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Abstract

We view political activity as an interaction between forces seeking to achieve

a political agenda. The viability of a situation depends on the compatibility of

such agendas. However even in a conflictual situation a compromise may be pos-

sible. Mathematically a political structure is modeled as a simplicial complex

and a viable configuration as a simplex. A represented compromise is a viable

configuration obtained by the withdrawal of some agents in favor of some friendly

representatives. A delegated compromise is a sophisticated version of a com-

promise obtained by the iteration of the withdrawal process. Existence of such

solutions depends on the discrete topology of the simplicial complex. In partic-

ular we prove that the existence of a delegated compromise is equivalent to the

strong contractibility of the simplicial complex.

Keywords: Delegation, compromise, simplicial complex, contiguity, strong ho-

motopy.

JEL Classification: C70, C79, AMS Classification: 91A70.

1 Introduction

We model political activity as an interaction between forces seeking to achieve a political

agenda. A stable government allows the implementation of the political agenda of the

party or the coalition holding power. In normal circumstances, the struggle for power

is regulated by constitutional rules that guarantee a peaceful and consensual outcome

of the process. This includes commonly admitted mechanisms for breaking deadlocks

once they occur (for instance elections, referendum or justice ruling). However many
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political entities, under special circumstances, incur a blocked governance process while

the current order fails to provide a clue for a solution. This is a political crisis or a

stalemate. For instance, one can witness the formation of a crisis in a place where a

military conflict left the entity with a pre-state, pre-constitutional configuration, that

is, where a universally accepted rule does not exist; or where the threat of a violent

action impedes the regular unfolding of the political process; or else where the risk of

disrupting the ongoing process is wielded by a force that accumulates discontent with

the current establishment.

The general question that we ask is therefore : What happens in a crisis configu-

ration that is unsolvable by the current institutions, or put more explicitly what can

be expected if a configuration composed by many parties with incompatible political

agendas lacks the institutional mechanism that enforces a settlement?

Modeling politics has a long history starting from the early greek philosophers. One

of the main concepts that marked the modern analysis of conflict is the notion of enemy.

According to political thinkers that promote this view the essential moment of politics is

the discrimination friend/enemy (cf. e.g.[11]). This binary choice erupts in a situation

of disruption, when the political body is in danger, war or civil strife. In this model we

admit that political action is by essence produced in a disrupted situation, that is a pre-

institutional moment, but we depart from the idea that politics is by essence bi-polar:

political action is not drawing a line of separation from (or the destruction of) an enemy

but the search of a viable situation from a disrupted one. Political forces in presence

can be either compatible for an inclusive governance or not, but this compatibility

concerns each subgroup of forces. The current situation is therefore described by this

compatibility relation. Mathematically a configuration is represented by a simplicial

complex.

The fundamental notion in our approach to crisis resolution in simplicial complexes

is delegation: An agent can delegate power to another agent when the latter is at least

as well situated in the power hierarchy as the delegating agent. The result of delegation

will be a power structure which is simplified to some extent, since some of the sources

of incommensurability have been removed. We investigate in detail what can emerge

as a result of delegation, giving rise to the notion of representations and represented

compromises, which in particular cases may resolve the instabilities fully. Turning

next to cases of iterated delegation, where delegation may result in loss of influence as

the power originally handed over to another agent is then further delegated. On the

other hand, such repeated delegation increases the possibility of avoiding stalemates in

decision making.

From a formal point of view, the model falls within the field of discrete topology;

both the representations and the delegations can be studied using the theory of ho-

motopy in finite simplicial complexes, and the relevant concepts are introduced when

when needed.
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The paper is organized as follows: In the following Section 2, we introduce the basic

notion of a political structure which has the the mathematical structure of a simplicial

complex, and we define the notion of a delegation, giving rise to representations and

represented compromises. As we proceed, examples show how these notions apply to

simple games and to network models of communication. In the following Section 3, the

formalism is developed somewhat further so we can use results from homotopy theory

of finite complexes to investigate delegation in political structures. The main results

on the structure of represented compromises are presented in Section 4, which also

points to some of the shortcomings. This leads to the consideration of the somewhat

stronger form of delegation and its consequences, the delegated compromises, in Section

5. Finally, Section 6 contains some concluding comments.

2 Basic definitions

We consider a situation described by a nonempty set E of agents. In the interpretation,

agents may be individuals, but it may as well be groups of individuals or even political

issues or institutions. A nonempty subset of agents is called a configuration. We assume

that there is given a set K of viable configurations, with the property that any singleton

{x}, where x ∈ E, is viable, and any non empty subset of a viable configuration is

viable, so that formally K is a simplicial complex, with set of vertices E. The pair

(E,K) is called a political structure.

Corresponding to what was said about agents, the interpretation of viable config-

uration may vary according to the circumstances. In general, viability represents a

form of compatibility between agents, whereas configurations which are not viable will

display some sort of conflict preventing the functioning of the system. Participation in

viable configurations gives a first notion of the importance of an agent in the overall

structure.

In the sequel the power set of any set X will be denoted P(X), and P(X) \ {∅} will

be denoted P0(X).

Example 1 (TU games). A TU (Transferable Utility) game is a pair (N, v), where N

is a nonempty set of players and v is a map from the set P0(N) of nonempty subsets

of N (coalitions) a number interpreted as the money or utility gain that the coalition

can obtain for its members. An payoff vector in (N, v) is a vector x ∈ R
N satisfying

∑

i∈N xi ≤ v(N); let V (N) be the set of payoff vectors. For S ∈ P0(N), let A(S) =
{

x ∈ V (N)
∣

∣

∑

i∈S xi ≥ v(S)
}

be the set of payoff vectors which cannot be improved by

the coalition S, in the sense its members get at least as much as it they could get from

the coalition. A family of coalitions is viable if there is a payoff vector which cannot

be improved by any coalition in the family. A political structure (P0(N),Kv) is defined
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by positing :

Kv = {σ ⊆ P0(N) | ∩S∈σA(S) 6= ∅}.

Note that A(S) 6= ∅ and therefore the set of vertices is indeed P0(N). Moreover

P0(N) belongs to Kv if and only if there is a payoff vector which cannot be improved by

any coalition, equivalently if and only if the core of (N, v) is nonempty. A closer study

of Kv may however be helpful in the nontrivial case where P0(N) /∈ Kv. It should be

noticed that here the agents are coalitions, and configurations are families of coalitions.

