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FILIPPOV’S EXISTENCE THEOREM AND PONTRYAGIN
MAXIMUM PRINCIPLE FOR GENERAL CAPUTO FRACTIONAL

OPTIMAL CONTROL PROBLEMS∗

MAÏTINE BERGOUNIOUX† AND LOÏC BOURDIN‡

Abstract. In this paper we focus on a general optimal control problem involving a dynamical
system described by a nonlinear Caputo fractional differential equation of order 0 < α ≤ 1, associated
to a general Bolza cost written as the sum of a standard Mayer cost and a Lagrange cost given by a
Riemann-Liouville fractional integral of order β ≥ α. In addition the present work handles general
control and mixed initial/final state constraints. Adapting the standard Filippov’s approach based
on appropriate compactness assumptions and on the convexity of the set of augmented velocities,
our first main result ensures the existence of at least one optimal solution. Secondly, the major
contribution of this paper is the statement of a Pontryagin maximum principle which provides a
first-order necessary optimality condition that can be applied to the fractional framework considered
here. In particular, Hamiltonian maximization condition and transversality conditions on the adjoint
vector are derived. Our proof is based on the sensitivity analysis of the Caputo fractional state
equation with respect to needle-like control perturbations and on Ekeland’s variational principle.
The paper is concluded with two illustrating examples and with a list of several perspectives for
forthcoming works.
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1. Introduction. Optimal control theory is concerned with the analysis of con-
trolled dynamical systems, where one aims at steering such a system from a given
configuration to some desired target by minimizing or maximizing some criterion.
Most of the literature focuses on dynamical systems driven by ordinary differential
equations. In that framework, the Filippov’s theorem ensures the existence of at least
one optimal trajectory under appropriate compactness and convexity assumptions
(see [24], and see, e.g., [15, 39] for recent references and [19, Chapter 9] for some ex-
tensions). On the other hand, the Pontryagin Maximum Principle (denoted in short
PMP), established at the end of the fifties (see [44], and see [26] for the history of
this discovery), is the milestone of the classical optimal control theory. It provides a
first-order necessary condition for optimality, by asserting that any optimal trajectory
must be the projection of an extremal. The PMP then reduces the search of optimal
trajectories to a boundary value problem on extremals. Optimal control theory, and
in particular the PMP, have a wide field of applications in various domains. We refer
the reader to textbooks such as [1, 15, 17, 18, 28, 32, 37, 48, 50, 51, 53] for theoretical
results and/or practical applications, essentially for dynamical systems described by
ordinary differential equations.

Before concluding this paragraph, recall that the classical optimal control theory
can be seen as a generalization of the historical calculus of variations from the 18th
century (see, e.g., [39, Section 3.2]). From this point of view, the PMP corresponds
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to the extension of the famous Euler-Lagrange equation. Actually, for smooth and
unconstrained optimal control problems of Lagrange form, a weak version of the PMP
(in which the historical Hamiltonian maximization condition is replaced by a weaker
null Hamiltonian gradient condition) can be easily derived from a simple variational
approach (see, e.g., [39, Section 3.4]). However, in the general case, obtaining a strong
version of the PMP, that moreover handles constraints on the state and/or on the
control, requires more sophisticated mathematical tools such as the sensitivity analysis
of the state equation with respect to control perturbations (needle-like variations
for instance) combined with a Brouwer fixed point argument (see, e.g., [28, 37]) or
with Ekeland’s variational principle (see, e.g., [22, 38]). Many other variants exist
in the literature (based on an implicit function theorem [1], Hahn-Banach separation
theorem [15], or Aubin mini-max theorem [53] for example).

1.1. Optimal control theory in a fractional context. The fractional calcu-
lus generalizes the classical notions of integral and derivative to any real order. Many
famous mathematicians introduced several notions of fractional operators, as Leibniz
(1690’s), Euler (1730’s), Fourier (1820’s), Liouville (1830’s), Riemann (1840’s), Sonin
(1860’s), Grünwald (1860’s), Letnikov (1860’s), Caputo (1960’s), etc. These a priori
different notions are not disconnected. In many cases it can be proved that two differ-
ent notions actually coincide or are correlated by an explicit formula. The fractional
operators are extensively used in many applications. We refer for instance to [29]
for a large panorama in physics. The monographs [36, 47] are essential books on
fractional calculus and fractional differential equations. In this paper, as commonly
in the literature, we only consider the fractional operators of Riemann-Liouville and
Caputo types. For the reader who is not familiar with these two notions, we refer to
Section 2 for basic recalls and notations.

In [46] Riewe initiates the fractional calculus of variations and derives the first
fractional version of the Euler-Lagrange equation, using non-integer order deriva-
tives in order to describe nonconservative systems in mechanics. From there, a large
number of publications has been devoted to the minimization of integral functionals
involving various fractional operators. Many issues have been addressed and solved,
and numerous classical results (such as first- and second-order necessary and/or suf-
ficient optimality conditions, transversality conditions, Noether’s theorems, Tonelli’s
existence theorems, etc.) have been extended to the fractional framework. We refer
for example to [2, 5, 6, 8, 11, 20, 40, 42, 56] and references therein.

Compared to the growing literature on fractional calculus of variations, the frac-
tional optimal control theory (where the dynamical system is driven by a fractional
differential equation) had at first a slight development at the beginning of the 21th cen-
tury. We refer the reader to [3, 4, 25, 27, 31] and references therein for some initiating
works. These articles constitute a first step in the field and essentially use fractional
variational approaches to derive fractional versions of the weak PMP (in which a null
Hamiltonian gradient condition is obtained, but no Hamiltonian maximization condi-
tion) for smooth and unconstrained fractional optimal control problems. As a second
step in the field, we mention the works of Kamocki from 2014. Indeed, a first attempt
to establish a strong version of the PMP (with Hamiltonian maximization condition)
in the case of a general Riemann-Liouville fractional optimal control problem with a
classical Lagrange cost and with control constraints can be found in [34, Theorem 7].
However, several (quite restrictive) hypotheses are assumed, such as the compactness
of the control constraint set, the convexity of the set of augmented velocities, the
global Lipschitz continuity of the dynamic and some growth conditions on the dy-
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namic, the Lagrange cost and its gradient. Moreover, a Riemann-Liouville fractional
version of the initial condition is fixed, but no other state constraint can be handled.
Hence, many challenging questions remain open in that field. Let us mention that
existence results are provided for linear-convex Riemann-Liouville (resp. linear-linear
Caputo) fractional optimal control problems associated to a classical Lagrange cost
in [33, Theorem 17] (resp. in [35, Theorem 4.2]).

We conclude this section by pointing out that a large number of publications has
been dedicated to the numerical study of fractional optimal control problems. We
refer for instance to [3, 4, 7, 31, 45].

1.2. Contributions of the present paper. In this paper we work on a fixed
real interval [a, b]. Our first motivation is to provide a functional framework that is
adapted to describe fractional optimal control problems. For example, it is well-known
that singularities arise at t = a while using left Riemann-Liouville fractional opera-
tors. As a consequence, the class of C1-functions is too restrictive. In this paper, as
in [14], we choose to use the appropriate set ACαa+([a, b],Rn) (resp. cACαa+([a, b],Rn))
of functions possessing Riemann-Liouville (resp. Caputo) fractional derivatives, see
Definition 2.5 (resp. Definition 2.9). In order to avoid unboundedness states (which
would deprive us of crucial estimations), we choose to work with the well-known
Caputo fractional derivative cDα

a+ of order 0 < α ≤ 1 for which the corresponding
trajectories are continuous. Hence, this paper is dedicated to the study of a gen-
eral optimal control problem where the dynamical system is driven by the nonlinear
Caputo fractional state equation

cDα
a+[x](t) = f(x(t), u(t), t),

of order 0 < α ≤ 1.
Our second motivation is to consider a fractional optimal control problem that is

sufficiently general in order to handle:
- Mayer and Lagrange costs (classical and fractional). Therefore, we consider

the general Bolza cost given by

ϕ(x(a), x(b)) + Iβa+[F (x, u, ·)](b),

where β ≥ α;
- General control constraint:

u(t) ∈ U,

where U is a nonempty closed set. We refer to Remark 3.16 for a discussion
on this closedness assumption.

- General mixed initial/final state constraint:

g(x(a), x(b)) ∈ C,

where C is a nonempty closed convex set. To the best of our knowledge, no
endpoint constraint has never been considered yet in the literature on frac-
tional optimal control theory. Moreover, note that the above consideration
of state constraint is very general and allows to encompass a lot of typi-
cal situations such as fixed initial and/or final conditions, free initial and/or
final conditions, equality and/or inequality constraints, etc. We refer to Re-
mark 3.17 for more details.
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Moreover, the regularity assumptions that we require in this paper on the functions
f , F , ϕ and g are reduced as much as possible (as far as we know) to guarantee the
applicability of our proofs. In particular, no growth condition and no global Lipschitz
continuity are imposed. For the precise definition of the problem investigated in this
paper and the corresponding assumptions, we refer the reader to Problem (OCP) in
Section 3.1.

The two major contributions of this paper are stated in Section 3:
(i) A Filippov’s existence theorem (Theorem 3.1) for Problem (OCP). This result

is based on standard compactness and convexity assumptions. Actually, the
classical proof is easily extended to the fractional framework considered in
this paper;

(ii) A Pontryagin maximum principle (Theorem 3.12) for Problem (OCP). The
proof is based on the sensitivity analysis of the Caputo fractional state equa-
tion with respect to needle-like control perturbations and on Ekeland’s vari-
ational principle. In contrast to the proof of Theorem 3.1, the one of The-
orem 3.12 requires a lot of technical adjustments from the classical case.
Indeed, the nonlocality of the fractional operators induces specific variation
vectors (Propositions 3.10 and 3.11). Moreover, the necessary optimality
inequalities obtained on the variation vectors require the use of fractional
Duhamel formulas derived in [12] to conclude. This (quite long) proof is
moved to Appendix A.

Two examples (including endpoint state and control constraints) illustrating the ap-
plicability of Theorem 3.12 are provided in Section 4.

Finally, it should be noted that many challenging problems are still open in frac-
tional optimal control theory. We refer to Section 5 for a tentative list of questions to
address in future works. In particular, we choose in this paper to deal with a Caputo
fractional state equation in order to guarantee the boundedness (even the continuity)
of the corresponding trajectories. An important objective would be to adapt the whole
framework of the present paper to a Riemann-Liouville fractional state equation.

1.3. Organization of the paper. The paper is organized as follows. Section 2
is devoted to basic recalls and notations from fractional calculus. The main results
(Theorems 3.1 and 3.12) are stated in Section 3 with some comments. Two illustrating
examples are detailed in Section 4. We conclude in Section 5 with perspectives for
future works. The proof of Theorem 3.12 is given in Appendix A. Finally, Appendix B
contains two technical results (in particular a new fractional version of the classical
Gronwall lemma, see Proposition B.1) that are required in the paper.

2. Basics on fractional calculus. Throughout the paper the abbreviation RL
stands for Riemann-Liouville. This section is devoted to basic recalls about RL and
Caputo fractional operators. All definitions and results below are standard and are
mostly extracted from the monographs [36, 47]. Let n ∈ N∗ be a positive integer and
let I ⊂ R be a subinterval of R. In the whole paper we denote by:

- Lr(I,Rn) the Lebesgue space of r-integrable functions defined on I with values
in Rn, endowed with its usual norm ‖ · ‖Lr , for any 1 ≤ r <∞;

- L∞(I,Rn) the Lebesgue space of essentially bounded functions defined on I
with values in Rn, endowed with its usual norm ‖ · ‖L∞ .

- C(I,Rn) the space of continuous functions on I with values in Rn, endowed
with the uniform norm ‖ · ‖C ;

- AC(I,Rn) the subspace of C(I,Rn) of absolutely continuous functions.
For any E(I,Rn) one of the above spaces, we denote by Eloc(I,Rn) the space of
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functions x : I → Rn such that x ∈ E(J,Rn) for every compact subinterval J ⊂ I.
In particular, if I is compact, then Eloc(I,Rn) = E(I,Rn). Finally, for any a ∈ I, we
denote by Ca(I,Rn) the set of all functions x ∈ C(I,Rn) such that x(a) = 0Rn .

2.1. Left RL and Caputo fractional operators. In this section we fix a ∈ R
and I ⊂ R an interval such that {a}  I ⊂ [a,+∞). Note that I is not necessarily
compact. Precisely I can be written either as I = [a,+∞), or I = [a, b) for some
b > a, or I = [a, b] for some b > a.

2.1.1. Left RL fractional integral. In the sequel Γ denotes the standard
Gamma function. We focus in this section on left fractional integrals of RL type.

Definition 2.1 (Left RL fractional integral). The left Riemann-Liouville frac-
tional integral Iαa+[x] of order α > 0 and inferior limit a of a function x ∈ L1

loc(I,Rn)
is defined on I by

Iαa+[x](t) :=
1

Γ(α)

∫ t

a

(t− τ)α−1x(τ) dτ,

provided that the right-hand side term exists. For α = 0 we set I0
a+[x] := x.

Proposition 2.2 ([36, Lemma 2.1 p.72]). If α ≥ 0 and x ∈ L1
loc(I,Rn), then

Iαa+[x] ∈ L1
loc(I,Rn).

Proposition 2.3 ([36, Lemma 2.3 p.73]). If α1 ≥ 0, α2 ≥ 0 and x ∈ L1
loc(I,Rn),

then the equalities

Iα1
a+

[
Iα2
a+[x]

]
= Iα1+α2

a+ [x] = Iα2+α1
a+ [x] = Iα2

a+

[
Iα1
a+[x]

]
hold true.

Let α ≥ 0 and x ∈ L1
loc(I,Rn). From Proposition 2.2, Iαa+[x](t) exists for almost every

t ∈ I. Throughout the paper, if Iαa+[x] is equal almost everywhere on I to a continuous
function, then Iαa+[x] is automatically identified to its continuous representative. In
that case Iαa+[x](t) is defined for every t ∈ I.

Proposition 2.4 ([47, Theorem 3.6 p.67]). If α > 0 and x ∈ L∞loc(I,Rn), then
Iαa+[x] ∈ Ca(I,Rn).

2.1.2. Left RL and Caputo fractional derivatives. This section is devoted
to basic recalls on left fractional derivatives of RL and Caputo types.

Definition 2.5 (Left RL fractional derivative). We say that x ∈ L1
loc(I,Rn)

possesses on I a left RL fractional derivative Dα
a+[x] of order 0 ≤ α ≤ 1 and inferior

limit a if and only if I1−α
a+ [x] ∈ ACloc(I,Rn). In that case Dα

a+[x] ∈ L1
loc(I,Rn) is

defined on I by

Dα
a+[x](t) :=

d

dt

[
I1−α
a+ [x]

]
(t).

We denote by ACαa+(I,Rn) the set of all functions x ∈ L1
loc(I,Rn) possessing on I a

left RL fractional derivative Dα
a+[x] of order 0 ≤ α ≤ 1 and inferior limit a.

