and to compute the
generalized eigenvalue problems on mid-power computers using the most adapted algorithms
available in the mathematical libraries such as those proposed in Matlab.

Concerning the choice of the formulation, two possibilities can be envisaged. For computing
the structural elastic modes with the added-mass effects or for computing the sloshing modes with
capillarity effects, a first formulation could be based on the use of iterative algorithm for solv-
ing linear matrix equation (relative to all the physical dofs) for a very populated matrix and for
a large number of right-hand side members. A second formulation would avoid to solve such a
linear systems of equations in high dimension by using a double projection method, also known
as the Rayleigh-Ritz method in the framework of eigenvalue problems. An analysis of the ad-
vantages/disadvantages of these two formulations has been performed in order to choose the most
efficient one. This analysis is summarized in Section 3.3 and allows for concluding that the double
projection method is more efficient and consequently, will be retained in this paper.

For solving the elastic and the sloshing/capillarity generalized eigenvalue problems, a double
projection method is implemented. This approach allows for decreasing the CPU time and for
reducing the RAM avoiding the out of memory and consequently, allowing the computation to be
effectively performed. For solving the acoustic generalized eigenvalue problem, the main diffi-
culty is induced by the RAM problem for which an out of memory is obtained. For circumventing
this difficulty, we have implemented the subspace iteration method, first introduced in [4, 8], and
which is particularly efficient for the problem that has to be solved. Such an approach increases
the CPU time but it is the only solution that we have found for avoiding the out of memory. In
this paper, we briefly summarize the subspace iteration algorithm because we need to adapt it to
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the formulation used.

The paper is organized as follows. Section ?? introduces the fluid-structure computational
model. In Section 2, we present a summary of the classical formulation of the elastic, the acoustic,
and the sloshing/capillarity generalized eigenvalue problems. These eigenvalue problems allow
for computing the projection bases required for constructing the ROM. Section 3 deals with the
difficulties encountered with mid-power computers for a large scale computational model when
classical algorithms are used. Section 4 is devoted to a new strategy for solving the three general-
ized eigenvalue problems without inducing a RAM overconsumption. Finally, Section 5 is devoted
to an application that allows for quantifying the computer resources required for the computation
of the projection bases. This analysis is carried out with respect to the number of dofs of finite
element model. The results obtained validate the efficiency of the proposed algorithms in terms of
RAM consumption and computational CPU-time cost.

2. Summary of the classical formulation of the generalized eigenvalue problems for the con-
sidered fluid-structure computational model

We consider the fluid-structure system in its reference configuration taken as the natural state
without prestresses. The boundary conditions are such that there are no rigid body displacements
for the structure. The structure is elastic and dissipative, and contains a dissipative acoustic fluid
simply called ”acoustic fluid”. Furthermore, the gravitational and surface tension effects are taken
into account, yielding a free surface vibrational motion induced by sloshing and capillarity effects.
We are interested in analyzing the linear vibrations of the coupled system around its reference
configuration. The unknowns of the problem are the vector u of the structural displacements,
the vector p of the pressure in the acoustic fluid, and the vector h of the elevation of the free
surface. In this framework, we present an adapted method for computing the projection bases
allowing the ROM to be constructed for large scale computational models, which stay adapted to
the mid-power computers.

As explained in Section 1, the formulation presented in [28, 29] is used. In order to assure the
readability of this paper, this approach, that will be defined as the classical formulation is briefly
summarized in this section.

In the following, index S, F, and H are used for referencing quantities related to the
structural displacements, to the acoustic-fluid pressure, and to the free-surface elevation, which
are respectively represented by vector u, p, and h.

Let ng, np, ny be the number of degrees of freedom of the structure, the fluid, and the free
surface. Let Mg and Kg be the (ng X ng) mass and stiffness matrices related to the equations in
u for the structure, M and K be the (np X np) “mass” and “stiffness” matrices related to the
equations in p for the acoustic fluid, and K. be the (ny X ny) matrix related to the equations in
h for the liquid free surface with capillarity. Let C,, and C,, be the (ng X np) and (ng X np)
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rectangular matrices, representing the coupling between p and u for the acoustic fluid and the
structure, and the coupling between p and h for the acoustic fluid and the free surface. Note that
the null space of K is equal to 1 and consequently, matrix K is not positive definite but is only
positive semidefinite. In the following, we then introduce the subspace R of R"* of the pressure
vector p in R"" such that p = 0 for the dofs related to the free surface.

