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Abstract

This paper presents the workspace, the joint space and the singularities of a
family of delta-like parallel robots by using algebraic tools. The different func-
tions of SIROPA library are introduced, which is used to induce an estimation
about the complexity in representing the singularities in the workspace and the
joint space. A Gröbner based elimination is used to compute the singularities of
the manipulator and a Cylindrical Algebraic Decomposition algorithm is used
to study the workspace and the joint space. From these algebraic objects, we
propose some certified three-dimensional plotting describing the shape of works-
pace and of the joint space which will help the engineers or researchers to decide
the most suited configuration of the manipulator they should use for a given
task. Also, the different parameters associated with the complexity of the serial
and parallel singularities are tabulated, which further enhance the selection of
the different configuration of the manipulator by comparing the complexity of
the singularity equations.
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Nomenclature

SIROPA Library for manipulator singularities analysis
CAD Cylindrical Algebraic Decomposition
IKP Inverse Kinematics problem
DKP Direct Kinematics problem
det Determinant of Jacobian matrix
R Revolute Joint
P Prismatic Joint
S Spherical Joint
ρ Actuated Joint Variables
X Pose Variables
A Direct parallel Jacobian matrices
B Inverse serial Jacobian matrices

1. Introduction

The workspace can be defined as the volume of space or the complete set
of poses which the end-effector of the manipulator can reach. Many researchers5

published several works on the problem of computing these complete sets for
robot kinematics. Based on the early studies [1, 2], several methods for works-
pace determination have been proposed, but many of them are applicable only
to a particular class of robots. The workspace of parallel robots mainly depends
on the actuated joint variables, the range of motion of the joints and the me-10

chanical interferences between the bodies of the mechanism. There are different
techniques based on geometric [3, 4], discretization [5, 6, 7], and algebraic me-
thods [8, 9, 10, 11, 12] which can be used to compute the workspace of parallel
robot. The main advantage of the geometric approach is that it establishes the
nature of the boundary of the workspace [13]. Also, it allows to compute the15

surface and volume of the workspace while being very efficient in terms of sto-
rage space, but when the rotational motion is included, it becomes less efficient.
Interval analysis based methods can be used to compute the workspace but the
computation time depends on the complexity of the robot and the requested
accuracy [7]. Discretization methods are usually less complicated and can easily20

take into account all kinematic constraints, but they require more space and
computation time for higher resolutions. The majority of numerical methods
used to determine the workspace of parallel manipulators includes the discreti-
zation of the pose parameters for computing workspace boundaries [6]. There
are other approaches, such that optimization algorithms [14] for fully serial or25

parallel manipulators ; analytic methods for symmetrical spherical mechanisms
[15]. In [16], a method for computing the workspace boundary for manipulators
with a general structure is proposed, which uses a branch-and-prune technique
to isolate a set of output singularities, and then classifies the points on such
set according to whether they correspond to motion impediments in the works-30

pace. A Cylindrical Algebraic Decomposition (CAD) based method is used in
[10, 17, 18] to model the workspace and joint space for the 3-RPS parallel ro-
bot and delta-like robots. The variations in the workspace, singularities, and
joint space with respect to design parameter of a 3-RPS parallel manipulator is
studied in [19].35
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Here, this paper presents the results obtained by applying algebraic methods
for the workspace and joint space analysis of a family of a delta-like robot inclu-
ding complexity information for representing the singularities in the workspace
and the joint space. The CAD algorithm is used to study both the workspace
and joint space, and a Gröbner based elimination process is used to compute the40

parallel and serial singularities of the manipulator. The structure of the paper
is as follows. Section 2 presents the mathematical tools and the introduction
of SIROPA. Section 3 describes the architecture of the manipulator, including
kinematic equation and joint constraints associated with the manipulators. Sec-
tion 4 discusses the computation of parallel as well as serial singularities and45

their projections in workspace and joint-space. Section 5 and 6 present a compa-
rative study on the shape of the workspace and joint space of different delta-like
robots, respectively. Section 7 finally concludes the paper.

2. Algebraic Tools : SIROPA

SIROPA is a library for the MAPLE developed to analyze the singularities,50

workspace and joint space of serial and parallel manipulators as well as tensegrity
structures [20]. There are two main parts of the library shown in Fig.(1), the first
one provides the algebraic tools to solve the constraint equations and convert the
trigonometric equations in the algebraic form. The other one, SIROPA, provides
modeling, analyzing and plotting functions for different manipulators, shown in55

Fig.(2). Only a small part of these tools are used in the current paper.

Library SIROPA
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Figure 1: Architecture of Library
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2.1. Modeling Functions

SIROPA provides modeling functions such as CreateManipulator(), to vir-
tually create the planar and spatial manipulators for further analysis. Below are
the functions :

Functions
CreateManipulator Constructs a data structure of type Manipulator
SubsPlus Substitute coherently angles in a system
UnassignParameters Specify parameter values in a Manipulator
UnassignParameters Release parameters in a Manipulator

60

CreateManipulator

The function CreateManipulator() of SIROPA library in MAPLE soft-
ware is used to virtually create the manipulator for analysis. Listing 1 shows
the code architecture of the function.

65

As shown in Listing 1, compulsory inputs are identified as [c], while the
optional ones as [o]. Points, loops, chains and actuators, are the input parame-
ters to create the plot of the manipulator. The pose variables are the essential
input parameters to define the mechanism. The input parameter sys is the set
of constraint equations associated with the motion of manipulator.70

1 CreateManipulator := proc (
2 sys [ c ] : : l i s t ({ a l g eb r a i c , a l g e b r a i c=a l g eb r a i c , a l g eb r a i c<

a l g e b r a i c })
3 ca r t [ c ] : : l i s t (name) ,
4 a r t i [ c ] : : l i s t (name) ,75

5 pas s i v e [ o ] : : l i s t (name) ,
6 geompars [ c ] : : l i s t (name) ,
7 spec [ o ] : : { l i s t , s e t }(name=a l g eb r a i c ) ,
8 plotrange [ o ] : : l i s t (name=range ) ,
9 po ints [ p ] : : l i s t (name=l i s t ( a l g e b r a i c ) ) ,80

10 l oops [ p ] : : l i s t ( l i s t (name) ) ,
11 cha ins [ p ] : : l i s t ( l i s t (name) ) ,
12 actuator s [ p ] : : l i s t ({ l i s t (name) ,name}) ,
13 model [ o ] : : s t r i n g := ”No name” ,
14 p r e c i s i o n [ o ] : : i n t e g e r := 4 ,85

