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Abstract— Sensor architectures based on coupled resonators 
are receiving increased interest from the resonant sensing 
community. Certain output metrics of such sensors have an 
increased sensitivity to the measurand, compared to conventional 
resonant sensors with frequency-modulated outputs. In the 
present paper, we extend our study of the properties of mutually 
injection-locked oscillators (MILOs) into the nonlinear domain, 
assuming the resonators are subject to cubic restoring forces. 
Our analysis shows that, depending on the softening or 
hardening character of the nonlinearity, some MILOs may be 
operated well above the critical Duffing amplitude. Moreover, it 
turns out that all the output metrics of such MILOs are not 
similarly affected by noise. A typical example is given, in which 
we show that, above the critical Duffing amplitude, phase 
difference measurements are limited by the A-f effect, whereas 
amplitude ratio measurements are not. These theoretical results 
are supported by transient simulations. 
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I.  INTRODUCTION 
Recent years have seen the development of several sensor 

architectures based on coupled MEMS resonators, such as 
open-loop or closed-loop sensors based on mode-localization 
[1-4] or on mutually-injection locked oscillators (MILOs) [5-
6]. So far, our study of coupled architectures has been confined 
to their operation in the linear regime, below the critical 
Duffing amplitude which marks the onset of the A-f effect in 
conventional resonant sensors based on a single resonator (with 
a cubic nonlinearity) [7]. In this framework, we have shown 
that the increased sensitivity to the quantity of interest of the 
output metrics of coupled architectures is always compensated 
by an increased sensitivity to external fluctuations [8], such as 
thermomechanical noise [9]. Thus, in the linear regime, there is 
little to be gained in terms of “ultimate” resolution when two 
coupled resonators are used instead of a single one.  

With the present paper, we show that this conclusion is no 
longer valid in the nonlinear domain, as far as MILOs are 
concerned. MILOs consist in two resonators with nominally 
identical resonance frequencies and quality factors, placed in a 
nonlinear feedback loop designed so that the resonators 
oscillate in quadrature. When a stiffness or mass mismatch ε  

is induced between the resonators (e.g. electrostatically), the 
resonance frequencies of the resonators are no longer identical. 
The nonlinear mixer then ensures that the system remains in a 
phase-locked state, but with a phase difference which deviates 
from its nominal value. Within a certain measurement range, 
this deviation then provides a high-sensitivity measurement of 
the stiffness mismatch between the resonators, and hence of the 
quantity of interest. Depending on the parameters of the 
architecture, other output metrics may also be used, such as the 
ratio of the motional amplitudes of the resonators. It is shown 
in [10] that operation in the nonlinear regime of such MILOs 
may result in an increased measurement range, at the cost of a 
decreased sensitivity. 

The theoretical framework of this paper, described in 
section II, is limited to a MILO consisting of two nominally 
identical, nonlinearly coupled resonators with cubic stiffness. 
In section III, we apply perturbation techniques to the 
governing equations of the system in order to perform 
sensitivity analysis. We show that the ultimate resolution that 
can be expected of the phase difference or pulsation output 
metrics is limited by the A-f effect. This is as opposed to the 
ultimate resolution of the amplitude ratio output metric, which 
is improved as the driving force and the oscillation amplitude 
are increased, even above the critical Duffing amplitude. These 
theoretical results, based on a quasi-static analysis, are 
validated by transient simulations. Section IV is dedicated to 
concluding remarks and perspectives. 

II. THEORETICAL FRAMEWORK 
We consider the MILO depicted in Fig. 1, which is almost 

the same as the one studied in [10]. It consists of two 
resonators with a softening Duffing nonlinearity (characterized 
by a Duffing coefficient 0γ < ), a nonlinear mixer and a / 4π  
phase-shift in both branches. Following the harmonic balance 
approach of [5], in the absence of external perturbations, the 
system is governed by a set of 4 (non-dimensionalized) 
equations 

 ( ),ε =g s 0 ,  (1) 
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Fig. 1. High-level schematic of a MILO consisting of two nonlinear 
resonators with a relative stiffness mismatch 2ε, a digital nonlinear mixer and 
two gain/phase adaptation stages.  
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where the state of the system  

 [ ]TX Y ω φ=s   (6) 

consists in mechanical oscillation amplitudes X  and Y , 
oscillation pulsation ω  and phase difference φ , where F  is 
the magnitude of the excitation force, Q  is the quality factor of 
the resonators, and ε  is a detuning parameter, corresponding 
to the physical quantity of interest one seeks to measure.  