2.1. Generalized eigenvalue problem for the structure (elastic eigenvalue problem)

In the framework of the considered fluid-structure computational model, the Ng < ng elastic
modes of the structure with added-mass effect of the fluid, which have to be calculated, require to
solve the following generalized eigenvalue problem,

Kg @S = (Mg + My) PEAE, (1)

in which the fluid added-mass matrix M 4 that characterizes the quasi-static effect of the acoustic
fluid on the structure [27, 29], is an (ng X ng) positive-definite symmetric matrix that is formally
written as,

My = Cpy (KF)_l (Cpu)T : (2)

Matrix K is not invertible, (K F)_l denotes its inverse in R, and in addition, matrix K is not
explicitly inverted in R . Matrix M, is computed by M4 = C,,, D in which the (np X ng) matrix
D is computed by solving, in the subspace R r, the linear matrix equation,

KrD=(Cn)". 3)

Note that, Eq. (3) is solved using the minimum degree algorithm for minimizing the non-zeros
elements in the sparse factor of the Cholesky factorization in R of sparse matrix K. In Eq. (1),
the (Ng x Ng) diagonal matrix A" contains the first Ng smallest positive eigenvalues sorted by
increasing order such that )\f’ref <... < )\%;ef. The full (ng x Ng) matrix ®E' is the matrix of the
corresponding eigenvectors that satisfy the following orthogonality properties,

(ON" (Ms + My) 5" = I, 4)
(05)" Ks@g' =AY, (5)

in which Iy, is the (Ng x Ng) identity matrix.

Remark. The matrix Mg + M 4 can be viewed as the Schur complement [6] in Rz of the matrix
block K, which is defined as
{ Mg Chu
—(

Co)" Kp

The method proposed in Section 4.1 will allow for avoiding the computational difficulties related
to the RAM consumption induced by the use of the classical algorithms for computing a Schur
complement. It should also be noted that the method proposed in Section 4.1 would be very
efficient for a hydroelastic problem related to an incompressible liquid in presence of a free surface
on which there is a zero pressure condition.



2.2. Generalized eigenvalue problem for the acoustic fluid (acoustic eigenvalue problem)

The Nr < np acoustic modes of the acoustic fluid, which have to be computed, are obtained
by solving the following generalized eigenvalue problem on R (that is to say with p = 0 for the
degrees of freedom related to the free surface),

Kp®% = Mp A, (6)

in which the (Nr x Np) diagonal matrix A% contains the first N smallest positive eigenvalues
sorted by increasing order such that A\{"™" < ... < AP The full (np x Np) matrix O is
the matrix of the acoustic modes, for which the columns are the corresponding eigenvectors that
satisfy the following orthogonality properties,

(®F)" Mp @ = Ly, ™
(PN Kp®F = AF. (8)

2.3. Generalized eigenvalue problem for the sloshing with capillarity (sloshing/capillarity eigen-
value problem)
The computation of the Ny < ny sloshing/capillarity modes consists in finding the eigenval-
ues represented by the (N x N ) diagonal matrix A% and the associated eigenvectors represented
by the ((ng + np) x Ng) matrix U that is written by blocks as

(I)ref
\I]ref — l rg] :| ’ (9)
oy

in which ® is a (ny x Ny) matrix and ®%; is a (np x Np) matrix, such that

Kp % + (Cpy)" @F A = 0, (10)
o g + Koo @ = 0, (11)

that has to be solved with a constant pressure condition on the free surface of the acoustic fluid.
Matrix A% contains the first N smallest positive eigenvalues sorted by increasing order such that
bl << )\g’;f. Eliminating ®%"; in Eqgs. (10) and (11) by ensuring the constant pressure
condition on the free surface, is equivalent to solve the following generalized eigenvalue problem,