©

Example 2 (Effectivity structures). Let N and A be finite nonempty sets (of agents

and alternatives, respectively). An effectivity structure on (N,A) is a subset of P0(N)×

P0(A), so that elements of E are pairs (S,B) with S ⊆ N , B ⊆ A. In the interpretation,

elements of E are potential cases of exercising power: the coalition S can make sure

that outcome of any decision made in the community must belong to B, or equivalently,

S can prevent choices outside B. One can consider E as a (partially defined) effectivity

function: that is E : P0(N) → P(P0(A)) where E(S) stands for {B ∈ P0A|(S,B) ∈ E}

(cf Abdou and Keiding [1]).

In order to make of E a political structure with elements (S,B) as agents we have

to describe viable configurations. For that purpose we need to specify the environment

in which the power expressed by (S,B) may be exercised: Let L(A) denote the set of

linear orders on A, and define (preference) profiles as maps R : N → L(A), so that

the set of profiles is L(A)N . If for some i ∈ N , the alternative a is (strictly) preferred

to the alternative b in the profile R, then we write aR+
i b, and for a ∈ A, the set of

alternatives preferred to a by all members of S in the profile R is

P (a, S, R) = {b ∈ A | bR+
i a, all i ∈ S}.

With this notation, we get that the coalition S is induced to exercise its objection

power at the profile R if an alternative c ∈ A is suggested such that P (c, S, R) contains

a subset B with (S,B) ∈ E. We shall say that a configuration s ⊆ E is viable if it

is always able to select an alternative against which none of its members will exercise

their objection power, that is if for each profile R there is some a ∈ A such that B is

not contained in P (a, S, R) for some (B, S) ∈ s. Considering the configuration s ⊆ E

as an effectivity function, viability of s is equivalent to stability of s as considered by

e.g. Moulin and Peleg [4], Abdou and Keiding [1]. It is easy to see that the family K of

all viable configurations in E is indeed a simplicial complex, so that the ordered pair

(E,K) can be considered as a political structure. ©

Since our overall purpose is the investigation of conflictual situations and their

possible resolution, we are mainly interested in ways in which to eliminate non-viable
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configurations. Our approach will be to allow agents to delegate their influence to other,

more centrally placed agents. In our present setup we formulate this by the notion of

delegation.

Definition 1. Let y ∈ E and d ⊆ E, y /∈ d. A delegation from d to y is a map

δd : E → E such that δd(x) = y if x ∈ d and δd→y(x) = x if x /∈ d. A simple delegation

is a delegation δd→y where d is a singleton, d = {x}, and it is written as δx→y.

A delegation δd→y is said to be friendly if s ∪ {y} ∈ K for all s ∈ K such that

s ∩ d 6= ∅.

A delegation from d to y can be seen as a political action by which the agents

in d withdraw from the political interaction in favor of the agent y. A delegation is

friendly whenever any agent in d can ensure that every viable configuration to which

she participates remains viable after delegation, and moreover, the agent receiving the

delegation is present in every configuration which contained the delegating agent. A

withdrawal in favor of a delegate is more likely to happen if the delegation is friendly. In

our analysis, the possibility of friendly delegations constitutes the only driving principle

behind potential moves that reduce conflicts in a political structure.

Example 3 (Networks). The use of formal networks has a long history in the social

sciences, with its beginning in the 1930s; for a survey of its history, see e.g. [12]. A

social structure is a graph G = (V,E), where V is a finite set of edges and E is a set

of two-element subsets {v0, v1} of E. In the interpretations, V are individuals, and two

individuals v0, v1 are socially connected if {v0, v1} ∈ E. A graph is a simplicial complex

where simplices have dimension at most 1.

The social contacts is represented by a paths in the graph, that is sequences {v0, v1},

{v1, v2}, . . . , {vn−1, vn} of edges in G. If there is a path from v0 to vn, then v0 is indirectly

socially connected to vn, and the distance of this indirect connection is the shortest

distance of a path from v0 to vn. In addition, the social position of an individual v ∈ V

can be measured by the degree of v, the number of edges in E containing v. In Fig.1 the

individual represented by the point v0 with degree 4 is clearly more centrally positioned

than the other individuals. Centrality measures play an important role in network

analysis, cf. [5].

There is a simple friendly delegation from v0 to v1 if any social relation of v0 must

be with v1, so that v1 is the only social contact of v0. Cionsequently, an R-compromise

is therefore a subset V ′ of V such that all v ∈ V \V ′ has degree 1. A pure R-compromise

will exist only in specially simple networks. However, an extended version of the com-

promise, to be introduced later, will be more useful. ©.

The following property of delegations is immediate.
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v0•

v4•

v3•

v1•

v2•

Figure 1: Point centrality in a network: The vertex v0 with degree 4 is connected to all the
other vertices with an edge, whereas the other vertices are connected only to v0.

Proposition 1. For any ∅ 6= d = {x1, . . . , xn} ⊂ E and y /∈ d, if δd→y is a delegation,

then

δd→y = δx1→y ◦ · · · ◦ δxk→y.

Moreover, δd→y is friendly if and only if δxj→y is friendly for j ∈ {1, . . . , n}. �

As a result of the delegations, there may be fewer agents with conflicting interests.

We introduce the notion of a compromise is as a counterpart of real world solutions

to political conflicts, where agents (or issues, or power groups) will have to step aside

since they will not be accepted as partners in a political deal but on the other hand

can be represented by other, more acceptable, agents.

Definition 2. A nonempty subset F of E is a representation of E if for any x /∈ F ,

there exists some y ∈ F such that δx→y is a friendly delegation.

The subset F of E is a represented compromise (shorthand: an R-compromise) for

E if F is a representation and F ∈ K. A pure R-compromise is an element y ∈ E such

that {y} is an R-compromise.

Example 4 (Empirical case). The recent stalemate in Lebanese politics and its reso-

lution through compromise provides an illustration of the concepts introduced above.

Beyond the formal constitution that was agreed upon in Taef in October 1989, the

political configuration in Lebanon, in its principal components, that prevailed after the

assassination of Prime Minister Rafic Hariri February 2005, can be described by the

simplicial complex of Fig.2.

The polarizing issue that divided political forces can be described schematically as

East-West, and compatibility of the agendas was dictated by that issue. Independently

of that issue, the National Pact, partially represented by Taef Agrement, requires the

effective inclusion in the governance of the three major confessions.

The major forces in presence in the conflict are the Future Movement (FUT), AMAL

(AMA), Hizbullah (HIZ), Free Patriotic Movement (FPM), and Lebanese Forces (LF).

