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It is shown that the pattern of current layers formed within a magnetic island in the nonlinear phase
of magnetic field line reconnection in a collisionless two-dimensional fluid plasma is subject to the
onset of a secondary instability, the effect of which increases with decreasing electron temperature. In
the cold electron limit the saturation of the island growth is accompanied by a turbulent redistribution
of the current layers and by the development of long lived fluid vortices while, in the opposite limit, the
current layer structure remains regular.
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strongly affected by the onset of a secondary Kelvin
Helmholtz (K-H) instability which leads to the formation

Equations (1) and (2) are Hamiltonian (see Refs. [5,7])
with energy functionals given by

R
dxdy�jr j2 �
The formation of current layers represents a generic
feature of magnetic field line reconnection in high con-
ductivity plasmas (see, e.g., [1] and references therein). It
occurs in different reconnection regimes which include
the Alfvénic frequency range of magnetohydrodynamics
(MHD) and the higher frequency, whistler range, of
electron magnetohydrodynamics (EMHD). These current
structures arise as a consequence of the local magnetic
linking (connections) between ‘‘fluid’’ plasma elements.
Magnetic linking involves plasma fluid elements in the
MHD frequency range, or electron fluid elements in the
EMHD range, and is preserved when an (isotropic) fluid
description of the plasma is applicable in the absence of
phenomena occurring on scales fast in time and/or short
in space. The breaking of the topological constraints due
to magnetic linking, together with the process of mag-
netic energy release and transformation, determines the
nonlinear evolution of the magnetic field configuration
which leads to the formation of small scale spatial struc-
tures [2–4]. The role of magnetic topology is most im-
portant in dissipationless plasma regimes where the
localized breaking of the magnetic connections is made
possible not by the effect of electron resistivity but by the
current limitation due to the finite electron inertia terms
in the generalized Ohm’s law. In these regimes the plasma
behavior is Hamiltonian and ‘‘generalized’’ linking con-
ditions [5] are preserved by its motions even in the
presence of magnetic field line reconnection.

In this Letter we consider two-dimensional (2D), two-
fluid plasma regimes, where phase-space effects are dis-
regarded and the plasma quantities can vary only in the
plane perpendicular to a strong, externally imposed, uni-
form magnetic field component, and we focus our atten-
tion on the relationship between the generalized linking
conditions and the time evolution of the current layers
formed during the nonlinear development of the recon-
nection instability. By referring to both the MHD [2–5]
and to the EMHD frequency ranges [6,7], we show that
the long time evolution of these current layers can be
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of fluid vortices inside the magnetic islands. Focusing on
the MHD frequency range, we show that this behavior,
which complements the ’’laminar’’ one described for a
finite electron temperature plasma in Ref. [3], occurs in
the cold electron regime where the effect of the electron
parallel compressibility can be neglected. In addition, we
show that this transition from the K-H unstable regime to
the laminar regime is related to the different nonlinear
patterns that the current layers form because of the differ-
ent magnetic linking conditions. The role of the K-H
instability in the EMHD regime has been studied in the
fully developed turbulence framework in Ref. [8].

We write the 2D magnetic field configuration in terms
of the z components of the vector potential  �x; y; t� and
of the magnetic field b�x; y; t�, as B � b? � bez � r �
ez � bez, while the ion velocity u in the x-y plane is given
in terms of the stream function’�x; y; t� as u � ez �r’.
In the absence of dissipation and neglecting the Hall
terms (i.e., neglecting perturbations of the large guide
field b) the two-fluid equations in the MHD frequency
range give [5]

@tF� �’;F	 � %2
s�U; 	;

@tU� �’;U	 � �F; 	=d2e;
(1)

with F �  
 d2er2 , U � r2’, �f; g	 � ez � rf�rg.
The effects of the electron inertia and of the paral-
lel electron compressibility (proportional to the elec-
tron temperature) are included in Eqs. (1) via the the
collisionless electron skin depth de and the so-called
ion-sound gyroradius %s, respectively. In the EMHD fre-
quency range, the ions are assumed to be immobile
(i.e., ’ � 0) and, neglecting electron temperature and
charge separation effects, the cold fluid electron equations
give [7]

@tF� �b; F	 � 0; @tW � �b;W	 � � ;F	=d2e; (2)

with W � b
 d2er
2b. In Eqs. (1) and (2) t is normal-

ized with the Alfvén and the whistler time, respectively.
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FIG. 1. Shaded isocontours of the Lagrangian invariant F
[MHD regime, Eqs. (1)], at t � 90; 102; 106; 111 for %s � 0
with superposed, in the upper frames, the isocontours of the
magnetic flux function  .
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jr’j2 � d2ejr
2 j2 � %2

s jr
2’j2	=2 and

R
dxdy�jr j2 �

jbj2 � d2ejr
2 j2 � d2ejrbj

2	=2. In Eq. (2) the generalized
flux function F is a Lagrangian invariant advected by the
velocity field obtained from the ‘‘stream function’’ b. For
scale lengths much larger than de, the conservation of F
reduces to the conservation of the magnetic flux function
 . As shown in Ref. [5], Eqs. (1) can be rewritten in terms
of two generalized flux functions G
 � F
 de%sU as
@tG
 � �’
; G
	 � 0, with stream functions ’
 � ’