Koo O = My AT (12)

in which M. is a positive-definite (ny x ny) matrix that is formally written as M, =
Cyy (Kp)™ (Cpy)T because K is not invertible, and which is rewritten as M,. = C,, S where
the (np X ny) matrix S is computed by solving the linear matrix equation

{KC'F (cﬂ m _ {(C%nq 7 (13)



in which L is the (1 x ny) matrix of the Lagrange multipliers. The (1 X ny) matrix ¢ is written as
¢=1[1...1]Cp, where [1...1]isa (1 x ny) matrix with all the entries are 1. The orthogonality
properties related to the generalized eigenvalue problem defined by Eq. (12) are written as

(PF)T My @ = Iny, (14)
(PN K, @ = AY. (15)

Once Eq. (12) is solved and therefore, matrix ®% is known, matrix ®'%; is computed by

Pref = —SPEAR (16)

3. Computational limitations induced by the classical formulation for a large scale compu-
tational model if classical algorithms are used

This section is related to the classical formulation of the generalized eigenvalue problem,
which has been defined in Section 2.

3.1. Brief description of the algorithms required for solving the generalized eigenvalue problems
of the introduced formulation

The formulation that has been presented in Section 2 requires to use an algorithm for solv-
ing a given linear matrix equation for a positive-definite matrix and an algorithm for solving a
generalized eigenvalue problem for two real symmetric matrices for which one is positive definite.

e The first classical algorithm (ALG1) is used for solving a linear matrix equation of the type
A X = B in which A is a symmetric positive-definite matrix (see, for instance, Eq. (2)).
Such a classical algorithm consists in computing the Cholesky factorization C' (C')? of A
using a minimum degree algorithm for optimizing the sparsity of C'. Then the solution of
the linear matrix equation is obtained using the standard successive back-substitutions that
is formally written as X = (C~1)7 (C~! B).

e The second classical algorithm (ALG?2) is used for computing the NV first smallest eigen-
values and their associated eigenvectors of the generalized eigenvalue problem of the type
AX = AB X in which A and B are two symmetric positive-definite matrices (see, for in-
stance, Eq. (6)). The classical algorithm for solving such a generalized eigenvalue problem
consists in transforming it into a classical eigenvalue problem PY = AY. For that, algo-
rithm ALGI1 is used for computing P. This type of algorithm is used by Matlab that calls
the standard library LAPACK [25, 6].

It should be noted that the computational difficulties related to the RAM consumption are generally
not due to the eigenvalue problem PY = AY but are due to the use of ALG1 by ALG2.



3.2. Limitations related to RAM consumption for large scale computational models on mid-power
computers

As explained in Section 1, the difficulties occur with ALG1 when sparse matrices My and K g
are very populated. This is the case, for instance, for a medium-scaled fluid-structure computa-
tional model for which 20-node 3D finite elements are used for the structure in order to improve
the accuracy of the finite element approximation. These difficulties are induced by the use of
ALGT1 in the following numerical steps.

e The elastic eigenvalue problem defined in Section 2.1 requires to compute matrix My (see
Eq. (2)) solving the matrix equation defined by Eq. (3) using ALGI involving matrix Kp.
The memory overconsumption is mainly due to the number of columns in matrix (Cj,)”.

e The acoustic eigenvalue problem defined in Section 2.2 requires to solve the generalized
eigenvalue problem defined by Eq. (6) using ALG2 that uses ALG1 involving matrix Mg.
The memory overconsumption is mainly due to the computation of the Cholesky factoriza-
tion of matrix M.

e Finally, the sloshing/capillarity eigenvalue problem is obtained by solving the linear matrix
equation defined by Eq. (13) using ALGI and then solving the generalized eigenvalue prob-
lem defined by Eq. (12) with ALG2 involving matrix K. The memory overconsumption is
mainly due to the number of columns in matrix (Cj,)”.