15 {
16 no r ad i ca l : : t r u e f a l s e := f a l s e
17 }
18 )

Listing 1: Architecture of Create Manipulator

Constructs a data structure of type Manipulator.90

This function returns a data structure of type Manipulator containing the
fields, briefly described below. Further, the values of these fields can be retrieved
or changed according to the analysis to be performed.
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Parameters

sys list of polynomials, polynomial equalities and polynomial
inequalities with rational coefficients : the implicit equa-
tions and constraints of the considered manipulator

cart list of names : the pose variables
arti list of names : the control parameters ; default value : the

names of sys not in vars
passive list of names : the passive variables ; default value : []
geompars list of names : the geometric parameters ; default value :

the names of sys not in cart, nor in arti
spec a list of equations of the form name=formula where name

is a parameter name and formula a polynomial with tri-
gonometric function ; the new variables in a formula are
handled in the same way as the replaced variable. default
value : []

points list of name=list : the points of the robot with their co-
ordinates ; default value : []

loops list of list of names : the frame loops of the robot default
value : []

chains list of list of names : the frame chains of the robot default
value : []

actuators list of names or list of names : the robot actuators ; a
list of name is for a leg actuator, a name is for an angle
actuator ; default value : []

model string : the name of the model ; default value : No name
precision an integer : the number of significative digits ; default va-

lue : 4

Remarks

— Polynomials p appearing in sys, Equations, GenericEquations are consi-95

dered implicitly as p=0.

— When a control parameter value is specified in spec, the parameter name
is removed from the ControlParemeters field. This is not the case for
the geometric parameters that appears in the field GeometricParameters
even if they are specified.100

2.2. Analysing Functions

SIROPA provides the analysing function to compute the parallel and serial
singularities. These functions are used to study both the workspace and joint
space. The architecture of ConstraintEquations and CellDecompositionPlus are
shown in Listing 2 and 3.105

ConstraintEquations
1 ConstraintEquations := proc ( robot : : Manipulator ,
2 {
3 c on s t r a i n t s : : t r u e f a l s e := f a l s e
4 }110
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Returns

Equations a list of polynomials [p1, ..., pk] : the modeling
equations

Constraints a list of strict inequalities : the constraint inequa-
lities

ArticularVariables a list of names : the control parameters
PassiveVariables a list of names : the remaining variables
GeometricParameters a list of names : the geometric parameters
GenericEquations a list of polynomials : the modeling equations

with symbolic geometric parameters
GenericConstraints a list of strict inequalities : the constraint inequa-

lities appearing in sys
Precision an integer : the number of correct digits
PoseValues the pose values substituted in the GenericEqua-

tions to get the Equations
ArticularValues the articular values substituted in the GenericE-

quations to get the Equations
PassiveValues the passive values substituted in the GenericE-

quations to get the Equations
GeometricValues the geometric values substituted in the Generi-

cEquations to get the Equations
DefaultPlotRanges ranges used by default for plotting if provided
Points the points coordinate of the robot
Loops the frame loops of the robot
Chains the frame chain of the robot
Actuators the actuators of the robot
Model a string : the name of the modeling

5 )

Listing 2: Architecture of ConstraintEquations function

Computes the implicit equations induced by the constraints.

Parameters
robot a data structure returned by a function mechanisms.

Returns115

A list of list of polynomials : each list represents a component of the equations
satisfied by the constraints.

CellDecompositionPlus
1 Cel lDecompos i t ionPlus := proc ( equ : : l i s t ( a l g e b r a i c ) ,
2 ineq : : l i s t ( a l g e b r a i c ) ,120

3 vars : : l i s t (name) ,
4 pars : : l i s t (name) := [ op ( i nde t s ( [ equ ,
5 ineq ] , name) minus {op ( vars ) }) ] ,
6 {
7 no f a c to r : : t r u e f a l s e := f a l s e ,125

8 gb f a c to r : : t r u e f a l s e := f a l s e ,
9 no r e a l r o o t s t e s t : : t r u e f a l s e := f a l s e

10 }
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Functions
ConstraintEquations Computes the implicit equations indu-

ced by the constraints.
SerialSingularities Computes the implicit equations satis-

fied by the singularities.
ParallelSingularities Computes the implicit equations satis-

fied by the singularities.
InfiniteEquations Computes the equations where the ma-

nipulator has infinitely many solutions.
ParallelCuspidal Computes the implicit equations satis-

fied by the cuspidal points.
SerialCuspidal Computes the implicit equations satis-

fied by the cuspidal points.
Projection Project on variables or expressions in a

polynomial system.
CellDecompositionPlus Describes the parameter space accor-

ding to the number of real roots.
NumberOfSolutionsPlus Returns the number of real solutions

of cells obtained by CellDecomposition-
Plus.

DVNumberOfSolutionsPlus Returns the number of real solutions on
the intersection points of the Discrimi-
nant Variety.

auxDVNumberOfSolutionsPlus Auxiliary function Returns the num-
ber of real solutions on the intersection
points of the Discriminant Variety.

IsIntervalEmpty Checks that a polynomial has no real
roots in an open interval.

CellGraph Computes the connexity graph of the
cells of a CAD.

DirectInverseKinematics Returns the cells having the same an-
tecedent.

CellArea2D Compute the area of the cells retur-
ned CellDecomposition or CellDecom-
positionPlus.

CellLocationPlus Computes the cells of a decomposition
containing the given points.

11 )

Listing 3: Architecture of CellDecompositionPlus function

Describes the parameter space according to the number of real roots.130

Returns

A maple object : the same as the one returned by the maple function Root-
Finding[Parametric][CellDecomposition]. The main difference is that it handles
trigonometric expressions.
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Parameters

equ a list of polynomials and trigonometric expressions : the
equations.

ineq a list of polynomials and trigonometric expressions : the
inequalities where each expression p stands for p>0.

vars a list of names : the variables of the system
pars a list of names : the parameters of the system ; default

value : the remaining variables of equ and ineq

2.3. Plotting Functions135

These functions are used to plot the workspace, joint space and singularity
surfaces. Listing 4, 5, 6 and 7 shows the architecture of Plot2D, Plot3D,
Configurations and PlotRobot3D, respectively.