Remark 2.6. If α = 1, AC1
a+(I,Rn) = ACloc(I,Rn) and D1

a+[x] = ẋ is the usual

derivative of x for any x ∈ ACloc(I,Rn). If α = 0, AC0
a+(I,Rn) = L1

loc(I,Rn) and
D0
a+[x] = x for any x ∈ L1

loc(I,Rn).
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Proposition 2.7. Let 0 ≤ α ≤ 1 and x ∈ L1
loc(I,Rn). Then x ∈ ACαa+(I,Rn) if

and only if there exist y ∈ L1
loc(I,Rn) and xa ∈ Rn such that

x(t) =
(t− a)α−1

Γ(α)
xa + Iαa+[y](t),

for almost every t ∈ I. In that case, it holds that y = Dα
a+[x] and xa = I1−α

a+ [x](a).

Remark 2.8. Let 0 ≤ α ≤ 1. In general a function x ∈ ACαa+(I,Rn) admits a
singularity at t = a.

Definition 2.9 (Left Caputo fractional derivative). We say that x ∈ C(I,Rn)
possesses on I a left Caputo fractional derivative cDα

a+[x] of order 0 ≤ α ≤ 1 and infe-
rior limit a if and only if x− x(a) ∈ ACαa+(I,Rn). In that case cDα

a+[x] ∈ L1
loc(I,Rn)

is defined on I by

cDα
a+[x](t) := Dα

a+[x− x(a)](t).

We denote by cACαa+(I,Rn) the set of all functions x ∈ C(I,Rn) possessing on I a
left Caputo fractional derivative cDα

a+[x] of order 0 ≤ α ≤ 1 and inferior limit a.

Remark 2.10. If α = 1, cAC1
a+(I,Rn) = ACloc(I,Rn) and cD1

a+[x] = ẋ for any

x ∈ ACloc(I,Rn). If α = 0, cAC0
a+(I,Rn) = C(I,Rn) and cD0

a+[x] = x− x(a) for any
x ∈ C(I,Rn).

Remark 2.11. Let 0 ≤ α ≤ 1. Note that cACαa+(I,Rn) ⊂ ACαa+(I,Rn) and,
if α 6= 1, it holds that

Dα
a+[x](t) = cDα

a+[x](t) +
x(a)

Γ(1− α)
(t− a)−α,

for almost every t ∈ I and all x ∈ cACαa+(I,Rn).

Proposition 2.12. Let 0 ≤ α ≤ 1 and x ∈ C(I,Rn). Then x ∈ cACαa+(I,Rn) if
and only if there exist y ∈ L1

loc(I,Rn) and xa ∈ Rn such that

x(t) = xa + Iαa+[y](t),

for all t ∈ I. In that case, the above relation holds replacing y by cDα
a+[x] and xa by

x(a).

Remark 2.13. Let 0 ≤ α ≤ 1 and x(t) = xa + Iαa+[y](t) for almost every t ∈ I,
for some y ∈ L1

loc(I,Rn) and xa ∈ Rn. It might be possible that x /∈ C(I,Rn)
and then Proposition 2.12 cannot be applied. From Proposition 2.4, if α > 0 and
y ∈ L∞loc(I,Rn), then x ∈ C(I,Rn) with x(a) = xa and Proposition 2.12 can be
applied.

Remark 2.14. Let 0 ≤ α ≤ 1 and x ∈ C(I,Rn) such that x(t) = xa + Iαa+[y](t)
for all t ∈ I, for some y ∈ L1

loc(I,Rn) and xa ∈ Rn. From Proposition 2.12, we
know that x ∈ cACαa+(I,Rn) and that x(t) = x(a) + Iαa+[cDα

a+[x]](t) for all t ∈ I.
However, without any additional assumption, one cannot assert that y = cDα

a+[x] and
xa = x(a). From Proposition 2.4, if α > 0 and y ∈ L∞loc(I,Rn), then we can conclude
that y = cDα

a+[x] and xa = x(a).

From the above definitions and propositions, one can easily recover the following
well-known result.

Proposition 2.15 ([36, Theorem 2.1 p.92]). Let 0 ≤ α ≤ 1. The inclu-
sion ACloc(I,Rn) ⊂ cACαa+(I,Rn) holds true with cDα

a+[x] = I1−α
a+ [ẋ] for any x ∈

ACloc(I,Rn).



FRACTIONAL FILIPPOV’S THEOREM AND FRACTIONAL PMP 7

2.2. Right RL and Caputo fractional operators. This section is devoted
to the right counterparts of the notions recalled in Section 2.1. For this purpose we
fix b ∈ R and I ⊂ R an interval such that {b}  I ⊂ (−∞, b]. Precisely, the interval
I writes either I = (−∞, b], or I = (a, b] for some a < b, or I = [a, b] for some a < b.

Definition 2.16 (Right RL fractional integral). The right RL fractional integral
Iαb−[x] of order α > 0 and superior limit b of x ∈ L1

loc(I,Rn) is defined on I by

Iαb−[x](t) :=
1

Γ(α)

∫ b

t

(τ − t)α−1x(τ) dτ,

provided that the right-hand side term exists. For α = 0 we define I0
b−[x] := x.

Definition 2.17 (Right RL fractional derivative). We say that x ∈ L1
loc(I,Rn)

possesses on I a right RL fractional derivative Dα
b−[x] of order 0 ≤ α ≤ 1 and superior

limit b if and only if I1−α
b− [x] ∈ ACloc(I,Rn). In that case Dα

b−[x] ∈ L1
loc(I,Rn) is

defined on I by

Dα
b−[x](t) := − d

dt

[
I1−α
b− [x]

]
(t).

We denote by ACαb−(I,Rn) the set of all functions x ∈ L1
loc(I,Rn) possessing on I a

right RL fractional derivative Dα
b−[x] of order 0 ≤ α ≤ 1 and superior limit b.

Definition 2.18 (Right Caputo fractional derivative). We say that x ∈ C(I,Rn)
possesses on I a right Caputo fractional derivative cDα

b−[x] of order 0 ≤ α ≤ 1 and su-
perior limit b if and only if x−x(b) ∈ ACαb−(I,Rn). In that case cDα

b−[x] ∈ L1
loc(I,Rn)

is defined on I by

cDα
b−[x](t) := Dα

b−[x− x(b)](t).

We denote by cACαb−(I,Rn) the set of all functions x ∈ C(I,Rn) possessing on I a
right Caputo fractional derivative cDα

b−[x] of order 0 ≤ α ≤ 1 and superior limit b.

All results recalled in Section 2.1 (for left fractional operators) have each a right
counterpart version. We refer the reader to [36, 47] for details.

3. Main results and comments. This section is devoted to the main results
(Theorems 3.1 and 3.12) of the present paper.

3.1. Framework, terminology and assumptions. Let a < b be two real
numbers. Let m, n, j ∈ N∗, let 0 < α ≤ 1 and β ≥ α be fixed. We consider the
general Caputo fractional optimal control problem of Bolza form given by

(OCP)



minimize ϕ(x(a), x(b)) + Iβa+[F (x, u, ·)](b),

subject to x ∈ cACαa+([a, b],Rn), u ∈ L∞([a, b],Rm),

cDα
a+[x](t) = f(x(t), u(t), t), a.e. t ∈ [a, b],

g(x(a), x(b)) ∈ C,

u(t) ∈ U, a.e. t ∈ [a, b].

In Problem (OCP), u is the control function and x is the state function (also called
trajectory). In this paper we assume that:

- the function ϕ : Rn × Rn → R, that describes the Mayer cost ϕ(x(a), x(b)),
is of class C1;
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- the set C ⊂ Rj is a nonempty closed convex subset of Rj and the function g :
Rn×Rn → Rj , that describes the terminal state constraint g(x(a), x(b)) ∈ C,
is of class C1;

- the set U ⊂ Rm, that describes the control constraint u(t) ∈ U, is a nonempty
closed subset of Rm;

- the dynamic f : Rn × Rm × [a, b] → Rn, that drives the Caputo fractional
state equation cDα

a+[x](t) = f(x(t), u(t), t), satisfies the following conditions:
- f is continuous;
- f is differentiable with respect to its first variable;
- ∂1f is continuous;
- f is Lipschitz continuous with respect to its first two variables on every

compact subset (see Inequality (3.1) for precisions).
In particular, for every compact subset K ⊂ Rn × Rm × [a, b], there exists a
nonnegative constant L ≥ 0 such that ‖∂1f(x, u, t)‖Rn×n ≤ L for all (x, u, t) ∈
K, and such that

‖f(x2, u2, t)− f(x1, u1, t)‖Rn ≤ L(‖x2 − x1‖Rn + ‖u2 − u1‖Rm),(3.1)

for all (x1, u1, t), (x2, u2, t) ∈ K.
- the function F : Rn×Rm× [a, b]→ R, that describes the fractional Lagrange

cost Iβa+[F (x, u, ·)](b), is assumed to satisfy the same assumptions than the
dynamic f .

Usually the fractional Lagrange cost Iβa+[F (x, u, ·)](b) is considered with β = α or
β = 1 in the literature. Nevertheless, we can always get back to the case where β = α
by noting that the fractional Lagrange cost can be rewritten as Iαa+[F β(x, u, ·)](b)
where

F β(x, u, t) :=
Γ(α)

Γ(β)
(b− t)β−αF (x, u, t),

for all (x, u, t) ∈ Rn × Rm × [a, b]. Since β ≥ α, note that F β satisfies the same
regularity assumptions than F (and thus than f).

3.2. Filippov’s existence theorem. We provide hereafter a result stating the
existence of at least one optimal solution to Problem (OCP) under some appropriate
compactness and convexity assumptions. We follow the standard Filippov’s approach
(see [15, 19, 24, 39] for example). For this purpose we introduce the usual set of
augmented velocities defined by

(f, F+)(x,U, t) := {(f(x, u, t), F (x, u, t) + γ) | u ∈ U, γ ≥ 0} ⊂ Rn+1,

for all (x, t) ∈ Rn × [a, b). Moreover let T ⊂ C stand for the set of all trajectories
x ∈ cACαa+([a, b],Rn) that can be associated to a control u ∈ L∞([a, b],Rm) such
that the couple (x, u) satisfies all the constraints of Problem (OCP). Obviously, if T
is empty, then Problem (OCP) has no solution. Otherwise, the following existence
result holds true.

Theorem 3.1 (Filippov’s existence theorem). If U is compact, T is nonempty
and bounded in C, and if (f, F+)(x,U, t) is convex for all (x, t) ∈ Rn × [a, b), then
Problem (OCP) has at least one optimal solution.

Proof. First of all, since (f, F+)(x,U, t) is convex, note that (f, F β+)(x,U, t) is
convex for all (x, t) ∈ Rn× [a, b). Since T is nonempty, let (xk)k∈N ⊂ T be a minimiz-
ing sequence and (uk)k∈N ⊂ L∞([a, b],Rm) be a corresponding control sequence. We



FRACTIONAL FILIPPOV’S THEOREM AND FRACTIONAL PMP 9

introduce zk := Iαa+[F β(xk, uk, ·)] ∈ cACαa+([a, b],R) and Gk := (f, F β)(xk, uk, ·) ∈
L∞([a, b],Rn+1) for all k ∈ N. In particular the cost associated to xk is equal to
ϕ(xk(a), xk(b))+zk(b) for all k ∈ N. We know that (xk, zk)(t) = (xk(a), 0)+Iαa+[Gk](t)
for all t ∈ [a, b] and all k ∈ N. From the hypotheses, the sequence (Gk)k∈N is bounded
in L∞([a, b],Rn+1) and thus, up to a subsequence, weakly* converges to some G ∈
L∞([a, b],Rn+1). Similarly, the sequence (xk(a))k∈N is bounded in Rn and thus, up to
a subsequence, converges to some x∗a ∈ Rn. We deduce that (xk, zk)k∈N, up to a subse-
quence, pointwise converges on [a, b] to (x∗, z∗) where (x∗, z∗)(t) := (x∗a, 0)+Iαa+[G](t)
for all t ∈ [a, b]. Note that (x∗, z∗) ∈ cACαa+([a, b],Rn+1) with cDα

a+[(x∗, z∗)] = G and
(x∗, z∗)(a) = (x∗a, 0). From the continuity of ϕ, the infimum cost of Problem (OCP) is
equal to ϕ(x∗(a), x∗(b))+z∗(b). Similarly, from the continuity of g and the closedness
of C, we deduce that g(x∗(a), x∗(b)) ∈ C. To conclude the proof, we only need to
prove that G ∈ W where

W := {h ∈ L2([a, b],Rn+1) | h(τ) ∈ (f, F β+)(x∗(τ),U, τ) for almost every τ ∈ [a, b]}.

Indeed, if G ∈ W, then there exists u∗(τ) ∈ U and γ∗(τ) ≥ 0 such that

G(τ) = (f(x∗(τ), u∗(τ), τ), F β(x∗(τ), u∗(τ), τ) + γ∗(τ)),

for almost every τ ∈ [a, b]. Moreover, u∗ and γ∗ can be selected measurable on [a, b]
from implicit measurable function theorems (see, e.g., [54, Section 7]). Since U is
bounded, we get that u∗ ∈ L∞([a, b],Rm). Thus x∗ ∈ T associated to the control u∗

and the associated cost is equal to

ϕ(x∗(a), x∗(b)) + Iβa+[F (x∗, u∗, ·)](b) = ϕ(x∗(a), x∗(b)) + Iαa+[F β(x∗, u∗, ·)](b)

≤ ϕ(x∗(a), x∗(b)) + Iαa+[F β(x∗, u∗, ·) + γ∗](b) = ϕ(x∗(a), x∗(b)) + z∗(b),

which would prove that the couple (x∗, u∗) is an optimal solution to Problem (OCP).
Now, let us prove that G ∈ W (in two steps).

First, one can easily deduce from the assumptions that W is a closed and convex
subset of L2([a, b],Rn+1) with its usual topology, and thus with its weak topology as
well. Now let us consider (Hk)k∈N ⊂ W defined by Hk(τ) := (f, F β)(x∗(τ), uk(τ), τ)
for almost every τ ∈ [a, b] and all k ∈ N. Since U is compact, the sequence (Hk)k∈N
is bounded in L∞([a, b],Rn+1) and thus in L2([a, b],Rn+1). We deduce that, up to a
subsequence, (Hk)k∈N weakly converges in L2([a, b],Rn+1) to some H ∈ W.