Note that this detuning parameter appears in (2) and in (4), 
with opposite signs, as opposed to [10] for example. 
Consequently, when 0ε = , the nominal state of the system 
verifies, as in [10]  

 / 2φ π= , / 1X Y =   (7) 

but the sensitivity to mismatch of the output metrics is 
multiplied by 2 compared to the cases studied in our previous 
studies, and the locking range of the MILO (in terms of 
mismatch) is also divided by 2.  

III. SENSITIVITY ANALYSIS OF A NONLINEAR MILO 

A. Definition of a figure of merit 
The performance of this architecture as a sensor can be 

studied with rather simple sensitivity analysis techniques. For 
example, the sensitivity of the system state s  to ε  may be 
derived from (1) as follows 
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where sJ  is the jacobian of g  with respect to state s . The 
sensitivity of any output metric ( )M s  to ε can then be derived 
from (8) as 

 [ ]1 0 0 TdM dM X Y
d dε

−= − × × −sJ
s

.  (9) 

The sensitivity of ( )M s  to other sorts of fluctuations may be 
established in a similar manner. In the case of 
thermomechanical fluctuations, which is of interest in order to 
determine the “ultimate” performance attainable with a given 
output metric, one must consider the perturbed system:  

 ( ),δ ε+ =g s s n  (10) 

where the components of n  are independent, slowly-
fluctuating “forces”, with equal magnitudes. The sensitivity of 

( )M s  to these random fluctuations can be defined as the RMS 
value of the sensitivities to the independent noise components, 
i.e.  

 
2

4

1i i

dM dM
dn dn=

= . (11) 

A first-order expansion of (10) yields:  

 1δ −≈ ×ss J n ,  (12) 

From (11) and (12), it follows that the sensitivity of ( )M s  to 
random fluctuations is:  

 1

2

dM dM
dn d

−= × sJ
s

.  (13) 
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Fig. 2. Performance of amplitude ratio (solid blue line) and of phase difference (dashed red line) output metrics at ε=0 vs. driving force, for Q=103 and γ=-10-2: 
sensitivity to ε (left), sensitivity to additive noise (center), and figure of merit (right). 

 
Fig. 3. Figure of merit of the amplitude ratio (left) and phase difference 
(right) output metrics vs. ε, for different values of the driving force, other 
system parameters as in Fig. 2. 

Equations (9) and (13) may be used to define a figure of 
merit for ( )M s , as the ratio of the sensitivity to ε  to the 
sensitivity to noise, i.e. :  

 ( )FOM
dM d

M
dM dn

ε
=  (14) 

which should be maximized in order to improve sensor 
performance, i.e. sensitivity to ε  and immunity from noise.  

B. Comparison of different output metrics 
In the linear regime, close to 0ε = we find that 

 ( )FOM 2 2 FOMQF X
Y

φ
π

= × = × ,  (15) 

so that, for the considered architecture phase difference is a 
slightly better output metric than amplitude ratio, although both 

have the same sensitivity to ε  [10]. The figure of merit 
increases linearly with the amplitude of the drive, as can be 
expected [5,8], until the critical Duffing amplitude is neared. 

Above the critical Duffing amplitude, the situation is 
almost dramatically different: while the figure of merit of the 
amplitude ratio output metric keeps increasing with the drive 
amplitude, that of the phase difference starts decreasing, a 
signature of the A-f effect (or A-φ in the present case). This is 
illustrated in Fig. 2.  

More accurately, above the critical Duffing amplitude, the 
sensitivity to ε  of both output metrics starts dropping as 2F − . 
From (13), one may show that the sensitivity to noise of the 
phase difference output metric decreases as 1F −  in the 
nonlinear regime (as in the linear regime, in fact). Thus, the 
figure of merit for φ  decreases as 1F − . On the other hand, the 
sensitivity to noise of the amplitude ratio output metric 
decreases as 3F −  in the nonlinear regime (as opposed to 1F −  
in the linear regime). Thus, the figure of merit for the 
amplitude ratio keeps increasing proportionally to F , as it 
does below the critical Duffing amplitude. In fact, we have  

 FOM 2X QF
Y π

≈ ×  (16) 

regardless of the operating regime, as shown in Fig. 2. 

It is worth noting that this remarkable property of the 
amplitude ratio output metric is valid only in a reduced range 
around 0ε = , in spite of the nonlinear enhancement of the 
locking range of the MILO [10]. Although no closed-form 
formula has been derived for the range of validity of (16), our 
calculations suggest that this result holds only within the linear 
locking range of the architecture, as Fig. 3 indicates.  

