Transfer Learning from Simulations on a Reference Anatomy for ECGI in Personalised Cardiac Resynchronization Therapy
Résumé
Goal: Non-invasive cardiac electrophysiology (EP) model personalisation has raised interest for instance in the scope of predicting EP cardiac resynchronization therapy (CRT) response. However, the restricted clinical applicability of current methods is due in particular to the limitation to simple situations and the important computational cost. Methods: We propose in this manuscript an approach to tackle these two issues. First, we analyse more complex propagation patterns (multiple onsets and scar tissue) using relevance vector regression and shape dimensionality reduction on a large simulated database. Second, this learning is performed offline on a reference anatomy and transferred onto patient-specific anatomies in order to achieve fast personalised predictions online. Results: We evaluated our method on a dataset composed of 20 dyssynchrony patients with a total of 120 different cardiac cycles. The comparison with a commercially available electrocardiographic imaging (ECGI) method shows a good identification of the cardiac activation pattern. From the cardiac parameters estimated in sinus rhythm, we predicted 5 different paced patterns for each patient. The comparison with the body surface potential mappings (BSPM) measured during pacing and the ECGI method indicates a good predictive power. Conclusion: We showed that learning offline from a large simulated database on a reference anatomy was able to capture the main cardiac EP characteristics from non-invasive measurements for fast patient-specific predictions. Significance: The fast CRT pacing predictions are a step forward to a non-invasive CRT patient selection and therapy optimisation, to help clinicians in these difficult tasks.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...