3.3. Remark concerning the choice of a formulation

In this section, we analyze the CPU time induced by an iterative algorithm with respect to
ALG]. For solving Eq. (3) in which K is a very populated sparse matrix and where the number
of active columns in the right-hand side member is large, an iterative solver could be used (the
problem is similar for Eq. (13)). As K is positive, the preconditioned conjugate gradient iterative
algorithm, denoted as "PCG”, is used for computing matrix D). This iterative algorithm is known
for being very efficient when solving Ax = b in which A is a symmetric positive-definite ma-
trix. Such an algorithm requires that the right-hand side member b be a vector (and not a matrix),
which is not the case for the problem that we have to solve. This is why, the use of such an iterative
algorithm is not, a priori, the best choice for the computation of matrix D, because the PCG algo-
rithm should be used for each column of matrix (Cp,)”. The PCG algorithm requires the use of a
preconditioner to speed up the convergence, which is chosen as the incomplete Cholesky factor-
ization of matrix K. This incomplete Cholesky factorization requires a filling parameter named
as ’drop tolerance” that has to be optimized for using it in the PCG algorithm. This drop tolerance
optimization must take into account the time required to compute the incomplete Cholesky factor-
ization of K and also the time required to solve the linear system with this preconditioner. The
analysis of the CPU-time consumption for such iterative solver has been performed on the smallest
mesh of the application presented in Section 5. The obtained results show that the optimum value
of the drop tolerance is 1.8 x 10~* for the incomplete Cholesky preconditioner. The comparison
of the CPU time required to solve the linear matrix equation Eq. (3) is defined as follows. Let
tarc1 be the CPU time required to solve Eq. (3) with ALG1 defined in Section 3.1 and let tpcg

8



be the CPU time required with the PCG algorithm. The CPU times are {511 = 8.92 hours and
tpce = 97.16 hours, and the corresponding elapsed times are t4; o, = 0.96 hours and {5, = 30.1
hours. This difference between ALG1 and PCG can be explained by the loop required to solve the
linear system for each column of matrix Cg;, which is heavily time consuming. For solving the
linear matrix equation, Eq. (3), with the PCG algorithm, the loop could be parallelized to speed
up the computation but would highly increase the RAM consumption. Finally, it is concluded that

PCG will not be retained.

4. Adapted numerical strategy for solving the generalized eigenvalue problems related to
the considered fluid-structure computational model

Taking into account the limitations highlighted in Section 3.2, an alternative numerical strat-
egy 1is proposed, allowing the elastic, acoustic, and sloshing/capillarity eigenvalue problems, to
be solved for large scale fluid-structure computational models on mid-power computers with a
moderate RAM.

4.1. Double projection algorithm for solving the elastic eigenvalue problem

The proposed double projection method allows for circumventing the difficulties induced by
the computation of matrix M4. It consists in introducing a second projection for solving the
generalized eigenvalue problem defined by Eq. (1). The modal matrix ®g is then rewritten as,

dg = L Dy, (17)

in which @Y is the full (ng x N,) matrix that corresponds to the first projection basis on a subspace
of dimension IV, > Ng, and where d s is the full (IV, x Ng) matrix that corresponds to the second
projection basis on a subspace of dimension Ng. In the present case, the first projection basis is
constructed by solving the following eigenvalue problem for the structure in vacuo (without the
acoustic fluid),

Kg®y = Mg Py Ay . (18)
If N, is sufficiently large, the Ng eigenvectors computed using Eq. (1) belong to the subspace
spanned by ®%. Note that for N, = ng, P is a vector basis of the admissible set and consequently,
N, can always be found for obtaining the convergence. Therefore the double projection method
requires a convergence analysis with respect to N,. Matrix @/ satisfies the following orthogonality
properties,

(%) Mg @y = Iy,, (19)
(D%)" Ks @5 = Aj. (20)

Left multiplying Eq. (1) by (®%)? and using Eq. (17) yield the following generalized eigenvalue
problem with a very small dimension N, (computationally solved without any problem),

Ay dg = (Iy, + M) Bs As, 21)



for which the following orthogonality conditions are satisfied,

(D) (Iy, + Ma) Bs = Iy, 22)
(Bg)" AL Dy = Ag. (23)