In Fig.2, brown color has been assigned to Christians (Maronites), blue to Sunnis, and
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LF FUT AMA

HIZFPM

Figure 2: Friendly delegation and political compromise in Lebanese politics

green to Shias. After a long search, a compromise was found that respects the National

Consensus, as represented by the middle shaded triangle. Presumably this compromise

is the result of a friendly delegation from LF to either FPM or FUT, and from AMA

to either FUT or HIZ. This compromise was formally implemented by the election of

Michel Aoun as President (October 2016) and the formation of a goverment by Saad

Hariri (December 2016). ©

In the following we shall study delegation and compromises using tools of finite

homotopy theory, and for this purpose it is convenient to considered delegation from

another angle, emphasizing that agents are removed from direct participation.

Definition 3. Let ∅ 6= F ⊂ E. A retraction to F is a map r : E → E such that

r(E) = F and r(x) = x for all x ∈ F , and F is said to be a retract if there is a

retraction to F .

A retraction r is friendly if x ∈ s ∈ K implies {r(x)} ∪ s ∈ K, and a friendly retract

is a retract F such that there exists a friendly retraction to F .

A retraction is a political action by which the conflictual political structure (E,K)

is reduced to the (sub) configuration (F,KF ), withdrawing agents not in F in favor

of suitable agents in F , their representatives. A retraction is friendly if any viable

configuration containing a retracting agent as a member remains viable when he is

replaced by his representative. Clearly, a delegation δd→y is a retraction to E\d, and a

retraction r to F such that r(E\F ) = {y} is a delegation from E\F to y. We have the

following characterization:

Proposition 2. F ⊂ E is a representation if and only if F is a friendly retract.

Proof: Let F be a representation. Define a map r : E → E as follows: r is the identity

on F , and if x /∈ F then put r(x) = y where y is some element of F such that there

is a friendly delegation from x to y. It is clear that r is a retraction on F . Moreover

if x /∈ F for any s ∈ K such that x ∈ s, we have that{r(x)} ∪ s ∈ K; and for any

x ∈ F and s ∈ K such that x ∈ s, we have that {r(x)} ∪ s = s ∈ K. The converse is

straightforward. �
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The notion of friendly retraction characterizes a representation as the result of with-

drawal of some agents, in what follows we consider whether a representation can result

from of a sequential process of delegations.

Definition 4. A progressive delegation is a sequence δx1→y1, . . . , δxp→yp of simple del-

egations where the elements x1, · · · , xp are distinct and yk /∈ {x1, . . . , xk} for all k =

1, . . . , p. A progressive delegation is friendly if each of the simple delegations that com-

pose it is friendly. The configuration c = δxp→yp ◦ · · · ◦ δx1→y1(E) is called the outcome

of the progressive delegation.

Thus, when performing a progressive delegation, agents are successively delegating

their influence to other agents, and in this case it seems natural that once an agent has

renounced on influence through delegation, she cannot herself be an object of delegation.

Proposition 3. Let δx1→y1 , . . . , δxp→yp be a progressive delegation with φ = δxp→yp ◦

· · · ◦ δx1→y1. Then φ is a retraction to E \ {x1, . . . , xp}, and

fixφ = {x ∈ E | φ(x) = x} = φ(E) = E \ {x1, . . . , xp} 6= ∅. (1)

Conversely, any retraction φ : E → E to some F ⊆ E can be obtained through a

progressive delegation. Moreover all the involved delegations can be chosen to be friendly

if and only if the retraction is friendly.

Proof: (i) Put F = E \ {x1, . . . , xp}. It is clear that F ⊆ fixφ. Conversely, for any

k ∈ {1, . . . , p} φ(xk) = yℓ with ℓ ≥ k and by progressivity, yℓ 6= xk, so that fixφ ⊂ F

and consequently fixφ = F .

Now, F ⊂ φ(E). In order to prove the opposite inclusion, let x ∈ E. Then either

x ∈ F and therefore φ(x) = x ∈ F , or x = xk and φ(x) = yℓ for ℓ ≥ k. It follows that

yℓ 6= xk′ for k
′ ≥ ℓ and by progressivity of the sequence yℓ 6= xk′ for k

′ < ℓ and finally

yℓ ∈ F . We conclude that F = φ(E).

For any k ∈ {1, . . . , p} let φk = δxk→yk ◦ · · · ◦ δx1→y1 and Fk = E \ {x1, . . . , xk}.

By convention F0 = E and φ0 = IdE. Then, by the first part of the proof φk is a

retraction onto Fk and one has φk = δxk→yk ◦ φk−1. We prove by induction that φk is

friendly. Clearly φ0 = IdE is friendly. Assume that φk−1 is friendly. If x ∈ s ∈ K then

{φk−1(x)}∪s ∈ K by the induction hypothesis and C ≡ {δxk→yk(φk−1(x))}∪ (φk−1(x)∪

s) ∈ K since δxk→yk is a friendly delegation. But {φk(x)} ∪ s is a subset of C, therefore

{φk(x)} ∪ s is a simplex. Thus our claim is proved.

For the converse implication, if φ is a retraction to F and E\F = {x1, . . . , xp}, we

consider δx1→xp
, . . . , δxp→yp where yk = φ(xk) for k = 1, . . . , p. It is easily seen that

φ = fxp→yp ◦ · · · ◦ δx1→y1. For any x ∈ E such that x 6= φ(x) one has x = xk for some

k, so that δxℓ→yℓ(x) = φ(x) if ℓ = k and δxℓ→yℓ(x) = x if ℓ 6= k. It is easily seen that

if x ∈ s ∈ K, one has s ∪ δxℓ→yk(x) ⊂ s ∪ φ(x). It follows that δxk→yk is friendly if φ is

friendly. �
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Corollary 4. F ⊂ E is a representation if and only if there exists a friendly progressive

delegation with outcome F .

3 Topology of the political structure and represen-

tations

Let K be a simplicial complex on a set E and let s = {x0, . . . , xr} be a simplex in K.

The closed simplex s is the set of formal convex combinations
∑r

i=0 λixi with λi ≥ 0 for

i = 0, . . . , r and
∑r

i=0 λi = 1. Each closed simplex is a metric space under the metric

based on Euclidean distance. The geometric realization of |K| of the simplicial complex

K is the union of all closed simplices s for s ∈ K endowed with the topology for which

U ⊂ |K| is open if U ∩ s is open in s for each s ∈ K. Given simplicial complexes K

on a set E and L on F , a map φ : E → F is simplicial if it takes simplices in K to

simplices in L, that is if φ(s) ∈ L for each s ∈ K, or, otherwise put, if it extends to a

map φ : K → L. We associate to ϕ the map |ϕ| : |K| → |L| obtained from ϕ by linear

extension.

It is easily seen that friendly retractions are simplicial.