Next, we prove that G = H. From the boundedness of T and U and from the
hypotheses on (f, F β) (Inequality (3.1)), we get that

‖Gk(τ)−Hk(τ)‖Rn+1 ≤ L‖xk(τ)− x∗(τ)‖Rn ,

for almost all τ ∈ [a, b] and all k ∈ N, for some constant L ≥ 0. Thanks to the
pointwise convergence of (xk)k∈N to x∗, we deduce that

lim
k→∞

∫ b

a

〈ϕ(τ), Gk(τ)−Hk(τ)〉Rn+1 dτ = 0

for all ϕ in L2([a, b],Rn+1). On the other hand, we obtain from the weak star and
weak convergences that

lim
k→∞

∫ b

a

〈ϕ(τ), Gk(τ)−Hk(τ)〉Rn+1 dτ =

∫ b

a

〈ϕ(τ), G(τ)−H(τ)〉Rn+1 dτ

for all ϕ ∈ L2([a, b],Rn+1). We conclude that G = H ∈ W.
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Remark 3.2. The regularity assumptions on f , F , g and ϕ introduced in Sec-
tion 3.1 can be weakened for Theorem 3.1. Indeed only the continuity of f , F , g and
ϕ and Inequality (3.1) (for f and F ) are required in the above proof. Similarly, the
convexity of C is a useless assumption that can be removed.

Remark 3.3. Theorem 3.1 can be extended to the case where we consider in Prob-
lem (OCP) some additional intermediate state constraints (not only at t = a and t = b,
but also at some times ci ∈ (a, b)) or even running state constraints (that is, over the
whole interval [a, b]). Indeed, in the above proof, one can easily see that the pointwise
convergence of xk to x∗ allows to preserve such type of state constraints if appropriate
continuous and closedness properties are satisfied.

Remark 3.4. This remark is devoted to sufficient conditions ensuring the bound-
edness of T in C. If U is compact, if the terminal state constraint g(x(a), x(b)) ∈ C
allows to bound the initial condition x(a) (if the initial condition is fixed for example)
and if f satisfies a global Lipschitz condition of type

‖f(x, u, t)− f(0Rn , u, t)‖Rn ≤ L‖x‖Rn ,

for all (x, u, t) ∈ Rn × U × [a, b], and some L ≥ 0, then the fractional version of
Gronwall lemma given in Proposition B.1 allows to prove that T is bounded in C.

3.3. Sensitivity analysis of the Caputo fractional state equation. In this
section we perform the sensitivity analysis of the Caputo fractional state equation in
order to get differentiability results on the trajectory x with respect to perturbations
on the control u and on the initial condition xa. For this purpose, throughout this
section, we fix a couple (u, xa) ∈ L∞([a, b],Rm) × Rn and we focus on the nonlinear
Caputo fractional Cauchy problem (CP) given by

(CP)

{
cDα

a+[x](t) = f(x(t), u(t), t), a.e. t ∈ [a, b],

x(a) = xa.

The results presented in this section are crucial in order to prove our main result
(Theorem 3.12) stated in Section 3.4.

3.3.1. Admissible for globality couples. Let us recall some classical defini-
tions of solution to (CP) and some fractional Cauchy-Lipschitz (or Picard-Lindelöf)
results. We refer to [12, Section 3.2.2] for details.

Definition 3.5. A pair (x, I) is said to be a (local) solution to (CP) if
(i) I ⊂ R is an interval such that {a}  I ⊂ [a, b];

(ii) x ∈ cACαa+(I,Rn) and x satisfies{
cDα

a+[x](t) = f(x(t), u(t), t), a.e. t ∈ I,

x(a) = xa,

or, equivalently, x ∈ C(I,Rn) and x satisfies the integral representation

x(t) = xa + Iαa+[f(x, u, ·)](t),

for all t ∈ I.

Definition 3.6. Let (x, I) and (x′, I ′) be two local solutions to (CP). We say
that (x′, I ′) is an extension (resp. strict extension) of (x, I) if I ⊂ I ′ (resp. I  I ′)
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and x′(t) = x(t) for every t ∈ I. We say that (x, I) is a maximal solution to (CP) if
it does not admit any strict extension. Finally, the couple (x, I) is said to be a global
solution to (CP) if I = [a, b].

Proposition 3.7 ([12, Theorem 2]). The Caputo fractional Cauchy problem
(CP) admits a unique maximal solution which extends all other local solutions. This
unique maximal solution will be denoted by (x(·, u, xa), I(u, xa)).

Definition 3.8. If the maximal solution (x(·, u, xa), I(u, xa)) to (CP) is global,
we say that the couple (u, xa) is admissible for globality.

Proposition 3.9 ([12, Theorem 4]). If the couple (u, xa) is not admissible for
globality, that is, if the maximal solution (x(·, u, xa), I(u, xa)) of (CP) is not global,
then I(u, xa) is not closed and x(·, u, xa) is unbounded on I(u, xa).

In the sequel we denote by AG the set of all couples (u, xa) ∈ L∞([a, b],Rm)×Rn
that are admissible for globality.

3.3.2. Needle-like perturbation of the control. In this section we assume
that (u, xa) ∈ AG and our objective is to establish the differentiability of the state
x(·, u, xa) with respect to specific perturbations on the control u. For this pur-
pose, we denote in the sequel by L[f(x(·, u, xa), u, ·)] the set of all Lebesgue points
in [a, b) of the essentially bounded function t 7→ f(x(t, u, xa), u(t), t). Recall that
L[f(x(·, u, xa), u, ·)] has a full Lebesgue measure equal to b− a.

Let (s, v) ∈ L[f(x(·, u, xa), u, ·)]× Rm. For every δ ∈ [0, b− s), we introduce the
so-called needle-like perturbation uδ ∈ L∞([a, b],Rm) of u associated to (s, v) as

uδ(τ) :=

{
v if τ ∈ [s, s+ δ),
u(τ) if τ /∈ [s, s+ δ),

for almost every τ ∈ [a, b].

Proposition 3.10. For all (s, v) ∈ L[f(x(·, u, xa), u, ·)]× Rm, there exists δ̄ > 0
such that (uδ, xa) ∈ AG for all 0 ≤ δ ≤ δ̄. Moreover:

(i) x(·, uδ, xa) uniformly converges on [a, b] to x(·, u, xa) when δ → 0;
(ii) the quotient

x(·, uδ, xa)− x(·, u, xa)

δ
,

uniformly converges on [s + ς, b], for any 0 < ς ≤ b − s, to w(s,v)(·, u, xa)
when δ → 0, where w(s,v)(·, u, xa) is the unique maximal solution, which is
moreover global, of the linear left RL fractional Cauchy problem given by{

Dα
s+[w](t) = ∂1f(x(t, u, xa), u(t), t)× w(t), a.e. t ∈ [s, b],

I1−α
s+ [w](s) = f(x(s, u, xa), v, s)− f(x(s, u, xa), u(s), s).

The function w(s,v)(·, u, xa) is called the variation vector associated to (u, xa) and
(s, v).

Proof. The technical proof of Proposition 3.10 is detailed in Appendix A.1.2.

The existence, uniqueness and globality of w(s,v)(·, u, xa) ∈ L1([s, b],Rn) directly
follow from [12, Theorem 1]. Moreover, recall that the product ραs+w(s,v)(·, u, xa) ∈
C([s, b],Rn) (see [13, Theorem 6]), where ραs+ : [a, b]→ R stands for the weight function
given by

ραs+(t) := Γ(α)(t− s)1−α,
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for all t ∈ [s, b]. Finally, the fractional Duhamel formula given in [12, Theorem 5] by

(3.2) w(s,v)(t, u, xa) = Φ(t, s)× (f(x(s, u, xa), v, s)− f(x(s, u, xa), u(s), s)),

holds for all t ∈ (s, b], where Φ(·, ·) is the left RL fractional state-transition matrix (see
[12, Definition 18] for details) associated to the essentially bounded matrix function
t 7→ ∂1f(x(t, u, xa), u(t), t) ∈ Rn×n.

3.3.3. Perturbation of the initial condition. In this section we assume that
(u, xa) ∈ AG and our objective is to establish the differentiability of the state x(·, u, xa)
with respect to perturbations of the initial condition xa.

Proposition 3.11. For all y ∈ Rn, there exists δ̄ > 0 such that (u, xa+δy) ∈ AG
for all 0 ≤ δ ≤ δ̄. Moreover:

(i) x(·, u, xa + δy) uniformly converges on [a, b] to x(·, u, xa) when δ → 0;
(ii) the quotient

x(·, u, xa + δy)− x(·, u, xa)

δ
,

uniformly converges on [a, b] to wy(·, u, xa) when δ → 0, where wy(·, u, xa)
is the unique maximal solution, which is moreover global, of the linear left
Caputo fractional Cauchy problem given by{

cDα
a+[w](t) = ∂1f(x(t, u, xa), u(t), t)× w(t), a.e. t ∈ [a, b],

w(a) = y.

The function wy(·, u, xa) is called the variation vector associated to (u, xa) and y.

Proof. The technical proof of Proposition 3.11 is detailed in Appendix A.1.3.

The existence, uniqueness and globality of wy(·, u, xa) ∈ C([a, b],Rn) directly
follow from [12, Theorem 3]. Considering the function ξ := wy(·, u, xa) − y, one can
easily see that ξ is the unique maximal solution, which is moreover global, of the
(nonhomogeneous) linear left RL fractional Cauchy problem given by{

Dα
a+[ξ](t) = ∂1f(x(t, u, xa), u(t), t)× (ξ(t) + y), a.e. t ∈ [a, b],

I1−α
a+ [ξ](a) = 0Rn .

The existence, uniqueness and globality of ξ ∈ L1([a, b],Rn) directly follow from [12,
Theorem 1]. Recall that the product ραa+ξ ∈ Ca([a, b],Rn) (see [13, Theorem 6]) and
note that the fractional Duhamel formula given in [12, Theorem 5] applied to ξ allows
to get that

(3.3) wy(t, u, xa) = y +

∫ t

a

Φ(t, τ)× ∂1f(x(τ, u, xa), u(τ), τ) dτ × y,

for every t ∈ [a, b], where the notations ραa+ and Φ(·, ·) are introduced in Section 3.3.2.

3.4. Pontryagin Maximum Principle (PMP). Let us recall that the normal
cone to C at a point x ∈ C is defined by

NC[x] := {z ∈ Rj | ∀x′ ∈ C, 〈z, x′ − x〉Rj ≤ 0}.

It is a nonempty closed convex cone containing 0Rj . Note that several basics on
convexity notions (such as distance function, projection, etc.) are recalled in Ap-
pendix A.2.2. Also recall that g : Rn × Rn → Rj is said to be submersive at a point
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(xa, xb) ∈ Rn×Rn if its differential at this point is surjective. We may now formulate
the main result of the present paper.

Theorem 3.12 (PMP). If (x∗, u∗) ∈ cACαa+([a, b],Rn)×L∞([a, b],Rm) is an op-
timal solution to Problem (OCP), then there exists a nontrivial couple (p, p0), where
p ∈ ACαb−([a, b],Rn) (called adjoint vector) and p0 ≤ 0, such that the following condi-
tions hold:

(i) Fractional Hamiltonian system (or extremal equations):

cDα
a+[x∗](t) = ∂3H(x∗(t), u∗(t), p(t), p0, t),

Dα
b−[p](t) = ∂1H(x∗(t), u∗(t), p(t), p0, t),

for almost every t ∈ [a, b], where the Hamiltonian H : Rn × Rm × Rn × R ×
[a, b)→ R associated to Problem (OCP) is defined by

H(x, u, p, p0, t) := 〈p, f(x, u, t)〉Rn +
p0

Γ(β)
(b− t)β−1F (x, u, t),

for all (x, u, p, p0, t) ∈ Rn × Rm × Rn × R× [a, b);

(ii) Hamiltonian maximization condition:

u∗(t) ∈ arg max
v∈U

H(x∗(t), v, p(t), p0, t),

for almost every t ∈ [a, b];

(iii) Transversality conditions on the adjoint vector: if the function g is submersive
at (x∗(a), x∗(b)), then the nontrivial couple (p, p0) can be selected to satisfy

I1−α
b− [p](a) = −p0∂1ϕ(x∗(a), x∗(b))− ∂1g(x∗(a), x∗(b))> ×Ψ,

I1−α
b− [p](b) = p0∂2ϕ(x∗(a), x∗(b)) + ∂2g(x∗(a), x∗(b))> ×Ψ,

where −Ψ ∈ NC[g(x∗(a), x∗(b))].

The technical (and quite long) proof of Theorem 3.12 (in its general form) is
detailed in Appendix A.2. From a standard change of variable, we reduce Prob-
lem (OCP) to the case where there is no Lagrange cost (that is, with F = 0). Then,
the proof is based on the sensitivity analysis performed in Section 3.3 and, in order to
take into account the terminal state constraint g(x(a), x(b)) ∈ C, from the application
of Ekeland’s variational principle (recalled in Proposition A.7) on a penalized func-
tional. We feel that it is of interest to provide here a simple proof of Theorem 3.12 in
two particular and simpler cases.

Proof of Theorem 3.12 in two particular and simpler cases. In this proof we will
assume that there is no Lagrange cost (that is, F = 0) in Problem (OCP), that g
is the identity function (in particular j = 2n and g is submersive at any point) and
C = C1 × Rn where:

(i) either C1 = {xa} for some xa ∈ Rn fixed (corresponding to the case where the
initial condition is fixed and the final condition is free in Problem (OCP));

(ii) either C1 = Rn (which corresponds to the case where the initial and final
conditions are let free in Problem (OCP)).
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Let (x∗, u∗) ∈ cACαa+([a, b],Rn) × L∞([a, b],Rm) be an optimal solution to Prob-
lem (OCP). With the notations introduced in Section 3.3, note that (u∗, x∗(a)) ∈ AG
and x∗ = x(·, u∗, x∗(a)). Let (s, v) ∈ L(f(x∗, u∗, ·))× U. From optimality of (x∗, u∗)
and using Proposition 3.10, we know that

ϕ(x(a, uδ, x
∗(a)), x(b, uδ, x

∗(a)))− ϕ(x∗(a), x∗(b))

δ
≥ 0,

for all δ > 0 sufficiently small, where uδ stands for the needle-like perturbation of u∗

associated to (s, v). From Proposition 3.10 and letting δ → 0, we get that〈
−∂2ϕ(x∗(a), x∗(b)), w(s,v)(b, u

∗, x∗(a))
〉
Rn ≤ 0.

From the Duhamel formula (3.2), recall that

w(s,v)(b, u
∗, x∗(a)) = Φ(b, s)× (f(x∗(s), v, s)− f(x∗(s), u∗(s), s)).

Hence, defining
p(s) := Φ(b, s)> × (−∂2ϕ(x∗(a), x∗(b))),

for almost all s ∈ [a, b), we easily deduce from the above inequality the Hamiltonian
maximization condition of Theorem 3.12. From the duality theorem given in [12,
Theorem 7], we deduce that p ∈ ACαb−([a, b],Rn) is the unique maximal solution,
which is moreover global, of the linear right RL fractional Cauchy problem given by{

Dα
b−[p](t) = ∂1f(x∗(t), u∗(t), t)> × p(t), a.e. t ∈ [a, b],

I1−α
b− [p](b) = −∂2ϕ(x∗(a), x∗(b)).