�%s=de� . For %s ! 0 (cold electrons) the Lagrangian
invariants G
 become degenerate and reduce to F. In
this limit F is the only Lagrangian invariant and the
algebraic structures of Eqs. (1) and (2), i.e., their gener-
alized linking conditions, coincide (with ’ substituted
for b) while their energy functionals remain different, as
the time derivative in the second of Eqs. (1) involves the
fluid vorticity r2’ only. The systems (1) and (2) provide
two convenient mathematical frameworks in order to
study the nonlinear evolution of Hamiltonian reconnec-
tion. In Ref. [3] the long term nonlinear development of
the reconnection instability in the MHD frequency re-
gime was investigated in a sheared magnetic equilibrium
configuration with a null line. Only the nondegenerate
case �s � 0 was considered. Taking %s � de and a con-
figuration where a single mode can be linearly unstable, it
was shown that the plasma evolves towards a ‘‘macro-
scopically stationary’’ state with a saturated magnetic
island. In this process the advection of the Lagrangian
invariants G
 is laminar (i.e., the stream functions ’


remain ordered) and G
 become spatially mixed (see
Fig. 3 of Ref. [3]). This process produces a regular fila-
mentary structure of current and vorticity layers, with
increasingly small spatial scales, that eventually fill the
island. In the absence of dissipation, energy conservation
is ensured by the transfer of magnetic energy / jr j2 to
electron kinetic and internal energy / �d2ejr2 j2 �
%2
s jr

2’j2	 at increasingly small spatial scales. In the
present Letter we show that in the cold electron MHD
and EMHD regimes, the saturation of the reconnection
instability due to the mixing process leads to a turbulent
current layer pattern. This different behavior occurs be-
cause in these regimes the Lagrangian advection is sub-
ject to a secondary K-H instability which destroys the
regular development of the current pattern. In the MHD
regime the K-H instability appears only when %s=de is
decreased, while it is always present in the adopted
EMHD model where electron temperature effects are
neglected.

In order to investigate the onset of a secondary insta-
bility during the nonlinear phase of the reconnection
process, we have integrated both Eqs. (1) and (2) numeri-
cally, using a new version of the 2D fluid code adopted in
Ref. [3]. This code advances the cell averaged values of F
and U in time (or of F and W in the EMHD case) using a
finite volume technique (i.e., calculating the cell fluxes).
A Fourier transform method is then used to reconstruct
the grid point values of F and U at the cell corners. Time
235001-2
is advanced using the explicit third order Adams-
Bashforts scheme. Typical mesh sizes are Nx � 2048
and Ny � 512. By looking at the energy and invariants
conservation in different regimes and for different grid
and time resolutions, we have found that this algorithm is
more accurate and faster than the one used in Ref. [3].

First we consider the MHD regime and initialize
Eqs. (1) by imposing perturbations of the form
� 1�x�; ’1�x�	

P
ky�ky exp�ikyy� �ky� (with �ky and �ky

random amplitudes and phases,  1�x� and ’1�x� ran-
dom functions of x) on the static equilibrium configu-
ration  0�x� � 
L=�2cosh2�x=L�	 in a simulation box
with Lx � 2Ly � 4�L, taking de � 3=10L. In this
null line magnetic equilibrium only the lowest wave-
length eigenmode is unstable and, as in the cases inves-
tigated in Refs. [2– 4], has a large value of the stability
parameter �0 corresponding, for the chosen values of de,
to a ‘‘fast’’ growing instability. In these numerical runs
we have considered values of %s=de ranging from 0 to 1.5.
In Fig. 1 we show the time evolution of the Lagrangian
invariant F in the degenerate case %s � 0 at t � 90� 10.
The magnetic flux function  , as shown in the first two
frames by the black contour lines, displays a smooth
235001-2
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structure with a finite size magnetic island and recon-
nected field lines. On the contrary, the shaded contours
of the Lagrangian invariant F (initially straight lines
along y) do not reconnect. In the first phase of the recon-
nection instability the contours of F, which are advected
along the hyperbolic cell pattern of the stream function
’, are pushed towards the X point of  , leading to the
formation of a bar-shaped current layer along the equi-
librium null line, frame (a), as first found in the early
nonlinear phase in Ref. [4]. At later times, the F contours
are stretched in the y direction and carried towards
the O point inside the magnetic island, where they en-
counter the corresponding contours from the adjacent
X point. Subsequently, they are advected outwards in
the x direction, as shown in frame (b) at t � 102. At
this stage F starts to be affected by the K-H instability
that causes a full redistribution of F, as shown at t �
106; 111 in frames (c),(d), and of the current density