Functions
Plot2D Plots a system of 2 variables
PlotCurve3D Plots a curve given by implicit equations in 3 variables
Plot3D Plots a system of 3 variables using maple internal plot-

ting functions
Plot3Dglsurf Plots a system of 3 variables using glsurf
Plot3Dsurfex Plots a system of 3 variables using surfex (software

based on surf)
PlotWorkspace Plot the border of a manipulator workspace
Configurations Computes the different possible positions
PlotRobot2D Plot a planar manipulator
PlotRobot3D Plot a 3D manipulator
PlotCell3D Plot the cells returned CellDecomposition or CellDe-

compositionPlus
PlotCell2D Plot the cells returned CellDecomposition or CellDe-

compositionPlus
SetCellColors Set colors to the numbers of solutions obtained by

NumberOfSolutionsPlus
Trajectory Display a given trajectory
ImageTrajectory Display a given trajectory

Plot2D
1 Plot2D := proc (140

2 sys : : { a l g eb r a i c , equation ( a l g e b r a i c ) , l i s t ({ a l g eb r a i c ,
3 equation ( a l g e b r a i c ) , a l g eb r a i c<a l g e b r a i c }) , l i s t ( l i s t ({
4 a l g eb r a i c , equation ( a l g e b r a i c ) , a l g eb r a i c<a l g e b r a i c }) ) } ,
5 e1 : : name = range ,
6 e2 : : name = range ,145

7 {
8 po ints : : t r u e f a l s e := f a l s e ,
9 [ notest , d r a f t ] : : t r u e f a l s e := f a l s e

10 }
11 )150

Listing 4: Architecture of Plot2D function
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Plots a system of 2 variables.

Parameters

sys a list or a list of list of polynomials : the system
v1 = r1 v1 is a name of sys and r1 a range of values
v2 = r2 v2 is a name of sys and r2 a range of values
points = bool bool is a boolean : if false, isolated points are ignored ;

default value : false ;
notest = b b is a boolean ; when b is true the inequality and real

constraints are ignored ; default value : true ;
opts arguments passed to the maple function plots :-

implicitplot

Returns
A graphic : the solutions of the system,
— when sys is a list of polynomials [p1,...,pk], the graphic is the zeroes of

the system p1=0 and ... and pk=0155

— When sys is a list of list of polynomials [L1,...,Lk], the graphic is the
union of the zeroes of each system L1, ..., Lk.

Plot3D
1 Plot3D := proc (
2 sys : : { a l g eb r a i c , equation ( a l g e b r a i c ) , l i s t ({ a l g eb r a i c ,160

3 equation ( a l g e b r a i c ) , a l g eb r a i c<a l g e b r a i c }) , l i s t ( l i s t ({
4 a l g eb r a i c , equation ( a l g e b r a i c ) , a l g eb r a i c<a l g e b r a i c }) ) } ,
5 ineq : : l i s t ({polynom , polynom<polynom }) := [ ] ,
6 e1 : : name = range := so r t ( [ op ( i nde t s ( [ sys , x , y , z ] ,
7 name) ) ] ) [ 1 ] =−5..5 ,165

8 e2 : : name = range := so r t ( [ op ( i nde t s ( [ sys , x , y , z ] ,
9 name) minus { l h s ( e1 ) }) ] ) [ 1 ] =−5..5 ,

10 e3 : : name = range := so r t ( [ op ( i nde t s ( [ sys , x , y , z ] ,
11 name) minus { l h s ( e1 ) , l h s ( e2 ) }) ] ) [ 1 ] =−5..5 ,
12 {170

13 po ints : : t r u e f a l s e := f a l s e ,
14 c r o s s i n g r e f i n e : : t r u e f a l s e := f a l s e ,
15 g r i d : : i n t e g e r := 10 ,
16 border : : constant := 10ˆ(−30) ,
17 output : : i d e n t i c a l ( l i s t , d i s p l ay ) := ’:− di sp l ay ’175

18 }
19 )

Listing 5: Architecture of Plot3D function

Plots a system of 3 variables using maple internal plotting functions.

Returns
A graphic : the solutions of the system,180

— when sys is a polynomial, the graphic is the zeroes of this polynomial

— when sys is a list of polynomials [p1,...,pk], the graphic is the zeroes of
the system p1=0 and ... and pk=0

— when sys is a list of list of polynomials [L1,...,Lk], the graphic is the union
of the zeroes of each system L1, ..., Lk.185
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Parameters

sys a list or a list of list of polynomials : the system
v1 = r1 v1 is a name of sys and r1 a range of values
v2 = r2 v2 is a name of sys and r2 a range of values
v3 = r3 v3 is a name of sys and r3 a range of values
points = bool bool is a boolean : if false, isolated points are

ignored ; default value : false ;
grid = i i is an integer leading to a grid size i x i ; default

value : 20.
border = e e is a numeric value : defines the precision on the

border ; default value : 0.0001.
crossingrefine = bool bool is a boolean : if true, the mesh follows the

cross of the different surfaces ; default value : false.
output = keyword keyword is either list or display : display (resp.

list) returns a graph (resp. a list).

Configurations

This function computes the different possible working modes for given values
of pose variables and assembly modes for given values of articular variables.

1 Conf i gurat i ons := proc ( robot : : Manipulator ,
2 spec : : seq (name=constant ) ,190

3 {
4 nocon s t r a i n t s : : t r u e f a l s e := f a l s e ,
5 order ing : : name := NULL
6 } )

Listing 6: Architecture of Configuration function

Computes the different possible positions.195

Parameters

robot an object of type Manipulator
spec sequence of name=constant : the specification of the

known variables (the articular values or the pose
values, or other)

noconstraints=*b* b is a boolean : when true, the constraint inequali-
ties are ignored ; default value : false.

ordering ordering is a name used to order the solutions ; de-
fault value : NULL

Returns
A list of elements : each elements is a list of name=list(constant) and repre-

sents a configuration of the input manipulator.
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PlotRobot3D

The PlotRobot3D function is used to plot any possible configuration of a200

manipulator, which helps in visualizing the manipulator in three-dimensional
space.

1 PlotRobot3D := proc (
2 robot : : Manipulator ,
3 spec : : seq (name=constant ) ,205

4 k : : { i n teger , range , l i s t ( i n t e g e r )} := . . ,
5 {
6 co l o r := [ ] ,
7 l egendvar s := subs (map( s−>l h s ( s )=NULL, [ spec ] ) ,
8 [ op ( robot :−Ar t i cu l a rVar i ab l e s ) , op ( robot :−210

PoseVar i ab l e s ) ,
9 op ( robot :−Pas s i v eVar i ab l e s ) , ’ det ( J ) ’ ] ) ,

10 nolegend : : t r u e f a l s e := f a l s e ,
11 nocon s t r a i n t s : : t r u e f a l s e := f a l s e
12 }215

13 )

Listing 7: Architecture of PlotRobot3D function

Computes the different possible positions.