Recall that the existence, uniqueness and globality of p ∈ L1([a, b],Rn) directly fol-
low from the right counterpart of [12, Theorem 1]. Recall that the product ραb−p ∈
C([a, b],Rn) from the right counterpart of [13, Theorem 6], where ραb− : [a, b] → R
stands for the weight function given by ραb−(t) := Γ(α)(b − t)1−α for all t ∈ [a, b].
Then, from the above Cauchy problem, one can easily see that the fractional Hamil-
tonian system in Theorem 3.12 is satisfied. Then, let us define p0 := −1 (in par-
ticular, the nontriviality of (p, p0) is guaranteed). If C1 = {xa} for some xa ∈ Rn
fixed, the transversality conditions in Theorem 3.12 are both satisfied by considering
Ψ = (Ψ1,Ψ2) with Ψ1 := ∂1ϕ(x∗(a), x∗(b)) − I1−α

b− [p](a) and Ψ2 := 0Rn . Indeed the
normal cone to the entire space Rn (at any point) is reduced to the singleton {0Rn}
and the normal cone to the singleton {xa} (at xa) is the entire space Rn. So the
proof is complete in the case where C1 = {xa} for some xa ∈ Rn fixed. Now, let
us assume that C1 = Rn and let y ∈ Rn. From the optimality of (x∗, u∗) and using
Proposition 3.11, we know that

ϕ(x(a, u∗, x∗(a) + δy), x(b, u∗, x∗(a) + δy))− ϕ(x∗(a), x∗(b))

δ
≥ 0,

for all δ > 0 sufficiently small. From Proposition 3.11 and letting δ → 0, we get that

〈−∂1ϕ(x∗(a), x∗(b)), y〉Rn + 〈−∂2ϕ(x∗(a), x∗(b)), wy(b, u∗, x∗(a))〉Rn ≤ 0.

From the Duhamel formula (3.3), we know that

wy(b, u∗, x∗(a)) = y +

∫ b

a

Φ(b, τ)× ∂1f(x∗(τ), u∗(τ), τ) dτ × y.



FRACTIONAL FILIPPOV’S THEOREM AND FRACTIONAL PMP 15

Thus we can rewrite the above inequality as〈
−∂1ϕ(x∗(a), x∗(b))− ∂2ϕ(x∗(a), x∗(b)) +

∫ b

a

Dα
b−[p](τ) dτ, y

〉
Rn
≤ 0.

From the equalities Dα
b−[p] = − d

dt [I
1−α
b− [p]] and I1−α

b− [p](b) = −∂2ϕ(x∗(a), x∗(b)), we
deduce that 〈

−∂1ϕ(x∗(a), x∗(b)) + I1−α
b− [p](a), y

〉
Rn ≤ 0.

Since the above inequality is true for all y ∈ Rn, it is clear that the conditon
I1−α
b− [p](a) = ∂1ϕ(x∗(a), x∗(b)) follows. Hence, the transversality conditions in The-

orem 3.12 are both satisfied by considering Ψ = (Ψ1,Ψ2) with Ψ1 := 0Rn and
Ψ2 := 0Rn . This completes the proof in the case where C1 = Rn.

We end this section with some comments.

Remark 3.13. The nontrivial couple (p, p0) in Theorem 3.12, which is a Lagrange
multiplier, is defined up to a positive multiplicative scalar. Defining as usual an
extremal as a quadruple (x, u, p, p0) solution to the extremal equations, an extremal
is said to be normal whenever p0 6= 0 and abnormal whenever p0 = 0. In the normal
case p0 6= 0, it is usual to normalize the Lagrange multiplier so that p0 = −1.

Remark 3.14. Theorem 3.12 encompasses the historical Pontryagin maximum
principle by considering the case where α = β = 1.

Remark 3.15. In Problem (OCP), the state fractional equation cDα
a+[x](t) =

f(x(t), u(t), t) involves the left Caputo fractional operator cDα
a+, while the adjoint

equation Dα
b−[p](t) = ∂1H(x∗(t), u∗(t), p(t), p0, t) in Theorem 3.12 depends on the

right RL fractional derivative Dα
b−. Accordingly, Problem (OCP) depends on the

terminal conditions x(a) and x(b), while the transversality conditions on the adjoint
vector in Theorem 3.12 involve I1−α

b− [p](a) and I1−α
b− [p](b). Finally, note that the ad-

joint vector p ∈ ACαb−([a, b],Rn) may admit a singularity at t = b (see the right
counterpart of Remark 2.8 and see Section 4 for two examples).

Remark 3.16. Our strategy in order to prove Theorem 3.12 in its general form
is based on Ekeland’s variational principle (Proposition A.7) and thus requires the
closedness of U in order to define the corresponding penalized functional on a complete
metric space (see details in Appendix A.2). In the two particular and simpler cases
considered above, Ekeland’s variational principle is not required and the closedness
of U is a useless assumption that can be removed.

Remark 3.17. Let us describe some typical situations of terminal state constraint
g(x(a), x(b)) ∈ C in Problem (OCP), and the corresponding transversality conditions
in Theorem 3.12:

- If the terminal points are fixed in Problem (OCP), one may consider g as
the identity function and C = {xa} × {xb} where xa, xb ∈ Rn are the fixed
terminal points. In that case, the transversality conditions in Theorem 3.12
do not provide any additional information.

- If the initial point is fixed and if the final point is free in Problem (OCP), one
may consider g as the identity function and C = {xa}×Rn where xa ∈ Rn is
the fixed initial point. In that case, the nontriviality of the couple (p, p0) and
the transversality conditions in Theorem 3.12 imply that p0 6= 0 (which we
normalize to p0 = −1, see Remark 3.13) and I1−α

b− [p](b) = −∂2ϕ(x∗(a), x∗(b)).
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- If the initial point is fixed and the final point is subject to inequality con-
straints Gi(x(b)) ≥ 0 for i = 1, . . . , k, one may consider g : Rn × Rn →
Rn+k, g(xa, xb) = (xa, G(xb)) where G = (G1, . . . , Gk) : Rn → Rk and
C = {xa} × (R+)k. If G is of class C1 and is submersive at any point
xb ∈ G−1((R+)k), then the transversality conditions in Theorem 3.12 can
be written as

I1−α
b− [p](b) = p0∂2ϕ(x∗(a), x∗(b)) +

k∑
i=1

λi∇Gi(x∗(b)),

for some λi ≥ 0, i = 1, . . . , k.
- If there is no Mayer cost (that is, ϕ = 0) and the periodic condition x(a) =
x(b) is considered in Problem (OCP), one may consider g : Rn × Rn → Rn,
g(xa, xb) = xb−xa and C = {0Rn}. In that case, the transversality conditions
in Theorem 3.12 yield that I1−α

b− [p](a) = I1−α
b− [p](b).

We point out that, in all examples above, the function g is indeed a submersion.

Remark 3.18. Let us assume that the Hamiltonian H considered in Theorem 3.12
is differentiable with respect to its second variable (for example, if f and F are). In
that case, and if U is convex, the Hamiltonian maximization condition in Theorem 3.12
implies the (weaker) nonnegative Hamiltonian gradient condition given by

〈∂2H(x∗(t), u∗(t), p(t), p0, t), v − u∗(t)〉Rm ≤ 0,

for all v ∈ U and for almost every t ∈ [a, b]. Similarly, if U = Rm (that is, no
control constraint in Problem (OCP)), then the Hamiltonian maximization condition
in Theorem 3.12 implies the (weaker) null Hamiltonian gradient condition given by

∂2H(x∗(t), u∗(t), p(t), p0, t) = 0Rm ,

for almost every t ∈ [a, b].

Remark 3.19. Note that an extension of Theorem 3.12 for a parameterized version
of Problem (OCP) (that is, depending on a vectorial parameter z to be optimized)
can be easily derived by adding the fractional state equation cDα

a+[z](t) = 0.

Remark 3.20. If β = 1 in Problem (OCP), then we recover in Theorem 3.12 the
very standard Hamiltonian given by H(x, u, p, p0, t) := 〈p, f(x, u, t)〉Rn + p0F (x, u, t).
On the other hand, if β 6= 1 in Problem (OCP), then the Hamiltonian is not standard

since it is given by H(x, u, p, p0, t) := 〈p, f(x, u, t)〉Rn + p0

Γ(β) (b− t)β−1F (x, u, t). This

phenomenon is due to the nonlocality of the fractional operator Iβa+ but it is natural
since the fractional Lagrange cost can be rewritten as

Iβa+[F (x, u, ·)](b) = I1
a+

[
(b− ·)β−1

Γ(β)
F (x, u, ·)

]
(b).

In particular, if β 6= 1, the Hamiltonian considered in Theorem 3.12 may be not
autonomous, even if f and F are.

4. Two examples. This section is devoted to the application of Theorem 3.12
to solve simple examples. We focus on the fractional versions (0 < α ≤ 1 and β ≥ α)
of two basic problems from the classical theory.
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4.1. A fractional linear-quadratic problem. In this section we consider the
fractional linear-quadratic problem given by

(4.1)



minimize
1

2
Iβ0+[u2](T ),

subject to x = (x1, x2) ∈ cACα0+([0, T ],R2), u ∈ L∞([0, T ],R),

cDα
0+[x1](t) = x2(t), a.e. t ∈ [0, T ],

cDα
0+[x2](t) = u(t), a.e. t ∈ [0, T ],

x(0) = (a, b),

x(T ) = (0, 0),

where T > 0 and (a, b) 6= (0, 0). Problem (4.1) corresponds to a fractional version
of the classical parking problem (or double integrator problem). Let us assume that
Problem (4.1) admits an optimal solution denoted by (x∗, u∗). Then, there exists a
nontrivial couple (p, p0) ∈ ACαT−([0, T ],R2) × R such that all necessary conditions
provided in Theorem 3.12 are satisfied, where the Hamiltonian is given by

H(x1, x2, u, p1, p2, p
0, t) = p1x2 + p2u+

p0

2

(T − t)β−1

Γ(β)
u2.

The fractional Hamiltonian system gives Dα
T−[p1] = 0 and Dα

T−[p2] = p1 leading to

p1(t) =
(T − t)α−1

Γ(α)
c2 and p2(t) =

(T − t)α−1

Γ(α)
c1 +

(T − t)2α−1

Γ(2α)
c2,

for every t ∈ [0, T ), for some constants c1, c2 ∈ R. Since there is no control constraint
in Problem (OCP) and from Remark 3.18, the null Hamiltonian gradient condition
gives

p2(t) = −p0 (T − t)β−1

Γ(β)
u∗(t),

for almost all t ∈ [0, T ]. From the nontriviality of the couple (p, p0), one can easily see
that p0 6= 0 and normalize the Lagrange multiplier so that p0 = −1 (Remark 3.13).
Thus

u∗(t) = Γ(β)(T − t)1−βp2(t) = c1ξ1(t) + c2ξ2(t),

where ξk(t) := Γ(β)
Γ(kα) (T − t)kα−β for all t ∈ [0, T ] and k = 1, 2. Our objective is now to

determine the real constants c1, c2. From the fractional state equation and the initial
condition x∗(0) = (a, b), we get x∗2 = b+ Iα0+[u∗] and x∗1 = a+ bIα0+[1] + I2α

0+[u∗]. From
the final condition x∗(T ) = (0, 0), we obtain that the couple (c1, c2) is solution to the
linear system given by(

I2α
0+[ξ1](T ) I2α

0+[ξ2](T )
Iα0+[ξ1](T ) Iα0+[ξ2](T )

)
×
(
c1
c2

)
=

(
−a− bIα0+[1](T )

−b

)
.
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4.2. A fractional Zermelo problem. In this section we consider the fractional
version of the classical Zermelo problem given by

(4.2)



minimize −x1(T ),

subject to x = (x1, x2) ∈ cACα0+([0, T ],R2), u ∈ L∞([0, T ],R),

cDα
0+[x1](t) = x2(t) + cos(u(t)), a.e. t ∈ [0, T ],

cDα
0+[x2](t) = sin(u(t)), a.e. t ∈ [0, T ],

x(0) = (0, 0),

u(t) ∈ [−π2 ,
π
2 ], a.e. t ∈ [0, T ],

where T > 0. Let us assume that Problem (4.2) admits an optimal solution denoted
by (x∗, u∗). Then, there exists a nontrivial couple (p, p0) ∈ ACαT−([0, T ],R2) × R
such that all necessary conditions provided in Theorem 3.12 are satisfied, where the
Hamiltonian is given by

H(x1, x2, u, p1, p2, t) = p1(x2 + cos(u)) + p2 sin(u).

The fractional Hamiltonian system gives Dα
T−[p1] = 0 and Dα

T−[p2] = p1 leading to

p1(t) =
(T − t)α−1

Γ(α)
c2 and p2(t) =

(T − t)α−1

Γ(α)
c1 +

(T − t)2α−1

Γ(2α)
c2,

for every t ∈ [0, T ), where c1 = I1−α
T− [p2](T ) = 0 and c2 = I1−α

T− [p1](T ) = −p0 from the
transversality conditions. From the nontriviality of the couple (p, p0), one can easily
see that p0 6= 0 and normalize the Lagrange multiplier so that p0 = −1 (Remark 3.13).
The Hamiltonian maximization condition gives

u∗(t) ∈ arg max
v∈[−π2 ,

π
2 ]

〈(
cos(v)
sin(v)

)
,

(
p1(t)
p2(t)

)〉
R2

,

for almost all t ∈ [0, T ]. With the classical Cauchy-Schwarz inequality we get that(
cos(u∗(t))
sin(u∗(t))

)
=

1

‖(p1(t), p2(t))‖R2

(
p1(t)
p2(t)

)
,

leading to tan(u∗(t)) = p2(t)
p1(t) which gives

u∗(t) = arctan

(
p2(t)

p1(t)

)
= arctan

(
Γ(α)

Γ(2α)
(T − t)α

)
,

for almost all t ∈ [0, T ].

5. Conclusion. As a conclusion we present perspectives and forthcoming works
which may follow the present paper.

5.1. Works in progress. We first consider the framework of Theorem 3.12
in the classical case α = β = 1 and we recall the standard notion of maximized
Hamiltonian H : [a, b]→ R given by

H(t) := H(x∗(t), u∗(t), p(t), p0, t),
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for almost every t ∈ [a, b]. If H is differentiable with respect to t with ∂tH continuous
(for example if f and F are), it is well-known that H is equal almost everywhere
on [a, b] to an absolutely continuous function (denoted similarly) which satisfies

Ḣ(t) = ∂tH(x∗(t), u∗(t), p(t), p0, t),

for almost every t ∈ [a, b]. This property is known as the Hamiltonian (absolute)
continuity and we roughly say that the total derivative of the Hamiltonian is equal to
its partial derivative. In particular, if the problem is moreover autonomous, then H is
constant. We refer for instance to [23, Theorem 2.6.3 p.73] for details in the classical
theory. This property constitutes an additional necessary optimality condition and it
is particularly interesting in order to deal with optimal control problems with free final
time (which encompass minimal time problems for example). Indeed, it is well-known
that a change of time variable allows to convert a free final time problem into an
autonomous fixed final time problem. Then, from the constancy of the corresponding
maximized Hamiltonian, combined with a parameterized version of the classical PMP,
the classical transversality condition on the optimal free final time is derived. We refer
for instance to [30, Chapter 14] for details in the classical theory.