In Eq. (21), the (N, x N,) positive-definite matrix M 4 is written as M 4 = (®%)" M, ®%. Using
Eq. (2), this matrix can be rewritten as

MA - Cpu (KF)_I (Cpu)T 5 (24)

in which C,,, = (®%)7 C,, is a (N, x nr) sparse rectangular matrix and where (K )~ is a formal
writing that is specified hereinafter. In practice, matrix My is computed by M, = C,, X in
which the (ng x N,) matrix X is the solution of the linear matrix equation Kr X = (C,,)7 that is
solved with ALGI1 in subspace R . Such calculations are done with a reasonable computational
time and RAM consumption.

4.2. Subspace iterations for the acoustic eigenvalue problem

For solving the acoustic eigenvalue problem, a method for circumventing the difficulties ap-
pearing in ALG2 when using ALGI that involves matrix Mg consists in using the subspace itera-
tion method [4, 8], which is briefly summarized and adapted to our context.

First, an initial projection basis, represented by the (np x NN,) matrix X, with Np < N, <
np, is computed using the initialization procedure described in [8]. Then the projection basis
is updated using the following iterative algorithm in which the subscript £, which belongs to
{0,1,2,...}, denotes the current iteration,

Kp X1 = Mp X, (25)
Kir = ()?k—f—l)T K Xk+1 , (26)
ME = (Xi1)" Mp X (27)

Ki™ Qrpr = MET Quea AR (28)

Xip1 = Xps1 Qrar - (29)

This iterative procedure is stopped when the following convergence criterion is reached,

)

( (k+1))2 2
1= (q(k+1))Tq(k+1) <tol , i=1,...,Np,

where ql(-kﬂ) is the i-th vector in matrix ;41 corresponding to )\Z(-Hl), and tol = 107 with ac-

curacy of 2s digits in the required eigenvalues. Finally, a Sturm sequence checking is performed
to ensure that the correct eigenvalues and their associated eigenvectors have been calculated. This
classical iterative procedure could certainly be speed up using the method recently proposed in
[34]. It would be an additional improvement of the method proposed for limiting the RAM con-
sumption.
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4.3. Double projection algorithm for the sloshing/capillarity eigenvalue problem

Again, for avoiding the difficulties induced solving Eq. (13), a double projection method sim-
ilar to the one described in Section 4.1 is used for computing the sloshing/capillarity eigenvalue
problem defined in Section 2.3.

4.3.1. Comments about the construction of an approximation of matrix K

In order to circumvent the difficulties due to the RAM overconsumption, several possibilities
have been explored for constructing a very sparsely populated matrix K that approximates the
very populated matrix Kp.

(1) - A first approximation would consist in using for K% the restriction of K to the pressure
dofs related to the free surface of the acoustic liquid (this means that the corresponding rows and
columns of K7 and the corresponding columns of C,,, are removed). This approximation leads a
very slow convergence of the double projection method.

(i1) - A second one would consist in taking for K a few diagonals of K in order to take into
account that K corresponds to the finite element approximation of the Laplace operator. This
approach is difficult because K must stay nonnegative and in practice, such a property cannot
easily be assured except if an incomplete factorization of K is performed (see below).

(ii1) - A more natural construction of K% would consist in computing an incomplete factorization
of K. Since this matrix is positive semi-definite (and not positive definite), the incomplete
Cholesky factorization of K cannot be used with the standard libraries such as LAPACK.
Therefore, an incomplete LU factorization must be used that avoids the RAM overconsumption
but which induces a very CPU-time consuming.

(iv) - The Airy infinitesimal wave theory shows that the pressure field exponentially decreases
as a function of the distance (depth) to the free surface. This means that an approximation K
can be constructed by keeping the pressure dofs related to a small layer (with height hx) of the
acoustic liquid under the free surface. Such an approximation is general, is very efficient, and is
the one that we propose to use.