Two simplicial maps ϕ, ψ : (E,K) → (F,L) are said to be contiguous if for any

s ∈ K, φ(s) ∪ ψ(s) ∈ L. Denote by ≈ the contiguity relation in E. ≈ is symmetric

but generally not transitive. Let ∼ be the transitive closure of ≈. By definition, f ∼ g

if there exists a sequence f = f0, . . . , fp = g such that fk ≈ fk+1 for k = 0, . . . , p − 1.

Then ∼ is transitive and symmetric, hence an equivalence relation, the classes of which

are called contiguity classes. Moreover ≈ and therefore also ∼ are compatible with

composition. A simplicial map ϕ : (E,K) → (F,L) is a strong equivalence if there

exists ψ : (F,L) → (E,K) such that ψ ◦ ϕ ∼ IdE and ϕ ◦ ψ ∼ IdF . It is worthwhile

noting that two simplicial maps that have the same contiguity class are homotopic, but

that the converse is not true (cf. e.g. Spanier [14] Chap. 3).

Let (E,K) be a political structure. For any configuration F we define KF as the

set of all elements of K that are included in F . It is clear that (F,KF ) is a political

structure, the agents of which are the elements of F . Moreover KF is a full subcomplex

of K. Clearly one has K = K.

Lemma 5. A map ϕ : E → E is contiguous to IdE if and only if for all x ∈ s ∈ K one

has {ϕ(x)} ∪ s ∈ K.

Proof. Assume that ϕ has the announced property, and {x1, . . . xp} = s ∈ K. Then by

induction on k, s ∪ {ϕ(x1), . . . , ϕ(xk)} = s ∪ {ϕ(x1), · · · , ϕ(xk−1)} ∪ {ϕ(xk)} is in K,

therefore s∪ϕ(s) ∈ K and ϕ is contiguous to IdE . Conversely If ϕ is contiguous to IdE

and if x ∈ s ∈ K then {ϕ(x)} ∪ s ⊂ ϕ(s) ∪ s ∈ K �

In particular we have the following:
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Proposition 6. A retraction is friendly if and only if it is contiguous to IdE.

Remark 1. To a retraction r to F we associate the map rF : E → F which is just r with

restricted range F . If i : F → E is the inclusion map, then by definition rF ◦ i = IdF .

Conversely, any rF : E → F such that rF ◦ i = IdF gives rise to the retraction r by

putting r = i ◦ rF . We use same terminology of a retraction to rF when no confusion

is possible.

x0•

x4•

x3•

x1•

x2• x1

x2

x3

x0

x1

x2

x3

x0

Figure 3: Political structures represented as points connected by lines (1-simplices) or trian-
gles (2-simplices). In both of the above political structures, the retraction onto x0 is contiguous
to the identity. Consequently x0 is a pure R-compromise.

In view of Prop 2 and lemma 5, we can have the following characterization of

representations:

Proposition 7. F is a representation of (E,K) if and only if rF : (E,K) → (F,KF )

is a strong equivalence.

Proof: In view of Lemma 5, r is friendly if and only if r is contiguous to IdE , and in

view of the Remark 1 this happens if and only if

i ◦ rF = r ∼ IdE .

Since rF ◦ i = IdF , this implies that rF is a strong equivalence. �

The set of simple friendly delegations in a political structure can be used to define

a binary relation ⊲ on E as follows,

x, y ∈ E, x ⊲ y if either x = y or the delegation δx→y is friendly.

Lemma 8. For any x ∈ E, let σx be the set of all maximal simplices containing x.

Then x ⊲ y if and only if σx ⊆ σy.

Proof: If x⊲ y and x 6= y, then there is a friendly delegation δx→y, so that every maximal

simplex containing x contains y as well. Conversely, if σx ⊆ σy, then the map δ taking

x to y and leaving all other elements of E unchanged is a friendly delegation. �
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It follows from Lemma 8 that that ⊲ is transitive and reflexive so that (E,⊲) is a

preordered set.

Definition 5. A representation F of (E,K) is said to be minimal if there is no repre-

sentation that is a strictly included in F

Proposition 9. A representation F of (E,K) is minimal if and only if for any x, y ∈ F ,

x⊲ y implies x = y.

Proof: If F is not minimal for inclusion then there exists some F ′ ⊂ F , x ∈ F \F ′, and

y ∈ F ′ such that x⊲ y. Conversely If there exists x, y ∈ F x 6= y such that x⊲ y then

F ′ = F \ {x} is easily seen to be a representation contradicting minimality of F . �

Lemma 10. Let ∅ 6= F ⊂ E be arbitrary.

(i) If x ⊲ y for all x, y ∈ F , then F ∈ K.

(ii) E ∈ K if and only if for any x, y ∈ E, x⊲ y.

Proof. Assume that F /∈ K and let s be a maximal simplex included in F . Since s 6= F

there exists some y ∈ F, y /∈ s. Let x ∈ s. Since, by the maximality of s, s ∪ {y} /∈ K

one has that δx→y is not a friendly delegation. This proves (i). (ii) follows immediately

from (i) �

One may exploit constructions developed for simplicial complexes to obtain a mea-

sure of the possibility of delegation. For this purpose, we introduce (cf. Barmak [2])

the nerve N (K) of K as the simplicial complex in which the set of vertices is the

set of maximal simplices in K, say KM , and the set of simplices is the set of sub-

sets {s0, . . . , sr} ⊆ KM such that ∩r
i=0si 6= ∅. Repeating the construction, one gets

N 2(K) = N (N (K)) and in generel, N k(KE) = N (N k−1(K)).

We consider the second nerve N 2(K) in more detail since it plays a role in the

characterization of minimal representations. A vertex in N 2(K) is a maximal set σ =

{s0, . . . , sr} of maximal simplices in K such that ∩r
i=0si 6= ∅. Let Φ be the set of all maps

ϕ from N 2(K) to E assigning to σ = {s0, . . . , sr}, a vertex of N 2(K), some element of

∩r
i=0si. Notice that the set Φ is nonempty since ∩s∈σs 6= ∅ for every σ ∈ N 2(K).

Proposition 11. The set Φ has the following properties:

(i) Any ϕ ∈ Φ is a simplicial map from N 2(K) to K and an isomorphism onto its

image.

(ii) For any ϕ ∈ Φ the image ϕ(N 2(K)) is a minimal representation.

(iii) For each minimal representation F ⊂ E, there is ϕ ∈ Φ such that F =

ϕ(N 2(K)).

Proof: (i) Let ϕ ∈ Φ. If {σ0, . . . , σk} is a simplex in N 2(K), then ∩k
i=0σi 6= ∅, so that

there exists a maximal simplex s in K which belong to all the sets σ0, . . . , σk. By its
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definition, ϕ(σi) belongs to s for i = 0, . . . , k, therefore {ϕ(σ1), . . . , ϕ(σk)} is a simplex

in K. This shows that ϕ is a simplicial map.