To the best of our knowledge, no Hamiltonian continuity in the fractional case
0 < α ≤ 1 and β ≥ α has been announced, proved or even refuted in the literature.
The priority for the authors of the present paper is to deal with this issue. Preliminary
results have been obtained and a complete study will be published in the near future.
Our final objective towards this project, with the help of a parameterized version of
Theorem 3.12 (Remark 3.19), is to establish a version of the Pontryagin maximum
principle that handles Problem (OCP) with a free final time. Let us point out that
some earlier works like [9, 41, 45, 52] already deal with fractional optimal control
problems with free final time.

We conclude by mentioning that, similarly to the classical case, the Pontryagin
maximum principle stated in Theorem 3.12 only allows to solve explicitly a few number
of basic Caputo fractional optimal control problems (see Section 4 for two simple
examples). Nevertheless, like in the classical theory, Theorem 3.12 clearly induces
a numerical way in order to solve them by adapting to the fractional framework the
well-known shooting methods (which are indirect numerical methods reducing classical
optimal control problems into two-point boundary value problems that can be solved
by Newton’s methods for example). We refer for instance to [10, Section 3.3] for
details on shooting methods in the classical case. In order to extend this method
to the fractional framework considered in this paper, one may consider Grünwald-
Letnikov discretizations of the RL and Caputo fractional derivatives (see, e.g., [43,
p.43 and p.200] or [49] for details). This challenge will also be the subject of a
forthcoming paper. We refer to [3, 4, 7, 31, 45] for previous numerical studies on
fractional optimal control problems.

5.2. Other possible extensions. In Theorem 3.1 we provide an existence result
for Problem (OCP) based on the classical Filippov’s approach (see, e.g., [15, 24, 39]).
Extensions and other approaches are well-known in the classical theory (see, e.g., [19,
Chapter 9]). Fractional versions of these results can be considered as perspectives. Let
us mention here the works of Kamocki in [33, Theorem 17] and [35, Theorem 4.2] that
provide existence results for some linear RL and Caputo fractional optimal control
problems.

Concerning the Pontryagin maximum principle, many extensions of Theorem 3.12
are possible. We may for instance:
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- consider α > 1 and/or β < α;
- consider fractional multi-order α = (αi)i=1,...,n as in [12];
- rule out the closedness assumption on U (with a different approach than

Ekeland’s variational principle, see Remark 3.16);
- introduce time dependence U = U(t) on the control constraint set;
- consider intermediate state constraints (that is, not only at t = a or t = b, but

also at some times ci ∈ (a, b)) or running state constraints (over the whole
interval [a, b]);

- etc.
We conclude this section by pointing out that we deal in this paper with a general
optimal control problem involving a Caputo fractional state equation. In our opinion,
a relevant extension to Theorem 3.12 would be to consider a RL fractional state
equation

Dα
a+[x](t) = f(x(t), u(t), t),

driven by the RL fractional operator Dα
a+. A lot of difficulties are expected in that

framework since the corresponding trajectories x ∈ ACαa+([a, b],Rn) are not bounded
since singularities occur at t = a. As a consequence, most of estimates used in this
paper cannot be extended. In that framework, one should consider a Mayer cost
and a state constraint that involve the RL initial and final conditions I1−α

a+ [x](a) and

I1−α
a+ [x](b).

Appendix A. Proofs of Section 3. This appendix is devoted to the detailed
proofs of Section 3 (precisely Propositions 3.10 and 3.11 and Theorem 3.12). For this
purpose we have to fix for the whole section some 1 ≤ rα < ∞ such that rα = 1 if
α = 1, and rα >

1
α if α ∈ (0, 1) and to introduce the notations

M1
α :=


1 if α = 1,

1

Γ(α)

(
(b− a)r

′
α(α−1)+1

r′α(α− 1) + 1

)1/r′α

if α ∈ (0, 1),

and

M2
α :=


1 if α = 1,

(b− a)α−(1/rα)

(
Γ(r′α(α− 1) + 1)2

Γ(2r′α(α− 1) + 2)

)1/r′α

if α ∈ (0, 1),

where r′α := rα
rα−1 denotes the Lebesgue conjugate of rα (satisfying 1

rα
+ 1

r′α
= 1).

A.1. Proofs of Section 3.3. This section is devoted to the proofs of Proposi-
tions 3.10 and 3.11 detailed respectively in Appendices A.1.2 and A.1.3. The notations
introduced in the next preliminary Appendix A.1.1 will be required.

A.1.1. Preliminaries on stability and continuity results. We first prove
that the set AG is open (Proposition A.1) and establish the continuity of the state
x(·, u, xa) with respect to the couple (u, xa) ∈ AG (Proposition A.2). For this purpose,
we fix (u, xa) ∈ AG in the whole section and for every R ≥ ‖u‖L∞ , we introduce the
set

KR := {(y, v, t) ∈ Rn × Rm × [a, b] | ‖y − x(t, u, xa)‖Rn ≤ 1 and ‖v‖Rm ≤ R}.
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Note that any convex combination of two elements (y1, v1, t), (y2, v2, t) ∈ KR belongs
to KR. Moreover, from continuity of x(·, u, xa) on [a, b], KR is a compact subset of
Rn ×Rm × [a, b]. From the assumptions on the dynamic f (Section 3.1), there exists
a nonnegative constant LR ≥ 0 such that

(A.1) ‖∂1f(y, v, t)‖Rn×n ≤ LR,

for all (y, v, t) ∈ KR, and

(A.2) ‖f(y2, v2, t)− f(y1, v1, t)‖Rn ≤ LR(‖y2 − y1‖Rn + ‖v2 − v1‖Rm),

for all (y1, v1, t), (y2, v2, t) ∈ KR.

Proposition A.1. For every R ≥ ‖u‖L∞ , there exists ηR > 0 such that the
neighborhood of (u, xa) given by

NR :=
[
BL1(u, ηR) ∩ BL∞(0, R)

]
× BRn(xa, ηR),

is contained in AG. Moreover, it holds that (x(τ, u′, x′a), u′(τ), τ) ∈ KR for almost
every τ ∈ [a, b] and all (u′, x′a) ∈ NR.

Proof. Let R ≥ ‖u‖L∞ and let 0 < ηR < 1 be such that(
ηR +M1

αLR(2R)1/r′αη
1/rα
R

)
Eα,1(LR(b− a)α) < 1,

where rα and M1
α are defined at the beginning of Appendix A.1, and Eα,1 denotes

the classical Mittag-Leffler function (see Appendix B for details). Let (u′, x′a) ∈ NR.
Our aim is to prove that (u′, x′a) ∈ AG , that is, b ∈ I(u′, x′a). By contradiction, let us
assume that the set

A := {t ∈ I(u′, x′a) | ‖x(t, u′, x′a)− x(t, u, xa)‖Rn > 1},

is not empty and let t0 := inf A. It holds that ‖x(t0, u
′, x′a) − x(t0, u, xa)‖Rn ≥ 1

by continuity. Since ‖x(a, u′, x′a) − x(a, u, xa)‖Rn = ‖x′a − xa‖Rn ≤ ηR < 1, we get
that t0 > a. Moreover, one has ‖x(t, u′, x′a) − x(t, u, xa)‖Rn ≤ 1 for every t ∈ [a, t0].
Therefore (x(τ, u′, x′a), u′(τ), τ) and (x(τ, u, xa), u(τ), τ) belong to KR for almost every
τ ∈ [a, t0]. From integral representations we obtain

x(t, u′, x′a)− x(t, u, xa) = x′a − xa + Iαa+[f(x(·, u′, x′a), u′, ·)− f(x(·, u, xa), u, ·)](t),

for every t ∈ [a, t0]. It follows from Inequality (A.2) that

‖x(t, u′, x′a)− x(t, u, xa)‖Rn ≤‖x′a − xa‖Rn

+
LR

Γ(α)

∫ t

a

(t− τ)α−1‖u′(τ)− u(τ)‖Rm dτ

+
LR

Γ(α)

∫ t

a

(t− τ)α−1‖x(τ, u′, x′a)− x(τ, u, xa)‖Rn dτ,

for every t ∈ [a, t0]. Then, from the classical Hölder inequality applied to the second
right-hand side term and since (u′, x′a) ∈ NR, we get that

‖x(t, u′, x′a)− x(t, u, xa)‖Rn ≤ ηR +M1
αLR(2R)1/r′αη

1/rα
R

+ LRIαa+

[
‖x(·, u′, x′a)− x(·, u, xa)‖Rn

]
(t),
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for every t ∈ [a, t0]. From the fractional version of the Gronwall lemma given in
Proposition B.1, we deduce that

‖x(t, u′, x′a)− x(t, u, xa)‖Rn ≤
(
ηR +M1

αLR(2R)1/r′αη
1/rα
R

)
Eα,1(LR(b− a)α) < 1,

for every t ∈ [a, t0], which raises a contradiction at t = t0. Therefore A is empty.
We conclude that x(·, u′, x′a) is bounded on I(u′, x′a), then b ∈ I(u′, x′a) from Propo-
sition 3.9. Moreover, since A is empty, we also conclude that

‖x(t, u′, x′a)− x(t, u, xa)‖Rn ≤ 1

for every t ∈ [a, b], and thus (x(τ, u′, x′a), u′(τ), τ) ∈ KR for almost every τ ∈ [a, b].

For every R ≥ ‖u‖L∞ , we endow the neighborhood NR of (u, xa) with the basic
distance

(A.3) dL1×Rn
(

(u′, x′a), (u′′, x′′a)
)

:= ‖u′′ − u′‖L1 + ‖x′′a − x′a‖Rn ,

for all (u′, x′a), (u′′, x′′a) ∈ NR. We conclude this section with the following continuity
result.

Proposition A.2. For every R ≥ ‖u‖L∞ , there exists CR ≥ 0 such that

‖x(·, u′′, x′′a)− x(·, u′, x′a)‖C ≤ CR(‖u′′ − u′‖1/rαL1 + ‖x′′a − x′a‖Rn),

for all (u′, x′a), (u′′, x′′a) ∈ NR. In particular, the mapping

(u′, x′a) ∈ NR ⊂ AG 7−→ x(·, u′, x′a) ∈ C([a, b],Rn),

is continuous.

Proof. Let (u′, x′a), (u′′, x′′a) ∈ NR. We know that (x(τ, u′′, x′′a), u′′(τ), τ) and
(x(τ, u′, x′a), u′(τ), τ) are elements of KR for almost every τ ∈ [a, b] (Proposition A.1).
Following the same arguments as in the proof of Proposition A.1, it follows that

‖x(t, u′′, x′′a)− x(t, u′, x′a)‖Rn

≤
(
‖x′′a − x′a‖Rn +M1

αLR(2R)1/r′α‖u′′ − u′‖1/rαL1

)
Eα,1(LR(b− a)α),

for every t ∈ [a, b]. Setting CR := (1 + M1
αLR(2R)1/r′α)Eα,1(LR(b − a)α) concludes

the proof.

A.1.2. Proof of Proposition 3.10. Let (s, v) ∈ L[f(x(·, u, xa), u, ·)]×Rm and
let R = max(‖u‖L∞ , ‖v‖Rm). Since ‖v‖Rm ≤ R and since ‖uδ − u‖L1 ≤ 2Rδ for all
δ ∈ [0, b − s), we deduce from Proposition A.1 that there exists δ̄ > 0 such that
(uδ, xa) ∈ NR ⊂ AG for all 0 ≤ δ ≤ δ̄. Then the first item of Proposition 3.10 easily
follows from Proposition A.2. Before proving the second item of Proposition 3.10,
we need the following Lemmas A.3, A.4 and A.5. For the ease of notations, in this
section, we denote by xδ := x(·, uδ, xa) for all 0 ≤ δ ≤ δ̄, by x := x(·, u, xa) and by
w := w(s,v)(·, u, xa).

Lemma A.3. There exists µ1
R ≥ 0 such that

‖xδ − x‖C ≤ µ1
Rδ

α,

for all 0 ≤ δ ≤ δ̄.
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Proof. First, note that ‖xδ(t) − x(t)‖Rn = 0 for all t ∈ [a, s] and all 0 ≤ δ ≤ δ̄.
Then, from integral representations, one has

xδ(t)− x(t) = Iαs+[f(xδ, uδ, ·)− f(x, u, ·)](t),

for all t ∈ [s, b] and all 0 ≤ δ ≤ δ̄. Since (xδ(τ), uδ(τ), τ) and (x(τ), u(τ), τ) belong
to KR for almost every τ ∈ [s, b] and all 0 ≤ δ ≤ δ̄ (since (uδ, xa) ∈ NR and from
Proposition A.1), we get from Inequality (A.2) that

‖xδ(t)− x(t)‖Rn ≤
LR

Γ(α)

∫ t

s

(t− τ)α−1‖uδ(τ)− u(τ)‖Rm dτ

+
LR

Γ(α)

∫ t

s

(t− τ)α−1‖xδ(τ)− x(τ)‖Rn dτ,

for all t ∈ [s, b] and all 0 ≤ δ ≤ δ̄. Moreover

LR
Γ(α)

∫ t

s

(t− τ)α−1‖uδ(τ)− u(τ)‖Rm dτ ≤ 2RLR
Γ(α+ 1)

δα,

and thus,

‖xδ(t)− x(t)‖Rn ≤
2RLR

Γ(α+ 1)
δα + LRIαs+[‖xδ − x‖Rn ](t),

for all t ∈ [s, b] and all 0 ≤ δ ≤ δ̄. Using the fractional version of the Gronwall lemma
given in Proposition B.1 gives

‖xδ(t)− x(t)‖Rn ≤
2RLR

Γ(α+ 1)
δαEα,1(LR(b− a)α),

for every t ∈ [s, b] and all 0 ≤ δ ≤ δ̄. Setting µ1
R := 2RLR

Γ(α+1)Eα,1(LR(b− a)α) ends the

proof.

Lemma A.4. There exists µ2
R ≥ 0 such that

‖xδ(t)− x(t)‖Rn ≤ µ2
Rδ
(
t− (s+ δ)

)α−1

,

for all t ∈ (s+ δ, b] and all 0 ≤ δ ≤ δ̄.
Proof. Similarly to the proof of Lemma A.3, we get that

‖xδ(t)− x(t)‖Rn ≤
LR

Γ(α)

∫ s+δ

s

(t− τ)α−1‖v − u(τ)‖Rm dτ

+
LR

Γ(α)

∫ s+δ

s

(t− τ)α−1‖xδ(τ)− x(τ)‖Rn dτ

+
LR

Γ(α)

∫ t

s+δ

(t− τ)α−1‖xδ(τ)− x(τ)‖Rn dτ,

for all t ∈ (s+ δ, b] and all 0 ≤ δ ≤ δ̄. Using Lemma A.3 and the inequality
∫ s+δ
s

(t−
τ)α−1dτ ≤ δ(t− (s+ δ))α−1, we obtain that

‖xδ(t)− x(t)‖Rn ≤
LR

Γ(α)
(2R+ µ1

Rδ
α)δ
(
t− (s+ δ)

)α−1

+
LR

Γ(α)

∫ t

s+δ

(t− τ)α−1‖xδ(τ)− x(τ)‖Rndτ,
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and thus,

‖xδ(t)− x(t)‖Rn ≤
LR

Γ(α)
(2R+ µ1

Rδ̄
α)δ
(
t− (s+ δ)

)α−1

+ LRIα(s+δ)+[‖xδ − x‖Rn ](t),

for all t ∈ (s + δ, b] and all 0 ≤ δ ≤ δ̄. Once again, the fractional version of the
Gronwall lemma given in Proposition B.1 concludes the proof by setting µ2

R :=
LR(2R+ µ1

Rδ̄
α)Eα,α(LR(b− a)α).