Parameters

robot a Manipulator : the 3D robot to plot
spec a sequence of name=constant : specification of variables

of the robot to plot
k an integer : specifies one of the possible configuration

when several are available
color=col equation of the shape color=*col*, where col is a color or

a list of colors ; when the number of specified color is not
enough, deterministic colors are chosen ; default value :
empty list.

legendvars list of names : the variables to display in the legend ; de-
fault value : the articular, passive and pose variables, mi-
nus the variables in spec

nolegend=b b is a boolean : when false, a legend is displayed (the gra-
phic appears in a separate windows with a classic work-
sheet) ; default value : false.

Returns
A graphic : the different configurations of the manipulator satisfying the

input specifications.220

2.4. Mechanisms Functions

There are some manipulators like 3-RPR (see Listing 8)., 3-PRR, RPRRP, 3-
PPPS, Orthoglide, 3-PPPS and 3-PRS which are predefined in SIROPA library,
and can be accessible using these functions [21, 22, 23, 24].
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Functions
Parallel 3RPR Constructs the Manipulator object of planar 3-RPR
Parallel 3RPR full Constructs the Manipulator object of planar 3-RPR
Parallel 3PRR Constructs the Manipulator object of a 3-PRR
ParallelPRP2PRR Constructs the Manipulator object of a PRP2PRR
Parallel RPRRP Constructs the Manipulator object of a RPRRP
Parallel RR RRR Constructs the Manipulator object of a 2-RR
Parallel PRRP Constructs the Manipulator object of a PRRP
Orthoglide Constructs the Manipulator object of Orthoglide
ParallelRPR2PRR Constructs the Manipulator object of the

RPR2PRR
Parallel3PPPS Constructs the Manipulator object of the 3-PPPS
Serial3R Constructs the Manipulator object of the serial 3R

manipulator.
Parallel3PRSd Constructs the Manipulator object of the 3-PRS
Parallel3PRSc Constructs the Manipulator object of the 3-PRS

Parallel 3RPR225

1 Paral lel 3RPR := proc ( {
2 d1 : : a l g e b r a i c := 17 .04 ,
3 d2 : : a l g e b r a i c := 16 .54 ,
4 d3 : : a l g e b r a i c := 20 .84 ,
5 beta : : a l g e b r a i c := arccos ( ( d2ˆ2−d3ˆ2−230

6 d1 ˆ2) /(−2∗d3∗d1 ) ) ,
7 A2x : : a l g e b r a i c := 15 .91 ,
8 A3x : : a l g e b r a i c := 0 ,
9 A3y : : a l g e b r a i c := 10 ,

10 p r e c i s i o n : : i n t e g e r := 4235

11 }
12 ,
13 morespec : : seq (name=a l g eb r a i c ) ,
14 moreranges : : seq (name=range ) )

Listing 8: Architecture of Parallel 3RPR function

Constructs the Manipulator object of a planar 3-RPR manipulator.240

Parameters
name = constant the geometric parameters of the robot (see Fig.(3)),

— where name is one of d1, d2, d3, beta, A2x,
A3x, A3y,

— All the variables d1, d3, A2x, A3x, A3y must
be assigned.

— One of d2, beta must be assigned (if both are
assigned, d3 is ignored).

— By default, the values are d1 = 17.04, d2 =
16.54, d3 = 20.84, A2x = 15.91, A3x = 0,
A3y = 10.

precision = integer the precision, where integer is the number of signi-
ficative digits ; default value : 4.

13
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Figure 3: 3-RPR parallel robot

Returns
A Manipulator data structure representing the planar 3-RPR manipulator

whose dimensions are given in input.

2.5. Standard Bases (Gröbner Bases)

The method of Gröbner bases provides a uniform approach to solve a wide245

range of problems expressed in terms of sets of multivariate polynomials. The
Gröbner basis gives us a method for writing a system of algebraic equations
f(x1, ..., xn) = 0 in terms of unknowns x1, ..., xn with finitely many solutions
into a system that has the same roots and in a triangular form gn(xn) =
0, gn−1(xn−1, xn) = 0, ..., g1(x1, ..., xn) = 0, called a Gröbner basis. There are250

few drawbacks of Gröbner basis such that the calculation time of the Gröbner
basis is mainly dependent upon the number of equations and their degree ; while
its calculation with real numbers is numerically unstable [25].

Gröbner basis theory can be used to compute the projections πQ and πW

into the joint space and the workspace, respectively. Let P be a set of polyno-255

mials in the variables X = (x1, .., xn) and q = (q1, .., qn). Moreover, let V be the
set of common roots of the polynomial in P , let W be the projection of V on the
workspace and Q the projection on the joint space. It might not be possible to
represent W (resp. Q) by polynomial equations. Let W̄ (resp. Q̄) be the smallest
set defined by polynomial equations that contain W (resp. Q)[11]. A Gröbner260

basis P is a polynomial system equivalent to P, satisfying some additional spe-
cific properties. The Gröbner basis of a system depends on the chosen ordering
of monomials.
For the projection πQ, when we choose an ordering eliminating q, the Gröbner
basis of P contains exactly the polynomials defining W̄ .265
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sys
list of equations and strict inequalities between
polynomials with rational coefficients

vars list of names ; the indeterminates
pars (optional) list of names ; the parameters

eqs
list of polynomials f with rational coefficients,
representing equations of the form f = 0

ineqs
list of polynomials g with rational coefficients,
representing constraint inequalities of the form 0 < g

Table 1: Description of the fields of DiscriminantVariety function

For the projection πW , when we choose an ordering eliminating X, the Gröbner
basis of P contains exactly the polynomials defining Q̄.

2.6. Discriminant Variety and Cylindrical Algebraic Decomposition

The notion of discriminant variety is a generalization of the discriminant of270

a univariate polynomial, describing all the critical points of a system, including
singularities, solutions of multiplicity greater than one, and solutions at infinity.
It is a subset of the parameter space of lower dimension [26, 27].

As shown in Table 1, a discriminant variety has the following property : it
divides the parameter space into open, full-dimensional cells such that the num-275

ber of solutions of the system sys is constant for parameter values chosen from
the same open cell. As shown in Listing 9, the function DiscriminantVariety(sys,
vars, pars) computes a discriminant variety of the system sys of equations and
inequalities with respect to the indeterminates vars and the parameters pars.