Next, we show that ϕ is an injective map. Suppose that ϕ(σ1) = ϕ(σ2) = x. If

σ1 = (s10, . . . , s
1
r), σ2 = (s20, . . . , s

2
p), then by our construction x ∈ s1i for i = 0, 1, . . . , r

and x ∈ s2i for i = 0, 1, . . . , p, so that σ1 ∪ σ2 is a family of maximal simplices from

K with nonempty intersection. Since σ1 and σ2 are already maximal collections of

simplices from K with nonempty intersection, we have that σ1 = σ2, so that f is indeed

injective.

Finally we prove that the inverse map ϕ−1 defined on the image F of ϕ is simplicial.

Let s = {x1, . . . , xk} ⊂ F be a simplex (i.e. an element of KF ) and let σi = ϕ−1(xi)

i = 1, . . . k. Denote by s′ a maximal element of K containing s. For any i ∈ {1, . . . , n],

any element of σi has xi as a member, therefore any element of σi ∪ {s′} has xi as a

member. In particular σi ∪ {s′} is a simplex in N (K). Since σi is maximal, we have

that s′ ∈ σi. Since every σi i = 1, . . . , k, contains s′ it follows that {σ1, . . . , σk} is a

simplex.

(ii) Let ϕ ∈ Φ and let F be the image by ϕ of the vertices of N 2(K). For any x ∈ E,

let σx be the set of all maximal simplices in K containing x. σx is thus a simplex of

N (K). If x /∈ F , let σ be a maximal element of N (K) containing σx, and let y = ϕ(σ).

Then σx ⊂ σ = σy, so that by Lemma 8, x ⊲ y. This proves that F is a representation.

If x ∈ F , there exists σ maximal such that x = ϕ(σ) so that σ ⊂ σx and therefore

σ = σx. Similarly, if y ∈ F then σy is maximal and ϕ(σy) = y, but if x ⊲ y, then

σx ⊂ σy, and by maximality of σx one has σx = σy and therefore y = x. It follows from

Proposition 9 that F is a minimal representation.

(iii) Conversely, let F be a minimal representation. We claim that for any y ∈ F

the set σy is a maximal element of N 2(K). Suppose not; then there must be x 6= y with

σy ⊂⊂ σx. By Lemma 8, y ⊲ x, and by Proposition 9, x /∈ F . But then there must be

z ∈ F , such that x ⊲ z. By transitivity of ⊲ we get that y ⊲ z, and by Proposition 9

y = z. It follows that σx ⊂ σy, a contradiction. We conclude that σy is indeed maximal

for each y ∈ F .

Remark that for any maximal σ one has σx = σ for all x ∈ ∩s∈σs. We claim that

there exists some x ∈ F such that σ = σx. If not then σ = σy only for some y /∈ F .

But y ⊲ z for some z ∈ F and therefore σ ⊂ σz and since σ is maximal σz = σ,

a contradiction. In fact such an x is unique since σx = σy where x, y ∈ F implies

x = y (Proposition 9). One therefore may define ϕ by putting ϕ(σ) = x where x is the

unique F such that σ = σx. By our construction, ϕ belongs to Φ and by the preceding

paragraph every element of F is an image of some maximal σ, that is ϕ(N 2(K)) = F .

�

It follows from proposition 11 that there is a bijection between Φ and the set of

minimal representations of (E,K).
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Example 5 (Simple games). A simple game is a TU game (N, v) (cf. Example 1)

with v(S) ∈ {0, 1} for all S ∈ P0(N), so that it is characterized by the set W =

{S ∈ P0(N) | v(S) = 1} of winning coalitions. Simple games arise in many contexts and

has been studied very intensely since their first appearance in [7], see e.g. [13, 8]. There

are several ways of associating a political structure with a simple game. The most

immediate one is (P0(N),Kv) introduced in Example 1. It is easy to see that Kv is the

set of all σ ⊂ P0(N) such that ∩S∈σ∩WS 6= ∅. We are going to show that this political

structure is redundant by showing that delegation may lead to trivial representations.

Assume that W 6= P0(N). If S0 /∈ W then any delegation to S0 is friendly: actually if

s ∈ Kv then s∪ {S0}. It follows that S0 is a pure R-compromise ! One can discard this

difficulty by associating to W the more natural structure (W,K) where K the set of

all s ⊂ W such that ∩S∈σS 6= ∅. Configurations in K may be interpreted as situations

where a common agreement is possible, whereas conflicts arise when a set {S0, . . . , Sr}

is not a simplex. The smallest number r for which this occurs is known as the Nakamura

number of W, cf. [6]. Assume N ∈ W, then any delegation to N is friendly and as

a consequence N is an R-compromise, and this solution is again trivial ! There are

however other political structures that can be associated to W.

(1) Let Wmin ⊂ W be the set of winning coalitions which are minimal for inclusion.

We assume for simplicity in the following that each i ∈ N belongs to some W ∈ Wmin.

Let (N,K1
W) be the political structure with N as set of agents and where a simplex is

any nonempty subset of some element of Wmin. By our definition, K1
W

is a simplicial

complex. A delegation δi→j in (N,K1
W) is friendly when j is in all the minimal winning

coalitions containing i (so that j is a partner of i in the terminology of [10]).

(2) In the political structure (Wmin,K2
W) the agents are the minimal winning coali-

tions, and the configurations are sets of coalitions {S0, . . . , Sr} from Wmin such that

∩r
i=0Si 6= ∅.. Note that K2

W is a full subcomplex of K. A delegation from S to T

is friendly if for all configurations {S0, . . . , Sr} in K2
W containing S, the configuration

{T, S0, . . . , Sr} belongs to K2
W . Delegating power to T means that S will not exercise

its own power and therefore may be considered as removed from W.

Having dealt with nerves of simplicial complexes in the previous sections, we can see

that the poltiical structures (a) and (b) are closely interrelated. Indeed, if ∪Wmin = N ,

then K2
W

= N (K1
W
). To see this, we notice that in the nerve of K1

W
, vertices are

the maximal simplices in K1
W , which are the minimal winning coalitions in W, that is

exactly the vertices in K2
W , and simplices are collections of minimal winning coalitions

with nonempty intersection, which are the simplices of K2
W . ©

Irreducible political structures. We end this section by the study of the particular case

where no friendly delegations exist.

Definition 6. A political structure (E,K) is irreducible if it has no friendly delegation.
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It is clear that (E,K) is irreducible if and only if it has no nontrivial friendly retract

or equivalently that E is a minimal representation in (E,K). The following result can

be found in Barmak [2], Chap.5.