4.3.2. Double projection algorithm

Let ny,, < np be the number of dofs related to the small layer of the acoustic fluid of height
hi under the free surface. Note that we have ny < ny,. We then have K% and O;n as the
(nh, X np,) and the (ny x nyp, ) matrices corresponding to the restriction of matrices K and
Cpy to the pressure dofs related to this small layer of the acoustic fluid. Consequently, matrix K
is positive definite. Let ®%; be the (ny x Ny) matrix in which Ny < Ny < ng and let A%, be the
(Ng x N4) diagonal positive-definite matrix satisfying the following equation that corresponds to
the restriction of Egs. (10) and (11) to the ny,, pressure dofs,

Ky @4 + (Cp) @y Ay = 0, (30)
Co Dhy + Ko @y = 0, (31)
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in which ®%.; is a (ny, x Ny) matrix that is the restriction of matrix ® sy to the ny,,. pressure dofs
related to the small layer of acoustic fluid. The elimination of ®%; between Eqgs. (30) and (31)
yields the generalized eigenvalue problem,

KQC (I)ZH = M;c (I)i'-[ A?—I ) (32)
in which the positive-definite (ny x ny) matrix M, o 1s written as,

Mg, = Cp, (Ki) ()" (33)
In practice, matrix Mg, is computed by M, = C; X in which the (nj,, xny) matrix X is solution
of the linear matrix equation K3 X = (an)T that is solved with ALG1. If N, is sufficiently large,
the N sloshing/capillarity modes defined in Section 2.3 belong to the subspace spanned by ®;.
Note that, for all ny, such that ny < ns, < np, if N;y = ng then @ﬁq i1s a vector basis of
the admissible set of h and consequently, N, can always be found for obtaining the convergence.
Therefore the double projection method requires a convergence analysis with respect to N;. Matrix
®', verifies the following orthogonality properties,

(@y)" Mg @y = I, (34)
(Py)" Koy = Ay (35)
The solution of Eq. (32) provides a reasonable approximation of the sloshing/capillarity modes

compared to those computed in Section 2.3. The double projection method then consists in writing
the block matrix ® 5 appearing in Eq. (9) as,

Oy = DY Dy, (36)

in which the full (V; X Ny ) matrix Dy corresponds to the second projection basis on a subspace
of dimension Ny < N,. Substituting Eq. (36) in Eq. (12) and left multiplying by (®%,)7 yield the
following eigenvalue problem in the subspace with a very small dimension /N; (computationally
solved without any problem), B B

Ny @ = My Py Ay, (37)

in which M, is a positive-definite (Ng x Ng) matrix that is written as Mgy = C,, S, where the
(Ng x ng) matrix Cp, is defined by C,, = (®%)T C,,, and where matrix S = S ®%; is computed
as in Section 2.3 by solving the linear matrix equation,

Kp (C)T S _ (Cpn>T
in which £ is the (1 x N;) matrix of Lagrange multipliers and where ( is the matrix introduced in
Section 2.3. Matrix @ satisfies the following orthogonal properties,

(@) My @y = Ly, , (39)
(D) Ay @y = Ay (40)
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In practice, matrix S is computed by solving the linear matrix equation Eq. (38) using ALG1; then
the solutions of the sloshing/capillarity eigenvalue problem defined in Eq. (37) are computed using
ALG?2 involving ALG1. Such computation is done with a reasonable time and RAM consumption.
We then obtain the block matrix ® z of the sloshing/capillarity modes by,

Pry = -Sdy Ay . (41)

5. Quantification and limitations of the computer resources used for the computation of the
projection bases

In the present numerical study, all the computations are made on a workstation with 264 GB
RAM and 12 Intel(R) Xeon(R) CPU E5-2620 0 with a frequency of 2GH z.