r2 . In frame (d) the spatial structure of F is domi-
nated by the twisted filaments of the current density
which spread through the central part of the magnetic
island. The corresponding evolution of the vorticity r2’
is shown in Fig. 2. In frame (d) we see a well developed
turbulent distribution of monopolar and dipolar vortices.
This turbulent evolution of the nonlinear reconnection
FIG. 2. Shaded isocontours of the fluid vorticity U � r2’ for
the same parameters and times as in Fig. 1.
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process persists in the nondegenerate, finite electron tem-
perature case where the two Lagrangian invariants G


determine the generalized linking conditions. However,
as the ratio %s=de is increased, i.e., as the electron tem-
perature effects become more important, the onset of the
K-H instability occurs later during the island growth and
its effect on the current layer distribution becomes
weaker. For %s=de � 1, no sign of a secondary instability
is detectable during the time the island takes to saturate
its growth, in agreement with the results of Ref. [3], as
also shown here by the laminar advection of G� for
%s=de � 1:5 in Fig. 3. In the transitional regime, the
advection pattern and the current layer structures exhibit
an intermediate behavior, as shown for %s=de � 0:167 in
Fig. 4. Initially, G
 are advected in opposite directions
with a differential rotation, as described in Ref. [3] for
%s=de � 1. At later times [frame (b) in Fig. 4], they
acquire features characteristic of the evolution of F in
the degenerate %s � 0 case and their advection becomes
K-H unstable [frame (c)] leading to an almost turbulent
distribution, as shown in frame (d). A linear analysis of
the onset of the K-H instability in a set of model 1D
equilibria, chosen so as to mimic the local advection
pattern at the reconnection layer for different values of
%s=de, indicates that a K-H instability does occur and
that its growth rate is a decreasing function of %s=de. A
comparison of the power law behavior of the x-averaged
ky Fourier spectra (not shown here) of the Lagrangian
invariants, of the fluid stream function ’, and of the
magnetic flux function  as %s=de is varied shows that
the slope of the spectrum of ’ is significantly affected by
the development of the K-H instability while both the
spectra of the invariants and, in particular, that of the flux
function  are almost unchanged. The spectra of the
Lagrangian invariants are flatter than that of  while
that of ’ has an intermediate slope, becomes steeper
as %s=de is increased, and tends to coincide with that of
 . The energy balance (not shown here) indicates an
excellent total energy conservation until the fully devel-
oped phase of the K-H instability when turbulent motions
FIG. 3. Shaded isocontours of the Lagrangian invariant G�

[MHD regime, Eqs. (1), for %s=de � 1:5], at t � 80.
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FIG. 5. Shaded isocontours of the Lagrangian invariant F
[EMHD regime, Eqs. (2)], at t � 132; 141.

FIG. 4. Shaded isocontours of the Lagrangian invariant G�

at t � 65; 75; 78; 93 for %s=de � 0:167 with superposed, in the
first frame, the isocontours of the magnetic flux function  .
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inject energy effectively on the dissipative (grid) length
scales. This energy dissipation, which is smaller than
the magnetic and kinetic energy variations, occurs faster
for small values of %s=de. For these values, part of
the magnetic energy released by the reconnection insta-
bility remains in the form of plasma kinetic energyR
dxdyjr’j2 corresponding to the fluid vortices in the

magnetic island. In addition, an oscillatory exchange of
energy persists between the plasma kinetic energy and the
electron kinetic energy

R
dxdyd2ejr

2 j2, corresponding
to ‘‘breathing oscillations’’ of the island shape analogous
to those described in Ref. [9]. Because of their algebraic
structure equal to that of the degenerate MHD case %s �
0 and different Hamiltonian functional, the EMHD
Eqs. (2) allow us to verify the relationship between the
onset of the secondary instability and the form of the
conserved generalized linking conditions. The results of
the numerical integration of Eqs. (2) presented in Fig. 5
for the same equilibrium configuration and initial con-
ditions as in Fig. 1 (with b0 � const and b1 substituted
for ’1) show that the onset and the development of the
K-H instability in the EMHD regime and the evolution of
the Lagrangian invariant F, correspond fully to those
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shown in Figs. 1 and 2 and is accompanied by formation
of turbulent current filaments and of long lasting electron
vortices both in F and in W (not shown).

In conclusion, we have shown that in the fully non-
linear phase of (fluid) Hamiltonian magnetic reconnec-
tion the K-H instability appears, even in the absence of an
equilibrium velocity shear, as a secondary instability that
makes the advection of the conserved Lagrangian in-
variants turbulent. These new results indicate that the
mixing process of the Lagrangian invariants identified
in [3] in the nondegenerate MHD case represents a natural
feature of 2D Hamiltonian reconnection but that it can
develop in different features depending on whether sec-
ondary instabilities, such as the K-H instability, are
excited. Thus, although in all the regimes examined the
current layers eventually cover a large portion of the
island domain, their spatial structure and the magnetic
energy redistribution can develop very differently de-
pending on the role played by the electron thermal effects
which change the form of the conserved generalized
linking conditions.
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