Lemma A.5. Let us define

ζδ(τ) :=

∫ 1

0

∥∥∥∂1f
(
x(τ) + θ(xδ(τ)− x(τ)), u(τ), τ

)
− ∂1f(x(τ), u(τ), τ)

∥∥∥
Rn×n

dθ,

for almost every τ ∈ [a, b] and every 0 ≤ δ ≤ δ̄. Then ‖ζδ‖Lrα tends to zero when
δ → 0.

Proof. Since (uδ, xa) ∈ NR and ∂1f is bounded by LR ≥ 0 on KR (Inequal-
ity (A.1)), it holds from Proposition A.1 that 0 ≤ ζδ(τ) ≤ 2LR for almost every
τ ∈ [a, b], and thus ζδ ∈ L∞([a, b],R) for all 0 ≤ δ ≤ δ̄. From Lemma A.3, recall that
‖xδ − x‖C ≤ µ1

Rδ
α for all 0 ≤ δ ≤ δ̄. Thus Lemma A.5 easily follows from Lebesgue’s

dominated convergence theorem.

Now we can prove the second item of Proposition 3.10. Let us define zδ(t) :=
xδ(t)−x(t)

δ − w(t) for all t ∈ (s + δ, b] and all 0 < δ ≤ δ̄. Let 0 < ς ≤ b − s. Our aim
is to prove that zδ uniformly converges to zero over [s + ς, b] as δ → 0. The integral
representations give

zδ(t) =
1

Γ(α)

∫ s+δ

s

(t− τ)α−1 f(xδ(τ), v, τ)− f(x(τ), v, τ)

δ
dτ(A.4)

+
1

Γ(α)

∫ s+δ

s

(t− τ)α−1 f(x(τ), v, τ)− f(x(τ), u(τ), τ)

δ
dτ(A.5)

− 1

Γ(α)
(t− s)α−1

(
f(x(s), v, s)− f(x(s), u(s), s)

)
(A.6)

+
1

Γ(α)

∫ t

s+δ

(t− τ)α−1

(
f(xδ(τ), u(τ), τ)− f(x(τ), u(τ), τ)

δ
(A.7)

−∂1f(x(τ), u(τ), τ)× xδ(τ)− x(τ)

δ

)
dτ

− 1

Γ(α)

∫ s+δ

s

(t− τ)α−1∂1f(x(τ), u(τ), τ)× w(τ) dτ(A.8)

+
1

Γ(α)

∫ t

s+δ

(t− τ)α−1∂1f(x(τ), u(τ), τ)× zδ(τ) dτ,(A.9)

for every t ∈ (s + δ, b] and all 0 < δ ≤ δ̄. Let us deal with the six above right-hand
side terms:

- From Proposition A.1, Inequality (A.2) and Lemma A.3, the norm of the
term (A.4) is bounded by

LR
Γ(α)

∫ s+δ

s

(t− τ)α−1 ‖xδ(τ)− x(τ)‖Rn
δ

dτ ≤ LRµ
1
R

Γ(α)
δα
(
t− (s+ δ)

)α−1

,
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for every t ∈ (s+ δ, b] and all 0 < δ ≤ δ̄.
- The sum of (A.5) and (A.6) terms is equal to 1

δ

∫ s+δ
s

(t− τ)α−1χ(τ)dτ − (t−
s)α−1χ(s) where χ(τ) := 1

Γ(α) (f(x(τ), v, τ)−f(x(τ), u(τ), τ)) for almost every

τ ∈ [a, b]. Note that s ∈ L[χ] (Lebesgue point) and from Inequality (A.2), it
holds that ‖χ‖L∞ ≤ 2RLR

Γ(α) . Hence the norm of the sum of (A.5) and (A.6)

terms is bounded by∥∥∥1

δ

∫ s+δ

s

(
(t− τ)α−1 − (t− s)α−1

)
χ(τ) dτ

∥∥∥
Rn

+

∥∥∥∥∥ (t− s)α−1

δ

∫ s+δ

s

χ(τ)− χ(s) dτ

∥∥∥∥∥
Rn

≤ 2RLR
Γ(α)

(
1

δ

∫ s+δ

s

(t− τ)α−1 dτ − (t− s)α−1

)

+
(
t− (s+ δ)

)α−1
∥∥∥∥∥1

δ

∫ s+δ

s

χ(τ) dτ − χ(s)

∥∥∥∥∥
Rn
,

for every t ∈ (s + δ, b] and all 0 < δ ≤ δ̄. Considering some 0 < α′ < α ≤ 1,
one obtains ∣∣∣∣∣1δ

∫ s+δ

s

(t− τ)α−1 dτ − (t− s)α−1

∣∣∣∣∣
=

∣∣∣∣ (t− s)α − (t− s− δ)α

δα
− (t− s)α−1

∣∣∣∣
= δα−1

∣∣∣∣∣
(
t−s
δ

)α − ( t−sδ − 1
)α

α
−
(
t− s
δ

)α−1
∣∣∣∣∣

= δα−1

(
t− s
δ
− 1

)α′−1

σα,α′

(
t− s
δ

)

=
(
t− (s+ δ)

)α′−1

δα−α
′
σα,α′

(
t− s
δ

)
,

for every t ∈ (s+δ, b] and all 0 < δ ≤ δ̄, where the bounded real function σα,α′

is defined in Lemma B.2. We conclude that the norm of the sum of (A.5)
and (A.6) terms is bounded by

2RLR
Γ(α)

‖σα,α′‖Cδα−α
′
(
t− (s+ δ)

)α′−1

+

∥∥∥∥∥1

δ

∫ s+δ

s

χ(τ) dτ − χ(s)

∥∥∥∥∥
Rn

(
t− (s+ δ)

)α−1

,

for every t ∈ (s+ δ, b] and all 0 < δ ≤ δ̄.
- Using the classical Taylor expansion formula with integral rest, Lemmas A.4

and A.5 and the classical Hölder inequality, the norm of the term (A.7) is
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bounded by

µ2
R

Γ(α)
‖ζδ‖Lrα

(∫ t

s+δ

(t− τ)r
′
α(α−1)

(
τ − (s+ δ)

)r′α(α−1)

dτ

)1/r′α

≤ µ2
R‖ζδ‖LrαM2

α

Γ(α)

(
t− (s+ δ)

)α−1

,

for every t ∈ (s+ δ, b] and all 0 < δ ≤ δ̄.
- Since the product ραs+w ∈ C([s, b],Rn) (see [13, Theorem 6]), the norm of the

term (A.8) is bounded by

LR‖ραs+w‖C
Γ(α)2

∫ s+δ

s

(t−τ)α−1(τ−s)α−1 dτ ≤
LR‖ραs+w‖C

Γ(α)Γ(α+ 1)
δα
(
t−(s+δ)

)α−1

,

for every t ∈ (s+ δ, b] and all 0 < δ ≤ δ̄.
Finally we have proved that

‖zδ(t)‖Rn ≤
Θ1
δ

Γ(α)

(
t− (s+ δ)

)α−1

+
Θ2
δ

Γ(α′)

(
t− (s+ δ)

)α′−1

+ LRIα(s+δ)+[‖zδ‖Rn ](t),

for every t ∈ (s+ δ, b] and all 0 < δ ≤ δ̄, where

Θ1
δ :=LRδ

α

(
µ1
R +
‖ραs+w‖C
Γ(α+ 1)

)
+ Γ(α)

∥∥∥∥∥1

δ

∫ s+δ

s

χ(τ) dτ − χ(s)

∥∥∥∥∥
Rn

+ µ2
R‖ζδ‖LrαM2

α,

Θ2
δ :=2RLR

Γ(α′)

Γ(α)
‖σα,α′‖Cδα−α

′
.

Since s ∈ L[χ] (Lebesgue point), α− α′ > 0 and ‖ζδ‖Lrα tends to zero (Lemma A.5),
we know that Θ1

δ → 0 and Θ2
δ → 0 when δ → 0. Finally, from the fractional version

of the Gronwall lemma given in Proposition B.1, we get that

‖zδ(t)‖Rn ≤Θ1
δ

(
t− (s+ δ)

)α−1

Eα,α

(
LR(b− a)α

)
+ Θ2

δ

(
t− (s+ δ)

)α′−1

Eα,α′
(
LR(b− a)α

)
,

for every t ∈ (s+ δ, b] and all 0 < δ ≤ δ̄. Since t− (s+ δ) ≥ ς − δ for all t ∈ [s+ ς, b],
the second item of Proposition 3.10 is achieved by letting δ → 0.

A.1.3. Proof of Proposition 3.11. Let y ∈ Rn and let R = ‖u‖L∞ . Since
‖xa + δy − xa‖Rn ≤ δ‖y‖Rn for all δ ≥ 0, we deduce from Proposition A.1 that there
exists δ̄ > 0 such that (u, xa+δy) ∈ NR ⊂ AG for all 0 ≤ δ ≤ δ̄. Then the first item of
Proposition 3.11 easily follows from Proposition A.2. Before proving the second item
of Proposition 3.11, we first state the following Lemma A.6. For the ease of notations,
in this section, we denote by xδ := x(·, u, xa + δy) for all 0 ≤ δ ≤ δ̄, by x := x(·, u, xa)
and by w := wy(·, u, xa).

Lemma A.6. We define

ζδ(τ) :=

∫ 1

0

∥∥∥∂1f
(
x(τ) + θ(xδ(τ)− x(τ)), u(τ), τ

)
− ∂1f(x(τ), u(τ), τ)

∥∥∥
Rn×n

dθ,

for almost every τ ∈ [a, b] and all 0 ≤ δ ≤ δ̄. Then ‖ζδ‖Lrα tends to zero when δ → 0.
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Proof. Since (u, xa + δy) ∈ NR and ∂1f is bounded by LR ≥ 0 on KR (Inequal-
ity (A.1)), it holds from Proposition A.1 that 0 ≤ ζδ(τ) ≤ 2LR for almost every
τ ∈ [a, b], and thus ζδ ∈ L∞([a, b],R) for all 0 ≤ δ ≤ δ̄. From Proposition A.2, recall
that ‖xδ − x‖C ≤ δCR‖y‖Rn for all 0 ≤ δ ≤ δ̄. Thus Lemma A.6 easily follows from
Lebesgue’s dominated convergence theorem.

We may now prove the second item of Proposition 3.11. Let us we define zδ(t) :=
xδ(t)−x(t)

δ − w(t) for all t ∈ [a, b] and all 0 < δ ≤ δ̄. Our aim is to show that zδ
uniformly converges to zero over [a, b] as δ → 0. The integral representations give

zδ(t) =
1

Γ(α)

∫ t

a

(t− τ)α−1
(f(xδ(τ), u(τ), τ)− f(x(τ), u(τ), τ)

δ

− ∂1f(x(τ), u(τ), τ)× w(τ)
)
dτ,

for every t ∈ [a, b] and all 0 < δ ≤ δ̄. Recall that ‖xδ − x‖C ≤ δCR‖y‖Rn for all
0 ≤ δ ≤ δ̄ thanks to Proposition A.2. With the classical Taylor expansion with
integral rest, we obtain that

‖zδ(t)‖Rn ≤
CR‖y‖Rn

Γ(α)

∫ t

a

(t− τ)α−1ζδ(τ) dτ

+
1

Γ(α)

∫ t

a

(t− τ)α−1‖∂1f(x(τ), u(τ), τ)× zδ(τ)‖Rn dτ,

for every t ∈ [a, b] and all 0 < δ ≤ δ̄. Using Hölder inequality and the fact that ∂1f is
bounded by LR ≥ 0 on KR, we get from the fractional version of the Gronwall lemma
(Proposition B.1) that

‖zδ(t)‖Rn ≤M1
αCR‖y‖Rn‖ζδ‖LrαEα,1(LR(b− a)α),

for every t ∈ [a, b] and all 0 < δ ≤ δ̄. The second item of Proposition 3.11 is achieved
from Lemma A.6.

A.2. Proof of Theorem 3.12. Our strategy in order to prove Theorem 3.12
follows the five following steps:

(i) We first reduce Problem (OCP) to a Mayer problem, that is, with no Lagrange
cost (F = 0). For this purpose we use a standard change of variable. We refer
to Appendix A.2.1 for details. As a consequence, from this first step until the
end of this appendix, we assume that there is no Lagrange cost (F = 0) in
Problem (OCP);

(ii) We give some preliminaries and notations in Appendix A.2.2;
(iii) Using the sensitivity analysis of the fractional state equation performed in

Section 3.3, we compute derivatives of the trajectory x with respect to per-
turbations of the control u and of the initial condition xa;

(iv) We apply Ekeland’s variational principle (Proposition A.7) to take into ac-
count the terminal state constraint g(x(a), x(b)) ∈ C. We derive crucial in-
equalities on variation vectors. We refer to Appendices A.2.3, A.2.4 and A.2.5
for details;

(v) We conclude the proof by introducing the adjoint vector p in Appendix A.2.6.
This adjoint vector allows to derive the transversality conditions and the
Hamiltonian maximization condition of Theorem 3.12 from the inequalities
obtained in the previous step.
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For the reader’s convenience, we recall hereafter a simplified version (but sufficient
for our purposes) of Ekeland’s variational principle.

Proposition A.7 (Ekeland’s variational principle [22]). Let (M,dM) be a com-
plete metric space and let J : M → R+ be a nonnegative continuous mapping. Let
ε > 0 and x∗ ∈ M such that J(x∗) ≤ ε. Then, there exists xε ∈ M such that
dM(xε, x

∗) ≤
√
ε and −

√
εdM(x, xε) ≤ J (x)− J (xε) for all x ∈M.

A.2.1. Reduction to Mayer problem from a change of variable. Let us
assume that Theorem 3.12 is already proved in the case of a Mayer problem, that is,
with no Lagrange cost (F = 0). Our aim in this section is to derive Theorem 3.12 in
the general Bolza case.