5.1. Finite element model of the fluid-structure system

The fluid-structure system is the one described in [35, 36] for which the retained dimensions
are those of [35] (note that these two references are only used for defining the fluid-structure
system for which capillarity effects are not analyzed). The structure is a steel tank constituted of
a thin circular cylinder closed at both ends by circular plates (see Figure 1). The external radius
is R, = 3.78 x 1072 m, the thickness is ¢ = 2 x 10~*m, and the height is h = 0.23 m. This
tank is partially filled with an acoustic liquid with height Ay = 0.12m. The origin O of the
Cartesian coordinates system Ozyz is located at the center of the bottom of the cylindrical tank.
Axis Oz coincides with the axis of revolution of the system. The boundary conditions are those
defined in [35, 36]. The finite element model of the fluid-structure system is constructed using 20-
node 3D finite elements for the structure and for the acoustic fluid. The free surface of the liquid
1s meshed using 8-node 2D finite elements and the triple line is meshed using 3-node 1D finite
elements. All the meshes of the computational model are compatible. On this basis, several finite
element meshes with different sizes have been constructed in order to quantify and to identify the
limitations of the computer resources used for the computation. Table 1 summarizes the finite
element models built in order to study the efficiency of the algorithms. Figure 1 shows an example
of the finite element mesh of the considered fluid-structure system for which the number of dofs
is 578,000. Let nzg‘}tem, N, > and njy. be the total number of dofs of the computational model,
the number of dofs of the acoustic fluid, and the number of non-zero entries in matrix K. For
the three generalized eigenvalue problems, we are interested in computing the first Ng = 100
eigenvectors of the elastic eigenvalue problem, the first Np = 100 eigenvectors of the acoustic
eigenvalue problem, and the first Ny = 70 eigenvectors of the sloshing/capillarity eigenvalue
problem.

Figure 1: Example of mesh of the fluid-structure system with 578,000 dofs (the dimensions of the domains have
voluntarily been modified for suiting them to the page size)
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H n§§?"1/103\ ngﬁ-/103‘ ng;/105\

74 44 24
127 83 46

196 134 75

362 262 147
578 441 249
850 679 387
1,142 945 541
1,664 1,411 811
2,208 1,990 1,147

Table 1: Numerical data of the mesh and sparsity of matrix Kp.

5.2. Elastic eigenvalue problem

The double projection method requires to find the optimum size of the initial projection basis
% in order to accurately calculate the eigenvalues and to ensure a low computation-time and
memory usage. Let 0 < A\J(NV,) < ... < A} (IV,) be the eigenvalues computed as explained in
Section 4.1. A convergence analysis of the largest eigenvalue, )\ﬁ,s, with respect to N, is performed

system

for mesh with n;,, " = 196,000. Figure 2 displays the graph of the largest eigenfrequency

as a function of Ny, in which )\Js\;gef is the eigenvalue of rank Ng corresponding to the reference
solution (see Section 2.1). It can be seen that a good approximation is obtained with NV, = 500.
From now on, we use IV, = 500. An analysis of the computer resources for solving the elastic

Figure 2: Graph of function N, — Conv y (N,) showing the convergence of the highest normalized eigenfrequency
that is considered with respect to NV, using the double projection algorithm.

Figure 3: CPU time required for solving the elastic eigenvalue problem using standard method and double projection
method as a function of the dofs number defined in Table 1

Figure 4: RAM use for solving the elastic eigenvalue problem using standard method and double projection method
as a function of the dofs number defined in Table 1.

eigenvalue problem has been performed with respect to the size of the finite element mesh, for both
standard and double projection methods. Figures 3 and 4 display the graph of the CPU time and
system

the graph of the maximum memory required for the computation for the values of n,,,  given
in Table 1. It can be seen that the RAM required for the computation with nflﬁjfem = 362,000

14



exceeds 264 GB when the standard method is used, implying an out of memory and a stop of

computation. Consequently, the computation cannot be carried out for nfféjfem > 196,000. The

double projection method proposed allows for solving the elastic eigenvalue problem for all the
system

values of n,,, " considered in Table 1. In addition, Figure 3 shows that the double projection
yields a considerable gain for the CPU time with respect to the standard method.

5.3. Acoustic eigenvalue problem

Figure 5: CPU time required for solving the acoustic eigenvalue problem using standard method and subspace iteration
method as a function of the dofs number defined in Table 1.