Lemma 12. Let (E,K) be irreducible and let f : E → E be contiguous to IdE. Then

f = Id.

Proof: Let x ∈ E and let s be a maximal simplex containing x. Then f(s) ∪ s is a

simplex, and f(x) ∈ f(s) ∪ s = s, where the last equality follows from the maximality

of s. Thus, every maximal simplex containing x contains f(x) as well. If x 6= f(x),

there would be a friendly delegation δx→f(x) and E\{x} contradicting the irreducibility.

We conclude that f = IdE . �

The lemma has a useful consequence, which is stated below as a corollary.

Corollary 13. A strong equivalence between two irreducible political structures (F1,KF1
)

and (F2,KF2
) is an isomorphism.

As a corollary of Proposition 11 we have :

Corollary 14. A political structure (E,K) is irreducible if and only if it is isomorphic

to N 2(K).

In partiacular if (E,K) is irreducible then Φ is a singleton.

4 Existence and Structure of R-compromises

In this section we are interested in the structure of R-compromises and the existence of

such solutions.

Lemma 15. Z is a representation and if Z ⊂ Z ′ then Z ′ is representation.

Proof: (i) Let r be a friendly retraction to Z, and let r′ be the map defined by :

r′(x) =

{

r(x) x ∈ E\Z ′,

x x ∈ Z ′.

Clearly r′ is a retraction to Z ′. Moreover for any x ∈ s ∈ K, either x ∈ E\Z ′ and

s∪{r(′x)} = s∪{r(x)} ∈ K, or x ∈ F and s∪{r(′x)} = s∪{x} = s ∈ K. We conclude

that r is friendly. �

Remark 2. It is not true that a subset of a R-compromise is a R-compromise. Figure

4 presents an example where there is a represented compromise but where there is no

pure represented compromise.
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Corollary 16. Any viable configuration that includes a R-compromise is a R-compromise.

Let RE be the set of all R-compromises and let RE be the set of all pure R-

compromises.

Proposition 17. If RE 6= ∅, then RE ∈ K: that is the set of all pure R-compromises

is a R-compromise

Proof: Assume that RE is nonempty, and let s be a maximal (for inclusion) subset of

RE that also belongs to K. Let x ∈ RE be arbitrary, and let r be the retraction to {x}.

Since r is contiguous to IdE , one has that r(s) ∪ s is a simplex in K. Since r(s) = {x},

it follows that {x} ∪ s is a simplex contained in RE . By the maximality of s, we have

that x ∈ s. Since x is arbitrary we conclude that s = RE . �

Corollary 18. RE = E if and only if E ∈ K.

The following result gives some more information about the structure of the R-

compromises even in the absence of pure R-compromises.

Proposition 19. Let I be an arbitrary subset of RE. Then there exists a subset of

∪F∈IF which belongs to RE and intersects all members of I.

In particular, if RE 6= ∅, then there exists an element of RE that intersects all

elements of RE.

Proof: Let F ∈ I. The collection of simplices included in ∪F ′∈IF
′ and containing F is

nonempty and has a maximal (for inclusion) element which we denote c. Let F ′ ∈ I

and let r be a retraction to F ′ that is contiguous to IdE , so that r(c) ∪ c is a simplex.

Since r(c) ∪ c ⊂ ∪F ′∈IF
′, it follows from the maximality of c that r(c) ⊆ c. Since

∅ 6= r(c) ⊂ F ′, we conclude that c ∩ F ′ 6= ∅. Now we prove that c is a friendly retract.

Let rc be defined by:

rc(x) =

{

x x ∈ c

rF (x) x /∈ c.

If s ∈ K, then rc(s)∪s = rc(s\c)∪s ⊂ rF (s)∪s ∈ K. We conclude that rc is contiguous

to IdE, so that c ∈ RE . �

We now introduce an important concept of the theory of simplicial complexes: The

political structure (E,K) is strongly contractible if (E,K) ∼ {x0}, for some x0 ∈ E;

this is equivalent to saying that the identity map on E belongs to the same contiguity

class as some constant map. It is interesting to compare this notion with the standard

concept of contractibility. (E,K) is contractible if there exists a homotopy from the

identity map of |K| to some constant map. It is known that strong contractibility implies

contractibility (cf. [14] Chap. 3, Section 5) but not the converse (cf. [3], Example 2.13).

Proposition 20. If E has a R-compromise then E is strongly contractible.
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Proof. Let x ∈ F , where F is a R-compromise. Let r be a contraction to F that is

contiguous to IdE , and let rx be the contraction to {x}, that is rx is the constant map

taking all elements in E to x. For any s ∈ K, r(s) ∪ rx(s) ⊂ F , so r ≈ rx. Since

r ≈ IdE , one has rx ∼ IdE . We conclude that E is strongly contractible. �

The converse of Theorem 20 is not true. A configuration may be strongly con-

tractible but fail to have a R-compromise. In the example to the right in Fig.4, no

represented compromise exists in E, however it is clear that E is strongly contractible.

x1• x2•

x3•

x4•

x5•

x6•

x1• x0
• x2•

x3•

x4•

x5•

x6•

Figure 4: In the political structure to the left there is no pure represented compromise,
but the configuration {x1, x2} is a R-compromise. In the political structure to the right no
R-compromise exists. Both structures are strongly contractible.

A configuration may have an R-compromise but fail to have a pure R-compromise:

In the example to left in Fig.4 neither δx1→x2
nor δx2→x1

are contiguous to identity, so

one can verify that no retraction to a singleton exists. Therefore no pure R-compromise

exists in E. Let φ = δx4→x1
◦ δx3→x1

and η = δx6→x2
◦ δx5→x2

. Then η ◦ φ is a retraction

to {x1, x2}. It can be checked that φ and IdE are contiguous, and that also η and IdE

are contiguous, so that η◦φ is contiguous to IdE. Therefore η◦φ is a friendly retraction

to {x1, x2}, and {x1, x2} is a R-compromise.

x1
•

x2
•

x3
•

x1
•

x2
•

x3
•

x4
•

x1
•

x2
•

x3
•

x4
•

x5
•

Figure 5: To the left the central point x2 is a represented pure compromise; in the middle
the central 1-simplex {x2, x3} is an R-compromise and no pure R-compromise exists; to the
right there is no R-compromise.

Some other simple cases of political structures are shown in Fig.5. Again it may be

noticed that all are strongly contractible but that R-compromises exist only in two of

them, and only one has a pure R-compromise. Lemma 11 provides the necessary and

sufficient conditions for the existence of an R-compromise. Precisely:

Theorem 21. Let (E,K) be a political structure. The following assertions are equiva-

lent:

(i) There exists a R-compromise,
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(ii) One (and therefore any) minimal representation is viable,

(iii) The second nerve N 2(K) is a simplex.