1 Discr im inantVar ie ty ( sys , vars , pars )280

2 Discr im inantVar ie ty ( eqs , ineqs , vars , pars )

Listing 9: Architecture of Discriminant Variety

The function DiscriminantVariety(eqs, ineqs, vars, pars) computes a discri-
minant variety of the system

[f = 0, 0 < g]f∈eqs, g∈ineqs (1)

of equations and inequalities with respect to the indeterminates vars and the
parameters pars.

The input system must satisfy the following properties :
— There are at least as many equations as indeterminates.285

— At least one and at most finitely many complex solutions exist for al-
most all complex parameter values (the system is generically solvable
and generically zero-dimensional).

— For almost all complex parameter values, there are no solutions of multi-
plicity greater than one (the system is generically radical). In particular,290

the input equations are square-free.
An error occurs if one of these three previous conditions is violated.
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— The result is returned as a list of lists of polynomials in pars such that the
discriminant variety is the union of the set of solutions of the polynomials
in each inner list.295

— If pars is not specified, it defaults to all the names in sys that are not
indeterminates.

— This function attempt to find a minimal discriminant variety, but it may
return a proper superset in the case that it does not succeed.

— The discriminant variety is computed using Gröbner basis techniques.300

Example 1

1 with ( RootFinding [ Parametr ic ] )
2 Discr im inantVar ie ty [ a∗xˆ2=1, b∗z+y=0, c∗z+y=0, 0 < c ] , [ x , y , z ]
3

4 Output [ [ a ] , [ c ] , [ b−c ] ]305

Listing 10: Example of Discriminant Variety

The discriminant variety in Listing 10 is (a, b, c) : a = 0 or b = c or c = 0.
The case a = 0 gives a solution of the first equation at infinity. In the case
b = c, the second and third equations coincide and therefore the system becomes
underdetermined and has infinitely many solutions. Finally, the case c = 0
corresponds to a boundary case for the inequality 0 < c.310

A cylindrical algebraic decomposition of the n-dimensional real space is a
partition of the whole space into connected semi-algebraic subsets such that the
cells in the partition are cylindrically arranged, that is, the projection of any
two cells onto any lower dimensional real space is either equal or disjoint. This
decomposition is called F-invariant if, for any given cell, the sign of each poly-315

nomial in F does not change over the cell. CylindricalAlgebraicDecompose(F,
R) returns an F-invariant CAD of the n-dimensional real space, where n is the
number of variables in R. This assumes that R has characteristic zero and no
parameters, such that the base field of R is the field of rational numbers [28].

The output of CylindricalAlgebraicDecompose(F, R) has several possible320

formats controlled by the options output = piecewise, tree, list , cadcell, rootof.
In all formats, each cell provides at least two pieces of information ; the index of
the cell ; and a sample point of the cell. In the cadcell and rootof output formats,
a defining semi-algebraic system (called a Tarski Formula) is also provided. Due
to the cylindicity property, cells can be organized in a hierarchical manner. This325

is the purpose of piecewise and tree output format, whereas the other three
formats are flat representations. Due to the potentially large number of cells, the
cadcell format only shows the name cadcell for each cell in the decomposition.
However, cadcell is a type and an object of that type can be passed to Display.
It can also be passed to SamplePoints in order to access the sample point of the330

cell. The rootof format is meant to be compatible with the output format of the
solve command.

As shown in Listing 11 and Table 2, the CellDecomposition function decom-
poses the parameter space of a parametric polynomial system into cells in which
the original system has a constant number of solutions [29].335
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sys
list of equations and strict inequalities between
polynomials with rational coefficients

vars list of names ; the indeterminates
pars (optional) list of names ; the parameters

eqs
list of polynomials f with rational coefficients,
representing equations of the form f = 0

posineqs
list of polynomials g with rational coefficients,
representing constraint inequalities of the form 0 < g

nzineqs
list of polynomials g with rational coefficients,
representing constraint inequations of the form g 6= 0

options
sequence of optional equations of the form keyword=value,
where keyword is either output or method

Table 2: Description of the fields of CellDecomposition function

1 Cel lDecompos i t ion ( sys , vars , pars , opt i ons )
2 Cel lDecompos i t ion ( eqs , pos ineqs , vars , pars , opt i ons )
3 Cel lDecompos i t ion ( eqs , pos ineqs , nzineqs , vars , pars , opt i ons )

Listing 11: Architecture of Cell Decomposition

The function returns a data structure that can be used for (examples) :
— Plotting the regions of the parameter space for which the system has a340

given number of solutions.

— Extracting sample points in the parameter space for which the system
has a given number of solutions.

— Extracting boxes in the parameter space in which the system has a given
number of solutions.345

The record returned captures information about the solutions of the system
depending on the parameter values, including :

— a discriminant variety ;

— for each full-dimensional open cell, a sample point strictly in the interior
of the cell ; if possible, the coordinates of the sample point are chosen to350

be integers.
The input system must satisfy the following properties :
— The number of equations is equal to or greater than the number of inde-

terminates ;

— At most finitely many complex solutions exist for almost all complex355

parameter values (the system is generically zero-dimensional) ;

— For almost all complex parameter values, there are no solutions of multi-
plicity greater than one (the system is generically radical) ; in particular,
the input equations are square-free.

3. Manipulators Under Study360

There are four different mechanisms for which the workspace, the joint space
and the singularities are presented in this paper. Three degree of freedom parallel
mechanisms consisting of three identical legs, while the different arrangements
of these legs give rise to family of delta like robot. Several types of delta-like
robot were studied, few of them are Orthoglide [7, 30], Hybridglide, Triaglide
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[31] and UraneSX [7]. The kinematic equations of the family of delta like robot
can be generalized as ||P−Bi|| = Li. These constraint equations can be in the
form of Euler angle representation or quaternions [10]. All the computations
and analysis are done for Li = L = 2 and by imposing the following constraints
on joint variables. Without joint limits, the whole family of these robots admit
two assembly modes and eight working modes, i.e. ,

0 < ρ1 < 2L 0 < ρ2 < 2L 0 < ρ3 < 2L (2)

3.1. Orthoglide Architecture and Kinematics
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Figure 4: Configuration of Orthoglide : (a) simplified ; (b) real.