Figure 6: RAM use for solving the acoustic eigenvalue problem using standard method and subspace iteration method
as a function of the dofs number defined in Table 1.

Figures 5 and 6 display the graph of the computational CPU time and the graph of the maxi-
mum memory used for solving the acoustic eigenvalue problem for all the values of n ;"™ con-
sidered in Table 1 using both standard and subspace iteration methods. It can be seen that, for the
standard method, the RAM required for nflijfem = 850,000 exceeds 264 GB, and consequently,
could not be carried out. In comparison, the subspace iteration method allows for solving the
acoustic eigenvalue problem for larger values of njﬁ‘}tem until nflf’)jfem = 1,142,000 but in counter-
part generates a higher CPU-time consumption, which is compensated by the fact that the compu-
tation can effectively be done. Note that the CPU time with subspace iteration is correlated to the
choice of the tolerance for the convergence and can be decreased if a less demanding tolerance is

used.

5.4. Sloshing/capillarity eigenvalue problem

The double projection method requires to find the optimum size of the initial projection ba-
sis ®%, in order to accurately solve the sloshing/capillarity eigenvalue problem and to ensure a
low-computation time and RAM usage. Let 0 < A{'(Ng, hx) < ... < AY (Ng, hi) be the slosh-
ing/capillarity eigenvalues computed as explained in Section 4.3. A convergence analysis of the
largest eigenvalue, )\]HVH (Ng, hi), is performed with respect to the size IV, of the initial subspace
and to the height Ak of the small acoustic-fluid layer used for constructing the approximation K
of K. Figure 7 displays the graph of

AN, (N, hi)

H ref ’

COI’IVNH (Nd, hK) =

in which /\ﬁff is the eigenvalue of rank Ny corresponding to the reference solution (see Sec-
tion 2.3). It can be seen that a good approximation is obtained for N; = 500 and A corresponding
to 7% of acoustic-fluid depth that is retained in the following.

The sloshing/capillarity eigenvalue problem is analyzed with respect to the number of dofs nzzjtem
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Figure 7: For given hg corresponding to 4%, 6%, and 7% of acoustic-fluid depth, graph of function Ny +—
Convy,, (Ng, hx) showing the convergence of the highest normalized eigenfrequency that is considered with respect
to Ny using the double projection algorithm.

Figure 8: CPU time required for solving the sloshing/capillarity eigenvalue problem using standard method and double
projection method as a function of the dofs number defined in Table 1.

Figure 9: RAM use for solving the sloshing/capillarity eigenvalue problem using standard method and double projec-
tion method as a function of the dofs number defined in Table 1 .

of the finite element mesh described in Table 1 for both standard and double projection meth-
ods. Figures 8 and 9 display the graph of the CPU time and the graph of the maximum RAM
required for the computation. It can be seen that the RAM required for the computation with
nf;;jfem = 850,000 exceeds 264 GB when the standard method is used, implying an out of
memory and a stop of computation. Consequently, the computation cannot be carried out for

system

Ngos > 978,000. In comparison, the double projection method allows for solving the slosh-

ing/capillarity eigenvalue problem for all the values of nflzjfem considered in Table 1. In addition

Figure 8 shows that the double projection yields a considerable gain for the CPU time with respect
to the standard method.

6. Conclusion

Non-standard algorithms have been proposed for solving generalized eigenvalue problems re-
lated to large-scale fluid-structure computational models that are simulated with mid-power com-
puters. In this framework, the limitations of the computer resources are principally due to the
RAM limitations. The double projection method and the subspace iteration method that are pro-
posed allow for solving problems that cannot be treated with standard algorithms. In addition,
the use of the double projection method not only allows for circumventing the RAM limitation
but also allows for considerably decreasing the CPU time with respect to the standard algorithms.
The algorithms proposed allow for computing a large scale fluid-structure computational model
on mid-power computers but certainly, would allow for computing very large scale fluid-structure
computational models on high-power computers. The substantial efforts performed in this work
should be of interest for the fluid-structure community, which is confronted to computational re-
sources limitations for analyzing large-scale fluid-structure computational models.
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