Corollary 22. In a political structure (E,K) a pure R-compromise exists if and only

if N 2(K) is a singleton.

Example 6 (Networks continued). It is easily seen that an agent with degree 1 can

delegate to the only other agent to which she is connected by a configuration. If an

agent x with degree > 1 can delegate to another agent y, then by definition any agent

connected to x is also connected to y; if z 6= y is another agent connected to x, then

{x, z} is viable but {y} ∪ {x, z} is not a viable configuration.

An acyclic connected graph is a tree. For (E,K) be a connected graph, if (E,K) has

a pure R-compromise, then (E,K) is a tree where all points except one have degree 1.

This follows immediately from the preceding remarks. If (E,K) has an R-compromise,

then there are at most two agents x1, x2 with degree ≥ 1, and a {x1, x2} is an R-

compromise. Indeed, it is seen immediately that if there are exactly two vertices x1, x2
with degree greater than one, then {x1, x2} is a R-compromise. If there are more than

two vertices with degree greater than one, then neither of these can delegate to any

other. Consequently the case of two vertices with degree ≥ 1 is the only case which is

compatible with the existence of an R-compromise.

x0•

x4•

x3•

x1•

x2•

x0• y0•

x1•

x2•

y1•

y2•

Figure 6: The graph in the left panel represents the class of graphs with a pure R-compromise,
and the one in the right panel represents those with an R-compromise containing two agents.
Any graphs with a nonempty R-compromise belongs to one of the two classes.

The two cases are illustrated in Fig.6, where the graph to the left has a pure R-

compromise and the graph to the right represents the case where the R-compromise is

an edge. It follows from our discussion that except for the number of edges to points

with degree 1, these are the only possible cases of nonempty R-compromises. ©

5 Delegated compromise

In the previous section we have seen that R-compromises, where the agents that are

withdrawn from the political contentions remain represented by suitable representatives,
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in the sense that the representing agent enters into all the viable configurantions where

the agent who withdrew might have been present. Unfortunately, R-compromises may

not always exist; indeed we saw that the existence of R-compromises imply that the

political structure, viewed as a simplicial complex, is strongly contractible, in itself a

rather restrictive property, but this was not enough, since even a strongly contractible

political structure may fail to exhibit R-compromises.

This shortcoming has to do with the restrictions that we have put on a delegation.

In an R-compromise the delegation δx→y amounts to removing x from the outcome, but

it does not imply the withdrawal of x from the search for a compromise. This happens

since any other other delegation δx′→y′ , in order to be friendly, must secure that y′ ∪ s

be viable for all s that contain x′, and the simplex s may contain x. In this sense x is

not totally absent from the seach for a compromise even after the delegation.

In the following we present a slightly weaker notion called delegated compromise,

in which a delegation from x to y implies that x withdraws from the process, so that

further delegations need not take x into account. This clearly makes the search for a

solution easier.

Definition 7. A configuration F of (E,K) is a narrowing of E if there exists a decreas-

ing sequence E = F0 ⊃ F1 ⊃ · · · ⊃ Fn = F and friendly retractions ri of (Fi−1,KFi−1
)

onto Fi for i = 1, . . . , n

Notice that the retraction ri are relative to the simplicial complex (Fi−1,KFi−1
).

It follows from Proposition 7 that this is equivalent to require that the associated

r̂i : (Fi−1,KFi−1
) → (Fi,KFi

) is a strong equivalence for i = 1, . . . , n. Therefore we have

the following:

Proposition 23. If F is a narrowing of (E,K) then (F,KF ) is strongly equivalent to

(E,K).

In view of Proposition 3 any narrowing F can be obtained by a progressive delegation

δx1→y1, . . . , δxp→yp such that δxp→yp ◦ · · · ◦ δx1→y1(E) = F and such that the restrictions

of δxk→yk to E \ {x1, . . . , xk−1}, k = 1, . . . , p, are friendly. We are ready to introduce

the main concept of solution of this section:

Definition 8. A configuration F of (E,K) is a delegated compromise (D-compromise

for short) if F a narrowing of (E,K) and F ∈ K.

The obvious way of looking at delegated compromises is to see them as repeated

compromises; in the first step, F1 is an R-compromise for E, in the next step an

R-compromise F2 in F1 is obtained, etc. It should be noted however, that the sets Fi

themselves need not be R-compromises in the original structure since we do not demand

that they belong to K. It is clear that an R-compromise is a delegated compromise, but
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the converse need not be true. Note that a D-compromise must be a viable configuration

(a simplex).

The D-core. Given a political structure, one can try to search for a D-compromise

following a process of successive friendly delegations, but is there a narrowing that

leads to a positive outcome, namely a viable configuration? In order to capture the

best narrowing that can be obtained from such a search, we need to know what are the

minimal configurations that can be achieved as outcome.

The idea of best narrowing is captured by the following:

Definition 9. A configuration F of (E,K) is a delegated core (shorthand: a D-core1)

of (E,K) if F is a narrowing of (E,K) and (F,KF ) is irreducible.

Now we can state and prove the main result about D-cores of political structures:

Proposition 24. Let (E,K) be a political structure. Then the following hold:

(i) (E,K) has a D-core,

(ii) (E,K) is strongly equivalent to its D-core,

(iii) the D-core is unique up to isomorphism.

Proof: (i) Either (E,K) is irreducible, in which case it is itself a D-core, or one can

find a non trivial friendly retract F1. If F1,KF1
is irreducible, otherwise we repeat the

operation on (F1,KF1
) and so on we thus construct a narrowing E = F0 ⊃ F1 ⊃ · · · ⊃

Fk ⊃ · · · . Since the sequence is strictly decreasing and E is finite we reach eventually

an index n with irreducible simplicial complex (Fn,KFn
). Clearly this is a D-core. (ii)

follows from Proposition 23. It remains only to prove (iii): Suppose that (F1,KF1
) and

(F2,KF2
) are two D-cores of (E,K). Then by (ii) we have that

(F1,KF1
) ∼ (E,K) ∼ (F2,KF2

),

and by the Corollary to Lemma 12, (F1,KF1
) and (F2,KF2

) are isomorphic. �

Using the D-core as a formal description of conflict resolution may seem attractive

in view of these results. On the other hand, it should be remembered that the D-core

does not point to a single configuration, rather it is an indication of the limits beyond

which conflicts cannot be solved by delegation alone.

Existence of D-compromises. We now investigate the existence of a D-compromise in

a political structure. By definition, if the D-core is viable, then it is a D-compromise.