As shown in Fig.(4), the Orthoglide mechanism is driven by three actuated
orthogonal prismatic joints. A simpler model can be defined for the Orthoglide,
namely, three bar links connected by the revolute joints to the tool center point
on one side and to the corresponding prismatic joint at another side. Several365

assembly modes of these robots depends upon the solutions of direct kinematic
problem (DKP). The point P represents the pose of corresponding robot. Ho-
wever, more than one position for the point P shows the multiple solutions for
the DKP. AiBi is equal to ρi, where ρi represents the prismatic joint variables,
whereas P represents the position vector of the tool center point. The constraint370

equations for the Orthoglide are :

(x− ρ1)
2 + y2 + z2 = L2

x2 + (y − ρ2)
2 + z2 = L2

x2 + y2 + (z − ρ3)
2 = L2 (3)

The Maple lines used to describe this robot are as follows, shown in Listing 12

1 robot := CreateManipulator (
2 [ ( rho1−x )ˆ2+yˆ2+zˆ2− l ˆ2 ,
3 ( rho2−y )ˆ2+xˆ2+zˆ2− l ˆ2 ,375

4 ( rho3−z )ˆ2+xˆ2+yˆ2− l ˆ2 ,
5 rho1>0, rho2>0, rho3>0,
6 rho1<2∗ l , rho2<2∗ l , rho3<2∗ l ] ,
7 [ x , y , z ] ,
8 [ rho1 , rho2 , rho3 ] ,380

9 [ l =1] ,
10 [ rho1 =−15/10..15/10 , rho2 =−15/10..15/10 ,
11 x=−15/10..15/10 , y=−15/10. .15/10] ,
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12 [A1 = [2∗ l , 0 , 0 ] , A2 = [ 0 , 2∗ l , 0 ] , A3 = [ 0 , 0 , 2∗ l ] ,
13 M = [ x , y , z ] ,385

14 B1 = [ rho1 , 0 , 0 ] , B2 = [ 0 , rho2 , 0 ] , B3 = [ 0 , 0 , rho3 ] ] ,
15 [ ] ,
16 [ [ B1 , M] , [ B2 , M] , [ B3 , M] ] ,
17 [ [ A1 , B1 ] , [A2 , B2 ] , [A3 , B3 ] ] ,
18 ”Orthog l i de ”) ;390

19 )

Listing 12: Maple lines to create the Orthoglide robot

3.2. Hybridglide Architecture and Kinematics

As shown in Fig.(5), the Hybridglide mechanism consists of three actuated
prismatic joints, in which two actuators are placed parallel and third one per-
pendicular to others two. Also the three bar links connected by spherical joints395

to the tool center point on one side and to the corresponding prismatic joint at
another side. Several assembly modes of these robots depends upon the solutions
of the DKP.
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Figure 5: Configuration of Hybridglide : (a) simplified ; (b) real.

The constraint equations for the Hybridglide are :

(x− 1)2 + (y − ρ1)
2 + z2 = L2

(x+ 1)2 + (y − ρ2)
2 + z2 = L2

x2 + y2 + (z − ρ3)
2 = L2 (4)

3.3. Triaglide Architecture and Kinematics400
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Figure 6: Configuration of Triaglide : (a) simplified ; (b) real.
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As shown in Fig.(6), the Triaglide manipulator is driven by three actuated
prismatic joints, in which all the three actuators all parallel to each other and
placed in the same plane.

The constraint equations for the Triaglide are :

(x− 1)2 + (y − ρ1)
2 + z2 = L2

(x+ 1)2 + (y − ρ2)
2 + z2 = L2

x2 + (y − ρ3)
2 + z2 = L2 (5)

3.4. UraneSX Architecture and Kinematics405

1

-0.6

-0.8

0.8 1

A1
A2

A3

B1 B2

p

A1
A2

A3

B1

B2

B3

(a) (b)

Figure 7: Configuration of UraneSX : (a) simplified ; (b) real.

As shown in Fig.(7), the UraneSX is similar to triaglide, but instead of three
actuators in the same plane, they are placed in different planes. The constraint
equations for the UraneSX are :

(x − 1)2 + y2 + (z − ρ1)
2 = L2

(x+ 1/2)2 + (y −
√
3/2)2 + (z − ρ2)

2 = L2

(x+ 1/2)2 + (y +
√
3/2)2 + (z − ρ3)

2 = L2 (6)

4. Singularities : Delta-Like Family Robot

Singularities of a robotic manipulator are important feature that essentially
influence its motion capabilities. Mathematically, a singular configuration may
be defined as rank deficiency of the Jacobian describing the differential map-
ping from the joint space to the workspace and vice versa. Differentiating the
constraints equations with respect to time leads to the following velocity rela-
tionship :

At+Bq̇ = 0 (7)

where A and B are the parallel and serial Jacobian matrices, respectively, t is410

the velocity of P and q̇ joint velocities. The parallel singularities occur whenever
det(A) = 0, while the serial singularities occur whenever det(B) = 0.
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Figure 8: Projection of parallel singularity surface in the workspace for (a) Orthoglide, (b)
Hybridglide, (c) Triaglide and (d) UraneSX

4.1. Parallel Singularities : Projection in workspace and joint space

Parallel singularities occur when the determinant of the direct kinematics
matrix A vanishes. The corresponding singular configurations are located in-415

side the workspace. They are particularly undesirable because the manipulator
can not resist any force and control is lost. Parallel singularity and its projection
surfaces in workspace and joint space are calculated using the function Paral-
lelSingularities(). Listing 13 shows an example for calculating the singularity
surfaces and its projection in joint space.420

1 s2 := P a r a l l e l S i n g u l a r i t i e s ( robot : : Manipulator )
2 s 2 c a r t := Pro j e c t i on ( s2 , robot :−PoseVar i ab l e s )
3 s 2 a r t := Pro j e c t i on ( s2 , robot :−Ar t i cu l a rVar i ab l e s )

Listing 13: Projection of parallel singularity surface of delta-like robot in workspace and joint
space

Parallel singularities and their projections in workspace and joint space are
computed using a Gröbner based elimination method. This usual way for elimi-425

nating variables (see [32]) computes (the algebraic closure of) the projection of
the parallel singularities in the workspace.

Eliminating variables can be done in favorable case by using cascading
resultants. The main related result says that given two polynomials P,Q ∈
C[x1, . . . , xn] and their resultant R ∈ C[X1, . . . , xn−1] and α = (α1, . . . , αn−1) ∈430

C such that R(α) = 0, then, either α cancels the leading terms of P,Q in xn
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Figure 9: Projection of parallel singularity surfaces in the joint space for (a) Orthoglide, (b)
Hybridglide, (c) Triaglide and (d) UraneSX

(which means that some parts of the varieties P = 0 or Q = 0 are ≪ going to in-
finity ≫ or ∃αn ∈ C such that P (α1, . . . , αn, αn+1) = Q(α1, . . . , αn, αn+1) = 0.
Some linear change of variables allows to ignore the parts ≪ going to infi-
nity ≫ and {x ∈ Cn−1, R(x) = 0} is then the projection of V (P,Q) = {x ∈435

Cn, P (x) = Q(x) = 0}. One can generalize this elimination step to sets of more
than two polynomials.

