Evolution of electron temperature and electron density in indirectly driven spherical implosions
Résumé
Using spectroscopic measurements to extract electron density and temperature, we construct simulation-independent time histories of the assembly and disassembly phase of an imploding core, To achieve this, we show the hot dense plasma produced by indirectly imploding gas-filled microsphere is a reproducible and reliable plasma source. We further show that this plasma is suitable for detailed hydrodynamic and spectroscopic studies, and that the plasma provides a useful testbed for nonlocal thermodynamic equilibrium plasma studies at extreme conditions.