The D-core always exists (Proposition 24); on the other hand, being irreducible, if it is

viable it must be a singleton. These considerations are made precise by the following

propostiion.

1The term ”core” is used by Barmak [2], Chap.5, for the same notion in the context of abstract
finite spaces.
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Proposition 25. Let (E,K) be a political structure. Then the following hold:

(i) (E,K) has a D-compromise,

(ii) (E,K) has a pure D-compromise,

(iii) (E,K) is strongly contractible,

(iv) The D-core is a singleton.

Proof: (i)⇔(ii). If F is a D-compromise, then, since F is a simplex, there exists a

friendly retraction to any of its points {x}. It follows that {x} is a narrowing of (E,K)

an therefore that {x} is a pure D-compromise.

(ii)⇒(iii). Since {x} is a narrowing, we have that (E,K) ∼ {x}, so that (E,K) is

strongly contractible.

(iii)⇒(iv). Let F be a D-core. From (E,K) ∼ (F,KF ) and (E,K) ∼ {x}, we get

that (F,KF ) ∼ {x}. Since both (F,KF ) and {x} are irreducible, they are isomorphic

by the Corollary to Lemma 12.

(iv)⇒(ii) is straightforward, since the D-core being a singleton is also a pure D-

compromise. �

We may exploit the results on nerves of simplicial complexes obtained earlier to

obtain additional information about narrowings of the political structure.

If (E,K) is not irreducible, N 2(K) is not isomorphic to (E,K), but the number of

vertices in N 2(K) is no greater than that of (E,K), and one may proceed to the derived

nerves N k(K)) for k > 3. Clearly, there will be some number d ≥ 1 such that N 2d+2(K)

and N 2d(K) have the same number of vertices. By convention N 0(K) = K.

Definition 10. Let (E,K) be a political structure. The depth of delegation of (E,K),

written d(E,K), is the smallest number d such that the N 2d+2(K) and N 2d(K) have the

same number of vertices.

Using Lemma 11, we get the following proposition.

Proposition 26. N 2k(K) is isomorphic to the D-core of (E,K) if and only if k ≥ d(E,K).

Clearly the depth provides the smallest number of iterated representations in a

narrowing to achieve the D-core.

In the remaining part of this section, we consider a political structure which is a

graph, as considered in Example 2. We saw the existence of a pure R-compromise had

very far-reaching consequences. With delegated compromises, the situation is quite

different. Here the existence of a delegated compromise has rather far-reaching conse-

quences.

Proposition 27. Let (E,K) be a political structure which is a graph. The following

are equivalent:

(i) (E,K) is a tree,
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(ii) each x ∈ E is a pure delegated compromise in (E,K),

(iii) the simplicial complex K is strongly contractible,

(iv) the topological space |K| is contractible.

Proof: (i)⇒(ii). Let x ∈ E be arbitrary, and for each y ∈ E, define the distance

from y to x, d(y, x), as the number of edges in a path from x to y; since (E,K) is a

tree, d(x, y) is well-defined. Let D = {x1, . . . , xk} ⊂ E be the set of all vertices in

E with maximal distance from x; then each x ∈ D has degree 1. Let E1 = E\D.

Each x ∈ D is connected to some y(x) ∈ E which does not belong to D since (E,K)

is a tree. There is a friendly delegation δx→y(x) from x to the vertex y(x), and the

composition δxk→y(xk) ◦ · · · ◦ δx1→y(x1) is progressive and defines a narrowing from (E,K)

to (E1,KE1
). The political structure (E1,KE1

) is a graph which is connected and has

no cycles, hence it is a tree. Moreover E1 has strictly less elements than E. Repeating

the above procedure, we successively obtain substructures (Ei,KEi
) and narrowings

(Ei,KEi
) → (Ei+1,KEi+1

), for i = 1, . . . , p, untill we obtain a structure (Ep+1,KEp+1
)

in which no agent has degree 1. But a tree without vertices of degree 1 consists of the

point x, which consequently is a delegated compromise of (E,K).

(ii)⇔(iii) is a consequence of Theorem 25, (iii)⇒(iv) is a consequence of Lemma 2

in Chapter 3, Section 5 in Spanier [14], and finally (iv)⇒(i) is Lemma 1 in Chapter 3,

Section 7 in Spanier [14]. �

It is seen that delegated compromises exist if and only if the political structure is

strongly contractible. The topology of the political structure, and precisely its strong

homotopy, is the basic determinant for the possibility of a compromise. When delegated

compromises exist, they may take the form of single agents (pure D-compromise) or a

viable configuration. The question whether some D-compromise may seem unacceptable

(dictatorial) is irrelevant in our setting. This is due to the fact that in our model

we are concerned only by the viability of the solution. In this sense the model may

look underdetermined: It may be the case that the political environment requires some

further conditions for viable configurations to be acceptable, as seen in the empirical case

in Example 4, where the confessional composition of any compromise is an indispensable

pre condition which must be satisfied by a viable configuration. Future research must

therefore consider viability with some formal kind of acceptability.

6 Concluding remarks

In the present paper, we have presented a formal model of compromise in contexts of

political decision making. This model is that of a political structure, mathematically

a simplicial complex in which vertices are interpreted as political agents and simplices

as viable configurations. In this context, the fundamental motive of action is founded

on the notion of delegation. Delegation can be formulated as a mapping taking the
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delegating agent to another agent, to whom power is to be transferred, and the idea of

handling over influence to another agent is formalized through the notion of friendliness.

The analysis of delegation and its consequences can now exploit the theory of maps

between simplicial complexes, and due the discrete character of the model the relevant

mathematics appear to be that of strong homotopy.

Two fundamental types of delegation are of interest. In the first one, influence may

be transferred but the receiver must be able to respond back and cannot delegate fur-

ther. This gives rise to the notions of representations and R-compromises. Allowing for

repeated delegation opens up for further concentration of power, expressed by notions

of D-cores and D-compromise.

Since a general theory must be assessed in terms of the insights, which it offers

in particular applications, we have briefly considered some such applications of the

theory, namely to TU and in particular simple games, to effectivity functions, and

to network models of political influence. The notion of delegation indicates how to

analyse situations where decisions are not immediately obtainable so that compromises

are called for. We have only touched upon this area of research where there are several

directions of future developments of the theory. One of such directions is to consider

situations where acceptability conditions in addition to viability are required for a

compromise.

The approach to political structures through simplicial complexes may be applied

to other aspects of decision making than delegation, as it has been done in the present

paper. Instead of power being handed over from some agents to other, one may consider

the exclusion of some agents by the others, a process which can also be treated using

suitable notions of homotopy. This again is a topic of future research.
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