Let (x∗, u∗) ∈ cACαa+([a, b],Rn)× L∞([a, b],Rm) be an optimal solution to Prob-
lem (OCP) and let us introduce z∗ := Iαa+[F β(x∗, u∗, ·)] ∈ cACαa+([a, b],R). One can
easily see that the couple ((x∗, z∗), u∗) is an optimal solution to the augmented Caputo
fractional optimal control problem of Mayer form given by

(OCPAM)



minimize ϕ̃((x, z)(a), (x, z)(b)),

subject to (x, z) ∈ cACαa+([a, b],Rn+1), u ∈ L∞([a, b],Rm),

cDα
a+[(x, z)](t) = (f, F β)(x(t), u(t), t), a.e. t ∈ [a, b],

g̃((x, z)(a), (x, z)(b)) ∈ C̃,

u(t) ∈ U, a.e. t ∈ [a, b],

where ϕ̃ : Rn+1 ×Rn+1 → R is defined by ϕ̃((xa, za), (xb, zb)) := ϕ(xa, xb) + zb for all
((xa, za), (xb, zb)) ∈ Rn+1 × Rn+1. Moreover:

(i) if g is submersive at (x∗(a), x∗(b)), then we choose C̃ := C × {0} × R and
g̃ : Rn+1 × Rn+1 → Rj+2 defined by g̃((xa, za), (xb, zb)) := (g(xa, xb), za, zb)
for all ((xa, za), (xb, zb)) ∈ Rn+1 × Rn+1;

(ii) if g is not submersive at (x∗(a), x∗(b)), then we choose C̃ := {(x∗(a), x∗(b))}×
{0} × R and g̃ : Rn+1 × Rn+1 → R2n+2 defined by g̃((xa, za), (xb, zb)) :=
(xa, xb, za, zb) for all ((xa, za), (xb, zb)) ∈ Rn+1 × Rn+1.

In both cases, note that g̃ is submersive at ((x∗, z∗)(a), (x∗, z∗)(b)). We deduce the
existence of a nontrivial augmented couple ((p, q), p0) ∈ ACαb−([a, b],Rn+1) × R sat-
isfying all necessary conditions listed in Theorem 3.12 adapted to the augmented
Problem (OCPAM) of Mayer form. In particular, we get that Dα

b−[q] = 0 with

I1−α
b− [q](b) = p0 and thus q(t) = p0

Γ(α) (b − t)α−1 for all t ∈ [a, b). The rest of the

proof is staightforward from all necessary conditions provided in Theorem 3.12 (in
the case of a Mayer problem).

Thanks to this section, from now and until the end of the proof of Theorem 3.12
in its general form, we may assume that there is no Lagrange cost (F = 0) in Prob-
lem (OCP).

A.2.2. Some preliminaries and notations. We denote by dC the distance
function to the nonempty closed convex subset C ⊂ Rj defined as usual by dC(x) :=
infx′∈C ‖x− x′‖Rj for all x ∈ Rj . Recall that, for every x ∈ Rj , there exists a unique
element PC(x) ∈ C (projection of x on C) such that dC(x) = ‖x − PC(x)‖Rj . It
is characterized by the property 〈x − PC(x), x′ − PC(x)〉Rj ≤ 0 for every x′ ∈ C.
In particular, x − PC(x) ∈ NC[PC(x)]. The function PC : Rj → C is 1-Lipschitz
continuous. We refer to [16, p.131] for details. The proof of Theorem 3.12 requires
the two following lemmas.
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Lemma A.8. The function d2
C : x 7→ dC(x)2 is differentiable on Rj, and it holds

that Dd2
C(x)(x′) = 2〈x− PC(x), x′〉Rj for all x, x′ ∈ Rj.

Lemma A.9. Let (xk)k∈N be a sequence of points in Rj and let (ςk)k∈N be a se-
quence of positive real numbers such that xk → x ∈ C and ςk(xk − PC(xk))→ z ∈ Rj
as k → +∞. Then z ∈ NC[x].

The positive part function is defined on R by Pos : x 7→ x+ where x+ = 0 if x ≤ 0
and x+ = x if x ≥ 0. The proof of our main result also needs the following classical
result.

Lemma A.10. The function Pos2 : x 7→ x+2 is differentiable on R, and it holds
that DPos2(x)(x′) = 2x+x′ for all x, x′ ∈ R.

Let (x∗, u∗) ∈ cACαa+([a, b],Rn)× L∞([a, b],Rm) be an optimal solution to Prob-
lem (OCP). With the notations introduced in Section 3.3, (u∗, x∗(a)) ∈ AG and
x∗ = x(·, u∗, x∗(a)). In the sequel, for all R ∈ N such that R ≥ ‖u∗‖L∞ , we denote by
K∗R the corresponding compact subset of Rn×Rm× [a, b] defined as in Appendix 3.3.1
and by L∗R the corresponding nonnegative constant (Inequality (A.2)). Similarly, we
denote by N∗R ⊂ AG the neighborhood of (u∗, x∗(a)) defined as in Proposition A.1
and by η∗R > 0 the corresponding positive radius. Finally we endow N∗R with the same
basic distance dL1×Rn defined as in Equality (A.3).

In order to take into account the control constraint set U in Problem (OCP), we
set

N∗,UR := {(u, xa) ∈ N∗R | u(t) ∈ U a.e. t ∈ [a, b]}.

For example, we know that (u∗, x∗(a)) ∈ N∗,UR . Since U ⊂ Rm is a nonempty closed
subset of Rm, one can easily get from the (partial) converse of Lebesgue’s dominated

convergence theorem that (N∗,UR ,dL1×Rn) is a complete metric space. Note that the
closedness assumption on the control constraint set U is crucial here in order to apply
Ekeland’s variational principle on a complete metric space.

A.2.3. A penalized functional with R ∈ N fixed. In the whole section we
fix some R ∈ N such that R ≥ ‖u∗‖L∞ . Let us consider a positive sequence (εRk )k∈N
converging to zero as k →∞ such that

(A.10) 0 <
√
εRk < η∗R,

for all k ∈ N. Then, we define the penalized functional J Rk : N∗,UR → R+ by

J Rk (u, xa) :=

√(
ϕ(xa, x(b, u, xa))− ϕ(x∗(a), x∗(b)) + εRk

)+2

+ d2
C

(
g(xa, x(b, u, xa))

)
,

for all (u, xa) ∈ N∗,UR and all k ∈ N.

• Fix k ∈ N. From Proposition A.1, we know that N∗,UR ⊂ N∗R ⊂ AG and thus

J Rk (u, xa) is well-defined for all (u, xa) ∈ N∗,UR . Thus, from the optimality of the

couple (x∗, u∗), one gets by contradiction that J Rk (u, xa) > 0 for all (u, xa) ∈ N∗,UR .
From the continuity result of Proposition A.2 and since ϕ, g and d2

C are continuous,
it follows that J Rk is a positive continuous map. Moreover one has J Rk (u∗, x∗(a)) =
εRk . Then Ekeland’s variational principle (Proposition A.7) yields that there exists

(uRk , x
R
a,k) ∈ N∗,UR such that

(A.11) dL1×Rn
(

(uRk , x
R
a,k), (u∗, x∗(a))

)
≤
√
εRk ,
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and

(A.12) −
√
εRk dL1×Rn

(
(u, xa), (uRk , x

R
a,k)
)
≤ J Rk (u, xa)− J Rk (uRk , x

R
a,k),

for all (u, xa) ∈ N∗,UR . Finally we introduce the terms

Ψ0R
k :=

−1

J Rk (uRk , x
R
a,k)

(
ϕ(xRa,k, x(b, uRk , x

R
a,k))− ϕ(x∗(a), x∗(b)) + εRk

)+

∈ R,

and

ΨR
k :=

−1

J Rk (uRk , x
R
a,k)

(
g(xRa,k, x(b, uRk , x

R
a,k))− PC

(
g(xRa,k, x(b, uRk , x

R
a,k))

))
∈ Rj .

Note that Ψ0R
k ≤ 0 and that |Ψ0R

k |2 +‖ΨR
k ‖2Rj = 1 from the definition of J Rk (uRk , x

R
a,k)

and that −ΨR
k ∈ NC[PC(g(xRa,k, x(b, uRk , x

R
a,k)))].

• Compactness arguments. Recall that (εRk )k∈N converges to zero as k → ∞.
Using Inequality (A.11), some compactness arguments from the equality |Ψ0R

k |2 +
‖ΨR

k ‖2Rj = 1, the (partial) converse of Lebesgue’s dominated convergence theorem
and extracting some subsequences (denoted similarly), we get that:

- (xRa,k)k∈N converges to x∗(a) in Rn;

- (uRk )k∈N converges to u∗ in L1([a, b],Rm);

- (uRk (t))k∈N converges to u∗(t) in Rm for almost every t ∈ [a, b];

- (Ψ0R
k )k∈N converges to some Ψ0R in R;

- (ΨR
k )k∈N converges to some ΨR in Rj .

Moreover it holds that Ψ0R ≤ 0, |Ψ0R|2 +‖ΨR‖2Rj = 1 and −ΨR ∈ NC[g(x∗(a), x∗(b))]
(from the continuity result claimed in Proposition A.2, the continuity of g and from
Lemma A.9).

A.2.4. Two crucial inequalities depending on R ∈ N fixed. In the whole
section we fix some R ∈ N such that R ≥ ‖u∗‖L∞ . We introduce

LR :=
{
s ∈ [a, b) | uRk (s)→ u∗(s) as k →∞

}
∩
⋂
k∈N
L
[
f
(
x(·, uRk , xRa,k), uRk , ·

)]
.

Note that LR has a full Lebesgue measure equal to b − a. Let (s, v) ∈ LR × (U ∩
BRm(0, R)) and y ∈ Rn.

• Perturbation of the control uRk with k ∈ N fixed. For all δ ∈ [0, b − s), let
us consider uRk,δ the needle-like perturbation of uRk associated to (s, v) defined as in

Section 3.3.2. From Inequality (A.11), since v ∈ BRm(0, R), we get that

‖uRk,δ − u∗‖L1 ≤ ‖uRk,δ − uRk ‖L1 + ‖uRk − u∗‖L1 ≤ 2Rδ +
√
εRk ,

for all δ ∈ [0, b − s). With Inequality (A.10) and since v ∈ U ∩ BRm(0, R), we

deduce that Inequality (A.12) can be applied to (u, xa) = (uRk,δ, x
R
a,k) ∈ N∗,UR for all

δ ∈ [0, b− s) sufficiently small. We obtain that

−2R
√
εRk ≤

1

J Rk (uRk,δ, x
R
a,k) + J Rk (uRk , x

R
a,k)

J Rk (uRk,δ, x
R
a,k)2 − J Rk (uRk , x

R
a,k)2

δ
,
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for all δ ∈ (0, b − s) small enough. Passing to the limit as δ → 0, using the differen-
tiability results of Proposition 3.10 and Lemmas A.8, A.10, the differentiabilities of ϕ
and g, we get that〈

Ψ0R
k ∂2ϕ

(
xRa,k, x(b, uRk , x

R
a,k)
)
+∂2g

(
xRa,k, x(b, uRk , x

R
a,k)
)>
×ΨR

k , w(s,v)(b, u
R
k , x

R
a,k)
〉
Rn

≤ 2R
√
εRk ,(A.13)

where w(s,v)(·, uRk , xRa,k) is the variation vector associated to (uRk , x
R
a,k) and (s, v) de-

fined as in Section 3.3.2. Note that we used the fact that s ∈ L[f(x(·, uRk , xRa,k), uRk , ·)]
in order to apply Proposition 3.10.

• Passing to the limit k → ∞. We first state the following lemma requiring in
particular that uRk (s)→ u∗(s) as k →∞.

Lemma A.11. It holds that the sequence w(s,v)(·, uRk , xRa,k) uniformly converges on
[s+ ς, b], for any 0 < ς ≤ b− s, to w(s,v)(·, u∗, x∗(a)) when k →∞.

Proof. Let 0 < ς ≤ b − s. For the ease of notations, we denote by xRk :=
x(·, uRk , xRa,k), wk := w(s,v)(·, uRk , xRa,k), Ak := ∂1f(xRk , u

R
k , ·) for all k ∈ N, and

w := w(s,v)(·, u∗, x∗(a)), A := ∂1f(x∗, u∗, ·). Since (xRk )k∈N and (uRk )k∈N pointwise
converge on [a, b] to x∗ and u∗ (Proposition A.2) when k → ∞ and ∂1f is continu-
ous, bounded by L∗R on K∗R, one can deduce from Lebesgue’s dominated convergence
theorem that (Ak)k∈N converges in Lrα([a, b],Rn×n) to A. We also denote by

νk := f(xRk (s), v, s)− f(xRk (s), uRk (s), s)−
(
f(x∗(s), v, s)− f(x∗(s), u∗(s), s)

)
∈ Rn,

for all k ∈ N. Since s ∈ LR, we know that uRk (s) → u∗(s) when k → ∞ and thus we
deduce that ‖νk‖Rn → 0 when k →∞. Integral representations give

wk(t)− w(t) =
1

Γ(α)
(t− s)α−1νk +

1

Γ(α)

∫ t

s

(t− τ)α−1Ak(τ)× (wk(τ)− w(τ)) dτ

+
1

Γ(α)

∫ t

s

(t− τ)α−1(Ak(τ)−A(τ))× w(τ) dτ,

for all t ∈ (s, b] and all k ∈ N. Since the product ραs+w ∈ C([s, b],Rn) (see [13,
Theorem 6]), we get from Hölder inequality that

‖wk(t)− w(t)‖Rn ≤
1

Γ(α)

(
‖νk‖Rn +

‖ραs+w‖C
Γ(α)

‖Ak −A‖LrαM2
α

)
(t− s)α−1

+
L∗R

Γ(α)

∫ t

s

(t− τ)α−1‖wk(τ)− w(τ)‖Rn dτ,

for all t ∈ (s, b] and all k ∈ N. The fractional version of the Gronwall lemma given in
Proposition B.1 yields to

‖wk(t)−w(t)‖Rn ≤
(
‖νk‖Rn +

‖ραs+w‖C
Γ(α)

‖Ak −A‖LrαM2
α

)
(t−s)α−1Eα,α(L∗R(b−a)α),

for every t ∈ (s, b] and all k ∈ N. Since t − s ≥ ς for all t ∈ [s + ς, b], the proof is
achieved by letting k →∞.
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Thanks to the continuity result of Proposition A.2, the fact that ϕ and g are C1

and w(s,v)(b, u
R
k , x

R
a,k) tends to w(s,v)(b, u

∗, x∗(a)) when k → ∞ (Lemma A.11), we
get from Inequality (A.13) that
(A.14)〈

Ψ0R∂2ϕ(x∗(a), x∗(b)) + ∂2g(x∗(a), x∗(b))> ×ΨR, w(s,v)(b, u
∗, x∗(a))

〉
Rn ≤ 0.

The above inequality constitutes the first crucial inequality depending on R ∈ N fixed.