Taking pairs of resultants and computing their resultant with respect to xn−1

one then project again, eliminating one more variable, defining so a cascading
process that will finish with univariate polynomials. This process has almost440

the same complexity as the projection step in a CAD adapted to the input
polynomials : at each step, the degree of the polynomials is doubling inducing
an exponential growth (double exponential in the number of variables).

On the contrary, in favorable situations (which is our case) the discriminant
variety is known to induce a lower growth of coefficients and degrees (single445

exponential in the number of variables [33]).
Let have a look to the intersection of 3 algebraic surfaces p1(x1, x2, x3) =

p2(x1, x2, x3) = p3(x1, x2, x3) = 0 of C3 defining a finite set of points. Such a
system can also be viewed as the intersection of 3 space curves p1 = p2 = 0
, p1 = p3 = 0 and p2 = p3 = 0. By computing the resultant of each pairs450

of polynomials wrt x3 one gets the projections of the space curves onto the
coordinates x1, x2.

A point is that the intersection of these projections might contain more
points than the projection of the intersections of the space curves. It is easy to
see that two space curve that do not intersect might have projections with non455
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empty intersections. The cascading process might follow with the plane curves,
but (numerous) spurious points might have been introduced.

det(A)o = −ρ1ρ2ρ3 + ρ1ρ2z + ρ1ρ3y + ρ2ρ3x

det(A)h = −ρ1ρ3x+ ρ2ρ3x− ρ1ρ3 + ρ1z − ρ2ρ3 + ρ2z + 2ρ3y

det(A)u =
√
3(3z − ρ1 − ρ2 − ρ3 + ρ3x+ ρ2x− 2ρ1x) + 3ρ3y − 12ρ2y

det(A)t = ρ1z + ρ2z − 2ρ3z (8)

In the same way, one can compute (the algebraic closure of) the projection of
the parallel singularities in the joint space. Both are then defined as the zero set
of some system of algebraic equations and we assume that the considered robots460

are generic enough so that both are hypersurfaces. det(A)o, det(A)h, det(A)t
and det(A)u are the parallel singularities of Orthoglide, Hybridglide, Triaglide
and UraneSX, respectively, as shown in Eq.(8). Starting from the constraint
equations and the determinant of the Jacobian matrix, we are able to eliminate
the joint values. This elimination strategy is more efficient than a cascading465

elimination by means of resultants which might introduce many more spurious
solutions : singular points that are not projections of singular points.

Figure (9) shows the projections of singularity surface s2 in jointspace and
s2 art is the projection surface. And s2 art is the projection curve in workspace
shown in Fig.(8).470

4.2. Serial Singularities : Projection in workspace and joint space

Serial singularities occur when the determinant of the inverse kinematics
matrix B vanishes. When the manipulator is in such a singularity, there is a
direction along which no Cartesian velocity can be produced. Serial singularity
analysis of delta-like robot is done using the function SerialSingularities()475

shown in Listing 14.

1 s1 := S e r i a l S i n g u l a r i t i e s ( robot : : Manipulator )
2 s 1 c a r t := Pro j e c t i on ( s1 , robot :−PoseVar i ab l e s )
3 s 1 a r t := Pro j e c t i on ( s1 , robot :−Ar t i cu l a rVar i ab l e s )

Listing 14: Projection of serial singularities in workspace and joint space

In Eq.(9), det(B)o, det(B)h, det(B)t and det(B)u are the serial singulari-480

ties of Orthoglide, Hybridglide, Triaglide and UraneSX, respectively. One can
compute (the algebraic closure of) the projection of the serial singularities in
the joint space and workspace. Both are then defined as the zero set of some
system of algebraic equations and we assume that the considered robots are
generic enough so that both are hypersurfaces. Also these surfaces are shown in485

Fig.(10) and Fig.(11).

det(B)o = (ρ1 − x)(ρ2 − y)(ρ3 − z)

det(B)h = (ρ1 − y)(ρ2 − y)(ρ3 − z)

det(B)u = (ρ1 − z)(ρ2 − z)(ρ3 − z)

det(B)t = (ρ1 − y)(ρ2 − y)(ρ3 − y) (9)
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Figure 10: Projection of serial singularity surfaces in the joint space for (a) Orthoglide, (b)
Hybridglide, (c) Triaglide and (d) UraneSX
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Figure 11: Projection of serial singularity surfaces in the workspace for (a) Orthoglide, (b)
Hybridglide, (c) Triaglide and (d) UraneSX
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Figure (10) shows the projections of singularity surface s1 in joint space and
s1 art is the projection surface. And s1 cart is the projection surface in works-
pace and is shown in Fig.(11).

4.3. Complexity in Singularities490

In Table 3 and 4, a comparative study of five parameters among the family of
delta like robot is presented. We have tabulated the main characteristics of the
polynomials (In three variables) used for the plots (Implicit surface) : their total
degree, their number of terms and the maximum bitsize of their coefficients. We
have also reported the time (In seconds) for plotting the implicit surface which495

they define and the number of cells computed by the CAD, as well as the number
of plotted cells where the equations admits real solutions in the plotted range.

This function is more precise than Maple’s “implicitplot3d” function because
it calculates all the singular places of the surface and then triangulates it. The
surface is not calculated only a discretization of the space. Several functions are500

used which involves the discriminant variety, Gröbner bases and CAD compu-
tations, computed in Maple 2018 with a Intel(R) Core(TM) i7-5600U CPU 2.60
GHz (16 Gb RAM). As can be seen from Table 3, there exists higher values of all
the parameters for the Hybridglide, among all manipulators listed, which infers
that it has more complex parallel singularities, whereas for the Triaglide all the505

values are least which intuits the less complicated singularities. For example, the
computation times for the Hybridglyde for parallel singularities is high compa-
red to the one for the Othoglide, even if the surface has similar characteristics.
This is due to the geometry of the surface which is more difficult to decompose
in the case of the Hybridglide : the CAD is described by 636 cylindrical cells510

in the case of Hybridglide while it is described by 300 cells for the Orthoglide
because a large part of the singularity surface is a sphere.
From Table 4, it can be inferred that there exists higher values of all the pa-
rameters for the UraneSX, among all manipulators listed, which infers that it
has more complex serial singularities, whereas for the Triaglide all the values515

are least which intuits the less complicated singularities. The computation times
for plotting the serial singularities in joint space is higher compared to others.