10-5 10-4 10-3 10-2

Driving force F

100

101

102

103

104 Sensitivity to

10-5 10-4 10-3 10-2

Driving force F

100

102

104

106 Sensitivity to add. noise

10-5 10-4 10-3 10-2

Driving force F

10-3

10-2

10-1

100

101 Figure of merit

Decreases as 1/F2 above
critical Duffing amplitude

for both output metrics
FOM of phase diff. decreases

above critical Duffing amplitude

FOM of amp. ratio
increases as F

Decreases as 1/F3

above critical Duffing
amplitude (amp. ratio)

Decreases as 1/F
above critical Duffing
amplitude (phase diff.)

10-4 10-3 10-2

Mismatch

10-2

10-1

100

101 Amp. ratio

10-4 10-3 10-2

Mismatch

10-2

10-1

100

101 Phase diff.

F=5 10-5

F=5 10-4

F=5 10-3

AUTHOR VERSION



 
Fig. 4. Noise spectra obtained by transient simulation for the amplitude ratio (left) and phase difference (right) output metrics, with ε=0, Q=103 and γ=-10-2 and 
different values of the driving force. 

C. Transient simulation 
These theoretical results, based on a quasi-static analysis, 

are validated by transient simulations, with Simulink, of a 
MILO with parameters 310Q = , 210γ −= −  and 0ε = . 
Independent white noise sources are placed at the inputs of the 
resonators to simulate the effect of thermomechanical forces. 
Four values of driving force are simulated: 52 10F −= × , 

42 10F −= × , 32 10F −= × , 35 10F −= × , with the noise power 
kept constant. The power spectrum of the amplitude ratio and 
phase difference fluctuations are plotted in Fig. 4.  

These simulated results are in very good agreement with 
our theory, which predicts that, in the last three simulations, the 
near-DC power of the phase difference should be 21dB, 41dB 
and 54dB below that of the linear case ( 52 10F −= × ), whereas 
that of the amplitude ratio should be 21dB, 62dB and 106dB 
below the linear case.  

It is also worth noting that a resonance peak appears at the 
cutoff frequency of the system at large driving forces. A 
quantitative analysis of this phenomenon would require a more 
involved dynamic perturbation analysis, as in [5].  

IV. CONCLUSION 
We have presented in this paper a theoretical analysis of the 

properties of a MILO-based architecture, when the resonators 
are pushed into the nonlinear regime. A general figure of merit 
for the different output metrics used in coupled architectures 
was proposed. In the case of the framework defined in section 
II, it was shown that this figure of merit increases 
monotonically with drive amplitude, whether below or above 
the critical Duffing amplitude, when the amplitude ratio is used 
as an output metric. On the other hand, phase difference does 
not perform as well in the nonlinear regime, its figure of merit 
decreasing with the drive amplitude once the A-f effect kicks 
in. 

It should be stressed that this result can be extended to 
other frameworks than the one considered in this paper. For 
example, in the case of hardening nonlinearities, a similar 

result is found if the phase-shift of the MILO is chosen to be 
3 / 4π  instead of / 4π . More generally, similar results hold 
provided the amplitude ratio is an output metric at all, i.e. 
provided its sensitivity to ε  is non-zero. One should also note 
that a similar qualitative behavior of the output metrics is also 
observed when the resonators are not perfectly matched (in 
terms of Duffing coefficient, quality factor or driving force), 
even by a large margin. Finally, another point of interest is that 
(16) is independent of the value of γ : although this calls for a 
formal proof, this suggests that (16) may be valid for other 
types of static nonlinearities (e.g. non-polynomial).  

Although such results seem to open the way for interesting 
new paradigms of resonant sensors, whose performance are not 
limited by nonlinear phenomena, one should also consider their 
practical limitations. First of all, the amplitude ratio is an 
analog quantity, as opposed to frequency or phase-difference: 
thus a sensor using amplitude ratio as an output metric will 
require analog-to-digital conversion (ADC) stages, with an 
added cost in terms of surface and power consumption 
compared to quasi-digital solutions. Moreover, the 
requirements on the ADC stage(s) are likely to become more 
stringent as the amplitude increases, because of the reduced 
sensitivity of such MILOs in the nonlinear regime [10]. In this 
respect, advantageous design tradeoffs can probably be 
scavenged from the field of (amplitude modulated) mode-
matched gyroscopes [11-12], with which MILOs share many 
common points. Finally, note that our results are significant 
only for sensors that are limited by additive noise at the input 
of the resonator [7,9] and do not apply in the case of random 
parametric fluctuations, such as stiffness fluctuations [13]. 

Our continuing work on this subject is dedicated to 
generalizing our formal approach to other architectures and 
other nonlinearities (e.g. damping, excitation and detection), 
deriving optimal output metrics, and obtaining an experimental 
validation of our results. 
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