• Perturbation of the initial condition xRa,k with k ∈ N fixed. From Inequal-
ity (A.11), we have

‖xRa,k + δy − x∗(a)‖Rn ≤ δ‖y‖Rn + ‖xRa,k − x∗(a)‖Rn ≤ δ‖y‖Rn +
√
εRk ,

for all δ ≥ 0. From Inequality (A.10), we deduce that Inequality (A.12) can be applied

to (u, xa) = (uRk , x
R
a,k + δy) ∈ N∗,UR for every δ ≥ 0 sufficiently small. We obtain

−‖y‖Rn
√
εRk ≤

1

J Rk (uRk , x
R
a,k+ δy)+J Rk (uRk , x

R
a,k)

J Rk (uRk , x
R
a,k+ δy)2− J Rk (uRk , x

R
a,k)2

δ
,

for all δ > 0 sufficiently small. Passing to the limit δ → 0, using the differentiability
results of Proposition 3.11 and Lemmas A.8, A.10, the differentiabilities of ϕ and g,
we get that〈

Ψ0R
k ∂1ϕ

(
xRa,k, x(b, uRk , x

R
a,k)
)

+ ∂1g
(
xRa,k, x(b, uRk , x

R
a,k)
)>
×ΨR

k , y

〉
Rn

+(A.15)

〈
Ψ0R
k ∂2ϕ

(
xRa,k, x(b, uRk , x

R
a,k)
)

+ ∂2g
(
xRa,k, x(b, uRk , x

R
a,k)
)>
×ΨR

k , wy(b, uRk , x
R
a,k)

〉
Rn

≤ ‖y‖Rn
√
εRk ,

where wy(·, uRk , xRa,k) is the variation vector associated to (uRk , x
R
a,k) and y defined as

in Section 3.3.3.

• Passing to the limit k →∞. We first state the following lemma.

Lemma A.12. It holds that the sequence wy(·, uRk , xRa,k) uniformly converges on
[a, b] to wy(·, u∗, x∗(a)) when k →∞.

Proof. For the ease of notations, we denote by xRk := x(·, uRk , xRa,k), by wk :=

wy(·, uRk , xRa,k), Ak := ∂1f(xRk , u
R
k , ·) for all k ∈ N, and w := wy(·, u∗, x∗(a)), A :=

∂1f(x∗, u∗, ·). Since (xRk )k∈N and (uRk )k∈N pointwise converge on [a, b] to x∗ and u∗

(Proposition A.2) when k → ∞ and ∂1f is continuous, bounded by L∗R on K∗R, then
we get from Lebesgue’s dominated convergence theorem that (Ak)k∈N converges to A
in Lrα([a, b],Rn×n). Integral representations yield

wk(t)− w(t) =
1

Γ(α)

∫ t

a

(t− τ)α−1Ak(τ)× (wk(τ)− w(τ)) dτ

+
1

Γ(α)

∫ t

a

(t− τ)α−1(Ak(τ)−A(τ))× w(τ) dτ,
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for all t ∈ [a, b] and all k ∈ N. With Hölder inequality, this gives

‖wk(t)− w(t)‖Rn ≤M1
α‖w‖C‖Ak −A‖Lrα+

L∗R
Γ(α)

∫ t

a

(t− τ)α−1‖wk(τ)− w(τ)‖Rn dτ,

for all t ∈ [a, b] and all k ∈ N. Using the fractional version of the Gronwall lemma
given in Proposition B.1 implies that

‖wk(t)− w(t)‖Rn ≤M1
α‖w‖C‖Ak −A‖LrαEα,1(L∗R(b− a)α),

for every t ∈ [a, b] and all k ∈ N. The proof is achieved by letting k →∞.

Now, using the continuity result of Proposition A.2, the fact that ϕ and g are of
class C1 and that wy(b, uRk , x

R
a,k) tends to wy(b, u∗, x∗(a)) when k →∞ (Lemma A.12),

we get from Inequality (A.15) that〈
Ψ0R∂1ϕ(x∗(a), x∗(b)) + ∂1g(x∗(a), x∗(b))> ×ΨR, y

〉
Rn(A.16)

+
〈
Ψ0R∂2ϕ(x∗(a), x∗(b)) + ∂2g(x∗(a), x∗(b))> ×ΨR, wy(b, u∗, x∗(a))

〉
Rn ≤ 0.

The above inequality constitutes the second crucial inequality depending on R ∈ N
fixed.

A.2.5. Two crucial inequalities independent of R ∈ N. Inequalities (A.14)
and (A.16) depend both on R ∈ N such that R ≥ ‖u∗‖L∞ . In particular, Inequal-
ity (A.14) is satisfied only for all (s, v) ∈ LR × (U ∩ BRm(0, R)). Our goal in this
section is to get rid of the dependence in R. Let us define

L :=
⋂
R∈N

R≥‖u∗‖L∞

LR.

Note that L has a full Lebesgue measure equal to b− a. From the equality |Ψ0R|2 +
‖ΨR‖2Rj = 1 and extracting some subsequences (denoted similarly), (Ψ0R)R∈N con-
verges to some Ψ0 in R and (ΨR)R∈N converges to some Ψ in Rj when R → ∞.
Moreover, it holds that Ψ0 ≤ 0, |Ψ0|2 + ‖Ψ‖2Rj = 1 and −Ψ ∈ NC[g(x∗(a), x∗(b))]
(since NC[g(x∗(a), x∗(b))] is closed).

Let y ∈ Rn and (s, v) ∈ L×U. For all R ∈ N such that R ≥ max(‖u∗‖L∞ , ‖v‖Rm),
we have s ∈ LR and v ∈ U ∩ BRm(0, R) and thus Inequalities (A.14) and (A.16) are
satisfied. Letting R→∞ gives

(A.17)
〈
Ψ0∂2ϕ(x∗(a), x∗(b)) + ∂2g(x∗(a), x∗(b))> ×Ψ, w(s,v)(b, u

∗, x∗(a))
〉
Rn ≤ 0,

and 〈
Ψ0∂1ϕ(x∗(a), x∗(b)) + ∂1g(x∗(a), x∗(b))> ×Ψ, y

〉
Rn(A.18)

+
〈
Ψ0∂2ϕ(x∗(a), x∗(b)) + ∂2g(x∗(a), x∗(b))> ×Ψ, wy(b, u∗, x∗(a))

〉
Rn ≤ 0.

Hence, the two crucial Inequalities (A.17) and (A.18) are satisfied for all y ∈ Rn,
almost every s ∈ [a, b] and all v ∈ U.
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A.2.6. End of the proof. Now we can end the proof of Theorem 3.12 with the
introduction of the adjoint vector p.
• We first consider the case where g is submersive at (x∗(a), x∗(b)). The other

case will be discussed next. Let us define p0 := Ψ0 ∈ R and

p(t) := Φ(b, t)> ×
[
p0∂2ϕ(x∗(a), x∗(b)) + ∂2g(x∗(a), x∗(b))> ×Ψ

]
∈ Rn,

for every t ∈ [a, b), where Φ(·, ·) denotes the left RL state-transition matrix (see
[12, Definition 18] for details) associated to the essentially bounded matrix function
t 7→ ∂1f(x∗(t), u∗(t), t) ∈ Rn×n. Note that p0 ≤ 0 and, from the duality theorem in
[12, Theorem 7], one can easily get that p ∈ ACαb−([a, b],Rn) is the unique maximal
solution, which is moreover global, of the linear right RL fractional Cauchy problem
given by

(A.19)

{
Dα
b−[p](t) = ∂1f(x∗(t), u∗(t), t)> × p(t), a.e. t ∈ [a, b],

I1−α
b− [p](b) = p0∂2ϕ(x∗(a), x∗(b)) + ∂2g(x∗(a), x∗(b))> ×Ψ.

The existence, uniqueness and globality of p ∈ L1([a, b],Rn) directly follow from
the right counterpart of [12, Theorem 1]. Moreover, from the right version of [13,
Theorem 6], recall that the product ραb−p ∈ C([a, b],Rn).

Fractional Hamiltonian system. From the definition of the Hamiltonian H and
since the optimal pair (x∗, u∗) satisfies the state equation of Problem (OCP), it holds
that

cDα
a+[x∗](t) = f(x∗(t), u∗(t), t) = ∂3H(x∗(t), u∗(t), p(t), p0, t),

for almost every t ∈ [a, b]. Moreover, from (A.19), we have

Dα
b−[p](t) = ∂1f(x∗(t), u∗(t), t)> × p(t) = ∂1H(x∗(t), u∗(t), p(t), p0, t),

for almost every t ∈ [a, b].
Hamiltonian maximization condition. We know that Inequality (A.17) is satisfied

for almost every s ∈ [a, b] and all v ∈ U. From the fractional Duhamel formula (3.2),
we can use the equality

w(s,v)(b, u
∗, x∗(a)) = Φ(b, s)× (f(x∗(s), v, s)− f(x∗(s), u∗(s), s)),

in Inequality (A.17) to infer that

〈p(s), f(x∗(s), v, s)− f(x∗(s), u∗(s), s)〉Rn ≤ 0,

for almost every s ∈ [a, b] and all v ∈ U. We conclude that

u∗(s) ∈ arg max
v∈U

H(x∗(s), v, p(s), p0, s),

for almost every s ∈ [a, b].
Transversality conditions on the adjoint vector. For the ease of notations, we

introduce

pa := p0∂1ϕ(x∗(a), x∗(b)) + ∂1g(x∗(a), x∗(b))> ×Ψ,

pb := p0∂2ϕ(x∗(a), x∗(b)) + ∂2g(x∗(a), x∗(b))> ×Ψ,
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and we recall that −Ψ ∈ NC[g(x∗(a), x∗(b))]. From (A.19), we get that I1−α
b− [p](b) =

pb. In order to derive the second transversality condition, we use Inequality (A.18)
that is satisfied for all y ∈ Rn. From the fractional Duhamel formula (3.3), we can
use the equality

wy(b, u∗, x∗(a)) = y +

∫ b

a

Φ(b, τ)× ∂1f(x∗(τ), u∗(τ), τ) dτ × y,

in Inequality (A.18) to obtain that〈
pa + pb +

∫ b

a

∂1f(x∗(τ), u∗(τ), τ)> × Φ(b, τ)> × pb dτ, y

〉
Rn
≤ 0,

that is, 〈
pa + pb +

∫ b

a

Dα
b−[p](τ) dτ, y

〉
Rn
≤ 0,

for all y ∈ Rn. From the equalities Dα
b−[p] = − d

dt [I
1−α
b− [p]] and I1−α

b− [p](b) = pb, we
deduce that 〈

pa + I1−α
b− [p](a), y

〉
Rn ≤ 0,

for all y ∈ Rn. We conclude that I1−α
b− [p](a) = −pa.

Nontriviality of the couple (p, p0). By contradiction, let us assume that the pair
(p, p0) is zero. In that case, we have p0 = Ψ0 = 0 and I1−α

b− [p](a) = I1−α
b− [p](b) = 0Rn .

The transversality conditions give ∂1g(x∗(a), x∗(b))>×Ψ = ∂2g(x∗(a), x∗(b))>×Ψ =
0Rn . Since g is submersive at (x∗(a), x∗(b)), we deduce that Ψ = 0Rj which raises a
contradiction with the equality |Ψ0|2 + ‖Ψ‖2Rj = 1.
• If g is not submersive at (x∗(a), x∗(b)), we have to see that if a couple (x∗, u∗)

is an optimal solution to Problem (OCP), then (x∗, u∗) is also an optimal solution
to a similar problem where the function g is replaced by the identity function g̃ :
Rn × Rn → Rn → Rn, g̃(xa, xb) := (xa, xb), which is submersive at any point, and
where the closed convex set C is replaced by the singleton C̃ := {(x∗(a), x∗(b))}. So we
get back to the submersive case, but with a different function g and a different closed
convex set C that would impact only the transversality conditions in Theorem 3.12.
With the use of g̃ and C̃, note that the transversality conditions do not provide any
information.

Appendix B. Two technical results. This appendix is devoted to the
statements and proofs of two technical results that are required in this paper. First
we provide a new fractional version of the Gronwall lemma (Proposition B.1). Let us
recall that a lot of fractional versions of this classical result (which allows to derive
estimations on trajectories of differential equations) have already been established in
the literature (see, e.g., [21, 55] and references therein). For our purposes, we recall
that the classical Mittag-Leffler function Eα,α′ associated to α > 0 and α′ > 0 is
usually defined by

Eα,α′(t) :=
∑
k∈N

tk

Γ(αk + α′)
,

for all t ≥ 0. Note that Eα,α′ is continuous and monotonically increasing. Let a < b
be two real numbers.
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Proposition B.1 (Fractional Gronwall lemma). Let α > 0, α′1 > 0, α′2 > 0,
κ ∈ (0, 1] and let x ∈ L1([a, b],R) such that the product ρκa+x ∈ C([a, b],R). If there
exist some nonnegative constants c1 ≥ 0, c2 ≥ 0 and c3 ≥ 0 such that

0 ≤ x(t) ≤ c1
Γ(α′1)

(t− a)α
′
1−1 +

c2
Γ(α′2)

(t− a)α
′
2−1 + c3Iαa+[x](t),

for every t ∈ (a, b], then it holds that

0 ≤ x(t) ≤ c1(t− a)α
′
1−1Eα,α′1

(
c3(t− a)α

)
+ c2(t− a)α

′
2−1Eα,α′2

(
c3(t− a)α

)
,

for every t ∈ (a, b].

Proof. One can easily prove by induction that

0 ≤ x(t) ≤ c1(t− a)α
′
1−1

 N∑
k=0

(
c3(t− a)α

)k
Γ(αk + α′1)



+ c2(t− a)α
′
2−1

 N∑
k=0

(
c3(t− a)α

)k
Γ(αk + α′2)

+ cN+1
3 I

(N+1)α
a+ [x](t),

for every t ∈ (a, b] and for all N ∈ N. The proof is concluded by noting that, since
the product ρκa+x ∈ C([a, b],R), the last term tends to zero when N →∞.

We conclude this appendix with the following technical lemma required in Ap-
pendix A.1.2 for the proof of Proposition 3.10.

Lemma B.2. Let 0 < α′ < α ≤ 1 and let

σα,α′ : [1,+∞) −→ R+

t 7−→ σα,α′(t) :=

∣∣∣∣(t− 1)1−α′
(
tα − (t− 1)α

α
− tα−1

)∣∣∣∣ .
The real function σα,α′ is bounded.

Proof. From the classical Taylor expansion

(1−X)α = 1− αX +
α(α− 1)

2
X2 +X2ε(X),

where ε(X)→ 0 when X → 0, it holds that

σα,α′(t) =

∣∣∣∣∣∣∣∣
(

1− 1

t

)1−α′

t1+α−α′

1−
(

1− 1

t

)α
α

− 1

t


∣∣∣∣∣∣∣∣

=

∣∣∣∣∣
(

1− 1

t

)1−α′

tα−α
′−1

(
−α− 1

2
− 1

α
ε

(
1

t

))∣∣∣∣∣ ,
for all t ≥ 1. Since α − α′ − 1 < 0, it holds that σα,α′(t) → 0 when t → +∞. The
proof is complete from the continuity of σα,α′ .
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Paris, 2005. Théorie & applications. [Theory and applications].

[52] C. Tricaud and Y. Chen, Time-optimal control of systems with fractional dynamics, Int. J.
Differ. Equ., (2010), pp. Art. ID 461048, 16.

[53] R. Vinter, Optimal control, Systems & Control: Foundations & Applications, Birkhäuser
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