5. Workspace Analysis of a Delta-like Family Robot

The workspace analysis allows to characterize of the workspace regions where
the number of real solutions for the inverse kinematics is constant. A CAD520

algorithm is used to compute the workspace of the robot in the projection space
(x, y, z) with some joint constraints (shown in Eq. 2) taken in account.

The three main steps involved in the analysis are [17, 26, 34] :
— Computation of a subset of the joint space (resp. workspace) where the

number of solutions changes : the Discriminant Variety .525

— Description of the complementary of the discriminant variety in connec-
ted cells : the Generic CAD.

— Connecting the cells belonging to the same connected component in the
counterpart of the discriminant variety : interval comparisons.

Table 5 shows the number of cells corresponding to the number of solutions530

in the workspace, which is the outcome of cell decomposition. The different
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Table 3: Comparison of the different parameters associated with the projection of parallel
singularity surface in the workspace and joint space for the delta-like robots

PARALLEL SINGULARITIES
Projection in Workspace

Manipulators Plotting Time Degrees No.of terms Binary No. of Cells
Orthoglide 07.650 18[10,10,10] 097 015 [0300,42]
Hybridglide 23.536 20[16,08,12] 119 017 [0636,80]
Triaglide 13.682 03[00,00,03] 002 002 [0150,04]
UraneSX 25.100 06[06,04,00] 015 040 [2795,66]

Projection in Joint Space
Orthoglide 00.850 06[04,04,04] 010 004 [012,01]
Hybridglide 02.917 06[04,04,04] 025 006 [111,20]
Triaglide 09.589 06[04,04,04] 041 006 [126,51]
UraneSX 02.300 06[04,04,04] 041 051 [041,09]

Table 4: Comparison of the different parameters associated with the projection of serial
singularity surface in the workspace and joint space for the delta-like robots

SERIAL SINGULARITIES
Projection in Workspace

Manipulators Plotting Time Degrees No.of terms Binary No. of Cells
Orthoglide 07.230 06[04,04,04] 017 006 [016,02]
Hybridglide 07.243 06[06,02,04] 015 006 [045,03]
Triaglide 05.437 06[06,06,00] 010 006 [045,03]
UraneSX 10.700 06[12,12,00] 013 036 [045,03]

Projection in Joint Space
Orthoglide 03.957 18[12,12,12] 062 012 [021,03]
Hybridglide 06.173 18[12,12,12] 281 017 [158,27]
Triaglide 06.794 06[06,06,06] 042 007 [077,17]
UraneSX 07.400 12[12,12,12] 252 151 [108,29]

Table 5: Definition of the Workspace with CAD

Workspace : Number of cells
Number of solutions 0 1 2 4 8 Total

Orthoglide 28782 1196 0 0 130 30108
Hybridglide 93292 4484 7228 4196 1164 110364
Triaglide 27708 384 464 420 400 29376
UraneSX 9918 236 36 0 0 10190

shapes of workspace for the delta-like robots is shown in Fig.(12), where blue,
red, yellow and green regions correspond to the one, two, four and eight number
of solutions for the IKP. A comparative study is done on the workspace of the
family of delta-like manipulator and the results are shown in Fig.(12). All the535
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Figure 12: Workspace plot for Orthoglide (a), Hybridglide (b), Triaglide (c) and UraneSX
(d) robot

workspace are plotted in the rectangular box, where x ∈ [−2, 2], y ∈ [−2, 6] and
z ∈ [−2, 6], so that the shapes of these workspace can be compared. From the
Fig. 12 it can be intuited that the Triaglide will be good selection, if the task
space is more in horizontal plane, whereas the Orthoglide is good for the three
dimensional task space.540

The number of cells in the workspace plays a role in motion generation when
one want to know if a path is in the workspace [35]. Indeed, if we discretize the
path, a Maple function named ”CellLocation” allows us to know where an pose
is located from the list of cells calculated with the CAD.

6. Joint space Analysis of a Delta-like Family Robot545

The Joint space analysis predicts the feasible and non-feasible combinations
of the prismatic joint variables which are essential for the parallel robot control.
The boundaries of the joint space are either the surfaces associated with the
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parallel singularities or the surfaces associated with the joint limits. The Joint
space analysis is done using CAD using the joint limits defined in Eq. 2. These550

cells are plotted in Fig. (13) where red region corresponds to two solutions for the
DKP. One can note that for the Orthoglide and Hybridglide robots, the shape
of the joint space is regular and composed of a single connected component. For
Triaglide and UraneSX robots, the joint space consists of several components
either completely disconnected or connected by single lines. If we want to define555

a robot with simple joint boundaries (defined by intervals), Orthoglide and
Hybridglide robots will be the best selections.

Table 6 shows the number of cells corresponding to the number of solutions in
the joint space, which is the outcome of cell decomposition. The number of cells
in the joint space plays an important part while simulating robot movements560

when control or robot geometry errors are introduced into the model. A path
that can be achieved in the workspace may be too close to singular configurations
after the use of the inverse geometric model including these disturbances [35].
The “CellLocation” Maple function can be used to evaluate the position of the
articular trajectory.
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ρ3

(c) (d)

Figure 13: Joint space plot for Orthoglide (a), Hybridglide (b), Triaglide (c) and UraneSX
(d) robot
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Table 6: Definition of the Joint space with CAD

Joint space : Number of cells
Number of solutions 0 1 2 4 8 Total

Orthoglide 10509 0 4160 0 0 14669
Hybridglide 98917 0 3041 0 0 11958
Triaglide 5375 0 426 0 0 5801
UraneSX 50598 0 4006 0 0 54604

7. Conclusions

A comparative study on the workspace of different delta-like robots gives the
idea about the shape of the workspace, which further plays an important role in
the selection of the manipulator for the specific task or for the trajectory plan-
ning. The main characteristics associated with the singularities are tabulated in570

Table 4 and 3 , which also gives some information about the complexity of the
singularities, which is an essential factor for the singularity-free path plannings.
From these data, it can be observed that the singularities associated with the
Hybridglide are complicated, whereas the structure of those associated with the
Triaglide is rather simple. For the Orthoglide and Hybridglide robots, the shape575

of the joint space is regular and composed of a single connected component,
whereas for Triaglide and UraneSX robots, the joint space consists of several
components either completely disconnected or connected by single lines.
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